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ABSTRACT

A new mechanism is proposed that explains two key features of the observed El Niño–Southern Oscillation
(ENSO) phenomenon—its irregularity and decadal amplitude changes. Using a low-order ENSO model, the
authors show that the nonlinearities in the tropical heat budget can lead to bursting behavior characterized by
decadal occurrences of strong El Niño events. La Niña events are not affected, a feature that is also seen in
ENSO observations. One key result of this analysis is that decadal variability in the Tropics can be generated
without invoking extratropical processes or stochastic forcing. The El Niño bursting behavior simulated by the
low-order ENSO model can be understood in terms of the concept of homoclinic and heteroclinic connections.
It is shown that this new model for ENSO amplitude modulations and irregularity, although difficult to prove,
might explain some features of ENSO dynamics seen in more complex climate models and the observations.

1. Introduction

The El Niño–Southern Oscillation phenomenon
(ENSO) is the strongest interannual climate mode (Nee-
lin et al. 1998). It can be characterized by an interannual
cooling (La Niña) and warming (El Niño) of the eastern
equatorial Pacific. Though it originates in the tropical
Pacific, it has an impact on weather and climate globally.
ENSO has to be regarded as an inherently coupled at-
mosphere–ocean mode. Eastern equatorial Pacific tem-
perature anomalies are accompanied by tropical wind
anomalies that in turn reinforce the oceanic tempera-
tures. Besides this positive feedback a delayed negative
feedback exists, which is provided by wave propagation
and advection in the tropical ocean.

In addition to the interannual climate variations as-
sociated with the ENSO phenomenon, climate vari-
ability in the Tropics can be observed also on decadal
and interdecadal timescales (e.g., Graham 1994; Zhang
et al. 1997; Zhang et al. 1998; Liu and Zhang 1999).
There are two main hypotheses to explain this type of
variability.
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• Decadal variability in the Tropics is generated by ex-
tratropical air–sea interactions (e.g., Gu and Philander
1997; Kleeman et al. 1999; Pierce et al. 1999; Schnei-
der 2000).

• Decadal tropical climate variations are generated by
tropical atmosphere–ocean dynamics alone (e.g., Ze-
biak and Cane 1987; Münnich et al. 1991; Kirtman
and Schopf 1998; Timmermann and Jin 2002).

It should furthermore be noted that different ENSO ir-
regularity scenarios suggested in the last couple of years,
such as stochastic excitation (Chang et al. 1996; Eckert
and Latif 1997; Blanke et al. 1997; Moore and Kleeman
1999; Wang et al. 1999) and the nonlinear ENSO–an-
nual cycle interaction scenario (Jin et al. 1994; Tzip-
erman et al. 1994) can also explain a fraction of decadal
climate variability observed in the Tropics.

Very often the term ‘‘decadal variability’’ is used in
a nonspecific way. In order to be more precise it is useful
to address the following questions: Is the decadal var-
iability under consideration different, in a statistical
sense, from a statistical or physical null hypothesis? Is
it appropriate to deal with linear statistical techniques
such as correlation analysis or multivariate stationary
eigenvector-based techniques to identify decadal sig-
nals? Is the phenomenon under consideration expressed
in terms of decadal changes in the mean state and/or
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decadal changes of the variability? Are these two sta-
tistical quantities interrelated?

In our study we focus on the question: What drives
decadal changes of ENSO variability? Despite the fact
that there is no pronounced decadal peak in the spectrum
of tropical sea surface temperature anomalies (SSTAs)
there is ample observational evidence (Gu and Philander
1995; Torrence and Webster 1999) that the amplitude
of ENSO undergoes changes on timescales of 10–20
years.1 Due to the shortness of the observational record
it is difficult to distinguish firmly whether the observed
ENSO amplitude modulation is the result of stationary
autoregressive statistics or whether it is a manifestation
of deterministic processes shaping long-term ENSO dy-
namics. Further support for the deterministic hypotheses
comes from coupled general circulation model simu-
lations (CGCM; see Timmermann et al. 2001). Tim-
mermann et al. (2001) show that the ENSO dynamics
simulated by the CGCM ECHAM4/OPYC can be re-
duced to a nonlinear four-dimensional ordinary differ-
ential equation system, that exhibits similar ENSO am-
plitude modulations as the full CGCM. It has been
shown (Timmermann 2002) that amplitude modulations
as simulated by the empirically derived low-order
ENSO model originate from a homoclinic bifurcation
and are not related to stochastic excitation. Whether this
holds also for the observations is unknown.

We will derive a low-order nonlinear model of the
tropical Pacific that explains both the existence of de-
cadal ENSO amplitude modulations as well as decadal
changes in the tropical mean state. We will also show
that these statistical quantities are tightly related. Fur-
thermore, our analysis suggests a new mechanism for
ENSO irregularity. If our low-order model results were
portable to reality, this would indicate that linear mul-
tivariate stationary eigenvector-based techniques might
not be the appropriate statistical tools to investigate de-
cadal variability in the Tropics.

