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ABSTRACT

The authors derive a string function that describes the propagation of large-scale, potentially large amplitude,
baroclinic energy anomalies in a two-layer ocean with variable topography and rotation parameter. The generality
of the two-layer results allows results for the 1-layer, 1.5-layer, inverted 1.5-layer, lens, and dome models to be
produced as limiting-cases. The string function is a scalar field that acts as a streamfunction for the propagation
velocity. In the linear case the string function is simply / f, where co is the background baroclinic shallow2co

water wave speed, and typically describes propagation poleward on the eastern boundaries, westward (with some
topographic steering) over the middle ocean, and equatorward on the western boundaries. In the more general
nonlinear case, the string function is locally distorted by the anomaly. In the fully nonlinear examples of a lens
or dome, there is no rest or background string function; the string function is generated entirely by the disturbance
and propagation is due to asymmetric distribution of the anomalous mass over the string function contours. It
is shown that conventional beta/topographic propagation results (e.g., beta drift of eddies, the Nof speed of cold
domes) can be obtained as limiting cases of the string function. The string function provides, however, more
general propagation velocities that are also usually simpler to derive. The first baroclinic mode string function
for the global oceans is calculated from hydrographic data. The westward propagation speeds in the ocean basins
as derived from the meridional gradient of the string function are typically two to five times faster than those
expected from standard theory and agree well with the propagation speeds observed for long baroclinic Rossby
waves in the TOPEX/Poseidon data.

1. Introduction

An important consideration in large-scale ocean dy-
namics are the spatial variations in topography and the
Coriolis parameter f. These cause small convergences
in the flow that lead to or alter the propagation of dis-
turbances; examples of this are contained in beta and
topographic Rossby waves, the beta drift of large eddies,
topographic steering, and the propagation of cold domes
along topographic slopes.

In other work (Tyler and Käse 2000a, hereafter TK1)
we introduced the ‘‘string function’’ for the case of a
homogeneous one-layer model and in a companion pa-
per (Tyler and Käse 2000b), validated these theoretical
results using results from a primitive equation model.
In this paper we extend that work by considering a two-
layer model.

In TK1 the string function for a one-layer model was
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easily described as follows: the depth-integrated geo-
strophic momentum can be decomposed into two
parts—a nondivergent part which can be derived from
a mass transport streamfunction and a remaining part
created by the effects of nonuniform rotation parameter,
nonuniform depth, and finite disturbance amplitude. It
was shown in TK1 that, regardless of which combina-
tion of the latter effects contribute, the remaining di-
vergent momentum component can be described as the
product of the mass of the disturbance (due to the dy-
namic perturbation of the layer thickness) and a prop-
agation velocity. This propagation velocity is nondiv-
ergent and can be written in terms of a streamfunction,
which we have called the string function. In summary,
two points are noteworthy: first, the geostrophic mo-
mentum is properly viewed as having a flow part and
a propagation part and, second, the velocity of the prop-
agation can be calculated from a scalar string function
that encapsulates beta, topographic, and finite amplitude
effects simultaneously.

In this paper we derive the string function for the
propagation of baroclinic anomalies in a two-layer mod-
el. Under the general conditions involving nonuniform
topography and rotation parameter and finite ampli-
tudes, the baroclinic and barotropic modes are linearly
coupled and therefore are not truly modal. It is, however,
useful for the discussion in this paper to describe results
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FIG. 1. Schematic of models.

for a separate baroclinic mode and then include con-
sideration of the barotopic coupling terms.

We briefly discuss other previous work, restricting
ourselves mostly to those works with which we will
later make comparisons. Further references describing
related work are given in Tyler and Käse (2000a,b) and
the references cited therein.

With exceptions (e.g., Smith and O’Brien 1983;
Straub 1994), topographic and beta effects have mostly
been examined separately. Earlier work describing the
westward propagation of eddies due to the beta effect
(e.g., Flierl 1977; McWilliams and Flierl 1979; Nof
1981, 1983a; Killworth 1983; Cushman-Roisin 1986;
Shapiro 1986) have been reviewed and a general for-
mulation for the westward drift has been given (Cush-
man-Roisin et al. 1990). In one of the rarer works ded-
icated to super-Rossby scales (Matsuura and Yamagata
1982) it is also seen that nonlinearities due to the thick-
ness anomalies become important and can lead to ten-
dencies that counter those of dispersion. In this case,
governing equations can take a Korteweg–deVries form
for which soliton solutions are possible.

Propagation of eddies and domes along sloped to-
pography have usually been studied while ignoring the

beta effect (e.g., Nof 1983b; Swaters 1998; Swaters and
Flierl 1991). A simple formula given by Nof (1983b)
using a reduced-gravity model has been shown to have
some success in predicting the correct order of mag-
nitude of experimentally observed and numerically
modeled propagation rates.

In the next section, we present the formulation of the
string function for the two-layer model and derive an
evolution equation describing the propagation of the
potential energy anomaly, or more specifically in this
case, the associated mass (thickness) anomaly due to
the displaced sea surface and interface. In section 3, we
analyze the evolution equation for the case assuming
the flow is entirely geostrophic, while in section 4 we
include nongeostrophic effects. In section 5 we examine
the barotropic coupling term appearing in the baroclinic
evolution equation, and in the final three sections we
summarize, compare with previous results, and discuss
motivation for future development of the string function.

