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Abstract 

The work investigates perspectives of the parameter estimation problem 
with the adjoint method in eddy resolving models. Sensitivity to initial 
conditions resulting from the chaotic nature of this type of models limits 
the direct application of the adjoint method to the forecast range. Beyond 
this range an increasing number of secondary minima of the cost function 
emerges and prevents convergence of this method. In the framework of the 
Lorenz model it is shown that averaged quantities are suitable for describing 
invariant properties of the attractor and that secondary minima are for this 
type of data transformed into stochastic deviations. 

An adjoint method suitable for the assimilation of statistical characteristics 
of data and applicable on time scales longer than the forecast range is pre­
sented. The approach assumes a larger predictability for planetary scales 
which are here defined by spatial and temporal averaging. The adjoint 
to a prognostic model for statistical moments is invented for calculating 
cost function gradients that ignore the fine structure resulting from sec­
ondary minima. Coarse resolution versions of eddy resolving models are 
used for this purpose. Identical twin experiments were performed with 
a quasigeostrophic model to evaluate the performance and limitations of 
this approach for improving models by estimating parameters. The wind 
stress curl is estimated from simulated mean stream function and sea sur­
face height variability. Even very simple closure schemes for second order 
moments are shown to give reasonable estimations of gradients that perform 
efficiently in minimizing cost functions. 

The method is applied in the second part to the 1 /3°-CME-model for the 
assimilation of SSH variance derived from satellite altimeter data from 
TOPEX/POSEIDON und ERS1 in association with climatological data to 
estimate the underlying mean circulation. A parametrization of SSH vari­
ance for the adjoint equations is derived from the parametrization approach 
of Green (1970) and Stone (1972). On times scales of one year an almost 
consistent state with the altimetric and climatological date is achieved by 
estimating initial conditions for temperature and salinity. The assimilation 
of SSH variance data introduces complementary informations about the 
main frontal structures consistent with climatological observations. The es­
timated state is found to be unstable and to return back to the first guess 
quasi equilibrium state for longer integration periods. 
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Zusammenfassung 

Es wird untersucht, inwieweit die adjungierte Methode zur Parameterschätz­
ung in wirbelausflosenden Modellen eingesetzt werden kann. Die Sensitivität 
gegenüber den Anfangsbedingungen, die aus der dieser Art von Modellen 
unterliegenden chaotischen Dynamik resultiert, begrenzt den Assimilations­
zeitraum durch die Vorhersagbarkeit. Die Vergrößerung des Zeitraums ist 
von der Enstehung einer wachsenden Anzahl von Nebenminima begleited, 
die die Konvergenz dieser Methode verhindern. Am Beispiel des Lorenz-
Modells wird gezeigt, daß statistische Momente zur Charakterisierung inva­
rianter Attraktoreigenschaften geeigent scheinen und daß Nebenminima für 
diese Art von Größen in stochastische Abweichungen der Momente trans­
formiert werden. 

Es wird eine auf Zeitspannen größer als die Vorhersagbarkeit anwendba­
re, adjungierte Methode vorgestellt, die für die Assimilation statistischer 
Momente geeignet ist. Der Ansatz geht von einer größeren Vorhersagbar­
keit für die großräumigen Skalen aus, die hier durch zeitliche und räumliche 
Mittelung beschrieben sind. Die Methode nutzt ein Adjungiertes zu einem 
separaten Model der statistischen Momente, um Kostenfunktionsgradien­
ten zu berechnen, die die aus den Nebenminima resultierende Feinstruktur 
ingnorieren. Grobauflösende Zwillingsmodelle dienen als Approximationen 
für diese Modelle. Identische Zwillingsexperimente wurden zu Untersuchung 
der Einsatzmöglichkeit der Methode für Parameterschätzungen mit einem 
quasigeostrophischen Modell durchgeführt. Der Windantrieb wurde aus si­
mulierten mittleren Stromfunktionswerten bzw. deren Varianz bestimmt. Es 
zeigt sich, daß im Fall zweiter Momente sehr einfache Schließungsansätze 
zur Berechung von Gradienten geeignet sind. 

Die Methode wird in dem zweiten Teil zu Assimilation von Oberflächenaus-
lenkungsvarianzen aus Satellitenaltimeter-Daten von TOPEX/POSEIDON 
und ERS1 im Zusammenhang mit klimatologischen Daten in das l/3°-CME-
Modell verwendet, um die zugehörige mittlere Zirkulation zu bestimmen. 
Die Parametrisierung der Varianzen im Adjungierten wird aus dem Ansatz 
von Green (1970) und Stone (1972) abgeleitet. Für Integrationszeiträume 
von einem Jahr kann ein annähernd mit klimatologischen und den Alt i -
meter-Daten konsistenter Zustand durch Bestimmung der Anfangsbedin­
gung für Salz und Temperatur gefunden werden. Dabei können die Varia­
bilitätsdaten zusätzliche, zur Klimatologie komplementäre Informationen 
über die Struktur der Fronten liefern. Der geschätzte Zustand ist instabil 
und kehrt für längere Integrationsperioden zu dem Referenzzustand zurück. 
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Chapter 1 

Introduction 

Our knowledge and the understanding of the dynamics of the oceans result 

in the first place from observations. In general, the number of observations 

is too sparse for giving a complete picture of the physical processes involved. 

Theoretical considerations have always been included and both sources of 

informations, inspiring each other mutually, need to be combined to form a 

more complete description. 

Nowadays, numerical models play a role of growing importance in sup­

plementing informations on the ocean's evolving state. Data assimilation 

represents in this context a formal method for combining observational data 

and theoretical concepts formulated as numerical models. 

It might be tempting to conclude that models of growing realism may re­

place partly the need to observe the ocean or, that data from a more com­

plete observational network need no longer be integrated by an assimilation 

method. But for the present situation it is still on the contrary. Additional 

data sources such as data from satellites and an enhanced model realism 

are just at the beginning to be sufficient for using them in context of an 

assimilation method. 

Particularly systematic model errors were and are still one mayor obstacle 

that hinder a successful application of these methods. Using higher resolu-

1 
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tion in numerical models for resolving the transfer due to mesoscale eddies 

explicitly is one of the lines, that is followed to improve the simulations. 

However, the presence of mesoscale eddies introduce at the same time non­

linear chaotic dynamics into these models. 

Since most methods for the data assimilation are based on a linear as­

sumptions they are now found of only limited applicability. From this, the 

problem arises that important applications are no longer practicable with 

these type of models. 

The present study deals with the extension of a particular method, the 

adjoint method, in association with statistical moments. In this method, 

limitations concerning the length of the time interval, from which data may 

be integrated, is one of the mayor obstacles. The aim is to establish a new 

assimilation scheme, specially designed to increase this interval. 

1.1 Limitations and perspectives 

In almost all applications, where ocean models are used for the prediction of 

unobserved quantities, the assumption of a perfect model is crucial. In order 

for using a model to predict the effects of a change in certain parameters, 

e.g. a doubling of atmospheric C 0 2 , the model has to be able to simulate 

the most important features of the present day climatological state (Gates 

et al., 1990). 

One goal of data assimilation is to use observational data for improving 

model parametrizations and for the evaluation of this condition. Statistical 

quantities such as the mean state and the variability are a common way 

to intercompare models and data. Data assimilation in meteorology and 

oceanography with strong constraint variational inverse methods however, 

tries to find a particular solution of a dynamical system that best matches 

the observations in a certain time interval. In this formulation the depen­

dence of the special solution to certain parameters is used to find the best 
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match by solving a parameter optimization problem. With the development 

of the adjoint model technique, this method becomes tractable in applica­

tions with realistic models (Le Dimet and Talagrand, 1986). 

In océanographie applications of this inverse technique, the idea, that pa­

rameters can be determined from a steady oceanic circulation, has so far 

played an important role for the design of the experiments. In one of the 

first applications Tziperman and Thacker (1989) determined model param­

eters such as momentum fluxes and mixing parameters from simulated data 

in a model with a steady solution. Results from assimilation experiments 

with low resolution models demonstrate that models with much higher res­

olution are needed in order to find an oceanic state consistent with real 

climatological data (Marotzke and Wunsch, 1993; Schiller and Willebrand, 

1995; Yu and Malanotte-Rizzoli, 1998). 

Applications of the adjoint method in high resolution models came into 

fashion particularly with the use of satellite altimeter data. Although an 

extension seems to be straightforward, there are substantial difficulties con­

nected with applications in present-day models. The circulation simulated 

by eddy resolving models is subject to chaotic dynamics, which restricts the 

applicability of the adjoint method to very short time ranges. For present 

ocean models this range is of the order of a few months. A period consid­

erable larger is however needed in order to estimate parameters correctly 

(Schröter et al., 1993). 

In the meteorological literature the initial condition is mainly regarded as 

a parameter for optimization with the aim to predict the flow for the time 

that follows the assimilation period. From this point of view it became clear 

that the assimilation time is limited by the predictability. Tanguay et al. 

(1995) investigate the ability of the variational assimilation scheme to fill 

in small scale detail in accord with large scale observational information. 

They argued that the advantage of this method, which allows to recover 

unmeasured detail in a dynamically consistent way, is limited by two con­

flicting requirements. The assimilation period must on the one hand be 
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of the order of the time scale of growth of synoptic eddies. At the same 

time, increasing the period beyond this time is accompanied with reduced 

convergence rates or even divergence of the optimization which starts first 

in the smaller scales. The reason for this behavior is the emergence of an 

increasing number of secondary minima of the cost function when increasing 

the period of assimilation (Li, 1991; Stensrud and Bao, 1992). The length 

scale dependence of the nonlinear time scale determines an optimal duration 

or resolution at which to perform assimilation. A way to circumvent this 

problem and to increase the assimilation time is described by Pires et al. 

(1996). Their quasi-static variational assimilation algorithm tries to avoid 

the solution getting trapped in secondary minima by tracking the absolute 

minimum over progressively longer assimilation periods. Swanson et al. 

(1998) investigated the effect of this method on the possibility to prolongate 

the assimilation period. They found that error growth caused by imperfect 

model settings still limits the period to 3-5 days in quasigeostrophic (QG) 

atmosphere models. 

For linear dynamics the sequential Kalman filter produces the same state 

at the end of the assimilation period as variational methods, provided the 

error statistic is perfectly known (Thacker, 1986). In spite of this relation, 

sequential methods, which are widely and successfully used for the assimi­

lation in high resolution models (Killworth et al., 1999; Fox et al., 1998), do 

not show obvious problems connected with the finite predictability. Limita­

tions through finite time predictability enter however the Extended Kalman 

Filter (EKF) along with linearized equations that predict error covariances. 

For computational reasons most applications of sequential methods do not 

include a prognostic calculation of the error and therefore avoid the un­

bounded error variance growth that Evensen (1992) found by implementing 

the extended Kalman filter in a QG model. 

As eddy-permitting and even eddy-resolving models (Bryan and Smith, 

1998) are becoming state-of-the-art, and the computational burden involved 

with the assimilation of observations spanning a time range of more than 
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one year is no longer prohibitive, the request for an appropriate inverse 

method capable for improving parameters emerges. Arguments exist for 

a potential chance of predicting the ocean climate state in presence of a 

chaotic atmospheric subsystem (Grimes and Bryan, 1997) and this can be 

explained by regarding subsystems with different characteristic time scales 

(Boffetta et al., 1998). 

Lorenz (1975) introduced the concept of predictability of the second kind 

that regards a response of statistical properties to a change in forcing. 

Palmer (1993) regards the climate as the attractor of a nonlinear dynam­

ical system in a quasi-stationary regime. He added a forcing function to 

the Lorenz (1963) system and found that the probability density function 

(PDF) changes with the forcing. From this he concludes vice versa that a 

change in the PDF's will hint the influence of the forcing. The present work 

will follow in his footsteps searching for an adjoint method that involves 

only statistical properties such as mean values and variability. The idea is 

to no longer simulate the corresponding trajectory of the observations, but 

instead to constrain only statistical properties, in order to extend the limits 

of the adjoint method beyond the forecast range. 

In the next chapter the connection between secondary minima and the ex­

ponential growth of adjoint variables is shown. In Chapter 3 the idea for 

an algorithm is illustrated by regarding the behavior of cost functions that 

are based on statistical quantities. The method is described in Chapter 4. 

An application to a QG model is presented in Chapter 5. The assimilation 

of sea surface height variance and climatological data into a realistic model 

of the North Atlantic is described in Chapter 6. 



Chapter 2 

Singular Vectors and Multiple 
Minima 

This section presents a review of the theoretical framework connected with 

the limitations of variational assimilation in chaotic systems. The model is 

expressed as a coupled set of differential equations 

t - / < « . « > (2.D 

where / is a nonlinear function of the state vector x. For a given reference 

solution x(t), the evolution of an infinitesimal small initial perturbation 

y(t0) superposed on x(t0) obeys the following tangent linear equation 

ft = L{x(t))y{t), (2.2) 

where L{x{t)) is the Jacobian matrix of / at x(t). The integral of (2.2) from 

t0 to t yields 

y(t) = M(x(t0),t)y(t0). (2.3) 

The eigenvalues Vi(t) and eigenvectors Q(t) of M(x(t0), t) describe the nor­

mal mode stability of the system. In general the advection term in ocean 

and atmosphere models makes M(x) non-normal, that is M + M ^ MM+. 