Our paper is organized as follows. Section 2 describes
the dynamical behavior of a low-order ENSO model. It
is shown that ENSO amplitude modulations and ENSO
chaos can be interpreted in terms of dynamical systems
concepts discussed in more detail in the appendix. We
will derive typical criteria that characterize the emer-
gence of ENSO amplitude modulations. Furthermore,
the role of noise and the annual cycle is discussed. Our
paper concludes with a discussion and summary of our
main results (section 3). In the appendix we give a brief
introduction into the theory of homoclinic and hetero-
clinic orbits.

1 Note, decadal changes in the amplitude of ENSO measure vari-
ations in the energy contained in the interannual ENSO band and
should not be confused with decadal changes in the mean state of
the tropical eastern Pacific.

2. Nonlinear dynamics of ENSO

a. A low-order ENSO model

In order to explore the nature of ENSO amplitude
vacillations we use a low-order ENSO model (Jin 1998;
Sun 2000). This model can be derived from a simplified
version of the Zebiak and Cane (1987) ENSO model
using a two-strip and a two-box approximation (Jin
1997). The upper ocean is a box model version of a
shallow-water model for the equatorial ocean combined
with a mixed layer of fixed depth (Cane 1979). Ac-
cording to Sun (2000), appropriate boxes are the western
equatorial region extending from 1358E to 1558W and
the eastern surface box extending from 1558 to 858W.
The atmosphere is approximated in terms of a linear
relationship between surface winds and the SST gra-
dient. A thermal relaxation towards a radiative–con-
vective equilibrium temperature Tr is assumed.

The heat budget of this model can then be expressed
as follows:

dT u(T 2 T )1 2 15 2a(T 2 T ) 2 (1)1 rdt (L /2)

dT w(T 2 T )2 2 sub5 2a(T 2 T ) 2 , (2)2 rdt Hm

where T1 and T2 represent the eastern and western equa-
torial temperature, respectively; 1/a measures a typical
thermal damping timescale; the term Tsub denotes the
temperature being upwelled into the mixed layer; w is
the upwelling velocity, whereas u represents the zonal
advection velocity, which is assumed to be proportional
to the wind stress;2 and Hm and L denote the depth of
the mixed layer and the basin width, respectively. It is
well known that equatorial upwelling is largely due to
Ekman flow divergence. Its dominating meridional com-
ponent is proportional to zonal wind stress t. Thus, we
obtain

u /(L /2) 5 ebt (3)

w/H 5 2zbt , (4)m

where e and z measure the strength of the zonal and
vertical advection, respectively, and will be used as bi-
furcation parameters. Neglecting the role of the Hadley
circulation and other external sources for wind stress
anomalies, the wind stress related to the Walker cir-
culation can be expressed as

t 5 m(T 2 T )[g cos(v t) 1 sj 2 1]/b, (5)1 2 a t

where sj t represents Gaussian white noise of variance
s2 and g is the strength of the annual cycle of frequency
va. A typical value for g is 0.2. Unless otherwise stated,

2 The inclusion of the advective feedback in terms of u is dis-=T
cussed in Jin and An (1999) and An et al. (1999). Here we also take
into account temperature tendency terms such as u=T 9.
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the experiments described below neglect the annual cy-
cle and noise (i.e., g 5 s 5 0). The subsurface tem-
perature Tsub depends strongly on the thermocline depth.
Following Jin (1996) it can be parametrized as

T 2 T tanh(H 1 h 2 z )r r0 2 0T 5 T 2 1 2 . (6)sub r [ ]2 h*

Here h2 is the depth departure of the eastern equatorial
thermocline from its reference depth H, z0 is the depth
at which w takes its characteristic value, and h* mea-
sures the sharpness of the thermocline.

The east–west contrast of thermocline depth is de-
termined by the Sverdrup balance between the pressure
gradient and equatorial wind stress. We assume an in-
stantanous adjustment (Cane and Sarachik 1981) of the
thermocline gradient to wind stress changes. This re-
lationship accounts for the short traveling time of Kelvin
waves in the equatorial Pacific as compared to the dy-
namical adjustment time of the western equatorial Pa-
cific thermocline. Changes of the western equatorial
thermocline depth h1 are governed by the zonally in-
tegrated Sverdrup meridional mass transport resulting
from wind-forced Rossby waves. This process is char-
acterized by the dynamical adjustment timescale 1/r.
The dynamical equations for the thermocline depth
anomalies in the eastern and western equatorial Pacific
read

h 5 h 1 bLt , (7)2 1

dh bLt1 5 r 2h 2 , (8)11 2dt 2

respectively, and b captures the efficiency of wind stress
t in driving thermocline tilt. The wind stress t 5 2m(T1

2 T2)/b applied to the thermocline forcing does not
contain an annual cycle or a noise component. The rea-
son is that our thermocline equations are filtered equa-
tions (wave propagation processes are already filtered
out). In order to account properly for the effect of noise
and seasonal wind forcing on thermocline dynamics,
one would have to use a model that resolves the waves.
Hence, in our simple model noise and seasonal forcing
are only included in the temperature equations (1) and
(2). The parameter values used in our study are Tr0 5
168C, Tr 5 29.58C, a 5 1/180 day21, r 5 1/400 day21,
Hm 5 50 m, H 5 100 m, z0 5 75 m, h* 5 62 m, m 5
0.0026 K21 day21, mbL/b 5 22 m K21, z 5 1.3, and
L 5 15 3 106 m.