2. Formulation

Let us consider the two-layer model shown in Fig. 1.
Conservation of mass in each layer implies
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] (r h 2 r j) 1 = · s 5 0 (1)t 1 1 1

] (r j) 1 = · s 5 0, (2)t 2 2

where r1 and r2 are the densities in layer one (upper)
and layer two (lower), h and j are the upward surface
and interface displacements, and s1 and s2 are the mo-
mentum per unit area for layer one and two (i.e., the
integral over the layer depth of the product of density
and the horizontal components of velocity).

We will consider dynamics described by the shallow-
water, hydrostatic momentum equations in layer inte-
grated flux form. In anticipation of typically geostrophic
balances we write these momentum equations in the
following form:

gh1s 5 2 =(r h) 3 z 1 R , (3)1 1 1f

gh2s 5 2 =(r h 1 (r 2 r )j) 3 z 1 R , (4)2 1 2 1 2f

where g is gravity, f is the Coriolis parameter, h1 and
h2 are the thickness of layer one and two, and z is the
vertical (upward) unit vector. (Familiar forms of the
flux-form momentum equations can be obtained by tak-
ing the cross product with z of the forms above and
using algebra after expanding R1, R2 as described next.)

When R1 5 R2 5 0, (3) and (4) describe layer mo-
menta that are in geostrophic balance with the pressure-
gradient terms. More generally, R1 and R2 describe ad-
ditional nongeostrophic contributions to the layer mo-
menta. Allowing for nonlinear advection, wind stress
(t) momentum flux into layer 1, a Rayleigh friction term
in layer 2 (with Rayleigh coefficient b which may be
nonuniform and has units s21), we write

21 21R 5 f (t 2 ] s 2 ] (m s s )) 3 z (5)1 t 1 j 1 1 1j

21 21R 5 f (2bs 2 ] s 2 ] (m s s )) 3 z, (6)2 2 t 2 j 2 2 2 j

where m1 5 r1h1 and m2 5 r2h2 are the columnar mass
in each layer and summation over repeated indices (j
referring to the two horizontal components perpendic-
ular to z) is implicit.

Let us now define several functions that will be used
in later sections. The first set, which pertains to baro-
tropic dynamics, is

S 5 s 1 s (7)1 2

M̃ 5 r h 1 (r 2 r )j (8)1 2 1

1/2C 5 (gh) (9)
2C

C 5 (10)m f

C 5 =C 3 z, (11)m m

which in sequence are the total momentum S, the total
mass anomaly M̃ due to the disturbed layer thicknesses,
the barotropic shallow-water wave speed C, and the bar-

otropic string function Cm that acts as a streamfunction
for the barotropic generalized beta drift velocity, Cm (or
simply ‘‘string velocity’’).

We define a similar set for the baroclinic quantities
using lower case:

m̃ 5 r j (12)1

1/2g9h h1 2c 5 (13)1 2h

r 2 r2 1g9 5 g (14)
r1

2c
c 5 (15)m f

c 5 =c 3 z. (16)m m

a. Barotropic mode

Let us add Eqs. (3) and (4) to gain a description of
the total momentum S. Using (7)–(12) we write this as

S 5 2=(M̃Cm) 3 z 1 M̃Cm 1 R1 1 R2

1 =( ) 3 z 2 m̃ ,m̃c* c*m m (17)

where

g9h1c* 5 (18)m f

c* 5 =c* 3 z. (19)m m

To interpret Eq. (17) let us first consider the limit of
r1 5 r2. In this case g9 5 0 and the starred quantities
vanish. The equation then is identical to the one-layer
homogeneous case described at length in TK1. Accord-
ingly, (17) states that the total momentum S is given by
a nondivergent component of geostrophic momentum
(M̃Cm is a mass transport streamfunction for this non-
divergent flow), a component of momentum due to the
propagation of the total anomalous mass M̃ along the
strings with velocity Cm, and nongeostrophic compo-
nents R1 and R2. More generally, when r1 ± r2 the
starred stratification-dependent quantities remain.

An evolution equation for M̃ is obtained by using the
divergence of (17) together with (8) and the mass con-
servation equations (1), (2) to yield

]t M̃ 1 = · (M̃Cm 2 m̃ ) 1 = · (R1 1 R2) 5 0.c*m (20)

Again, in the limit r1 5 r2 the starred quantity van-
ishes and (20) is the same as that studied previously in
TK1 for a homogeneous one-layer fluid. As brief ex-
amples that were described in TK1, when the flow is
geostrophic R1 5 R2 5 0 and (20) simply describes
generalized beta drift of M̃ with the barotropic string
velocity Cm, while, when the flow is assumed to be
steady and wind stress is retained in the nongeostrophic
term, (20) describes steady propagation of M̃ away from
the Ekman sources and is a generalized Sverdrup bal-
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TABLE 1. Definition of mass anomaly m̃, squared shallow water
wave speed c, and string function cm 5 c2/ f (also separated into
background parts) for models shown in Fig. 1.c and nonlinear c̃m mo

A general form of m̃ that encompasses all of the models (except the
one-layer) is m̃ 5 r1(2h1 1 H1) and describes the interfacial mass
anomaly with respect to the rest state. Convenient model-specific
forms shown can be obtained through sign changes and interchange-
ment of r1 and r2 under the Boussinesq approximation.