The growth of error 

||y(*)||2 = \\My(t0)\\2 = (Vita), M+My(t0)) (2.4) 

7 
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involves the adjoint M + to the linear propagator M . The corresponding 

eigenvalues nt(t) and eigenvectors r&(t) of the adjoint operator M+ satisfy 

the biorthogonality condition 

The relation shows that eigenvalues of pairs of eigenvectors that are not 

orthogonal must be complex conjugated. Since M+M is symmetric, an 

orthonormal set of eigenvectors Vi(t) and real eigenvalues ^(t) exist. The 

lack of orthogonality of the eigenvector set of nonnormal operators may 

lead for short times to a transient growth even though all normal modes are 

damped (Lacarra and Talagrand, 1988; Farrell and Ioannou, 1996). In the 

limit of infinite integration times 

the definition of the Lyapunov exponents is retrieved from (2.4) that gives 

a quantitative measure of chaos in dynamical systems (Oseledec, 1968). 

A positive value of ji indicates an exponential separation of two nearby 

trajectories which is a characteristic feature of a chaotic system. In the 

limit t -4 oo the error growth is dominated by the eigenmode associated 

with the eigenvalue i/<(£) with maximum real part, the most unstable mode, 

which in this limit corresponds to the largest Lyapunov exponent. The 

adjoint eigenmodes are closely related to the sensitivity analysis the adjoint 

method provides. The mode with the largest real part of the corresponding 

eigenvalue is the most singular vector at initial time. That means if the 

initial condition is regarded as a parameter, this mode describes in the limit 

of very large periods the most sensitive portion with respect to observations 

at time t. 

This can be illustrated in terms of the adjoint assimilation formalism by 

defining a cost function that measures a single component of x at time t 

(2.5) 

lim 7i(») = lim - log IIM»i(t0)II (2.6) 

(2.7) 
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and the Lagrangian with the dynamical equation (2.1) formulated as strong 

constraint 

C{x0) = JX+ f dH\{t'){x{t') - /(*(/)))• (2.8) 

The Euler Lagrange equations then read 

Xjit) = {x^-xf) (2.9) 

\{t') = -L+(x{t'))\{t') (2.10) 

From the gradient of the cost function with respect to the initial condition 

<*<«> - « " > l $ j = f $ - w - « « w « - **> 

the sensitivity 
dxM = M ± (2 11) 

can be calculated. 

In the limit of long time periods the correspondence between the largest 

Lyapunov exponent and the real part of the dominant eigenvalue of the 

modal growth also holds because of the biorthogonality relation for the 

adjoint eigenvectors. It follows that the adjoint state vector, the Lagrangian 

parameter A, will finally be dominated by the most unstable eigenvector of 

the adjoint propagator and therefore show exponential growth. 

Since \(t) mediates the gradient of the cost function with respect to any 

parameters, the exponential growth of X(t) is transferred to an exponential 

growth of any gradient. Note that even in cases where the limit of validity 

of linearization is by far exceeded, the validity of the gradient obtained from 

tangent linear adjoint equations by the variational formulation still holds. 

In physical systems state variables and cost functions are normally bound 

by an upper limit. It follows that infinitely growing gradients are necessarily 

accompanied by an infinitely growing number of secondary minima. Vice 

versa, the known fact that an infinitely growing number of secondary min­

ima emerges when the assimilation period is increased results in an infinitely 

growing sensitivity of the model to parameters (Pires et al., 1996). 
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t/day 

Figure 2.1: Temporal evolution of the norm of Lagrangian variables for the 

standard adjoint of an 1/6° QG model described in detail in Chapter 5 (solid 

line). The dashed curve is obtained when only the advection of model data 

differences is retained in the adjoint and the dotted curve corresponds to 

applying the formulation (4-4)-(4-6) to the QG model. 

Figure 2.1 shows the evolution of the adjoint variables of an 1/6° QG model 

described in Section 5. Two different regimes can be distinguished. The 

period of 3 months separates the regime of linear growth form exponen­

tial growth thereafter, when the amplitudes of the unstable modes have 

reached the amplitude of linear growing background. For this model an 

eddy-turnover time scale T = 30 days connected with a forecast range of 

about 2-3 T can be calculated. The limits of variational assimilations are 
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clearly visible when regarding linearized equations. 

In the limit of long integration times, sensitivities estimated by the adjoint 

method only reflect the chaotic nature of the model and are different to 

sensitivities that were derived from finite perturbations of model parameters 

in sensitivity studies. However, the chaotic nature of high resolution models 

blurs also the assessment of finite perturbations in the way that a reliable 

influence of the parameter is only detectable if the perturbation is large 

enough. Otherwise it is impossible to separate the effect of changing the 

attractor from a macroscopic change of the trajectory on a nearly unchanged 

attractor. Small perturbations cause a macroscopic change in the trajectory 

but in general a smooth change of the underlying dynamics expressed by 

the attractor (Eckmann and Ruelle, 1981). An exception from this are 

bifurcation points, where the topological nature of the attractor may change 

when the parameter crosses certain critical values. 

The same argument can be derived for the response of PDF's to parameter 

changes. Adding a small stochastic forcing that may represent unresolved 

subgrid scale interactions to the nonlinear system allows one to describe 

the evolution of its PDF by the Fokker-Planck equation, a linear advection-

diffusion equation defined in the phase space of the original equation. The 

solution depends smoothly on the parameters as long as the coefficients 

of the original differential equation depend smoothly on the parameters 

(Liptser and Shiryayev, 1974). 

These observations describe the focal point of the limitations of the ad­

joint method in applications with chaotic models and form the basis for the 

experiments described in the following chapter. 



Chapter 3 

Lorenz Model 

In order to extend the variational method beyond the forecast range, it 

is clearly not sufficient to just define the cost function on basis of statis­

tical quantities, as long as the original formulation of the adjoint method 

is used to find a special trajectory, that optimally represents the statisti­

cal constraints. This follows immediately from the considerations of the 

last chapter. Starting with the standard formalism and regarding the cost 

function will illustrate the idea for an alternative approach. 

The Lorenz (1963) model is a widely referenced chaotic system. It approx­

imates the Rayleight-Benard convection problem by a spectral truncation 

of the Boussinesq equations, 

x = -crx + ay, (3.1) 

y = px-y-xz, (3.2) 

i = -0z + xy, (3.3) 

where a is the Prandtl number, p is a normalized Rayleight number and /? is 

the domain aspect ratio. A standard forth order Runge-Kutta scheme with 

a stepsize At = 0.01 is used for integration. To characterize the attractor 

of this system a cost function based on the mean position 

x = \ f x{t')dt' (3.4) 
t Jo 

13 
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is chosen 
J = (x-x°)2 + (y-y°)2 + (z-z°)2, (3.5) 

where the reference values x°, y°, F» are taken from experiments with the 

classical parameters: a = 10.0, p = 28.0, and 0 = 8/3. For p> pH = 24.74 

the system is chaotic with Lyapunov exponents of (0.93,0,-14.60) for these 

parameters (Nese et al., 1987). The trajectory orbits the two unstable fix-

Figure 3.1: Graphs of the Lorenz attractor for p = 28 (solid) and p = 120 
(dotted). 

points, z=p - 1, x = y = ±y/p- 1 and is moved when the parameter 

changes. The movement of the attractor illustrated in Figure 3.1 is ac­

companied by a magnification of the amplitudes of the oscillations. The 

evolution of the cost function for different values of p and an increasing 
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integration period t is shown in Figure 3.2. For small intervals t the cost 

function seems to have an unique minimum and is significantly nonparabolic 

due to the nonlinearity of the system. Prolonging the interval is accompa­

nied with the emergence of an increasing number of secondary minima which 

is generic in chaotic systems. 

The threshold for the emergence of secondary minima depends on the width 

of the parameter interval in regard, a detail of which the quasi-static varia­

tional assimilation of Pires et al. (1996) takes advantage. In the limit of very 

long integration times the cost function approaches a limit shape which has 

a parabolic form, that reflects an almost linear dependence of the position 

of the attractor on the parameter p. Secondary minima are transformed 

into stochastic deviations. A detailed investigation of the distribution of 

the mean and cost function values from a small interval around p = 31 

shown in Figure 3.3 reveals a Gaussian distribution for the mean values. 

The gradient calculated by the standard variational approach correctly de­

scribes the topology of the cost function but is of very little help in finding 

the absolute minimum. Being almost vertical, it will only lead to the neigh­

boring minimum. Sensitivites calculated with the adjoint method give no 

information on the dependence of the mean position on the parameter. In 

contrast to this, finite parameter perturbations as applied by investigating 

macroscopic sensitivity approximately describe the correct dependency. 

A sensible algorithm must be able to calculate a "mean" gradient that dis­

regards the stochastic deviations of the limit curve of Figure 3.2. This 

curve may also be described by the maximum values or moments of the 

PDFs in Figure 3.3. A reasonable gradient could thus be estimated from 

finite differences, if a proper parameter difference is chosen, but would be 

very expensive in high dimensional parameter spaces. An estimation by the 

adjoint method is possible if it is based on a prognostic equation for the mo­

ments that describes the mean values independently of special realizations 

of the trajectory. 

To explain the stochastic behavior of moments calculated from chaotic sys-
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Figure 3.2: Evolution of the cost function (3.5) from the Lorenz model in 
dependence of the Rayleigh number p when increasing the integration period 
t. 
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O.K — : 1 • 1 : 1 L. ojg 

Figure 3.3: Probability density functions describing the distribution of the 

mean values x, y, z and the cost function fc of the Lorenz model together 

with Gaussian approximations. The ensemble of realizations is constructed 

by varying p slightly around a mean value of p = 31. 

tems in the general framework, we return to the notation of Chapter 2. The 

system (2.1) which is regarded as statistically stationary is decomposed into 

a slow mean component, x, which might be an ensemble or a temporal mean, 

and the deviation, 5x, which describes the fast and transient part 

x = x + Sx. (3.6) 

The equation then reads 

x = f(x + 6x) = f(x,Sx) (3.7) 
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Sx = f(x)-f{£ + 6x)**6f{2,6x). (3.8) 

For any reasonable physical system x can be assumed to be bounded, ||:r|| < 

K. The relation 

11*11 < y - (3-9) 

motivates a scaling for the time, t t/T, with the averaging time interval 

T. After scaling the rate of change increases in (3.8) with the prolongation 

of the averaging interval T. 

Following Hasselmann (1976) the slow component can then again be divided 

into a "mean" component (x) and the deviation x'. The expectation value 

(• • •) is regarded as a very long time mean or as a solution of the equation 

for moments x 

f = fix), (3-10) 

which would involve a closure hypothesis for expressing 5x in terms of x. 

The evolution equation for the deviation then yields 

dx' 
— = f(x,6x)-f = f. (3.H) 

According to Hasselmann (1976) / ' can be assumed to represent a station­

ary random process. It appears in correspondence to the behavior of the 

cost function in case of the Lorenz model that the transient components 

act on mean values as a Gaussian stochastic process. In the limit of long 

times the large number of irregular and statistically independent short time 

oscillations were superposed which enables the applicability of the central 

limit theorem for the distribution of the mean values. 



Chapter 4 

The Method 

4.1 Different approaches 

A recent approach to circumvent limitations in strongly nonlinear systems 

is to define sequential assimilation procedures in terms of PDF's. Miller 

et al. (1994) and Evensen (1994) derived a generalization of the E K F based 

on Monte-Carlo estimates of covariance statistics. This method is found 

to work well in QG models by Evensen and van Leeuwen (1996). It can 

be regarded as a second-order moment approximation of the more general 

method of Miller et al. (1999) who applied the Bayes theorem directly to 

PDF's. The evolution of the PDF's are calculated by the Fokker Planck 

equation or in more complex models estimated by a Monte-Carlo approach. 

A description for statistical moments can be derived from the PDF evolving 

according to the Fokker-Planck equation, when stochastic forcing is added. 

A possible algorithm would thus involve the adjoint to the Fokker-Planck 

equation. Since in higher dimensional systems a direct method is impracti­

cable, PDF's have to be estimated by a Monte-Carlo approach. This would 

imply that a generating Langevin system has to be found for the adjoint to 

the Fokker-Planck equation. A somewhat similar approach, among which 

an ensemble average of cost function gradients of short time slices of one 

long integration period filters the effect of the secondary minima, was found 

19 
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by Lea et al. (1999) to work well in the Lorenz system with an intermediate 

time scale of t=0.44 to estimate the macroscopic sensitivity. If the slices 

cover longer periods the ensemble size must be increased very fast to cap­

ture the increasing steepness of the gradients due to the increasing number 

of secondary minima. This method would probably not be applicable on 

annual time or longer scales for ocean models since slicing the trajectory 

does not allow the model-data difference information to propagate in the 

adjoint far enough to reach the origin causing the difference. 