The low-order model is integrated forward in time
using a standard Runge–Kutta method of fourth order.
In the following experiments different parameter values
for e are chosen, such as to explore the role of the
nonlinear zonal advection term in generating chaotic
behavior. A ‘‘realistic’’ order of magnitude for e 5
22uHm/L/wz has been estimated from a CGCM simu-
lation (Timmermann et al. 1999). Here e attains typical
values between 0.05 to 0.12 with a strong latitudinal

dependence; e was also estimated from the Simple
Ocean Data Assimilation (SODA) product (Carton et
al. 2000). For the period from 1980 to 1999 and as-
suming a mixed layer depth of 30 m, e attains values
between 0.024 (in eastern equatorial Pacific between
18S–18N) and about 0.24 between 28S–28N (S.-I. An
2001, personal communication).

Figure 1 shows time series and phase space plots of
the low-order ENSO model, corresponding to different
values of e.

b. Simulated features of low-order ENSO model

For small values of e ; 0.098 the system exhibits a
regular low-amplitude biannual (period of 25 months)
oscillation. The phase space trajectory can be interpreted
in terms of the ocean recharge–oscillator paradigm (Jin
1997). Increase of e to values of about 0.1 leads to
qualitatively new dynamical behavior. One observes
strong amplitude modulations of ENSO that are asso-
ciated with a bursting of extreme El Niño events oc-
curing on decadal and interdecadal timescales. This
bursting is associated with a large positive skewness of
the distribution of eastern equatorial Pacific SST anom-
alies. The phase space plot reveals that the large tem-
peratures of this amplitude vacillation are associated
with a flat thermocline within the tropical west Pacific.
Within this regime of amplitude modulated behavior
both periodic and chaotic windows exist. Large values
of e, around 0.18, generate a large-amplitude ENSO
oscillation with a period of 3–4 years.

It should be noted here that the ratio of the extreme
El Niño events to the small events is unrealistically high.
This might be an artifact of our simplified model. As
can be seen in Timmermann et al. (2001), a nonlinear
four-dimensional empirical ENSO model produces more
realistic ENSO amplitude modulations. Still, we believe
that our simplified model is suited to understand the role
of nonlinearities in generating El Niño bursting. The
details of the dynamical changes induced by changing
the advective nonlinearities can be further explored by
computing power spectra (Fig. 2) for the simulations
shown in Fig. 1. The power spectra are computed on
the basis of 1000-yr-long time series.

The dominant frequency ( f ; 0.04 month21), clearly
visible in the upper panels of Fig. 2 (note the different
scales on the y axes), corresponds to the imaginary part
of the leading eigenvalues of the ODE-system, linear-
ized around a stationary climate state characterized by
an eastern equatorial cold tongue and a western equa-
torial warm pool. ENSO emerges due to an oscillatory
instability of this stationary climate state. Nonlinear
terms in the underlying dynamical equations alter the
linear dynamics as can be seen in Fig. 2. For values of
e ; 0.1 the dominant biannual linear frequency is
strongly suppressed, and enhanced variability can be
observed on interannual to decadal timescales. This
broadband spectral regime characterizes the chaotic
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FIG. 1. (a),(c),(e),(g) Simulated time series of the eastern equatorial temperature T2 (8C) and (b),(d),(f ),(h) phase space plots [eastern
equatorial temperature T2 (8C) and western thermocline depth h1 (m)] corresponding to different values of the zonal advection efficiency
e of (a),(b) 0.098; (c),(d) 0.1; (e),(f ) 0.11; (g),(h) 0.18.

ENSO amplitude modulation shown in Fig. 1. The spec-
tral characteristics are very similar for the periodic os-
cillation at e 5 0.11. For larger e values of around 0.18
the low-order model simulates a periodic ENSO cycle
with a spectral peak at 3–4 years. Hence, an increase
of the zonal advection can lead to a change from a low-
variance biannual to a high variance 4-yr ENSO regime.
Intermediate strengths of the zonal advection parameter
lead to chaotic and amplitude-modulated behavior. This
clearly shows that, at least within this simplified model,
decadal variability can be generated within the Tropics
just as a result of advective nonlinearities.

Recently Jin and An (1999) showed that increases of
the zonal equatorial currents can be an important factor
in shaping ENSO variability. Their results are confirmed
by our analysis.

Based on these sensitivity experiments the physical
mechanism for the simulated ENSO amplitude modu-
lations can be summarized as follows. The tropical cli-
mate mean state as represented by a fixed point of the
nonlinear ENSO model becomes unstable, giving rise
to ENSO-like oscillations. The eigenvalues correspond-
ing to this interannual ENSO mode characterize a grow-
ing oscillation in one direction and a stable nonoscil-

latory mode in a transversal phase–space direction. This
damped mode is largely associated with the dynamics
of the western equtorial Pacific [see Eq. (8)]. Hence,
the climate mean state represents a saddle node of the
system. For a large El Niño event the zonal temperature
gradient and, hence, also the wind stress t are close to
zero. This is also associated with a minimum zonal and
vertical temperature advection. In the aftermath of a
strong El Niño event the warm pool depth deepens as
a result of the thermocline equation (8), and the system
is reset back to its climatological mean state. Subse-
quently, the ENSO mode grows again in its amplitude
until another extreme El Niño event is reached.