Model m̃ c2 cm cmo
c̃m

1-layer rh gh
gh

f

gH

f

gm̃

fr

2-layer r j2

g9h h1 2

h

g9h h1 2

fh

g9H H1 2

fh

g9m̃ 2H m̃1211 21 2fr h r ho 2

1.5-layer r j2 g9h1

g9h1

f

g9H1

f

gm̃

fr1

1.5-lay. (inv.) r j2 g9h2

g9h2

f

g9H2

f

gm̃
2

fr2

Lens r h1 1

g9h h1 2

h

g9h h1 2

fh
0

2g9 m̃ m̃
2

21 2f r r h1 1

Dome 2r h1 1

g9h h1 2

h

g9h h1 2

fh
0

2g9 m̃ m̃
2

21 2f r r h1 1

ance allowing for nonuniform topography. In the case
of uniform topography Cm reduces to the westward long
Rossby wave speed bC 2/ f 2, while in the case of dom-
inant topographic control, Cm produces the long topo-
graphic Rossby velocity. More generally, both topo-
graphic steering and beta drift enter into Cm.

When r1 ± r2 the starred term remains and the equa-
tion above, which we will still refer to as describing the
barotropic mode, shows coupling with the baroclinic
effects.

b. Baroclinic mode

The layer momentum equations (3) and (4) can be
combined into forms that provide more insight into the
baroclinic dynamics:

h1s 5 =(m̃c ) 3 z 2 m̃c 1 R 1 S1 m m 1 h

h12 (R 1 R ), (21)1 2h

h2s 5 2=(m̃c ) 3 z 1 m̃c 1 R 1 S2 m m 2 h

h22 (R 1 R ), (22)1 2h

where several of the definitions given in (5)–(16) have
been used and it is noted that h 5 h1 1 h2.

Above, (21) describes the momentum in layer one as
being the sum of several terms. Taken in order these
are 1) nondivergent geostrophic mass transport (given
by the streamfunction m̃cm) due to interface displace-
ment; 2) the momentum due to the generalized beta drift
propagating the interface mass anomaly m̃ with velocity
cm; 3) the nongeostrophic components R1 of the mo-
mentum in layer 1; 4) the last two terms which, taken
together, describe the fraction of the geostrophic baro-
tropic momentum that occurs in layer 1. A similar de-
scription can be given for (22).

Similarly, we can produce an evolution equation for
m̃ by combining (2), (21), and (22) while using (7),
(12), and (16) to yield:

] m̃ 1 = · (m̃c )t m

h h h2 1 25 2= · S 2 = · R 2 R . (23)2 11 2 1 2h h h

Equation (23) is an evolution equation for the dy-
namic disturbance of the interface separating two layers.
The form of the equation anticipates a situation that is
predominantly baroclinic and predominantly geostroph-
ic. In this case the barotropic and nongeostrophic terms
appearing on the right are small and the dominant bal-
ance is given by the two terms on the left. But the terms
on the left simply describe propagation given by the

baroclinic string function. In the following sections we
analyze (23) under varying assumptions.

3. Case of geostrophic flow

In this section we examine (23) under the assumption
that the flow is in geostrophic balance (i.e., R1 5 R2

5 0). In later sections we will add in the nongeostrophic
flow effects.

Under this assumption (23) can be written as

h2] m̃ 1 = · (m̃c ) 5 2= · S , (24)t m 1 2h

which, because cm is nondivergent, can be interpreted
as stating that the material derivative of m̃ following the
string velocity is zero unless the barotropic term on the
right is nonvanishing. The term on the right of (24)
simply describes the convergence of that fraction of the
total barotropic momentum S that occurs in layer two.
This coupling term is of interest and we will return to
it in section 5. First, however, we wish to discuss the
terms on the left, in particular we compare them with
the one-layer case, and we will assume for expediency
that S 5 0 to start.

In this case (and because cm is nondivergent) (24) is
simply ] tm̃ 1 cm · =m̃ 5 0 describing propagation of
m̃ along the strings just as in the one-layer case studied
in TK1 except that the definition of the quantities ap-
pearing is different in each case. These definitions for
the one-layer and two-layer models, as well as other
limiting-case models, are summarized in Table 1. Note
the similarities in these definitions; m̃ always refers to
a mass anomaly due to the alterations in layer thick-
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nesses, while the string function cm 5 c2/ f with the
shallow water wave speed c chosen appropriately for
the model. Also, for a flat-bottomed ocean with van-
ishing m̃ the string function contours (strings) are
aligned with lines of latitude and cm 5 =cm 3 z, cal-
culated using the appropriate string function, correctly
reduces to the westward long Rossby speed (bc2/ f 2 for
a beta plane).

Despite these similarities there is an important dif-
ference in that the two-layer string function has a dif-
ferent dependence on topography and m̃ than in the one-
layer case. Typically, when h1 K h2, the two-layer bar-
oclinic string function will be less sensitive to topog-
raphy and more sensitive to m̃ than for the one-layer
case.

In Table 1 we break the string function into two com-
ponents: a component due to the background con-cmo

figuration (i.e., corresponding to the part of cm inde-
pendent of m̃) and the part m that depends on m̃. Letc̃
us first discuss the background string function andcmo

associated string velocity 5 3 z. As described,c =cm mo o

with uniform topography (and with H1 uniform) the
background baroclinic string function 5 g9H1H2/cmo

( fH), where H 5 H1 1 H2, varies only with f and
produces the westward long Rossby wave velocity. In
regions where topographic changes dominate suchcmo

as near the coasts, 5 2g9(H1/H2)2f 21z 3 =H. Acmo

zero-value string is located where H2 vanishes and is
the boundary for small amplitude m̃ propagation. The
general tendency is then for propagation poleward on
the eastern boundaries, across the ocean interior and
equatorward along the western boundary. This is very
much like that for the one-layer model except that the
propagation is less sensitive to topography in the open
ocean and is typically much slower.