The unbounded growth of the adjoint variables results in ocean and atmo­

sphere models from the advection term 

ti t + uux. (4.1) 

The corresponding term 

A t + uXx - uxX (4.2) 

of the adjoint equation retrieves the advection of the model-data differences 

along the streamlines of the forward model plus an extra term. This term 

may cause exponential growth with a time scale in order of the nonlinear 

eddy-turnover time T ~ L/U, where U is a typical velocity and L a typical 

length scale of the motion. The growth rate of 28 days for the norm of the 

adjoint variables from the QG model shown in Figure 2.1 corresponds fairly 

well with an estimation of the turnover time T = 30 days. 

Evensen (1992) shows that the growth of the errors estimated by the Kalman 

filter is caused by an analogous term in his QG model. This term was ne­

glected to avoid unbounded growth. The errors are then shown to decrease 

in time due to the neglect of the inherent dynamical instability. Assimila­

tion experiments are then shown to perform better than with the original 

formulation. Likewise, a naive way for trying to obtain a description for the 

"mean" gradient proposed in Section 3 would be to neglect the instability 

terms and to keep just the advection of the misfit information. This was 

tested with the adjoint of the QG model. The exponential growth of the 

adjoint variable is evaded as it is visible from the Lagrangian variables in 
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Figure 4.1: Cost function gradient with respect to the zonal wind stress 

curl for an integration time of 30 days from standard adjoint formalism 

(solid) and from a formulation with pure advection of the model-data-misfit 

information (dashed). 

Figure 2.1. However, Figure 4.1 shows that for an integration period of 

one month, which is clearly within the forecast range, the amplitude of the 

gradient is considerably underestimated. Although the shape of the two 

gradients look similar, this remains not true when the period of assimila­

tion is increased. It is thus not possible to obtain a useful gradient by this 

approach. An analog result for the Kalman filter was given by Evensen 

(1994). The time evolution of the error covariances calculated with the re­

duced formulation were also considerably underestimated in comparison to 
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the errors calculated from a Monte Carlo forecast. 

4.2 Description of the method 

Since statistical moments are used as potential elements in the cost function, 

it is sufficient to regard only equations that describe the evolution of mo­

ments as they can be obtained by Reynolds decomposition. The moment 

equations are then used instead of the high resolution model as a strong 

constraint in the variational formulation. This means, the high resolution 

model is no longer needed. From the nonlinearity of the evolution equation 

a closure problem arises and it becomes necessary to express higher order 

correlations of the transient components in terms of lower order moments. 

As a first step, the standard way is followed and the closure problem is 

handled by introducing a model twin on a coarser grid 

I T = F { x ) ( 4 - 3 ) 

with an increased eddy viscosity that mimics transient processes with short 

term predictability. This kind of parametrization usually has severe short­

comings in regions where nonlinear processes are dominant (see also Figure 

5.1). Using this model for the calculation of the moments would reduce the 

method to the assimilation in coarse resolution models. Any improvement 

in association with the use of a higher resolution is lost and there is no 

chance for extending the method to higher order moments. 

Judged on basis of their results, coarse resolution models can not be re­

garded as sufficient approximations to a model for the moments. On the 

other hand, state-of-the-art realizations of any moment, xF, are available 

from the solution of high resolution models. It is thus possible to follow 

a mixed approach. Since only tangent linear equations are needed in the 

variational formalism, an expansion of the moment model at the best avail­

able approximation for the moments is possible without knowing a solution 

from the moment model. Courtier et al. (1994) invented an incremental 
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formulation of the variational assimilation to reduce the cost of the method 

for an operational implementation. They expand the forward model at the 

first guess solution and use a simplification of the first order tangent linear 

term for the optimization steps afterwards and found that the algorithm 

works well. 

Following a similar approach, the coarse resolution model twin is expanded 

at a realization of the moment that is calculated from the solution of the 

high resolution model and averaged to the coarse grid. The resulting tangent 

linear equations are employed to approximate the first order of the moment 

model and are then used in the variational formulation as a strong constraint 

for the statistical moments. This means, the high resolution model is still 

applied for the calculation of approximations of the moments. 

Introducing a parameter a of the high resolution forward model and the 

adjoint operator of the coarse resolution twin model, F+(X, a), the scheme 

of the assimilation algorithm then reads: 

minimize 

J(a) = \{a - ab)TB-l(a - a„) + \{Hx - yfO'^Hx - y) (4.4) 

with the high resolution forward model 

^ = / (* ,« ,*) , (4.5) 

and the adjoint equations 

^ = F+(x,a)X + 0-l(Hx-y), (4.6) 
at 

where x is the time mean calculated from the solution of (4.5). The mo­

ment is after a spatial averaged to the coarse grid inserted into the adjoint 

equation (4.6). O is the error covariance of the observations y, B the error 

covariance of the a priori information, a&, of the parameter a and H the 

observation operator. 

This scheme allows the adjoint variables to be propagated on the mean 

stream lines of the forward model, although the transient part, e.g. the 
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eddy flux terms, are only represented by simple parametrizations. The ap­

proximation will cause the Lagrangian variable and therefore the gradients 

to be only approximative. But as in the outer loops in the application of the 

incremental method by Rabier et al. (1998), no approximations are made 

within the cost function and the forward calculation. Since the gradient is 

only a means for finding the minimum, errors in the Lagrangian variables 

will possibly reduce the performance with an eventual failure in conver­

gence of the method. The shape of the cost function and the position of the 

minimum will not be affected. 

Figure 2.1 shows that the Lagrangian variable does not increase exponen­

tially in this formulation, but approaches an asymptotic value, which is 

much higher than in the above case where the instability mechanism is 

removed in the adjoint. 

Since (4.6) are linear autonomous equations for calculation of the Lagrangian 

variable A, the system represents a simple method for the calculation of the 

stationary solution. The adjoint step therefore can be speeded up by using 

a more efficient scheme such as a Gauss-Seidel solver. 

The error covariance O is a function of the measurement errors but rep­

resents in the same way limited representativeness of the observations due 

to variability of the physical system. Statistical moments appear in high 

resolution models as stochastic quantities. Under the prerequisite that the 

modeled variance of the statistical moment is a sensible approximation for 

the variance of the data analog and the measurement errors are negligible 

in comparison to this variance, an estimation of the covariance O is possible 

from an ensemble of model integrations. 

Calculating the Lagrangian variables on a coarser grid implies an interpo­

lation step. Since the coarse grid represents only a subspace of the origi­

nal system the method can only estimate the part of the parameters that 

projects onto this subspace. This is the coarse resolution and time averaged 

part. The computationally more economic way is to perform the descent 
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algorithm on the coarse grid. In order to keep the fine scale complement 

unchanged, this part has to be isolated and added after the descent step. 

In all numerical experiments presented later we follow the simpler way and 

interpolate the gradient to the high resolution grid to avoid a decomposition. 

The method is so far only applicable for mean values. The extension of 

this method to higher order moments is not straightforward. A simple ap­

proach that introduces additional closure schemes into the adjoint equations 

is presented in Section 5.4. 



Chapter 5 

Application to the QG Model 

In order to investigate if the ideas developed from the Lorenz model hold 

in a more complex framework and to evaluate the potential performance 

of the method in respect to the assimilation of real data a QG model is 

regarded in the following. As suggested by Schröter et al. (1993), the new 

method will be first tested in an identical twin configuration where the per­

fect model assumption holds and results can be judged by the true fields 

and parameters. The general strategy of the experiments is to reconstruct 

the zonal wind stress pattern from simulated statistical moments such as 

mean stream function and stream function variance expressed as sea surface 

high (SSH) variance. The model is considered to be in a statistically sta­

tionary state and the realizations of the moments are considered as being 

characteristic for the dynamical behavior. That means, parameters can in 

principle be recovered from investigating macroscopic sensitivity. 

5.1 Model description 

The three layer QG model is based on the Holland (1978) model and basi­

cally identical to that described in Vogeler and Schröter (1995). A limited 

area double gyre configuration is set up on the ß-plane with the Coriolis 

27 
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parameter at central latitude of 40° to mimic a simple model for midlati-

tude jets. The resolution is 1/6° in the zonal and meridional direction and 

the area extends meridionally from 32° N to 48° N. The layer thicknesses 

are from top to bottom 300m, 700m and 4000m, respectively and reduced 

gravities at the layer interfaces are 0.0357ms-2 and 0.0162ms -2. Friction 

coefficients are chosen as 10 _ 7 s _ 1 for the bottom friction and 10 2 m 2 s _ 1 for 

harmonic lateral friction. The reference experiment is forced with zonal 

wind stress given by r = r 0 cos(27ry/L„) with r 0 = 10 - 4 m 2 s" 2 . A flat bot­

tom is prescribed and free slip conditions are applied at the closed bound­

aries. The equilibrium solution is a statistical stationary double gyre with a 

maximum zonal velocity of about lm/s and a maximum SSH rms variability 

of about 60cm (Figure 5.1). 

5.2 Adjoint model 

The prognostic model used for the construction of the adjoint for stream 

function moments is identical to that described above except of a decrease 

in resolution to 2/3° and an increase of the lateral friction to 10 4 m 2 s _ 1 . The 

solution of this configuration is a stationary two gyre system with a reduced 

penetration scale and velocity of the zonal jet (Figure 5.1). The adjoint to 

the QG model is described in Moore (1991) and Schröter et al. (1993). 

As descent algorithm the quasi-Newton routine, MINIM, is chosen which is 

based on the Davidon-Fletcher algorithm and which was successfully applied 

by Jung et al. (1998). The discretisation in time was changed to a finite 

difference of the adjoint analogue to Sirkes and Tziperman (1997) in order 

to suppress the computational mode. Computing the stationary solution of 

(4.6) by a Gauss-Seidel iteration as described in Section 4.2 lead to gradients 

that were found to perform more efficient in the optimization and were used 

throughout the following described experiments. 
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Figure 5.1: Annual mean upper layer stream function (in Sv) from the ref­

erence (a) and a coarse resolution experiment (b). 

5.3 Assimilation of stream function data 

5.3.1 Behavior of the cost function 

To measure the least-square distance between the actual upper layer mean 

stream function ipi and the simulated observations a quadratic cost function 
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is introduced where i counts the number of horizontal grid points N. A l l 

experiments are started from the same initial condition, which is the state 

after 20 years of forward integration with reference wind forcing. Mean 

values were derived from an integration period of one year. The control 

parameter is the curl of the zonal wind stress r. 

The error covariance matrix is assumed to be diagonal and spatially homo­

geneous. e2 is then defined as the spatial average of variance of an ensemble 

of mean stream functions. The ensemble members are derived from varying 

the reference wind stress pattern by an amount of less than 5%. Due to this 

choice of the error covariance the cost function scales in a way that it shows 

values of about one in the vicinity of the minimum. Since the moments of 

high resolution models are regarded as stochastic quantities no additional 

noise was added to the simulated observation. 

For comparing with the results from the Lorenz model, a section through 

the cost function is made. The wind stress patterns that correspond to this 

section are obtained by decomposing the reference function into discrete 

wavelet modes (Press et al., 1993) and tuning the amplitude of the fourth 

mode which causes mainly large scale variations of the wind stress. A 

decomposition into wavelet modes was chosen to allow for an easy reduction 

of the number of degrees of freedom, realized in an experiment described 

below. It was shown by Farge (1992) who also gives an excellent review, 

that data form turbulence may be reconstructed fairly well by using only 

a limited number of wavelet modes. The modes depend on a scale and a 

position parameter. The first two modes describe the mean value of the 

function. The remainder of the space is classified by a sequence of N sets, 

n=l..N. Each set contains 2" modes of an identical wavelength proportional 

to 2~ n, starting for n=l with the wavelength that corresponds to lenght of 

the whole interval. The references wind stress is thus described essentially 

by the third and forth mode. The reference wind stress and the pattern 

resulting from doubling the forth coefficient is shown in Fig. 5.9. 

Figure 5.2 shows the section through the cost function. General character-
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Figure 5.2: Samples from sections through cost functions based on annual 

mean upper layer stream functions. Simulated observations are from the 

high resolution model with the reference wind forcing r°. The dependence 

on the parameter r, which is effectively the forth mode of a wavelet decompo­

sition, is displayed by the normalized Euclidian difference to T°. The crosses 

correspond to experiments with the high resolution 1/6° forward model. The 

smooth curve is the costfunction that results from simulations with the low 

resolution 2/3° model. 
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istics of the Lorenz system are retrieved and the curve resembles one with 

stochastic deviations superposed on a parabolic shape. The smooth black 

curve in Figure 5.2 describes the costfunction that results from an attempt 

to simulate the stream function with the low resolution 2/3° model on which 

the adjoint is based. The large displacement of this curve indicates that no 

consistent solution can be found by optimizing the parameter. The shifted 

minimum shows that even the parameters estimated from the minimum 

are significant in error. This illustrates the general problem of variational 

assimilation in presence of systematic model errors which project onto the 

estimated parameters. However, the resemblance of the shape of the cost 

function to the high resolution analogue suggests that a linearization ap­

proach about the mean calculated from the solution of an eddy resolving 

model may work fairly well. 