c. Bifurcation analysis of low-order ENSO model

In order to study the bifurcation structure of our low-
order model more in detail we perform a bifurcation
analysis in which e and z are used as bifurcation pa-
rameters. The bifurcation analysis is done in two steps:
1) continuation of equilibrium points, detection of Hopf
bifurcations, and computing the stability of the fixed
point solutions and 2) continuation of the periodic so-
lutions, which emerge from the Hopf bifurcations, by
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FIG. 2. Power spectra of eastern equatorial temperature anomalies, corresponding to the time series in Fig. 1. Frequency unit is one
month21. The figure titles correspond to the parameter values of e chosen for the simulations [(a) 0.098, (b) 0.1, (c) 0.11, (d) 0.18].

FIG. 3. Bifurcation diagram of T2 as a function of the upwelling
efficiency z displaying stationary and oscillatory solutions of Eqs.
(1)–(2) as well as their stability. The amplitude of ENSO is repre-
sented by the curves above (maximum value of T2) and below (min-
imum value of T2) the oscillatory unstable stationary state. A dashed
amplitude curve symbolizes an unstable periodic orbit. Square filled
symbols represent Hopf bifurcation points, PD denotes a period dou-
bling bifurcation and transcritical bifurcations (TBs) are symbolized
by an unfilled square. RC denotes the radiative–convective equilib-
rium saddle point. Stable solutions are marked with solid lines, where-
as dotted lines are used for unstable solutions.

computing stability of periodic orbits and their bifur-
cations. The continuation of fixed points and periodic
solutions is performed using the toolkit AUTO (Doedel
1981; Doedel et al. 1991). This software package com-
putes branches of stable and unstable equilibria and lo-
cates and classifies bifurcations. In order to disentangle
the underlying nonlinear dynamics associated with the
amplitude modulations discussed in the previous section
we will compute bifurcation diagrams of T2 as a function
of the vertical and zonal advection parameters z and e,
respectively.

Figure 3 displays the stability diagram with respect
to the vertical advection parameter z. We have chosen
the realistic value e 5 0.1. The results can be sum-
marized as follows: for z , 0.51 (unrealistically small
values) a stable and an unstable fixed point coexist. One
solution corresponds to the radiative–convective equi-
librium state characterized by a flat thermocline, the
other one corresponds to an unrealistic permanent warm
state. For z ; 0.51 a transcritical bifurcation leads to a
change in the roles of the stationary states. For slightly
larger z values of around 0.54 a Hopf bifurcation emerg-
es, giving birth to the oscillatory self-sustained ENSO
mode. In the vicinity of the Hopf bifurcation the ENSO
mode has very long periods (on the order of several
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FIG. 4. Period of the ultralow-frequency mode as a function of the
upwelling efficiency z. The zonal advection strength is fixed to e 5
0.028. The diamonds represent period doubling bifurcations.

FIG. 5. Bifurcation diagram of T2 as a function of e displaying
stationary and oscillatory solutions to Eqs. (1)–(2) as well as their
stability. Symbols as in Fig. 3.

decades) that is a manifestation of an interaction be-
tween the limit cycle and the unstable stationary state
RC. This feature becomes even more pronounced for
small values of e of around 0.028, when the periodic
orbit comes arbitrarily close to the unstable RC equi-
librium state at T2 5 29.58C.

For e 5 0.028 and z 5 0.515 a homoclinic orbit can
be identified with infinite period (see Fig. 4) (see Glenn-
dinning and Sparrow 1984). This is a codimension-1
phenomenon. Despite the fact that this corresponds to
a highly unrealistic3 situation it is interesting to realize
that the periodicity of ENSO is strongly modified by
the interaction between the oscillatory ENSO mode and
the unstable RC mean state. It should be noted here that
the homoclinic orbit identified in Fig. 4 is not directly
relevant for the simulated bursting behavior of ENSO
in our low-order ENSO model.

A key feature that translates from the unrealistic pa-
rameter range of Fig. 4 to more realistic parameter set-
tings is the interaction between ENSO and the unstable
RC mean state. Returning now to Fig. 3 we discuss the
range of z . 0.54, which corresponds to the ‘‘classical’’
ENSO limit cycle regime. Typical periods are on the
order of several years. Increasing the value of z to re-
alistic values of about 1 leads to the creation of period
doubling bifurcations4 for z ; 0.88. If the upwelling
efficiency z becomes unrealitically strong (z ; 1.5) we
observe the destruction of the oscillating ENSO regime
via an inverse Hopf bifurcation. In that case the system’s
dynamics is trapped in an eastern equatorial cold state,
in contraposition to the small-z case. We have seen that
the flat thermocline (RC equilibrium) solution plays an
important role in shaping ENSO dynamics. This solu-
tion has the property to ‘‘repel’’ the attractor whenever
the actual state of the system comes close to it. Within
the limit cycle regime (0.54 , z , 0.88) the presence

3 See Torrence and Webster (1999).
4 Only one period doubling bifurcation is displayed here. In fact a

whole cascade can be identified using other techniques.