In the 1.5-layer model where we assume an infinite
lower layer, c 5 (g9H1)1/2 and the string function is
therefore 5 g9H1/ f, giving again just the westwardcmo

long Rossby wave velocity. As can be expected, there
is no dependence on topography. Similarly, in the in-
verted 1.5-layer model (infinite layer on top) c 5
(g9H2)1/2 and 5 g9H2/ f, which will typically be verycmo

sensitive to topography. In the case where topographic
variations dominate, the inverted 1.5-layer string ve-
locity is proportional to the bottom slope.

Now consider the effects of finite amplitude m̃. As
seen in Table 1, m in the one-layer case is linear in m̃,c̃
and therefore the string anomalies have the same sign
as m̃. For example, an anticyclonic eddy (m̃ . 0) would
add a perturbation to the background strings appearing
as a bow extending poleward and/or toward shallower
water that propagates along the strings; if m̃ is suffi-
ciently large, the bow can even break off, forming a
locally closed string. In contrast, the two-layer m hasc̃
both a term linear in m̃ (similar to the one-layer case
but multiplied by a factor 2H1/H 2 1) and a quadratic
term in m̃, and m need not have the same sign as m̃.c̃
Indeed, the sign of two-layer m can change during thec̃

propagation as, for example, when a propagating m̃ fol-
lows the strings into shallower water.

Consideration of the amplitude of m̃ and m and thec̃
changes in amplitude that can occur during propagation
is important for determining the degree of nonlinearity
in the generalized beta drift; while small amplitude dis-
turbances may follow the background strings in a man-
ner that can be predicted from the outset by examining
the background string function, even once small am-
plitude disturbances can become nonlinear without any
external forces, eventually breaking off to form new
closed strings that interact with the background strings
and perhaps other closed strings. In this case involving
breaking and re-attaching strings, the string function still
gives the proper propagation velocities, but only in an
instantaneous sense because the string configuration is
constantly evolving. As described at the end of the last
paragraph, sign reversals of m are even possible whenc̃
strings cross bathymetric contours and enter a region
where 1 2 2H1/H becomes less than zero (i.e., when
H2 , H1). But note to see that this can occur, variations
in f must be included; otherwise the background strings,
at least, would not cross bathymetric contours.

It is also important to note that, in determining the
degree of nonlinearity in the generalized beta drift that
simple ratios of interface displacement to layer thickness
are not satisfactory. Indeed, even the ratio c m/ , whilecmo

usually better, is still inadequate. A more reliable in-
dicator is the ratio |=c m |/ because it estimates the|=c |mo

ratio of the disturbance in the string velocity and the
background string velocity. For example, while the ratio
c m/ may increase entering shallow water, suggestingcmo

an increase in nonlinearity, increasing topographic slope
increases the background string velocity and may pre-
dominate to make the disturbance less nonlinear.

We see from Table 1 that the two-layer c m also has
a term quadratic in m̃, which acts to decrease the local
value of the string function regardless of the sign of m̃.
This will make the asymmetries between the propaga-
tion of positive and negative m̃ more complicated. But
it is important to note that the terms in m̃ (or m̃2) do
not complicate the string velocity as much as may ap-
pear because the gradients in m̃ do not play a role. This
is because any part of cm 5 =cm 3 z, which depends
on =m̃ 3 z, is perpendicular to =m̃ and therefore cannot
advect m̃. This is related to the non-Doppler effect (Rhi-
nes 1989).

As can be seen in Table 1, the lens model (1.5-layer
model with H1 → 0) and dome model (inverted 1.5-
layer model with H2 → 0) have no background string
function and any propagation is entirely nonlinear.
These models will be discussed in a later section where
we make comparisons with previous results. We also
note that, in all the models discussed, cm is defined such
that it is always positive and the cm 5 0 contour has
the physical significance of describing the location of
outcropping.
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4. Case including nongeostrophic flow

In this section we relax the restriction of geostrophic
flow by allowing R1 and R2 to have nonvanishing val-
ues.

To start, we note that the general equation (23) can
be rearranged into the form

h2] m̃ 1 = · (m̃c ) 5 2= · S 2 = · R , (25)t m g 21 2h

where Sg 5 S 2 R1 2 R2 is the geostrophic component
of the barotropic momentum.

Because (25) does not involve R1 explicitly, using (6)
it can be cast in a form similar to that for the one-layer
case described in detail in TK1. Furthermore, as in TK1,
when the momentum is assumed to be predominantly
geostrophic, such that momentum appearing in terms
on the right can be replaced by geostrophic values and
when additionally we assume that the momentum is
predominantly baroclinic, we may write:

h b2] m̃ 1 = · (m̃c ) 5 2= · S 1 = · c =m̃t m g m1 2 1 2h f

1
212 = · (] s 2 ] (m s s ) 3 z),t 2 j 2 2 2 jf

(26)

which is the same as that studied in TK1 except that
the geostrophic barotropic momentum term replaces the
Ekman transport term t /f 3 z. Hence, the nongeo-
strophic effects for the two-layer baroclinic case are
similar to those in the one-layer case and the criteria
derived in TK1 can be applied. For example, for scales
larger than the Rossby radius (5cm/ f ) the dispersion
term (involving ]ts2) and the nonlinear advection term
(involving ] j) can be neglected relative to ] tm̃ and the
nonlinear string velocity contribution, respectively. In
this case (26) simply states that changes of m̃ following
the string velocity are due to forcing by convergences
of barotropic momentum and dissipation, which appears
as diffusion of m̃.