The general problem in this method emerging from the stochastic structure 

of the cost function is the sensitivity of the cost function values and its 

gradient. It becomes clear, that finding the absolute minimum which is a 

singular point, is an impractical task. The precision up to which a parameter 

can be relocated, is expected to depend on the noise level. A criterion for 

terminating the optimization is given by a reduction below the noise level, 

e.g. a cost function value of one. This was not enforced during most of the 

following experiments to investigate the order of magnitude of the possible 

reduction. 

5.3.2 Assimilation period of one year 

A period of one year is not sufficient for the model to equilibrate to changed 

wind stress. However, the pattern, derived from the difference between the 

annual mean of the first year after changing the parameter and the reference 

stream function, is found to be qualitatively analogous to the difference 

between the corresponding two quasi-stationary states. It is interesting to 

see how the method performs under this condition, since this experiment 
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also indicates whether the response of the statistical moments to a change in 

parameters shows enhanced predictability in comparison to the time scale 

that is associated with the inherent chaotic dynamics at the mesoscale. 

The optimization is started throughout the paper from a control parameter 

that is obtained by tuning the fourth mode of the reference wind stress. 

Paths from minimizing the cost function (5.1) by estimating the zonal wind 

stress are shown in Figure 5.3 in dependence of the normalized Euclidian 

distance to the reference parameter. The paths generally leave the straight 

line in wavelet mode space that is marked by the section through the cost 

function. Cost function values therefore may show considerably higher or 

lower values for the same Euclidean distance, even if the cost function would 

be free of noise. The optimization is assessed in the figure simultaneously 

on basis of the distance in parameter and observation space. 

For the red path in Figure 5.3 an ensemble of 10 realizations was used to 

investigate if a reduction of the noise level results in a higher precision of the 

parameter estimation. The members where constructed by varying slightly 

the parameter by an amount of less than 5%. The expected effect on the 

precision is not captured and the final state is virtually of the same quality 

as in the experiment on basis of one realization. The Euclidian distance 

between the final parameters are of the same order as the distance to the 

reference value. 

A nullspace within the parameter space that is unobservable from mean 

stream function data may account for the remaining difference to the ref­

erence parameter. This is investigated by restricting the parameter space 

to the 4 first modes of the wavelet decomposition. Since the optimization 

visualized by the green path in Fig. 5.3 ends up with the same distance to 

the minimum, it is not likely that a nullspace accounts for the limitation. 

The precisions may mainly be limited by a general error of the gradient 

due to the approximation necessary within this method or trapping into 

larger secondary minima (such as the one visible in Fig. 5.3) that where 

not ignored by the calculation of the gradient with the coarse resolution 
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Figure 5.3: Samples from a section through the cost function based on annual 

mean upper layer stream functions together with paths from optimizing the 

zonal wind stress r. The solid path is from an experiment that employs 

one realization, and an ensemble 10 realizations is used for the dashed path. 

The parameter space is reduced to the 4 first wavelet modes for the dotted 

path shown on the left hand side just for clarity. The parabola is used for a 

posterior error estimate. 
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adjoint. 
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5.3.3 Error estimation 

The important part in estimating the posterior error covariance of param­

eters is the Hessian matrix of the cost function. Disregarding the a priori 

information term in (4.4) the Hessian with respect to the parameter a reads 

. (dHx\T _ j (dHx\ (&Hx\T „ .,„ x , , 

According to Thacker (1989) the error covariance of a is described by the 

inverse A ~ l of the Hessian. An approximation to the inverse of the Hessian 

can be obtained from the decent algorithm if it employs a quasi-Newton 

method. Methods for calculating the Hessian as the Davidon-Fletscher al­

gorithm used by MINIM utilize informations from the gradient. For our 

method it is expected that at the final stage the estimation of the Hessian 

is corrupted by the variability of the gradient which is then strongly subject 

to the stochastic nature of the cost function. 

However, since paths from all optimizations trace the shape of the sec­

tion through the cost function, it seems sensible to assume isotropy for the 

dependence of the cost function on the parameter. This means that the 

displayed section is assumed to be representative for any other section. A 

simple approach is then to estimate the Hessian form fitting the shape of 

the cost function in Figure 5.3 to a parabola. Al l parabolas drawn together 

with sections through cost functions are obtained by adjusting the curve 

by hand under the constraint that the value in the minimum is one. This 

constraint takes the applied scaling of the cost function into account. By 

this way, a relative error of 25% is estimated which is in correspondence 

with the achieved distance of the parameter estimation. 



36 CHAPTER 5. APPLICATION TO THE QG MODEL 

5.3.4 Assimilation period of 5 + 5 years 

A period of 5 years is chosen to precede the assimilation to allow for equi­

libration to the changed wind forcing, and the period of assimilation is 

extended to a further 5 years to reduce stochastic deviations caused by dif­

ferent eddy realizations. The amplitude of the stochastic component of the 

cost function shown in Figure 5.4 is markly increased comparison to the one 

year experiment. Parameters with an rms difference to the reference value 

in the order of norm of the reference value, may correspond to cost function 

values as low as values from the vicinity of the control parameter. This is 

because the QG model involves a much wider spectrum of different time 

scales than the Lorenz model. The cost function values are, in contrast to 

the one year integration, now subjected to long term variability of the jet 

stream position. 

Despite the fact that a small improvement of the parameter leads to an 

expected reduction of the cost function, it may still increase, if a realization 

higher than one from the ensemble mean occurs. Therefore small improve­

ment steps are generally unfavorable. They will obscure the minimization 

algorithm, because the gradient does not contain informations about the fine 

structure of the cost function. Usually this is only a problem if it happens 

during the first steps, where the Hessian is only unsufficiently determined 

by prior steps. The path from the optimization in Figure 5.4 shows a final 

cost function value well below the noise level in the vicinity of the minimum. 

Al l cost function evaluations are plotted in the figure. Considering the last 

10 iterations, it arises that the minimization does not take place through 

just choosing realizations which have successive lower cost function values 

by chance. In terms of cost function values the estimated parameter is of 

the same quality as one, that is much closer to the reference parameter. 

The final parameter value has a normalized Euclidian distance to the cor­

rect parameter of about 27%. The error estimation gives a relative error of 

17% which is lower than before, because the noise level of the 1 year period 

assimilation experiment was very high in the vicinity of the minimum. A l l 
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Figure 5.4: Samples from a section through the cost function based on mean 

upper layer stream functions derived from an integration period of 5 years 

together with a path from optimizing the zonal wind stress r. The star 

denotes a restart of the descent algorithm. The parabola is fitted to the cost 

function by hand. 

points on the path of the optimization are significantly below the cost func­

tion, showing that the isotropy argument does only hold marginally, which 

hints at different sensitivities to the observational data in the parameter 

space. 
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5.4 Assimilation of variance data 

Sophisticated closure schemes and models for higher order moments are only 

available for idealized geometries and forcing functions, e.g. Holloway and 

Hendershott (1977), and would be impracticable because of their cost. In 

this section it is shown that even the utilization of very simple "closure" 

schemes may produce useful gradients for minimization algorithms. 

The definition of the cost function based on the stream function variance, 

expressed as SSH variance a2 through the relation SSH = &ipu is analogous 

to section 5.3.1 

and the same strategy is used for estimating the error t\. Different to 

experiments concerning mean stream function data, it appears that within 

a period of one year the stream function changes too little for significantly 

influencing the variance (Figure 5.5). For this reason the same period of 5 

years for assimilation and equilibration as in the last section is chosen. 

5.4.1 "Closure" from velocity 

Eddy variability in ocean and atmosphere models is generated due to insta­

bility processes that transfer energy from the mean velocity to the transient 

part. Typical mechanisms are baroclinic and barotropic instability arising 

from vertical and horizontal shear of the mean velocity. In order to avoid 

contamination by noise from differentiation, the mean upper layer velocity 

is used instead of velocity shear to parameterize variability: 

The mean velocity is connected with mean shear since typical horizontal and 

vertical scales are associated with the zonal jet stream. The proportionality 

to the square of the velocity was assumed in analogy to the parametrization 

(5.3) 

<r2 = « iö | 2 = « ( [ a ^ x ] 2 + [a^!]2). (5.4) 
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Figure 5.5: Samples from a section through the cost function based on stream 

function variances taken from an integration period of one year. The depen­

dence on the wind stress r is displayed by the normalized Euclidian difference 

to the reference value T° as in Fig. 5.2. 

of eddy fluxes derived by Green (1970) and Stone (1972) for the baroclinic 

instability. A similar relation, that involves the mean kinetic energy derived 

from thermal wind, was used by Stammer (1997) to characterize regions of 

high eddy kinetic energy. 

Figure 5.6 shows that except for the boundary regions a pattern similar 

to the variability can be obtained by the parametrization from the mean 

stream function. Only the relation between variations of SSH variabilities 

and velocity variations enter the adjoint equations. In contrast to (5.4), an 
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Figure 5.6: Mean velocity (a, in m/s) and SSH variability (b, in m), derived 

from a model integration of 2 years. 

additional affine part can therefore be included into the estimation of K. 

The coefficient K « 1 is estimated from the linear regression displayed in 

Figure 5.7. Typical regression coefficients are between r = 0.7 and r = 0.9. 

The amplitude of the stochastic component of the cost function based on 
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Figure 5.7: Regression of the patterns shown in Fig. 5.6. The correlation 

coefficient is r = 0.82. 

variance data and illustrated in Figure 5.8 is very similar to the analog 

function based on mean stream functions. The path in parameter space 

obtained by optimizing the wind stress shows nearly no convergence to the 

correct value, although the cost function is reduced to a value below the 

noise level. The wind stress curl shown in Figure 5.9 reveals that the curve 

in the vicinity of the line of zero wind stress curl, which in linear Sverdrup 

theory is the position of the jet, is very well recovered, but shows nearly no 

convergence elsewhere. This is not surprising since Figure 5.6 demonstrates 

the the close relation between the mean position of high variability and the 

mean current. The sensitivity of the SSH variances to changes in the wind 

stress varies with latitude. Low sensitivities in combination with a large 

noise level of the cost function introduce a virtually unobservable nullspace 

that can not be recovered from the variance. 
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Figure 5.8: Samples from a section through the cost function based on SSH-

variances taken from a period of 5 years, together with paths from optimizing 

the zonal wind stress r with the "closure" from Section 5.4-1 (dashed) and 

from Section 5-4-2 (dotted). 

5.4.2 SVD method for closing 

Plotting the cost function values based on mean stream function, J(i>), 

against the one denned on basis of stream function variance, J(o-2), for slight 

variations in r reveals an approximately linear relationship (Figure 5.10). 

This seems to be not surprising because the tangentlinear approach, this 

method is based on, assumes that the costfunction may be approximated 

by linear mappings plus stochastic components, r -4 J(t^(r)) and T -> 



5.4. ASSIMILATION OF VARIANCE DATA 43 

Figure 5.9: Curl of the wind stress r: reference (solid), first guess obtained 

by replacing the amplitude of the forth mode of the wavelet decomposition 

by twice the value (dashed) and the final iteration (dotted). 

/(cr2(r)). By inverting one of the maps, a linear relation between J(^) 

and J(cr2) may be constructed. However, this notion is only correct for 

macroscopic variations of the parameter r, when the values of both cost 

functions simultanously increase with an increasing parameter error. The 

simple way of searching the gradient, dJ(a)/dr, by a regression from an 

ensemble of slight variations in r, that even avoids the requirement of an 

adjoint, is therefore found to produce very irregular gradients. 

If <x2 is locally parameterized by a linear dependency on 0, the Jacobian 

da2/dtp serves as a diagnostic closure for variability. An expression for 

da2/dtp can be derived from a Monte Carlo approach, where the ensemble 

is generated by perturbing the parameter r by a small amount. With the 
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Figure 5.10: Cost function values based on the mean stream function, 

J(^(r)), versus the one defined on basis of the SSH variance, J(O2(T)). 

Values are derived form integration periods of 5 years with a preceding equi­

libration period of 5 years by slightly varying the wind stress r. 

ensemble average (•),- the autocorrelation 

B = ($-(t!>)T)(4>-(xj>)T)T)T (5.5) 

and the covariance 

C = <(<72 - (<T2)T)(j - (4>)T)T)T (5.6) 

is defined. An expression for the Jacobian is then derived from linear re­

gression by the Gauss-Markov Theorem: 

da2 „ n . 
(5.7) 

Since the number of rows in B equals the dimension of tl>, B has for rea­

sonable ensemble sizes, N, only a few nonzero eigenvalues. Their number 
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is always smaller than N. By using a singular value decomposition (SVD), 

it is possible to calculate the Moore-Penrose inverse of B from a limited 

number of experiments. An ensemble of 5 realizations is used to calculate 

approximations of da2/dip within every iteration step. The path from opti­

mization shown in Figure 5.8 and the final curve of the wind stress curl (not 

shown) reveal the same behavior with the same limitations as the results 

from Section 5.4.1. 