of an unstable equilibrium state leads to a modification
of ENSO periodicity. For the unstable oscillatory regime
in between the period doubling bifurcations (0.88 , z
, 1.3) the existence of the unstable RC mean state has
the consequence that after extreme El Niño events the
phase–space trajectory is bent back into the saddle focus
leading to a phase of calm ENSO activity. Summarizing
the dynamics in the parameter window 0.88 , z , 1.3:
If the initial state is close to the saddle focus, the tra-
jectory will spiral outwards, thereby gaining amplitude.
When the system gets close to the RC equilibrium, it
will be repelled from it. Eventually the system returns
back into the vicinity of the saddle focus. This behavior
is nicely illustrated in Fig. 1. This scenario bears many
similarities to the Shil’nikov scenario (Shil’nikov 1965,
1970) for homoclinic orbits. However, our case is more
complicated since the unstable RC equilibrium state is
responsible for the reinjection into the saddle focus.
Thus, the characteristics are more reminiscent of a het-
eroclinic connection. Unfortunately, there is not much
literature on heteroclinic connections between saddle
points and saddle foci. The time-inverse case to our
situation is discussed briefly in Wiggins (1988). It is
very difficult to construct analytically an explicit
Shil’nikov map for our system. However, forward in-
tegrations (as shown in Fig. 1), have revealed that this
special heteroclinic situation gives birth to deterministic
chaos and amplitude modulations.

In section 2b, we have studied the sensitivity of ENSO
with respect to the zonal advection parameter e and
found that decadal ENSO amplitude modulations can
be simulated for realistic values of this parameter. In
order to study this parameter dependence more in detail
we have computed the bifurcation diagram of T2 with
respect to e. The upwelling strength z is fixed to 1.3.
The results of this analysis are depicted in Fig. 5. We
observe the unstable RC solution at T2 5 29.58C, which
influences the dynamics of ENSO when an El Niño
comes close to it. For small zonal advection parameters
a stable equilibrium exists with complex eigenvalues
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FIG. 6. Regime diagram showing ENSO limit cycle (SO) solutions
and amplitude-modulated oscillatory (AMO) ENSO solutions within
the e–z plane. HB and PD denote the Hopf bifurcation and period
doubling bifurcation border lines in parameter space.

(damped oscillatory ENSO mode), which corresponds
to an eastern cold tongue and a western warm pool. This
mean state becomes unstable via a Hopf bifurcation at
the realistic value of e ; 0.09 (Jin 1998). The newly
born ENSO limit cycle experiences further disturbances
by the unstable RC state, giving rise to period doubling
bifurcations, deterministic low-dimensional chaos, and
amplitude modulated behavior (see Fig. 1). Finally, the
ENSO limit cycle is destroyed by an inverse Hopf bi-
furcation for unrealistically large e values.

In order to show that our scenario is quite robust in
parameter space we compute all those situations in z–
e parameter space that are characterized by amplitude
modulations. The result of our analysis, which is also
performed with AUTO, is depicted in Fig. 6. The right
HB curve separates the damped oscillatory ENSO mode
from the self-sustained ENSO regime. The limit-cycle
ENSO regime (SO) breaks up when the system crosses
the right PD curve from right to left. In between the
PD curves ENSO dynamics is characterized by ampli-
tude-modulated behavior. Within this regime both pe-
riodic and chaotic windows exist. A small slice to the
left of the left PD curve separates a damped ENSO
mode, a limit cycle and the amplitude modulation re-
gime. We observe that, in the realistic parameter win-
dow (0.05 , e , 0.15, 0.7 , z , 1.3), about 30% of
the area in parameter space is filled with amplitude-
modulated situations. It is unlikely that e and z remain
the same for different climate background conditions.
If the real ENSO system undergoes secular changes in
which the relative importance between upwelling and
zonal advection is modified (changing z and e values),
it is quite likely that the ENSO system spends some
time in an amplitude-modulated oscillatory regime.

Summarizing, it can be said that the three-dimen-
sional ENSO system has an incredibly rich dynamical

behavior as can be seen from forward integrations and
bifurcation analysis. In particular, the emergence of de-
cadal ENSO amplitude modulations arises from an in-
teraction between an ENSO limit cycle mode and the
RC equilibrium state. This finding is completely new
and has not been discussed in ENSO literature yet. It
can be regarded as a new nonlinear mechanism to gen-
erate decadal climate variability within the Tropics and
provides a theoretical explanation for the decadal burst-
ing of El Niño.

d. Role of annual cycle

It has been recognized (Jin et al. 1994; Tziperman et
al. 1994; Chang et al. 1996) that ENSO interacts with
the annual cycle such as to give rise to irregular, chaotic
behavior. Furthermore, frequency and phase locking to
the annual cycle can be established by nonlinear dy-
namics. It is therefore crucial to study the effect of an-
nual cycle forcing in our low-dimensional ENSO sys-
tem. The numerical simulations described below are
conducted for parameter values g ± 0. Note again, that
the seasonal cycle forcing enters only the temperature
equations (1) and (2).