For scales at or below the Rossby radius, the disper-
sion and nonlinear advection terms on the right can be
combined into a term describing material rates of change
of layer angular momentum (divided by f ) following
the fluid velocity. Neglecting the barotropic and friction
terms for the moment and with other assumptions related
to neglecting a kinetic energy term (see TK1), the equa-
tion is identical in form to that in TK1:

]tm̃ 1 = · (m̃cm) 5 ] tg 1 = · (gu2), (27)

where g 5 z · = 3 s2/ f is proportional to the angular
momentum (per f ) and u2 5 s2/m2 is the velocity in
layer 2. Equation (27) states that changes in m̃ following
the string velocity are balanced by changes in g follow-
ing the velocity. That is, the dynamics are controlled by
advection (propagation really) of mass by the string ve-

locity, and advection of angular momentum by the flow
velocity.

5. Barotropic coupling

As we described in the introduction, in the general
two-layer case involving finite amplitudes and topog-
raphy the barotropic and baroclinic modes remain lin-
early coupled. The two evolution equations, (20) and
(23), would need to be solved simultaneously. But given
the typically different time and space scales for the two
modes it is useful to attempt to make inferences about
the effect of the barotropic mode on the baroclinic prop-
agation.

For simplicity let us assume that the space scales
considered are larger than the internal Rossby radius,
and friction is such that the flow in layer two is ap-
proximately geostrophic and therefore R2 can be ne-
glected. The governing equation (25) is then

h2] m̃ 1 = · (m̃c ) 5 2= · S . (28)t m g1 2h

Let us first give a simple interpretation of the baro-
tropic effects in (28) in terms of the barotropic velocity.
By defining a depth-averaged velocity as U 5 Sg/(r1h)
and noting h2 5 H2 1 m̃/r2, (28) can be written as

]tm̃ 1 = · [m̃(cm 1 U)] 5 = · (r1H2U), (29)

which shows that the normal propagation along the bar-
oclinic strings is Doppler shifted by U and a source term
on the right remains and can be expected to be important
when barotropic flow flows across bathymetric contours.

Although (29) provides insight, U must be prescribed
and the constraints given by the equations governing
the barotropic dynamics have not yet been imposed. To
improve on this, we use (17) to replace for the geo-
strophic component of the barotropic momentum Sg 5
S 2 R1 2 R2 in (28) to yield

gh2 ˜] m̃ 1 = · (2m̃c ) 5 = · =M 3 z , (30)t m 1 2f

where we have used (10), (15), (16), and vector iden-
tities.

It is interesting to compare (28) with (30); if we as-
sume Sg 5 0 (no net momentum), then (28) describes
simple propagation along the strings at the string ve-
locity. Alternatively, if we assume instead that M̃ 5 0
(no net mass) then by (30) the situation is similar except
that the propagation is at twice the speed of the string
velocity. Which, if either, of these assumptions is ap-
propriate?

To address this, let us examine the evolution equation
for M̃ (20). Specifically, let us consider the steady geo-
strophic version of this equation. In this case the two
string velocity terms must balance. These terms appear
as the divergences of the momentum fluxes M̃Cm and
m̃ , and it is hard to make any rigorous claims aboutc*m
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relative magnitudes of M̃ and m̃ that do not depend on
assumptions of a specific configuration. Instead, we con-
sider estimating the range of the parameter e for an
assumed relationship:

g9
M̃ 5 e m̃. (31)

g

Noting that the string velocities are divergenceless
and assuming that we evaluate the mass gradient terms
on the same spatial scale, let us require that M̃Cm and
m̃ balance (this is more restrictive than assuming justc*m
that their divergences balance). From this and the def-
initions of the string velocities, we estimate e as

21|=(h f )|1e 5 . (32)
21|=(hf )|

Inspecting (32), it appears that when topographic var-
iations dominate variations in f and the amplitudes are
small such that h1 ø H1 (which is uniform), we have e
ø 0. When the f variations dominate (simple beta drift
with no topographic influence), we have e ø h1/h # 1.
Hence, within the validity of the restrictive assumptions
we have made, we expect e to range from 0 to 1. Phys-
ically, e 5 0 gives M̃ 5 0 and describes the situation
of compensation h 5 2(g9/g)j, while e 5 1 describes
the situation |h| K |g9/gj | in which little mass anomaly
is carried in the sea surface displacement.

Using (17) in (28) together with (31) and Sg 5 S 2
R1 2 R2, we can write

]tm̃ 1 = · ( ) 5 0,#m̃cm (33)

where 5 3 z uses the modified string function# #c =cm m

h
#c 5 2 2 e c . (34)m m1 2h1

This result predicts that, when the generalized beta
drift is controlled by topography, e ø 0 and the dis-
turbance m̃ propagates with twice the usual string ve-
locity due to the barotropic coupling; when the beta
effect is predominant, however, we have e ø 1 and the
propagation is at the usual string velocity (which then
corresponds to the westward baroclinic long-Rossby
wave speed).

We emphasize that several assumptions have been
made in this section that limit the validity of the results
presented. For particular applications these should be
reviewed.

6. Summary of theoretical results

To summarize our theoretical results, the evolution
equations for any of the models shown in Fig. 1 can be
written as

]tm̃ 1 = · (m̃cm) 5 2= · (SF 1 Sb 1 SI). (35)

For any model, the string velocity is cm 5 =cm 3 z and
the string function is cm 5 c2/ f. Hence, it is only through

the different definitions (see Table 1) for the mass dis-
turbance m̃ and the shallow water wave speed c that the
models differ from one another regarding the general-
ized beta drift described by the terms on the left of (35).
Because the string velocity cm is nondivergent, the left
side of (35) can also be viewed as the total derivative
following cm: ] tm̃ 1 cm · =m̃. Changes in m̃ following
the string velocity are due to the convergences in the
various momentum fluxes shown on the right. For many
cases these right-side terms vanish and the evolution of
m̃ is determined entirely by cm. Even in this case, the
dynamics need not be simple because of the shear in cm

and because of nonlinear effects entering through the
dependence of cm on m̃ of the string velocities.