The calculation of the Jacobian from an order of less than 10 realizations 

is only a sensible task if a simple relation between ip and a2 holds. The 

approach from Section 5.4.1 shows that such a relation indeed exists. The 

second scheme therefore works for the same reason as the more simple and 

efficient approach from the last section. The advantage is however, that no 

concrete relation has to be found. 

An estimation for the posterior parameter error as in Section 5.3.3 gives a 

value for the normalized rms error of 30%. The estimated parameters are 

clearly outside of this range and show that an isotropic approximation for 

this cost function is not appropriate. 



Chapter 6 

Application to the CME Model 

6.1 Introduction 

Altimetric data have become an important source of information about the 

ocean circulation due to their spatial and temporal coverage of the global 

ocean. Although the measurements are restricted to the ocean surface, 

strong vertical coherence within the upper ocean extends the applicability of 

these data into the subsurface region. An optimal method for the extraction 

of subsurface information is given by assimilating the data into a general 

circulation model. Two principally different approaches are available and 

widely used, namely sequential and variational methods. Both originate 

from the same principle and both suffer from the imperfect knowledge of 

the statistical informations of the error covariances. However, following 

different approximations, they are limited by different obstacles. Sequential 

methods are based on simplifications of the extended Kalman filter and 

employ various extrapolation schemes to account for spatial coherence of 

the error covariance matrix. (Oschlies and Willebrand, 1996; Cooper and 

Haines, 1996; Evensen and van Leeuwen, 1996; Gavart and De Mey, 1997). 

The application of the method of Oschlies and Willebrand (1996) reveals 

that this sequential method while improving only the variability is able to 

keep the mean state invariant (The DYNAMO Group, 1997) which results in 

47 
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an unphysical interplay of mean and transient parts of the flow. Additional 

independent information about the mean state is therefore necessary and 

was included by Killworth et al. (1999) in this scheme with great success. 

Since variational methods search for the trajectory of a given dynamical 

system that fits the observations optimally, the consistency of the solution 

with the dynamical equations is guaranteed. However, since the tangent 

linear equations employed within this method are useful in high resolution 

models only within the validity of the linearization approach, the method 

is limited to the forecast range. Application for the assimilation of altime­

ter data were therefore restricted to very short time spans of a few months 

(Schröter et al., 1993; Morrow and De Mey, 1995), which do not allow sig­

nals to propagate into the deep ocean. In this part the method of Section 4 

is applied for the assimilation of sea surface height (SSH) variance into an 

eddy permitting version of the Community Modeling Effort (CME) model 

of the North Atlantic ocean. Patterns and amplitudes of annual SSH vari­

ability are assumed to derive from an underlying quasi stationary mean 

circulation which is motivated by a small variance of annual SSH variability 

when comparing different years from TOPEX/POSEIDON (TP). The close 

link between mean and variable part as described by Stammer (1997) is 

then utilized in reversed order for trying to estimate the mean state from 

the variable part of the circulation by means of data assimilation. The 

dynamical consistency of the solution estimated by the adjoint method en­

ables in contrast to sequential methods that the mean circulation changes 

in accordance with the assimilated variability. 

After a brief description of the models, the choice of the error covariance 

matrices is discussed in detail in Section 6.4. An identical twin configura­

tion is subsequently chosen to evaluate performance and limitations of the 

method before the applied parametrization approach to a closure scheme 

for the SSH variance is presented in Section 6.6. The results of an one year 

assimilation are discussed with some emphasis on the effect of the closure 

scheme in Section 6.7. 
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The intention of assimilating statistical moments is to find the origin of sys­

tematic differences of the climatological states calculated from ocean models 

and observational data and to improve the model formulation by optimizing 

some of the model's parameters. In ocean models, the initial state, lateral 

and surface boundary conditions, and coefficients in context with the formu­

lation of mixing are potential parameters, since they are only approximately 

known. The influence of the initial state should be lost after integrating to a 

quasi-stationary state. However, most authors include the estimation of ini­

tial conditions for temperature and salinity into the optimization since only 

limited integration periods of a few years are practicable, during which the 

state is essentially controlled by this parameter (Tziperman et al., 1992; 

Marotzke and Wunsch, 1993; Schiller and Willebrand, 1995). Since it is 

found that the assimilation period is restricted to one year because of dy­

namical reasons as explained below, this approach will be followed and the 

parameter set is even restricted to the initial conditions in one experiment. 

The aim of truly improving the model by parameter estimation is a difficult 

task on short assimilation periods since there is only minor contribution 

from the surface boundary conditions within a period of one year. Parame­

ter innovations are generally overestimated, when the chosen period is not 

appropriate for the affected processes to reach a new equilibrium. The main 

emphasis is therefore to show the feasibility of the method for improving 

modeled climatological mean states by parameter estimation and for state 

estimations with high resolution models. Second, it is not clear to what ex­

tent multiple stable equilibria may account for differences to the observed 

data (Dijkstra and Molemaker, 1999). By estimating initial conditions it 

is possible to construct states that more closely represent the observations 

and to decide on stability afterwards. 
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6.3 Numerical models 

The primitive-equation ocean circulation models used in this study are 

based on the 1/3" CME model configuration developed by Bryan and Hol­

land (1989) and make use of the revised code described by Pacanowski et al. 

(1993). The domain of high resolution forward and the coarse resolution 

twin covers the Atlantic Ocean basin from 15° S to 65° N. Both models have 

30 levels and share the same vertical grid spacing which increases smoothly 

from 35m at the surface to 250m below 1000m. Buffer zones of 5 points 

width are applied on the closed boundaries where salinity and temperature 

are restored to data taken from Levitus (1982). The northern boundary 

condition is supplemented by the signal of Denmark Strait overflow water 

(Doscher et al., 1994). 

6.3.1 Forward model 

The model configuration is essentially identical to that described by Os-

chlies and Willebrand (1996). It is forced with monthly mean wind stresses 

of Hellerman and Rosenstein (1983) and the heat flux is formulated accord­

ing to the linear approximation of Han (1984). Surface fluxes of fresh water 

are specified by relaxation to the monthly mean values of Levitus (1982). 

The horizontal gridspacing is 1/3° in meridional and 2/5° in zonal direc­

tion. Horizontal mixing is parameterized by biharmonic friction. Constant 

coefficients for viscosity and diffusivity are chosen as 2.5 x 101 9 cm 4/s. In 

the vertical Laplacian mixing is used with constant coefficients of 0.3 cm 2/s 

for diffusion and 10 cm2/s for viscosity. The effect of convective events are 

parameterized by increasing the vertical mixing coefficients to 104 cm 2/s at 

places in the water column where static instability is detected. 
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6.3.2 Adjoint model 
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The high resolution and the coarse resolution twin model share the same 

source code. The horizontal gridspacing is 1° in meridional and 1.2° in 

zonal direction. Different to the forward model horizontal mixing is param­

eterized by harmonic friction with coefficients chosen as 5 x lO 8 cm2/s to 

prevent the tangent linear model from developing unstable modes. The ad­

joint model was constructed with aid of the automatic code compiler TAMC 

after carefully modifying the code. The compiler developed by Giering and 

Kaminski (1998) is able to generate adjoint code on basis of the instructions 

of the forward model. The algorithm treats the program as a differentiable 

function that maps the parameters onto cost function values. The code 

is fragmented into basic operations to which adjoint operations have been 

defined. It then applies the chain rule for differentiating compositions of 

functions to differentiate the instructions. The code compiler has already 

been applied to construct adjoint code to different types of models as at­

mosphere, ocean and ocean wave models (Kaminski et al., 1996; Stammer 

et al., 1997; Hersbach, 1997). In order to prevent the adjoint from show­

ing the computational mode that results from the Euler coupling in an 

adjoint to a finite difference formulation as constructed by automatic code 

compilers (Sirkes and Tziperman, 1997), the code is modified to perform 

only leapfrog steps. Divergence of the two decoupled modes is not observed 

since the adjoint variables asymptotically approach the stationary solution 

of (4.6). 

6.3.3 Implementation of the method 

The application of the method is illustrated by a flow chart in Fig 6.1. The 

adjoint uses only temporally and spatially averaged informations originat­

ing from the high resolution forward model. The estimated gradient and 

innovations calculated by the descent step therefore belong to a time inde­

pendent coarse resolution subspace of the original parameter space and the 
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Figure 6.1: Flow chart illustrating the assimilation method. The forward 

model, the observations, the descent step and the cost function are defined 

on the high resolution 1/3°-grid. The cost function gradiens are calculated 

by an adjoint to a model for the mean circulation which is approximated by 

a low resolution l°-twin. 

complement of this space remains unchanged. As described in the first part, 

prognostic variables were averaged to the coarse grid and enter the adjoint as 

temporal mean values. Thermohaline and momentum flux boundary condi­

tions are treated in the same way and the topography was constructed from 

the high resolution representation on basis of the same spatial averaging 

procedure, completed by an additional removal of holes and the restora­

tion of the islands. The seasonal cycle is removed in the adjoint which 

describes the adjoint to a model for the mean circulation. This limits po­

tential parameters to the mean component of time dependent parameters. 

Including a seasonal cycle into the adjoint formalism requires the formation 

of ensemble mean values to eliminate the transient eddy component from 

monthly mean values. The treatment of mixing in case of static instabilities 

makes the mixing coefficients effectively time dependent. By analogy to the 

treatment of the forcing, convection is parameterized in the adjoint by tem­

porally and spatially averaging the mixing coefficients of the forward model. 

Exponentially increasing Lagrangian variables which indicate a limit of pre-
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disability were not found for periods of several years if averaged prognostic 

variables originate from a coarse resolution forward model run. Stronger 

gradients and higher extreme values of the velocity fields resulting from the 

1/3° model, however, limit the integration period for the adjoint to one year 

when using the fields from the 1/3° model. 

The variable storage minimization algorithm M1QN3 by Gilbert and Lema-

réchal (1989) represents a good compromise in terms of storage requirements 

between conjugated gradient and quasi-Newton methods and was chosen as 

descent algorithm. Gradients calculated by the coarse resolution model are 

interpolated by bicubic spline to the grid of the 1/3° model before descent 

steps were performed. 

6.4 Data sets and error estimates 

Estimations for the error covariances are given in the following for each term 

of the cost function. In order to calculate estimations of the covariances, 

an approach was followed that is similar to Evensen (1994) and Evensen 

and van Leeuwen (1996), who derived the forecast error covariance matrix 

from an ensemble of forward calculations. The ensemble was constructed by 

adding pseudo random fields with specified variance which were introduced 

to simulate the system error covariance. Although the strong constraint 

approach specifies the forward model to be free of error, the moments de­

rived from averaging over finite periods of time have to be regarded as single 

realizations of moments since small disturbances of the parameters yield a 

different trajectory. As described in Section 4.2 the variance of these real­

izations limits the precision of localizing the minimum and should be used 

for the estimation of the error covariances. The internal variance depends 

on the length of the averaging period and can be derived from an ensemble 

of integrations of corresponding length that were formed by members with 

different but equivalent initial conditions. After integrating the model into 

a quasi-stationary state it is possible to take the members from slicing a 
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large integration period into periods of corresponding length. These peri­

ods may be regarded as independent due to the rapid decorrelation of the 

transient eddy signal. For the estimation of error covariances, both, the 

observational error and the error derived from the variance of the averaged 

quantities has to be taken into account. This is done by approximating 

the covariance by the largest of the two errors. If not otherwise specified, 

the error covariance matrix is chosen to be diagonal, constant in time, and 

spatially homogeneous. 

6.4.1 SSH 

Sea surface height variance is calculated from five-daily maps of merged 

data from TOPEX/POSEIDON and ERS1 (TP/ERSl) created by Oschlies 

and Garccm (1998) enclosing the period from October 1992 to October 1993 

(Figure 6.1 Id). The total measurement error as given by Fu et al. (1994) 

is 4.7 cm for TOPEX and 5.1 cm for POSEIDON, while an overall rms 

difference of 3 cm to tide gauge measurements is found by Morris and Gi l l 

(1994). The variance of the SSH variability of the model from annual means 

of 7 years that follow each other shows values larger than 4 cm rms only in 

a very narrow band above the Gulf Stream where values around 8 cm rms 

occur. The same calculation on the basis of annual mean SSH variability 

from TP and ERSl/2 of the years 1993,1996 and 1997 estimated from maps 

produced by the CLS Space Oceanography Division as part of the project 

AGORA and DUACS (Traon et al., 1998) and available on CD ROMs pro­

duced by the AVISO/Altimetry operations center gives essentially the same 

values with a shifted region for the maxima. Because of the wrong position 

of the Gulf Stream in the model and too few data from altimetric measure­

ments, an approximation for a spatially dependent weighting may only be 

described by an analytical function approximating the distribution from the 

data. However, a constant value of € ^ S S H = 4 cm throughout the experi­

ments was assumed. The effect of introducing of such a distribution would 

not be large and very local, affecting only 4 % of the data points where 
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values higher than 4 cm occur. 
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6.4.2 SST 

The sea surface temperature (SST) is taken from the 9 km resolution daily 

nighttime maps of the AVHRR Oceans Pathfinder Program. The mean 

SST is calculated from maps covering the same period as the SSH data af­

ter building monthly mean values to reduce the bias due to cloud cover. The 

SST available from the Pathfinder Program is an estimate from the bright­

ness temperature which is related to skin temperature of the ocean surface. 