Figure 7 displays the simulated eastern equatorial
temperatures and phase–space plots for different values
of the annual cycle strength g. One observes a decrease
in the return time of major El Niño events as the annual
cycle strength is increased. This is a manifestion of the
frequency-locking tendency to the external forcing fre-
quency. At the same time ENSO chaos is destroyed for
values g 5 0.1–0.2. This effect can be understood in-
tuitively by choosing a very large value of g. In this
case, the tropical climate system is slaved completely
by the annual cycle forcing, and the forced solution is
phase and frequency locked to the external periodic
forcing. For weaker g interaction among ENSO and the
annual cycle gives rise to quasi-periodic and/or chaotic
dynamics.

The effect of the annual cycle forcing in our simple
ENSO model is to introduce an inverse period-doubling
cascade as g increases, which reflects different stages
of nonlinear resonances. These results are consistent
with the studies of Tziperman et al. (1994) and Jin et
al. (1994).

Furthermore, from Fig. 7 it becomes apparent that the
annual cycle has another interesting effect on the sim-
ulated ENSO statistics. It rectifies the tropical climate
mean state, as well as the level of ENSO variability.
This is illustrated in Fig. 8. We observe that an increased
amplitude of the annual cycle goes along with an in-
crease in the eastern equatorial Pacific mean state tem-
perature, as well as its variability. This nonlinear effect
has not been considered in the literature yet.

e. Role of noise

Another source of ENSO irregularity is stochastic
weather noise. A prominent example of this effect is the
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FIG. 7. (a),(c),(e),(g) Simulated time series of the eastern equatorial temperature T2 and (b),(d),(f ),(h) phase space plots (western and
eastern equatorial temperature and western thermocline depth) corresponding to different values of the annual cycle strength g 5 0.01 (a),(b)
0.1; (c),(d) 0.2; (e),(f ) 0.5; (g),(h) z 5 1.3 and e 5 0.11.

FIG. 8. Mean value and standard deviation of the simulated eastern equatorial time series
shown in Fig. 7 for different values of the annual cycle strength g .
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FIG. 9. (a),(c),(e),(g) Simulated time series of the eastern equatorial temperature T2 (8C) and (b),(d),(f ),(h) phase space plots [eastern
equatorial temperature T2 (8C) and western thermocline depth h1 (m)] corresponding to different values of the noise strength: (a),(b) 0.1;
(c),(d) 0.3; (e),(f ) 1.2; (g),(h) 2.4.

influence of short-term westerly wind bursts on the re-
lease of warm pool waters, preceeding an El Niño event.
In order to study this effect we include stochastic white5

noise into our low-order ENSO model. The way this is
done here is to perturb the wind stress by Gaussian white
noise. It is important to note that the noise component
enters the temperature equation in a multiplicative way.
We will not discuss the effect of different noise colors
here (Wang et al. 1999).

It can be seen from Fig. 9 that further irregularity is
introduced in addition to the heteroclinic irregularity.
Figure 9 illustrates that the mean bursting interval be-
tween large El Niño events is decreased by increasing
the noise amplitude. However, the overall structure of
the attractor remains similar to the no-noise case: large
amplitude El Niño events alternate with small events.
These results illustrate that the heteroclinic chaos sce-
nario is robust against reasonable changes of the noise
level, but less robust against the inclusion of an annual
cycle.

5 Whether this is a justifyable assumption for the tropical Pacific
shall not be discussed here.

f. Combined effect of annual cycle and noise

The next step is to introduce both effects (g, s ± 0),
that is, noise and seasonal cycle forcing. We choose the
initial situation in which the annual cycle strength
amounts to 0.5, which corresponds to a 4-yr large am-
plitude ENSO cycle. At the same time the noise level
is increased from s 5 0.1 to 0.9. The results of these
experiments are shown in Fig. 10. One observes that
the inclusion of noise revives the original homoclinic
orbit structure. Furthermore, an increase in the noise
level leads to farther-spaced large El Niño events as
compared to the no-noise case.

Hence, parameter noise offers the possibility to bring
the system trajectory back into the vicinity of the het-
eroclinic orbit. This illustrates that noise has a construc-
tive effect for our nonlinear scenario rather than a de-
structive one. This proves that the theory suggested here
is rather robust with respect to external perturbations.

Our results suggest that trajectories close to a het-
eroclinic orbit can be regarded as a nonlinear example
of amplitude vacillations. Long timescales, which char-
acterize the envelope of the fundamental ENSO oscil-
lation, are introduced by the intrinsic (advective) non-
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FIG. 10. (a),(c),(e),(g) Simulated time series of the eastern equatorial temperature T2 (8C) and (b),(d),(f ),(h) phase space plots [eastern
equatorial temperature T2 (8C) and western thermocline depth h1 (m)] corresponding to different values of the noise strength: (a),(b) 0.1;
(c),(d) 0.3; (e),(f ) 0.6; (g),(h) 0.9. The annual cycle strength is set to the realistic value of 0.2.

linearities rather than by extratropical–tropical exchange
as proposed in previous studies (e.g., Weaver 1999).