The momentum terms on the right of (35), in se-
quence, are SF, which in the case of the one-layer model
is the Ekman momentum (5 f 21t 3 z), while in the
baroclinic models it is the fraction of the geostrophic
barotropic momentum in the lower layer [5(h2/h)Sg];
Sb 5 f 21bs2 3 z, which is the momentum flux due to
Rayleigh friction in the lower layer (simply use s for
the one-layer model); and finally

1
21S 5 f ] s 1 ] s s 3 z,I t 2 j 2 2 j1 2[ ]m2

the divergence of which is related to changes in layer
angular momentum as described in the last section
(again, simply use s instead of s2 for the one-layer mod-
el). When we assume that s2 is geostrophic to first order,
the friction term can be transformed into a Laplacian
diffusion term for m̃, and for scales larger than the Ross-
by radius, SI becomes negligible.

7. Comparisons with previous results and
discussion

In the small amplitude limit, it is simple to show in
a manner similar to that done in TK1 that the predictions
given by the string function are consistent with the the-
ory for linear topographic and beta Rossby waves. Here,
we will focus our comparison on isolated nonlinear fea-
tures such as eddies, lenses, and domes, with possibly
large amplitudes. We will first compare with propaga-
tion velocities expected from the baroclinic string func-
tion and then discuss possible adjustments to this due
to coupling with the barotropic mode.

The string function describes the propagation under
the combined influences of topography and nonuniform
f and, in the large amplitude case, nonlinear effects due
to the dependence of the string function on m̃. To com-
pare with previous results we first consider the two re-
gimes (purely topographic or beta drift) separately.

In the case of the westward motion of isolated surface
anomalies due to beta drift in a reduced-gravity 1.5-
layer ocean on a beta plane (and assuming g9 K g) the
comparison can be done quickly by showing that our
results in this limit agree with the general equation given
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in Cushman-Roisin et al. (1990), which was shown to
encompass many previous results. They obtained (in our
notation)

2 21(H m̃ 1 m̃ (2r ) ) dAE 1 o

Abg9
U 5 2 x̂, (36)cm 2f o

m̃d AE
A

where f 5 f o 1 by, ro is a reference water density
(because g9 K gro ø r1 ø r2 here), and #A ( ) dA is the
area integral over the anomaly.

It can be shown that the center of mass velocity Ucm

above is simply the mass-weighted string velocity (i.e.,
total momentum #A m̃cm dA divided by total mass #A m̃
dA), where cm depends on m̃. This result agrees with
our results for either the lens or 1.5-layer models when
we impose in our results the assumption of predomi-
nantly geostrophic flow, assume that the area integral
of the gradient of the mass transport streamfunction m̃cm

vanishes, and neglect any coupling with the barotropic
mode. Interpreting (36) in our context, we can say that
the term involving H1 in (36) is due to propagation of
m̃ by the background strings , while the m̃2 term iscmo

due to the propagation by the nonlinear component of
the strings m.c̃

Cushman-Roisin et al. also extended the analysis of
westward drift to a two-layer flat-bottom case. They
found equations describing the drift in each layer that
agree with those for our two-layer case in the flat-bottom
limit when barotropic effects are discarded. From the
crude arguments presented in section 5 when the string
velocity is dominated by the variation in f, e ø 1 and
influence of the barotropic mode is expected to be neg-
ligible. Similar flat-bottom results typically with stron-
ger restrictions are discussed in Flierl (1984), Nof
(1981), and Killworth (1983).

Now let us compare with results for propagation when
topography is the dominant factor. First, let us make a
distinction between ‘‘walls’’ and topographic slope. In
the string function formulation there are no walls. Walls
would imply ‘‘string ends,’’ which do not exist except
perhaps at the equator. There is a near equivalent, how-
ever. For example, as strings reach the western side of
a basin and turn equatorward, they can become tightly
bunched together in regions of strong slope. As m̃ at-
tempts to follow the strings m̃ becomes stretched and
the cross-string length scale decreases leading to
strengthening of the nongeostrophic components. If the
flow remains linear, dispersion is the primary new effect
and in the limit of infinite string density near the bound-
ary, the linear evolution equation gains a form that can
be interpreted as describing Kelvin wave decay away
from the boundary. When the amplitudes are great, the
vorticity/angular momentum and kinetic energy must be
considered. Such an approach may give results in agree-
ment with previous wall phenomena, such as the image

effect described in Käse (Käse and Zenk 1996) or the
‘‘wodons’’ described by Shi and Nof (1994). We will
not attempt a comparison with the previous wall results
but only consider results for propagation due to topo-
graphic slope.