The coefficients of the algorithm that converts the brightness temperature 

into SST have been estimated by a regression against in situ observations 

that are approximately cotemporal and colocated (Podesta et al., 1995), 

the complete database is included in the AVHRR Matchup Database. The 

satellite derived temperature therefore more closely resembles the mixed 

layer SST measured by the buoys. The rms difference between the gridded 

Pathfinder SST data and SST from the database is 0.94°C for the daytime 

and 0.97°C for the nighttime matchups (Smith et al., 1996). It also re­

flects the internal variability of the temperature within a gridbox due to 

the local character of the measurement by the buoys. Internal variability 

for one year mean values of SST shown by the model over the same 7 years 

as regarded above is overall less than 1°C except for the Gulf Stream area 

where it exceeds slightly the 2°C mark. The error value for temperature 

observations is chosen as tA,Ssr = 1°C, since similar limitations hold as for 

the SSH variability. 

6.4.3 Climatological data 

The depth-dependent rms difference of temperature and salinity values be­

tween climatologies of Boyer and Levitus (1997, hereafter WOA97) and 

Gouretski and Jancke (1998, hereafter SAC) is depicted in Figure 6.2 together 
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Figure 6.2: Square root of the horizontally averaged variance of annual mean 

values (thin solid) together with the averaged rms difference between WA097 

and SAC climatology (dashed). The bold profiles are the specified error func­

tions (*(z) and f^(z) used for the error covariance. They contain estima­

tions of the reduction in degrees of freedom due to vertical correlation within 

the T and S data and are therefore larger than estimations of the variances. 
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with values calculated from the variance of an ensemble of seven annual 

mean values of a model solution. Both approaches provide similar esti­

mates for the error profiles except in the surface region where variability is 

underestimated by the model due to the restoring to monthly mean values. 

Eddy-like spots are visible all over the model region within the WOA97 data 

below 2000 m due to insufficient smoothing. The variability estimated by 

the model is thus lower in this region than the error of the data as approx­

imated by the rms difference. Above 2000 m error covariances are specified 

as functions of depth approximating the variance curves but increased by a 

factor of 7. Below 2000 m, profiles approximate curves of about twice the 

data error. This choice and the same argument is used for the parameter 

penalty term described later, takes vertical correlations in the temperature 

and salinity fields into consideration which effectively reduces the number 

of independent degrees of freedom. It includes the effect of disregarding 

spatial correlations for the error covariances by a simple estimation of the 

reduction in the degrees of freedom. Typical vertical correlation radii are 

350 m above and 500 m below 1000 m depth, taken at correlation coef­

ficients of r=0.5 which are calculated from the above described ensemble. 

The estimations of the errors td,T{z) and edyS(z) in Figure 6.2 contain this 

vertical correlation and could not be used for the judgement on consistency. 

Horizontal correlations were assumed to be of the same order for all types 

of data and were therefore consistently left out of consideration. 

6.4.4 Quasi cyclic stationarity 

To avoid a linear drift which may seriously affect the meaning of SSH-

variability, a term penalizing temporal drift as proposed by Marotzke and 

Wunsch (1993) should be introduced into the cost function. For being con­

sistent with the formulation of the adjoint model problem, only statistical 

stationarity is demanded and the initial and final state should therefore also 

be a mean state. This requires an integration period of at least 3 years and 

was not possible because the integration time of the adjoint is limited as 
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explained above to less than one year. Unlike coarse resolution models the 

presence of eddys in high reolution models prevent them from being exactly 

stationary. Even after 20 years of "spin-up" when an approximately quasi-

stationary state is reached, states that were separated by exactly one year, 

differ due to eddies locally up to more than 10°C in temperature and more 

than 2 PSU in salinity. The gradient calculated from this state is dominated 

by differences between initial and final state due to different eddy locations. 

Since it is senseless trying to find realizations which are more stationary 

than these, the error for the steadyness term has to be in the order of the 

difference between initial and final state. It was chosen as ec,r = 20°C and 

*c,s = 10 PSU. For this reason the term has on the other hand very little 

effect to avoid the drift in the mean values resulting from imbalances caused 

by improper surface fluxes. 

6.4.5 Initial conditions 

When the number of parameters exceeds the number of observations the pa­

rameter estimation problem is ill conditioned. The problem may be turned 

into a well posed one with a unique solution when additionally a priori infor­

mations about parameters are added. It should be formed by the distance 

of the parameters to a first guess in a norm that takes the uncertainties 

into account (Thacker, 1988; Evensen et al., 1998). The first guess is the 

initial condition after 20 years of "spin-up". The metrics of this norm, the 

error covariance matrix, was approximated by the derivation of the annual 

mean values of the reference experiment in comparison with temperature 

and salinity data from the WOA97 under the assumption that the error 

is of the same order for the initial conditions. The differences are locally 

inhomogeneous and the largest errors occur for the upper 1000 m in the 

Gulf Stream region. The comparison result was integrated into an expres­

sions for the error profiles of temperature and salinity that approximates 

the profiles of the differences multiplied by a factor to account for vertical 

correlations. The approximations for the error of the a priori information 
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then reads, , , T ( Z )= i 4 °C exp(-z/800m) and ei>s(z)= 4 PSU exp(-2/800m), 
respectively. 

6.4.6 Surface flux 

Weighting coefficients for the a priori parameter values of heat and fresh­

water fluxes estimated as restoring temperature and salinity were chosen to 

be only slightly larger than the rms error concerning the initial condition of 

the surface layer even although surface fluxes are only poorly known. They 

are fixed as ef<T = 4°C and e / i 5 = 0.5 PSU. Without adaption of the surface 

layer to the changed fluxes an error of the heat flux of about 175 Wm~ 2 

would derive from a mean transfer coefficient of 44 W m - 2 ° C _ 1 used in the 

Han (1984) formulation. The adaption however, reduces the effect in the 

C M E model to about 8 W m - 2 ° C _ 1 which yields an error value of about 

32 W m - 2 . The same calculation for the salinity results to an error of the 

freshwater flux of about 1 m yr" 1 . 

6.5 Identical twin test 

In variational assimilation usually none of the parameters can be regarded 

as perfect. Even when the model formulation is free of errors, the number 

of parameters, that one has to estimate to reconstruct perfectly a model 

analogue of observations which enclose only certain aspects of the state, 

is usually too large to be determined from the available data alone. In 

identical twin experiments, data is constructed from a twin model run with 

specified change in parameters. In this way, the deviation of the solution 

from the known "truth" can perfectly be traced back to the influence of 

the parameter in regard. This experimental design is used to evaluate the 

performance of the methodology. In the first part it was found from identical 

twin experiments with a quasigeostrophic model that due to high variability 

of mean and cost function values, the precision up to which parameters 
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could be recovered is quite poor. However, the prospect of greater precision 

is expected for regions with lower variability. 

A simple experimental configuration, the estimation of the surface heat 

fluxes from annual mean simulated SST data was selected to compare the 

precision of the parameter estimation that can be achieved in the C M E 

model with the results from the quasigeostrophic model. The relationship 

between mean surface fluxes estimated from restoring to an "effective" at­

mospheric temperature and mean surface temperature is very close. In 

principle a complete recovering of the parameters should be possible and 

no a priori informations were introduced. The restoring temperature was 

multiplyed by an arbitrary factor of 1.2 resulting in a rms temperature de­

viation of 3.5°C of the mean SST with respect to the reference experiment. 

The optimization was stopped after 8 iterations and reduced the rms error 

to 0.05°C with an expected further decrease. Figure 6.3a shows that differ­

ences remain at this stage at the continental boundaries. These are due to 

errors resulting from extrapolating the gradient from the 1° model to the 

domain of the 1/3° model. Further errors are visible at the northern and 

southern boundaries. Sensitivities to heat flux changes are much lower at 

the boundaries because of the lateral restoring boundary condition. The 

estimation of the Hessian by the minimization algorithm captures different 

sensitivities only after a few iterations which causes the convergence in these 

regions to lag behind. In contrast to the results from the QG model the ab­

solute minimum could be precisely estimated and no limitations occur due 

to stochastic nature of the mean values which should be important mainly 

in regions of high variability. 

The same experimental settings with annual mean SST from the Pathfinder 

project described in Section 6.4.2 as data reduces the rms difference from 

1.34°C to 0.45°C after 13 iterations with no expected further reduction. 

Differences remaining mainly in the Gulf Stream region result obviously 

from differences in spurious eddy signatures which are not controllable by 

the estimated parameter. This low sensitivity is also the reason for the 
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Figure 6.3: Surface temperature difference in °C remaining after optimiza­

tion of surface heat fluxes (assimilation - data): (a) identical twin experi­

ment Mean Pathfinder SST is usedas data in (b). 



62 CHAPTER 6. APPLICATION TO THE CME MODEL 

quality of the relocation in the first experiment. Large scale disturbances 

in heat flux have only minor effects on the evolution of the eddy field on 

time ranges of one year. 

Since only statistical properties and not the exact location of the trajectory 

were constrained by this method, the second experiment gives an estimation 

of the precision that could be achieved by this method when using real data. 

6.6 "Closure" for SSH variance 

The simple parametrization approach as described in Section 5.4 is followed 

to mimic a model for the prediction of higher order moments in the ad­

joint formulation. For the inclusion of SSH variance (JSSH as a second order 

moment, a diagnostic closure is presented that parameterizes locations of 

high eddy variability in terms of the density structure derived from the 

mean temperature and salinity distribution. The generation of eddies is 

closely related to the stability properties of the mean current. Eddy ener­

gies calculated from tracked drifting buoys (Richardson, 1983; Krauss and 

Kase, 1984) and altimeter data (Stammer, 1997) indicate the major frontal 

zones as the primary location for the occurrence of variability. Outside 

the tropical regime spectral characteristics of altimetric data from TP an­

alyzed by Stammer (1997) suggest baroclinic instability as the dominant 

source of variability in accordance with the spectral relations of geostrophic 

turbulence. A recent Richardson number based parameterization of eddy 

transfer coefficients invented by Visbeck et al. (1997) uses horizontal and 

vertical stability, M2 = g/p0Jp% + p2 and N2 = gPz/Po, to express the co­

efficient in terms of the isopycnal slope A^/AT 2 of the baroclinic front, with 

g the gravitational acceleration, p the density and pa a reference density. 

This approach was originally derived on basis of the theory of baroclinic in­

stability by Green (1970) and Stone (1972) who described the eddy velocity 

in terms horizontal and vertical density gradients of the mean flow. 
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Figure 6.4: Scatter diagram of SSH variance from TP/ERS1 versus its 

parameterization (6.1) used with climatological data from Gouretski and 

Jancke (1998). The region is identical to Figure 6.5, the slope is 667 cm 

and the correlation coefficient is r = 0.7. 

We follow along this line and apply a linear relation between SSH variance 

and depth integrated eddy velocity expressed in terms of the Richardson 

number, Ri, 

j 1250m j j 1250m 

UOm v 110m ' 
foPoPz 

dz, (6.1) 

employing the thermal wind balance for the calculation of the vertical ve­

locity shear. H is the depth interval, /„ the Coriolis parameter of a central 

latitude and 7 the coefficient of proportionality. The relation is shown by 

Treguier et al. (1997) to give a reasonable representation of the main regions 

of variability. The impact of this relation when assimilation SSH variance 

in regions where the model considerably underestimates variability is to 

steepen the frontal structure. In this way, the available potential energy as 
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source for eddies generated by baroclinic instability is enhanced. 

Figure 6.4 shows a regression between SSH variance and amplitudes of the 

parametrization, employing the thermal wind relation as in (6.1) for a cal­

culation of the mean flow velocities from the SAC climatology. Since only 

the relation between variations of SSH variabilities and density variations 

enter the adjoint equations, an additional afBne part can be included into 

the estimation of 7. Figure 6.5 indicates the distribution of the parame­

terized variability as it is described by the relation (6.1). The qualitative 

agreement between the pattern in Figure 6.11d and Figure 6.5 is supported 

by a significant correlation of 0.70. The parameter of proportionality 7 

calculated from regressions with different climatologies or from the corre­

sponding fields derived from the solution of our forward model spans a range 

of values between 122 cm for the model solution and values of 434 - 667 cm 

for the climatologies. The small value in case of the model solution may 

partly be caused by cutting away a large portion of the variability signal, 

since the parametrization is only defined where the depth is larger than 1250 

m. The value for the implementation into the adjoint is chosen as 7 = 200 

cm between 10° S and 50° N and 7 = 0 elsewhere to exclude tropical and 

high latitude regions where the correlation is very low. A relation to the 

horizontal gradient of the mean velocity calculated from thermal wind as 

Stammer (1997) presented gives also good correlations and parametriza­

tion. However, it is very similar to (6.1) and would affect the results only 

marginally. 