3. El Niño bursting in complex climate models and
the observations

One crucial question to be answered here is as to
whether the bursting behavior found in the low-order
ENSO model can be found also in more complex climate
models and also in the observations. In Timmermann
et al. (2001) and Timmermann (2002) it is shown that
multicentury CGCM simulations performed with the cli-
mate models ECHAM4/OPYC3 (Timmermann et al.
1999) and ECHAM4/Hamburg Ocean Primitive Equa-
tion Global Ocean–Sea Ice General Circulation model
(HOPE-G; K. Rodgers 2001, personal communication)
exhibit decadal ENSO amplitude modulations that are
associated with a particular kind of bursting behavior.
It has been shown (Timmermann et al. 2001) using non-
linear inverse modeling techniques that these amplitude
modulations are due to nonlinear low-dimensional dy-
namics. Furthermore, Timmermann and Jin (2002) have
found that the intermediate Zebiak–Cane ENSO model
(Zebiak and Cane 1987) operating on an annual mean

background state exhibits similar ENSO bursting be-
havior as the low-order model discussed here when the
zonal temperature advection is increased.

Figure 11b illustrates that ENSO bursting behavior
can be seen also in the observations. The Niño-3 SSTA
time series is shown for the period from 1965–2001. To
further highlight the similarity between the major El
Niño events 1972–73, 1982–83, and 1997–98, the 1982–
83 El Niño event is chosen as a template (thick line)
for the strong El Niño events during this period. This
idea is adopted from a recent paper by Douglass et al.
(2002). We see that in all three cases major El Niño
events are preceeded by mini El Niño events. This is
more an indication rather than a proof that El Niño
bursting behavior occurs also in reality. Further evi-
dence for ENSO amplitude modulations is reported in
recent papers by Gu and Philander (1995) and Torrence
and Webster (1999). The observed ENSO bursting, as
shown in Fig. 11b, can be compared with the dynamics
of the low-order ENSO model depicted in Fig. 11a.
Despite too large amplitudes in the low-order model
some qualitative similarities of the observations are re-
produced. Admittedly, this bursting behavior is not typ-
ical for the whole observed Niño-3 SSTA time series,
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FIG. 11. (a) Simulated time series of the eastern equatorial temperature anomalies. The bifur-
cation parameters were set to z 5 1.3 and e 5 0.11. (b) Thin: observed Niño-3 SSTA time series;
thick: Niño-3 SSTA template from 1976 to 1985.

FIG. 12. Schematical phase–space representation of the amplitude
modulation mechanism. Small e values (left) are associated with small
east to west temperature advection. The basic dynamics can be ex-
plained in terms of the recharge mechanism. Very large values of e
(right) lead to large ENSO variability because the strong negative
advection feedback for warm pool temperatures expressed as 2e(T2

2 T1)2 leads to a reduction of T1, reduced trade winds, and thus,
large El Niño events. During a large El Niño event, however, the
zonal advection term becomes small and the recharging mechanism
is initiated. (middle) intermediate values of e lead to an ambivalent
situation, mixing features from the low and high e case, thereby
generating amplitude modulations. The 1 indicates an oscillatory
unstable fixed point, and RC represents a saddle point associated with
the radiative–convective equilibrium state.

but just for the last three decades. But it should be noted
also that background conditions in the tropical Pacific
have changed significantly during the last century.

4. Discussion and summary

It is widely accepted (e.g., Torrence and Webster
1999) that the amplitude of ENSO varies from decade
to decade and that very strong El Niño conditions occur
in intervals of 10–20 years. What is not understood is
why. The decadal variations in ENSO amplitude might
just be an expression of ENSO being partly excited
stochastically or of deterministic dynamical processes
interacting with ENSO. In particular, in light of recent
observational studies (Torrence and Webster 1999; Gu
and Philander 1995) that indicate that the amplitude of
ENSO is modulated on a distinct timescale of 15–20
years, the latter possibility is quite likely and has to be
investigated more in detail.

Our study revealed that a low-order ENSO model
capturing the most important ENSO-relevant processes
can generate amplitude modulations and El Niño burst-
ing behavior on rather distinct decadal and interdecadal
timescales, due to internal advective nonlinearities. Our
scenario is based on equatorial atmosphere–ocean dy-
namics alone and does not invoke extratropical forcing
(in agreement with Kirtman and Schopf 1998). The gen-
eration of decadal tropical variability can be understood
in terms of the dynamical systems concept of hetero-
clinic connections. This rather general mathematical
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FIG. 13. Schematic illustration of (a),(c),(d) homoclinic and (b),(e) heteroclinic orbits in two
and three dimensions.

concept has implications for the simulation of the ENSO
envelope period, as well as for ENSO irregularity. Our
study illustrated that this nonlinear tropical scenario,
which is fundamentally different from the linear extra-
tropical hypothesis (e.g., Gu and Philander 1997;
Schneider 2000), is robust against the combined effect
of annual cycle and stochastic forcing. Admittedly, the
idea of homoclinic/heteroclinic ENSO connections is
less intuitive than previously suggested ideas that ac-
count for the slow tropical background changes caused
by remote extratropical dynamics (e.g., Gu and Philan-
der 1997; Schneider 2000; Weaver 1999). The funda-
mentally new aspect of our hypothesis is that it does
not deal with a ‘‘classical’’ memory timescale, due to
delayed ocean dynamics providing a memory on decadal
timescales, but rather with a nonlinear combination of
different intrinsic timescales. Furthermore, an interac-
tion between ENSO and the radiative–convective equi-
librium state occurs that is crucial for the amplitude
modulated behavior and chaos. This interaction is sche-
matized in Fig. 12.