First we will consider the case of a dome where the
upper layer is assumed infinite and the f variations are
ignored and we will show that the result in this restricted
case is the same as that found by Nof (1993b). From
Table 1, the appropriate dome string function [with
Nof’s assumption h2 K h1 (and implicitly, ]th ø 0) and
uniform f 5 f o] is cm ø g9h2/ f o and the dome mass
anomaly is m̃ 5 2r2h1. Using h2 5 h 2 h1 the prop-
agating momentum is m̃cm 5 m̃=(g9h/ f o) 3 z 2
=[g9r1 /(2 f )] 3 z. The last term is nondivergent and2h1

can be dismissed; then the propagation velocity is pro-
portional to slope and agrees with Nof’s result. Rigor-
ously, we have only proved that m̃ (and therefore h1)
propagates with the Nof speed; Nof found the propa-
gation of h2. It can be easily shown that h2 in our results
also propagates with the string velocity above by ex-
panding m̃ 5 2r1h 1 r1h2 and dismissing the nondiv-
ergent term g9r1h/ f=h 3 z 5 =[g9r1h2/(2 f )] 3 z.

Experimental observations of baroclinic eddies on
sloping bottoms (Mory et al. 1987; Whitehead et al.
1990) give conflicting results, particularly regarding the
cross-isobath component of propagation. There appears
to be order of magnitude verification of the Nof velocity
along the isobaths in the case of Whitehead et al. (1990),
while the observed translation along the isobaths in the
Mory et al. (1987) experiments were typically an order
of magnitude less than the Nof prediction. We note that
in the latter experiments the upper and lower layers were
the same order of magnitude. The dome string velocity
calculated without Nof’s assumption h2 K h1 predicts
speeds smaller than the Nof speed by a factor (h1/h)2

ø ¼, giving results closer in agreement to the Mory et
al. observations.

Another factor is that in both of the experiments
above the velocities in the upper layer above the dome
were large, in disagreement with Nof’s assumption re-
garding a reduced-gravity state. In some cases the ex-
periments suggest that the momentum above the dome
exceeds that within the dome. More recently (Swaters
and Flierl 1991; Swaters 1998), work has appeared that
includes extensions to propagating domes that interact
with the surrounding fluid and for which the velocities
in the upper layer agree better with the experimental
observations. The propagation velocity is still, however,
in first-order agreement with that of Nof. The numerical
results of Swaters (1998) showed speeds 20% less than
the Nof speed and this difference was attributed to the
interaction between the dome and the surrounding to-
pographic Rossby wave field.

Regarding the effect of barotropic coupling, from the
crude estimates in section 5 it appeared that for the case
of strong topographic control such as for the dome
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M̃ ø 0 (mass compensation) and the effect is to increase
the string velocity by a factor of 2.

Now we will compare our results with previous for-
mulations that have included the effects of a prescribed
barotropic flow such as discussed in Section 5. As re-
viewed in Rhines (1993), a time-dependent equation
appropriate to large-scale, slowly varying circulation in
a two-layer ocean of uniform total depth h is (with some
changes in notation)

bg9h h h t1 2 2] h 1 U · =h 2 ] h 5 2 = 3 , (37)t 1 1 x 12f h h f1

which can be easily obtained from (29) assuming a flat
bottom, = · U 5 0, and including wind stress.

Another important comparison can be made with the
governing equation given by Rhines (1989) for large-
scale slowly varying circulation in an inverted (infinite
layer on top) 1.5-layer ocean with nonuniform topog-
raphy. His equation (again with some notation changes)
is

]tz 1 a1]xz 1 a2]yz 5 U · =d 1 K¹2z, (38)

where a1 5 U 2 (g9/ f )]yd 2 bg9hf 2, a2 5 V 1
(g9/ f )]xd, f 5 f o 1 by, (U, V) are the east/west com-
ponents of U, and d is the topographic height above a
reference uniform total depth. Equation (38) can be ob-
tained from (29) when we assume = · U 5 0, and Ray-
leigh friction is included (the nongeostrophic Rayleigh
friction momentum terms discussed can be converted to
a Laplacian diffusion term for m̃ by making the as-
sumption that the flow is predominantly geostrophic).

The Rhines (1989) paper also contains other discus-
sions (e.g., concerning wave characteristics and the non-
Doppler effect), which anticipates results from the string
function formulation. The wave characteristics obtained
by ray tracing are often simply contours aligned with
the string function and similarly contain the information
about propagation paths when topography and beta are
important. As discussed, in the string function context,
the non-Doppler effect arises because components of cm

that are purely a function of m̃ cannot have an effect
because they are directed perpendicular to the gradients
in m̃.

We close this section by drawing attention to a case
previously discussed by Shi and Nof (1994) in a similar
theoretical context. A Gulf Stream warm-core ring
(82B) near the western Atlantic continental slope was
observed to propagate southwestward while moving up-
slope. This propagation did not fit that expected for a
wodon (Shi and Nof 1994). Cornillon et al. (1989) ar-
gued that such rings move southward because of inter-
actions with the flow, and Flierl (1984) considered it
possible that the combination of westward beta drift and
radiated Rossby wave drag could be responsible for the
observed propagation.

Without discounting these possibilities, we will point
out that a rough estimate of the regional string function
(using the data discussed in Shi and Nof, or simply the

estimates in Fig. 2, which will be discussed) suggests
that ring 82B propagates as a well-behaved string anom-
aly. The propagation moves along the 7300 m2 s21 string
and at a speed of a few centimeters per second, which
also agrees with the string velocity. While the strings
in this region depend much on topography, the beta
effect is also important causing the strings (and prop-
agation of ring 82B) to cross topography and move up-
slope.

8. Future work

There are at least two important motivations for fur-
ther developing the string function formulation. First,
in studies of the propagation of large-scale energy
anomalies under combined beta and topographic effects,
the string formulation provides more generality than
previous approaches—easily incorporating topography
and beta simultaneously—and plots of the string func-
tion will usually give more insight than plots of other
quantities such as potential vorticity or geostrophic con-
tours. In this sense, the string function can be offered
as an encompassing yet simpler interpretation of pre-
vious formulations.