The parametrization is based on a function that contains only horizontal 

and vertical derivations of the mean density and a constraint on absolute 

density values and the distribution among temperature and salinity is not 

provided by the assimilation of SSH variability. From this one can conclude 

that an application of the scheme for the estimation of initial conditions 

for temperature and salinity will result in a large subspace of equivalent 

solutions. In the subsequent sections two ways are presented to handle this 

problem. One is the already mentioned inclusion of a priori informations 
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Figure 6.5: Parameterization of SSH variance employing relation (6.1) with 

climatological data from Gouretski and Jancke (1998) (y = 1/ 

for the parameters and a second would be to add climatological data of 

temperature and salinity. 

In order to explain the effect of the parameterization some results are pre­

sented from the experiment described in detail later in Section 6.7.2. Figure 

6.6 shows horizontal and vertical cross-sections through the gradient of the 

cost function parts JSSH, which measures the difference of the SSH vari­

ances, and JwA<m which measures the difference of annual mean tempera­

ture and salinity values to the WOA79 data with respect to the temperature 

initial condition. Although there are markly differences between the pat­

terns, both indicate the same characteristic errors of the model which has 

a northward displaced Gulf Stream with too low variability and almost 

no Azores Current with the associated variability. The general features 

°f dJssH/dT0 confirm the above made supposition, locations of underes­

timated SSH variance are distinguished by spatial gradients in the pro-
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« 1 70'* « • ! 30H I Of 15'N 2S'N 35*N 45T« 

Figure 6.6: Gradient untn respect to the temperature initial condition of the 

cost function part JSSH* which measures the difference of the SSH variances, 

and JWAOW'which measures the difference of annual mean temperature and 

salinity values to the WOA79 data (in 1/°C). The horizontal level is at 230 

m depth and vertical sections is along 60" W. 

posed temperature change. Spatial structures of the gradients of either part 

are consistent in suggesting warmer water south and colder water north of 

the modeled Gulf Stream. The vertical structure of both gradients share 

some similar features although dJSsn/&T0 is derived via the closure scheme 

from the temperature and salinity structure of the forward model. The 
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scheme therefore provides a method for the vertical extrapolation of SSH 

data. The precise position of the Gulf Stream is difficult to constitute from 

dJwoAyrldTo while the gradient of JSSH contains spatial gradient informa­

tions that clearly marks the position. In the same way, the signature of the 

Azores front is only visible from the BJssnl^To term. 

6.7 Assimilation experiments 

For the specification of absolute density values and the distribution among 

temperature and salinity, different strategies concerning the set of the in­

cluded cost function terms are pursued. The cost function is defined as a 

sum 

/ = E - t f (6-2) 
B,a 

of quadratic parts 

l y n e0,a 
with a e {SSH, SST, T, S} representing the data types and 0 G {c, d, / , t}. 

N is total number of temperature gridpoints of the model. The term for 

cyclic stationary and the one for annual or climatological means of obser­

vational data are labeled with c and d, and 0 = i,f denotes the a priori 

information term for the initial condition and the surface fluxes, respec­

tively. The notation corresponds to the naming of the weights epA used in 

Section 6.4. There are only data terms for SSH and SST. The iterations 

are started with the same parameter set as the control run which is the year 

after a twenty-year "spin-up" from the state of rest. 

6.7.1 Including a priori informations 

In the experiment described in this section informations on density values 

are retrived from a priori informations. The cost function includes 8 terms 

which are defined by the set {Jg : a € {T,S},0 € {c,f,i}} supplemented 
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Figure 6.7: Mean sea surface height in cm: (a) control run and the 11th 

iteration with optimized initial conditions for temperature and salinity and 

surface heat and freshwater fluxes including additional a priori informations 

for the parameters (b) shown together with Singh and Kelly (1997) data (c). 
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Figure 6.7: (continued) 

by the data terms j£sff and Jgsr- The estimated parameters are the initial 

conditions for temperature and salinity and the corresponding surface fluxes. 

Only a brief description of the results is presented to give insight into the 

reasons for the configuration chosen in the the following section. Results are 

presented on the basis of mean SSH because the focal point is most clearly 

visible in this quantity. Figure 6.7 depicts the annual mean SSH from the 

control run and the final iteration together with data from Singh and Kelly 

(1997) who estimated mean SSH from a combination of hydrographie and 

altimeter data. The mean front of the control run is displaced around 60°W 

to the north and is shifted around 42°W to the east and it is noticeably 

weaker than the observations suggest. The final iteration resembles more the 

control run than the data of Singh and Kelly (1997), although the solution 

is improved. This confirms partly the assumption made in introduction that 

it may be possible to retrieve information on the mean state by assimilating 

variability. However, it is assumed that the mean state predicted from the 
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assimilation would be more closely resemble the observation if the penalty 

from the a priori informations does not push the solution back to the control 

state. 

About 20% of the cost function in the final iteration emerges from the a pri­

ori information term whereas the data terms are only reduced to 68%. The 

problem arises to some extend from the ratio of the number of parameters 

to the number of data points which is partly captured by including vertical 

correlations. More seriously is the violation of the assumption of a Gaussian 

error of the a priori informations. Since the first guess initial condition is 

subject to strong systematic errors, it is not possible to find an improved 

state consistent with the observations. From a theoretical point of view the 

result may under the prerequisite of proper chosen error covariances rep­

resent the optimal compromise between the position of the front emerging 

from a priori informations and the one which optimally corresponds to the 

observed SSH variance. However, the effect of assimilation is quite low and 

informations on systematic errors should additionally be included. A possi­

ble way to remove this systematic deficit in the initial conditions would be 

to subtract the modeled mean state from it and to add the data from the 

WOA97 afterwards. However, far better than this is to include the WOA97 

data directly into the cost function to constrain the mean state and dismiss 

the a priori informations instead. This is done in the experiment described 

in following section. 

6.7.2 Including WOA97 data 

In addition to the SSH variance data, data from the WOA97 is assimilated 

in this experiment. The configuration of the cost function then encloses 

5 terms defined by the set {JSSH, J f : « € {T,S},0 e {c,z}}; the cyclic 

stationary terms are still included although they are defacto not effective. 

The total value of the cost function is reduced within 10 steps from 0.43 

corre^nding to the value of the control to 0.21 at the final iteration. A 
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Temperatur error level (deg C) 

Figure 6.8: Posterior error profiles calculated from the rms difference with 

temperature and salinity fields of the WA097 climatology. Control (a), as­

similation run including WOA97 and SSH-variance data (f), the following 

year of this assimilation run (d) and assimilating only WOA97 data (e). 

Curve (c) is twice the ensemble error covariance and (b) the rms difference 

between the SAC and the WOA97 climatologies from Figure 6.2. 

second iteration started from a different first guess was performed 

vestigate the sensitivity with respect to the starting point. The tofc 

function was then reduced from 0.90 to an identical value of 0.21 at th 
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Figure 6.8: (continued) 

iteration. Compared with the first iteration, an almost identical state was 

found that only diners due to different eddy realizations. The second itera­

tion was continued for a further 18 iteration and all results presented in the 

following are taken from the 24th iteration since no further improvement 

was achieved during the 4 last iterations. The cost function value is then 

reduced to 0.18. The integration is continued afterwards for two additional 

years to investigate the stability of the solution. In order to evaluate the 

informations retrived from the variance data an experiment with the iden-
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tical configuration without the SSH-term was performed. The cost function 

is then reduced after 21 iterations to 0.14. The value is almost identical to 

the corresponding cost function part of the above experiment that includes 

additionally SSH data. If not explicitly stated otherwise, results denoted by 

the assimilation run are from the assimilation that includes both, WOA97 

and SSH variance data. 

The effect of assimilation is assessed by posterior profiles of rms errors de­

picted in Figure 6.8. Except for the near surface region the profiles are 

generally in the order of twice the ensemble error variance corresponding to 

a 95% level. The usual demand for consistency is a level lower than once the 

error variance. It is not clear if this level could actually by reached, partic­

ularly since the eddy variability is markly enhanced (see the following) and 

the positions of the eddys can not be optimized by this method. The failure 

in the surface region results from inconsistent surface fluxes, which were not 

optimized. With respect to an error value of 0.45°C as achieved in Section 

6.5, it is supposed that the profile would follow the twice error covariance 

profile even in the surface region when surface fluxes were included. The 

inclusion of SSH data does not affect noticeably the error profiles in the 

assimilation run (compare green and magenta profile in Fig. 6.8). This 

supports the assumption that informations introduced by the assimilation 

of SSH data is consistent with the WOA97 data. A slow return of the state 

to the state of the control is documented by an increase of the rms error for 

the second year (blue profile). 

Figure 6.9 and Figure 6.10 demonstrate that the main source for the error in 

the upper 1000 m below the surface region is due to the effect of spurious ed­

dies which is still present in the mean fields. The largest differences remain 

in the regions of high eddy kinetic energy, particularly in the Gulf Stream 

region. However, significant differences occur also east of Grand Banks and 

in the Caribbean Sea which have important dynamical consequences. Below 

1000 m differences remain after optimization due to the already mentioned 

eddy like spots present within WOA97 data. The resulting mean state is 
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Figure 6.9: Temperature difference in °C in 580 m: Control run - WOA97 

data (a) and assimüation run - WOA97 data (b). 
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Figure 6.10: Salinity difference in PSU in 580 m: Control run - WOA97 

data (a) and assimilation run - WOA97 data (b). 
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not claimed to be perfect as will be shown in the following, but since the 

remaining error is to a large extend caused by the irreducible part emerging 

from the eddy effects a further reduction is difficult to achieve. 

OpttMn* T„ V wWx S3* n r . 4>U TP/ERS 1 

Figure 6.11: RMS SSH variability in cm. (a) control run. (b) and (c) are 

from optimizing initial conditions for temperature and salinity, (b) includes 

only WOA97 and (c) both WOA97 and SSH vononce data, (d) is from 

mapped TP/ERS1 data. 

Although SSH variance is assimilated, it is not clear whether a realistic 

representation of the observations could be found by only estimating ini­

tial conditions for temperature and salinity. The rms SSH variance error is 

reduced from 7.2 cm to 4.8 cm which means a reduction to 45% in terms 
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of cost function values. The sequential method of Oschlies and Willebrand 

(1996) in a slightly different model configuration reduces the rms error from 

6,5 cm to 3.5 cm which corresponds to a reduction of a cost function value 

to 28% (pens. com.). Figure 6.11 shows the SSH variance from the control 

and the assimilation run together with the observational data. The maxi­

mum of the variability of the control is displaced northward and overall too 

low with a maximum around 47°N. By assimilation of SSH variance and 

WOA97 data, the erroneous maximum vanished and the mean position and 

amplitude of maximal variability is fairly well matched, though it extends 

further to the north around 55°W and the northward extension at 42°W 

is not captured. However, the turnoff of the Azores Current is visible by 

increased variability. The eddy scales are clearly too large which may be 

explained by still too low resolution. The level of SSH-variability in the Gulf 

Stream region is also enhanced to a realistic magnitude by assimilating only 

the WOA97 data, but its position and the maximum around 47°N is not 

changed. 

The mean SSH indicating the position of the mean near surface current is 

illustrated in Figure 6.12a. It supports the findings from regarding SSH 

variance. The position and amplitude around 60°W matches the data of 

Singh and Kelly (1997) with a slightly weaker front. However the front at 

42°W is not present, although it may be seen within the estimated initial 

conditions which indicates a dynamical deficit of the model. The amplitude 

of the stationary anticylone east of Cape Hatteras is reduced together with 

the disappearance of the front which resembles a wrong turnoff position of 

the Azores Current. The mean SSH in Fig. 6.12b represents a somewhat 

intermediate state between the control state in Fig. 6.7a and data in 6.12a. 

The Gulf Stream front is stronger but the position is nearly unchanged in 

comparison to 6.7a. The pattern in the Azores region resembles the one of 

Fig. 6.12b but the strength of the front is too weak. 

Within the following two years of integration the state returns to the pat­

tern of the control run. The mean front starts continuously to split into 
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Optimized T„, S„, with SSH Tar. data 

Figure 6.12: Mean sea surface height in cm, with optimized initial conditions 

for temperature and salinity including informations from WOA97 data (a) 

and including additionally SSH variance data (b). 
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Figure 6.13: Time series starting after insertion of optimized initial con­

ditions for temperature and salinity. The temperature in 550 m depth is 

averaged from 65° W to 55° W. Mean values of the control run are added in 

January after the second year to mark the difference to the control run. 

a northward displaced and the southern front visible in Figure 6.7a. The 

return is documented in Figure 6.13 which shows a meridional temperature 

section in the Gulf Stream region. Gold water inserted north of the Gulf 

Stream is rapidly removed, whereas the mean frontal position only slowly 

returns to the position of the control run. In some iterations the stationary 

anticylone northeast of Cape Hatteras completely disappears and the Gulf 

Stream separation is almost realistic. This state is then found to be stable 

for two years. 
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Figure 6.14: Square root of near surface eddy kinetic energy, (a) control 

run, (b) until optimized initial conditions for temperature and salinity from 

assimilating SSH variance and WOA97 data. 