Our theory is an alternative to previously suggested
nonlinear ENSO irregularity scenarios (Jin et al. 1994;
Tziperman et al. 1994). It fundamentally differs from
these studies, as our mechanism can explain the gen-
eration of chaos without invoking external annual cycle
forcing.

Furthermore, we found that the annual cycle has a
rectifying effect on the tropical mean state. This effect
might have implications for the interpretation of paleo
ENSO data (Tudhope et al. 2001). It is well known that
the obliquity cycle of the earth with a major periodicity
of 41k years modulates the Northern and Southern
Hemispheric warming. This might shift the ITZC me-
ridionally, thereby affecting the strength of the annual

cycle in the Tropics. Due to the nonlinear rectification
effect mentioned above these changes might feed back
onto the tropical climate mean state, generating different
SST patterns. These speculations will be investigated
further in subsequent studies by comparing model sim-
ulations with paleo data.

Another exciting perspective created by our nonlinear
theory is that of regime predictability. Return maps of
large amplitude events can be constructed, offering the
possibility to predict the next large El Niño or La Niña
event of given amplitude. As can be seen from Fig. 1,
the dynamics of ENSO’s envelope can be divided crude-
ly into a low and a high variance regime. Hence, the
prediction of the next large El Niño event is similar to
predicting the next high amplitude ENSO regime. One
crucial finding here is that, due to the structure of return
time maps (not shown), namely the existence of ‘‘pre-
ferred’’ and ‘‘forbidden’’ return times, information on
long-term El Niño bursts can be made based on the
topological structure of the attractor. Our approach of-
fers the possibility to explore this kind of nonlinear
predictability.

We are fully aware that our low-order ENSO model
cannot capture all physical processes involved in trop-
ical climate dynamics. The El Niño bursting simulated
by our simple ENSO model is stronger than the one
seen in observations (Torrence and Webster 1999). Nev-
ertheless, the use of such a simple ENSO model is jus-
tified as it helps to gain more insight into generic non-
linear processes and to generate new ideas.

It should be noted here that the inclusion of an ex-
ternal wind stress, which is unrelated to the east–west
temperature gradient, leads to a symmetry breaking of
the radiative–convective equilibrium state (Jin 1996).
This will also modify the interaction between the RC
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state and the cold tongue climate state, being at the core
of our El Niño bursting mechanism. Experiments have
shown that a realistic external wind stress forcing (due
to the Hadley circulation) affects the amplitude mod-
ulations for small values of the advection strength, but
has relatively little effect on the strong advection case.
Overall the effect of this external forcing is to shrink
the area of amplitude modulations in parameter space
shown in Fig. 6. A more detailed analysis of this sym-
metry breaking effect on the amplitude and frequency
of ENSO will be described in a subsequent study. So
far, it is not certain, how important this effect is in
suppressing ENSO bursting in reality or in more com-
plex climate models.

Our future research will focus on establishing this
mechanism for El Niño bursting using models of inter-
mediate complexity such as the Zebiak and Cane (1987)
model. Furthermore, we will study the nonlinear pre-
dictability of decadal ENSO amplitude modulations
more in detail.
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APPENDIX

Homoclinic and Heteroclinic Orbits

A very important step toward understanding the gen-
eration of nonlinear amplitude modulations in dynam-
ical systems is the identification of saddle points and
saddle foci corresponding to the underlying dynamical
equations. A saddle point in two dimensions is a fixed
point that is characterized by one positive and one neg-
ative eigenvalue. A saddle focus in three-dimensions is
a fixed point of the system that is characterized by a
pair of complex conjugated eigenvalues with negative
(positive) real part and a positive (negative) real eigen-
value.

1) Two-dimensional homoclinic and heteroclinic con-
nections: A homoclinic orbit connects a saddle point
with itself.
A heteroclinic orbit in two dimensions links two
saddle points with each other as shown in Fig. 13b.
In both cases the period is infinity.

2) Three-dimensional homoclinic and heteroclinic con-
nections: In three-dimensions two types of homo-

clinic orbits exist: one characterized by a saddle
point connection (Fig. 13c) and another character-
ized by saddle focus self-connection (see Fig. 13d).
In addition, a saddle focus can be connected with a
saddle point to form a heteroclinic connection (Fig.
13e). This is exactly the case for our low-order
ENSO system that exhibits amplitude modulated be-
havior when the saddle focus is interacting with a
saddle point representing the unstable radiative–con-
vective equilibrium.

Each of the situations displayed in Fig. 13 can be
decomposed into a normal time and a time-inversed
case. In addition, the ratio of the eigenvalues of the
connected saddle points is a further characteristic of the
connection. It is beyond the scope of this paper to give
a detailed description of all these type of orbits. The
interested reader is referred to the book of Wiggins
(1988). It is important to note that, in many cases which
involve saddle focus connections, chaos is a generic
feature in the parameter vicinity of the homoclinic/het-
eroclinic orbits. In addition, we have seen that connec-
tions involving a saddle focus naturally generate am-
plitude modulations as a result of the complex eigen-
value and the reinjection into the saddle focus.
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