The string function can also be used to address timely
issues that have not yet been resolved. In particular, we
suggest that the string formulation can be practically
exploited for studying the current disparity between the-
oretical and observed Rossby wave propagation char-
acteristics.

A recent article by Chelton and Schlax (1996) de-
scribes long ocean Rossby waves observed by the TO-
PEX/Poseidon altimetry satellite. The observed slowly
propagating waves are held to be first-mode baroclinic
Rossby waves. Several noted features of the waves are
that the phase speeds are usually larger than that pre-
dicted by standard theory with particular phase speed
increases over midocean ridges and in the western parts
of the basins, and that the waves often appear to be
generated at the midocean ridges.

The increase of phase speeds in the western part of
the basin can be expected from the local increase in the
upper-layer thickness, and the generation of the waves
over topography, while not completely understood, is
not surprising because various mechanisms such as bar-
otropic flow across isobaths will charge the baroclinic
modes in these regions.

Probably the most peculiar of the observations is the
rather ubiquitous departure of the westward phase
speeds from theory and the enhancement of the phase
speeds over topographic features. Important recent pa-
pers (Dewar 1998, Killworth et al. 1997) address this
topic; yet further work to settle this issue is required.
According to the standard theory for long linear Rossby
waves, the westward phase speed in this case should be
bc2/ f 2, where c2 is the first baroclinic mode shallow
water wave speed. Using an estimate of the nonuniform
c based on hydrographic data (Chelton et al. 1998),
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FIG. 2. First baroclinic string function cm 5 c2/ f (m2 s21) for extratropical globe. [Here c is the first baroclinic
shallow water wave speed estimated by Chelton et al. (1998) from hydrographic data]. Contour interval is 20 000
m2 s21. [Values are 0 at the coasts, the first (520 000 m2 s21) contour appears typically as the most poleward contour
in each ocean and values increase then equatorward.]

Chelton and Schlax (1996) were able to calculate the
globally varying theoretical westward phase speed.
From this, and taking zonal averages, they were able to
calculate the ratio of the observed phase speeds to the
theoretical value. Their findings (clumped together here
for all oceans) are shown in Fig. 4. As can be seen, the
observed phase speeds are typically a couple to several
times greater than that theoretically expected, and the
discrepancy shows an increase poleward.

In light of these results, it is useful to attempt to apply
the results presented in this paper to the realistic global
oceans. Of course the results we have presented apply
to a two-layer ocean, not one that is realistically strat-
ified; any comparisons are intended only to motivate
further research rather than to explain the observations.
There are also other difficulties with such comparisons
that will be discussed.

Let us consider the question, ‘‘what long Rossby
wave propagation velocities do we expect for a two-
layer ocean having the same topography as the ocean
and the same distribution of baroclinic shallow water
wave speed c?’’ From c we can easily calculate the
baroclinic string function cm 5 c2/ f and from the gra-
dient the string velocity cm is obtained.

The string function for the first baroclinic mode is
shown in Fig. 2 [calculated using estimates of c provided
by D. Chelton and described in Chelton et al. (1998)].
The westward phase speed is calculated from the me-

ridional gradient of the string function and the ratio of
this speed to that expected from standard linear Rossby
wave theory is shown in Fig. 3. As can be seen, the
westward speeds expected from the string function are
rather different than the description given by the stan-
dard theory. In particular, topographic gradients (which
do not enter the standard theory) clearly play an im-
portant role.

Now we simply take the zonal average of the west-
ward speed ratio shown in Fig. 3 and plot it in Fig. 4
to compare with the satellite observed speeds. As can
be seen, both the observed and string speeds are typi-
cally several times the theoretical speeds at high lati-
tudes and the ratio increases poleward. When we con-
sider the scatter in the satellite data and the regionality
of the westward speed expected from Fig. 3, the cor-
relation between the phase speeds predicted by the string
function and those observed is surprisingly good.

Still, it is premature to offer this as an explanation
for the observed phase speeds before further funda-
mental studies of the string function are given. Aside
from the obvious problem mentioned above (that the
theory is for a two-layer ocean while the realistic ocean
is continuously stratified) there are other problems. First,
the string function calculated in this way is not the rest
state on which the Rossby waves would propagate be-
cause the isopycnals are generally sloped. Hence, the
string function is not the background string function
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FIG. 3. Ratio of westward propagation speed expected from string function to that expected from classical theory [i.e., ]ycm/(2bc2/ f 2)].
The string function cm is shown in Fig. 2. Much of the Southern Ocean is off the high end of the grayscale.

FIG. 4. Ratio of observed to theoretically expected westward phase speed of Rossby waves in the Atlantic and Indian Oceans (X) and
Pacific (1) [redrawn from Chelton and Schlax (1996)]. Solid line shows the global zonal average of the westward phase speeds calculated
from the string function as shown in Fig. 3 (dashed line is a Hanning low-pass of solid line).
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but rather the perturbed string function cm contain-cmo

ing a part depending on m̃. In light of the process de-
scribed in the text-related to the non-Doppler effect,
whereby gradients of m̃ do not affect cm, this point must
be examined more closely. Second, when topographic
slope is a dominant factor, we saw in our simple estimate
that the effect of the barotropic mode could be to in-
crease the string velocity by up to a factor of 2 and this
has not been considered here. The correlation seen in
Fig. 4 and the simplicity with which the comparison
could be made using the string function, do however
provide a strong motivation for the further development
of the string function.
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