The structure of the eddy kinetic energy (EKE) field shown in Figure 6.14 

reflects the pattern from the SSH variance, demonstrating that the former 

is in fact the reason for the improved SSH variance. The E K E level is in­

creased in almost all regions, particularly also in areas of beforehand low 

E K E as it is associated with the Azores current. In the control run the 

current is only represented as a markly southward shifted band branching 

east of Cape Hatteras from the Gulf Stream as visible from the near sur­

face velocities in Fig. 6.15a. Assimilation shifts the band to the observed 

position at 34°N (Gould, 1985) and the current originates, as suggested by 

Sy (1988), from the separation of the Gulf Stream into the North Atlantic 

Current (NAC) and the Azores Current (Fig. 6.15b). The erroneous flow 

of the NAC towards the Irminger Sea visible in Figure 6.15a is corrected 

and the transport follows after assimilation the realistic route towards the 

Norwegian Sea, although it deflects east of the Rockall Plateau to the north­

west. 

The position of Azores front is difficult to identify in the control from the 

potential density section averaged between 35<W - 30<W as illustrated in 
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Figure 6.16, whereas in the assimilation run the frontal structure is even 

more pronounced than in the WOA97 data. Likewise, the position is shifted 

slightly to the north, indicating that the current and the front is mainly 

established by informations from the altimeter data. 

26'N 30*N 34*N 38"N 
Optimized T„, S„ 

Figure 6.16: Sections of potential density averaged from 35°W-30°W 

(ci=0.1). Control run (upper), assimilation run (middle) and data from 

Boyer and Levitus (1997) (lower). 

iplification of the E K E level shown in Figure 6.17 from values less 
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Figure 6.17: Near surface eddy kinetic energy averaged from 35° W to 25° W 

for the control run together with values from the assimilation with (dashed) 

and without SSH-variance data (dotted). 

than 4 cm 2s~ 2 to values up to 20 cm2s~2 in average accompanies the inten­

sification, but is still much too low compared to values up to 200 cm 2 s - 1  

Brügge (1995) calculated from drifter data. Some iterations show values up 

to 100 cm 2 s - 1 . However, the associated SSH variability is then found to be 

higher than the values from TP/ERS1. Values over 100 c m V are thus 

not consistent with the assimilated SSH variability from mapped TP/ERS1 

data. The interpolation of track data generally underestimates the ampli­

tude of the the real signal which causes a systematic error. It would be, 

particularly in association with an adjoint method, more appropriate to use 

along track variability data. 

There is nearly no improvement through the assimilation of only climato-

logical data and a slight enhancement is visible in Figure 6.17 only north 

and south of the current position for this experiment. 
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Figure 6.18: Meridional overturning stream function; (a) control run (ci= 
2Sv), (b) with optimized initial conditions for temperature and salinity (ci= 
4Sv). 
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An effect on the deep circulation is demonstrated in Figure 6.18. The merid­

ional overturning stream function remains mostly unchanged north of 40°N 

where the overturning is mainly controlled by the northern boundary con­

dition (Ddscher et al., 1994). It increases to very unrealistic values of about 

30 Sv north of the equator. The strength of the overturning continuously 

increases with the number of iteration. The increased sinking between 15°N 

and 20°N is limited to the region of the Caribbean Sea and north east of the 

Antilles where also large differences to the WOA97 data occurs. In spite of 

this difference, continuously denser water is introduced between 600 m and 

1000 m depth in this region during the optimization. It is not quite clear if 

the adjoint variables in this region are affected by remote model-data dif­

ferences or if approximations made within this method are responsible for 

a wrong estimation of the gradient in this area. The heat transport is due 

to the close relation to the overturning strength (Boning et al., 1996) also 

nearly doubled in the area around 15"N. The quite small difference to the 

WOA97 data in terms of the contribution to the cost function (differences 

due to eddy signatures at the same level in the Gulf Stream region or due to 

insufficient smoothing of the WOA97 data are much larger) has important 

dynamical consequences. The overturning and heat transport have returned 

in the following year back to the values of the control. Although the unre­

alistic transports values could be reduced to deviation to WOA97 data, the 

results demonstrate a poor precision for determining these quantities from 

assimilation experiments when quasi-stationarity is not guaranteed. 

Energy transfers 

The invention of a closure scheme was handled by a simple parameterization 

approach. However, it is not necessarily guaranteed, that the action of 

this closure, although physically motivated, will result into a physically 

sensible representation of the parameterized observations. SSH variance for 

example is equally possible to generate in a non equilibrium situation by 

the steric effect through a density flux. By analyzing the energy balances 
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it is demonstrated, that the generation mechanism for eddy kinetic energy 

(EKE) follows the processes, on which the closure is based. The Gulf Stream 

region (60°W-40°W and 38°N-44°N) is chosen to demonstrate the effect of 

the insertion of the optimized initial conditions for temperature and salinity 

in the experiment in Section 6.7.2, where SSH variance is assimilated. 

0. 40. 80. 120. 180. 0. 40. 80. 120. 180. 200. 240. 280. 

J 1 L 

T 1 1 - 

400. 500. 
flH (cmV) n>E (cmV*) 

Figure 6.19: Vertical profiles of the energy components averaged over the 

region 60° W-40° W and 38°N-44°N for control (solid) and assimilation run 

(dashed). Definitions for the energy components and the energy transfers 

are given in the text and in the appendix. 

The vertical profiles of the four energy components depicted in Figure 6.19 

indicate an enhancement of all components in the assimilation run. The 
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Figure 6.20: Vertical profiles of the energy transfer coefficients averaged over 

the region 60°W-4(P W and SS°N-44°N for control (solid) and assimilation 

run (dashed). Definitions are given in the appendix and indicated in Figure 

6.19. 
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subject to instability and converted into eddy potential (EPE) and finally 

into eddy kinetic energy (EKE). 

The picture of an enhancement of PEM as the primary source for energizing 

the flow is supported by regarding the energy transfer terms displayed in 

Figure 6.20. The baroclinic conversion term T2 and term T3, which describes 

the conversion from EPE to E K E , characterize the path, how the enhance­

ment of mean potential energy cascades into E K E . These terms are markly 

enlarged although T3 is strongly sensitive to the choice of the subregion and 

is therefore not a reliable quantity. The barotrophic conversion term T4, 

showing that barotropic instability is weak in the control run, reverses its 

sign and indicates a transfer of energy from the eddy component to the 

mean flow. 

The reversal of the conversion of mean kinetic energy (KEM) to mean po­

tential energy (PEM) is represented by the term T\. The reversal of sign 

results in the assimilation run from the enhancement of sinking southeast 

of the boundary current, which was discussed in association with the over­

turning. The picture of a constructed baroclinic front, that is after insertion 

eroded by energy conversion due to baroclinic instability, is supported when 

regarding the following years of the assimilation run and it appears that the 

reduction of E K E precedes the return of the mean flow and not vice versa. 

The interpretation of the results should only be regarded as a qualitative 

support for the arguments given in Section 6.6 since the flow is not station­

ary and returns to the reference state for longer integrations. However, the 

situation is generic for the action of the parametrization and also holds in 

the Azores Current region with shifted maxima towards the surface layers. 

An exception concerns the T t term, which remains almost invariant in the 

Azores region. 
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Conclusion 

The experiments presented here demonstrate that it is possible to improve 

the state of a dynamical system by assimilating statistical moments. An 

extension of the original adjoint formulation is derived which offers a way 

for improving model parameters and may be used to correct systematic 

errors in the climatoiogical state of ocean models. 

Cost functions which depend on statistical moments are shown to describe 

invariant characteristics of the dynamical system in a sensible way. Sec­

ondary minima emerge when the period of assimilation is increased be­

yond the forecast range and hinder the convergence of the standard adjoint 

method. For long integration periods of high resolution models, the statis­

tical quantities are regarded as single realizations of Gaussian distributed 

moments, which are shown to change smoothly for variations of parameters. 

The new approach invents the adjoint to a prognostic model that describes 

the dynamics of the moments. The formalism then calculates cost function 

gradients that ignore the fine structure of secondary minima. The applica­

tion of coarse resolution models as approximations for the moment models 

makes it necessary to add special closure schemes for the assimilation of 

higher order moments. Very simple parametrization approaches are tested 

for this purpose and shown to be able to predict reasonable gradients. A 

89 
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limited number of iteration steps are found to be sufficient to minimize be­

low the noise level. The stochastic nature of moments calculated from high 

resolution models enables the estimation of error covariances from ensembles 

of simulations. 

By regarding statistical moments the method provides as a by-product a 

Gaussian distribution for the quantities used to define the cost function. 

This condition enables the validity of the minimum variance argument used 

in variational methods which is generally found to be violated in highly 

nonlinear models (Miller et al., 1999). However, the restoration of this 

condition should not be overrated since its validity is limited by a time 

scale separation argument which probably will not hold for ocean models in 

same distinct way as in the Lorenz case. 

The precision up to which parameters could be recovered is quite low for 

the QG model. Both, from the optimization and from a simple theoretical 

consideration, error values higher than 20% are found, which at the first 

sight is not very encouraging. However, this is not a deficiency of the 

method, but results from very high variability of the averaged quantities, 

when applying the method to the most nonlinear areal of western boundary 

currents. 

The original intention was to provide a framework for the improvement of 

climatological states of high resolution ocean models by data assimilation. 

With respect to this aim the experiments with the C M E model only pro­

vide a first step towards a true model improvement. The feasibility of the 

method for improving the climatological state of eddy resolving models is 

however indicated by assimilating SSH variance and climatological data, 

although it was not possible to find a new stable equilibrium state by es­

timating the initial conditions for temperature and salinity. In order to 

answer the question whether the climatological state of the model is con­

sistent with the observations, a time scale has to be included. On annual 

periods a mean state almost consistent with the assimilated data could be 

constructed. However, the state is unstable and s t i l l subject to deficits. 
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The method turned out to provide gradients that, although they are only 

approximative, perform efficiently in minimizing cost functions. From an 

identical twin experiment with the CME model it seems that the precision of 

the estimated parameters is not limited that seriously as in the experiments 

with the QG model. A greater precision for parameter estimations could be 

achieved due to a lower noise level in the basin wide application. 

The assimilation of SSH variability with a simple diagnostic closure scheme 

derived from baroclinic instability theory is shown to be able to introduce 

information that is complementary as well as consistent with the climatol­

ogy. An important aspect of this new technique is to extract characteristics 

of frontal structures from variability, since this type of information is not 

well represented in climatological data since they are usually subject to 

extensive smoothing. In this way the method allows to use informations 

from the variable signal to determine the mean state. In order to assess 

the success of the assimilation it is not sufficient to regard only assimilated 

quantities. Since the adjoint method enforces consistency with dynamics of 

the used model, the quality of the mean state and further quantities that 

were derived via the dynamical equations are strongly limited by dynamical 

deficits or unestimated parameters of the model. This was one obstacle in 

the presented experiments. 

It appears from some iterations that a marginally stable solution showing a 

correct Gulf Stream separation with a small basin of attraction is possible 

for more than one year. The solution may then be repelled by eddy in­

duced variability or by a slow change that comes along with increased heat 

transport. From this it seems to be plausible that only minor changes in 

the model parametrizations may be sufficient to enable a correction for at 

least this point. It remains at the end open whether estimable parameters 

are responsible for systematic errors that a great mayority of this type of 

models share. 



Appendix A 

Energy Transfer Coefficients 

A brief definition for the various components concerning the energy cycle 

is given. The terminology of Boning and Budich (1992) is followed but 

potential density p was applied instead of a linear relation to potential 

temperature. If p denotes the horizontal average of p and p is divided into 

a time mean p and a transient eddy part //, the available potential energy 

per volume V can be separated into a mean (PEM) 

1 f(P-p)2 

29I 
and transient part (EPE) 

2yJ dp 

dp/dz 

pa 

dV (A.l) 

dp/dzdV- <A-2> 

The same separation applied for the horizontal component of the kinetic 

energy yields to a term for the mean kinetic energy (KEM) 

\ J(u* + v2)dV (A.3) 

and the eddy kinetic energy (EKE) 

^ J (u12 4- vn)dV. (A.4) 

Regarding the equations governing the rates of change of potential and 

kinetic energy, the division into mean and fluctuation components yields 
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four terms which describe the redistribution of energy among the above 

defined four parts. The work of mean buoyancy forces converts mean kinetic 

in mean potential energy 

T^-gJ wpdV. (A.5) 

Positive values of 

I Wdp/dx + Wdp/dydV 6 ) 

J dp/dz 

indicate baroclinic conversion of mean to eddy potential energy, which may 

then convert to eddy kinetic energy connected with a positive 

T3 = g f WJdV (A.7) 

term. Barotropic instability is characterized by the conversion of mean to 

eddy kinetic energy governed by 

dv 
dy 

dV. (A.8) 

This set of eight terms gives no a complete description of the generation and 

destruction mechanisms of energy. External forces and internal dissipation 

and diffusion processes have to be considered, supplemented by advection 

terms if only subregions with open boundaries are analyzed. 
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