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Abstract. The response of the coccolithophoreEmiliania
huxleyi to rising CO2 concentrations is well documented
for acclimated cultures where cells are exposed to the CO2
treatments for several generations prior to the experiment.
The exact number of generations required for acclimation
to CO2-induced changes in seawater carbonate chemistry,
however, is unknown. Here we show thatEmiliania hux-
leyi’s short-term response (26 h) after cultures (grown at
500 µatm) were abruptly exposed to changed CO2 concentra-
tions (∼190, 410, 800 and 1500 µatm) is similar to that ob-
tained with acclimated cultures under comparable conditions
in earlier studies. Most importantly, from the lower CO2 lev-
els (190 and 410 µatm) to 750 and 1500 µatm calcification de-
creased and organic carbon fixation increased within the first
8 to 14 h after exposing the cultures to changes in carbonate
chemistry. This suggests thatEmiliania huxleyirapidly al-
ters the rates of essential metabolical processes in response
to changes in seawater carbonate chemistry, establishing a
new physiological “state” (acclimation) within a matter of
hours. If this relatively rapid response applies to other phy-
toplankton species, it may simplify interpretation of studies
with natural communities (e.g. mesocosm studies and ship-
board incubations), where often it is not feasible to allow for
a pre-conditioning phase before starting experimental incu-
bations.

1 Introduction

By the year 2100 atmospheric CO2 concentration is ex-
pected, for a “business-as-usual” CO2 emission scenario,
to almost triple from pre-industrial values (IPCC, 2007),
with a concomitant 45% decrease of CO2−

3 ion concen-
trations and a drop of 0.4 pH units in the surface ocean.
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Substantial effort has been undertaken to understand phyto-
plankton responses to these changes, with different labora-
tory approaches including incubations with dilute (Burkhardt
et al., 1999; Riebesell et al., 2000a; Rost et al., 2003) and
dense monoclonal batch cultures (Iglesias-Rodriguez et al.,
2008), semi-continuous (Barcelos e Ramos et al., 2007; Fu et
al., 2007; Xia and Gao, 2003) and chemostat (Sciandra et al.,
2003) cultures, as well as ship-board incubations (Tortell et
al., 2002, 2008) and mesocosm field experiments of natural
populations (Delille et al., 2005; Engel et al., 2005; Riebesell
et al., 2007).

Particular attention has been given to coccolithophores, a
group of calcifying marine phytoplankton which was found
to exhibit distinct sensitivity to ocean acidification. Indeed,
members of this group, which is considered responsible for a
significant fraction of the pelagic biogenic carbonate precip-
itation (Milliman, 1993), responded to CO2 induced seawa-
ter acidification by changing cellular calcification rates. The
best studied and probably most productive coccolithophore,
Emiliania huxleyi, has generally been found to decrease its
calcification rate in response to elevated CO2 concentrations
under nutrient and light replete conditions (Feng et al., 2008;
Riebesell et al., 2000b; Zondervan et al., 2001).

All laboratory work on CO2/pH sensitivity ofEmiliania
huxleyiso far have used cultures pre-exposed (acclimated) to
the experimental CO2 treatment. While a common acclima-
tion period applied in these studies corresponds to about 9
to 12 generations (Riebesell et al., 2000b; Zondervan et al.,
2002; Feng et al., 2008), the actual time needed for acclima-
tion to elevated CO2 is unknown. Acclimation period here
refers to the time necessary for individual cells to establish
a new physiological “state” in response to a change in the
environmental condition.

In cases where an individual’s phenotypic plasticity (ac-
climation) and the population’s genotypic variability are in-
sufficient to maintain competitive fitness under changing en-
vironmental conditions, a species’ survival may depend on
its ability to adapt (Bell and Collins, 2008). Projecting a
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species’ long-term response to environmental change there-
fore requires knowledge about both its acclimation and adap-
tation potential. Phenotypic plasticity responses to a chang-
ing environment may delay, favour or even speed up adap-
tive evolution (Ghalambor et al., 2007), further complicat-
ing attempts of predicting pathways of species evolution and
ecosystem development under changing environmental con-
ditions. With regard toEmiliania huxleyiit is unknown what
role the observed phenotypic plasticity will have in its re-
sponse to changes in the carbonate system, or whether nat-
ural populations will have the potential to adapt to the high
CO2 ocean. It is known that this species has high genetic
variability, as reported forEmiliania huxleyiblooms (Medlin
et al., 1996), but no study considering species potential for
adaptation to global change has been performed to date.

Studies with natural communities are a valuable approach
to address questions related to species interactions in re-
sponse to climate change. Indeed, shifts in diatom commu-
nities in response to elevated CO2 concentrations were de-
scribed in phytoplankton assemblages from the Equatorial
Pacific (Tortell et al., 2002) and Southern Ocean (Tortell et
al., 2008). In recent mesocosm experiments the most pro-
nounced CO2 related effect was rather on dissolved inorganic
carbon uptake and organic carbon loss from the upper water
column (Schulz et al., 2008). These types of experiments are
often conducted without prior acclimation of the enclosed
communities to the CO2 treatments. The time needed for
phytoplankton physiology to respond to abrupt and drastic
changes in seawater carbonate chemistry and, therefore, how
long cell response mirrors a temporary stress are presently
unknown. Considering the importance of studying the po-
tential effects of rising CO2 on natural communities (e.g. in
mesocosm and ship-board incubations) and the relatively
limited incubation time in these studies, a better understand-
ing of the relevant time-scales in physiological processes of
acclimation is urgently needed.

Thus, in this studyEmiliania huxleyi’s response to an
abrupt change in CO2 concentrations was followed during
26 h and the results were compared to those obtained for ac-
climated cultures in earlier studies. Furthermore, by follow-
ing short-term cellular responses we investigate the acclima-
tion time necessary for phytoplankton suddenly exposed to
elevated CO2.

2 Material and methods

2.1 Experimental setup

Monospecific cultures of the coccolithophoreEmiliania hux-
leyi (strain isolated during 2005 mesocosm experiment in
Bergen by Marius M̈uller) were grown at a constant CO2
concentration (average of 500 µatm, with a corresponding
pHtotal scalevalue of 7.8) for a total of about 20 generations
(3 consecutive semi-continuous batch cultures). These pre-

cultures were continuously aerated with 0.2 µm filtered ambi-
ent (room) air (Rena Air50 aquarium pump), which allowed
to grow the cultures to the cell abundance needed as inocula
to start the experiment (2.1×106 cell ml−1), without major
shifts in the CO2 level. However, while aeration replenishes
dissolved inorganic carbon (DIC), calcification reduces total
alkalinity (TA), resulting in a decrease in pH and carbonate
saturation state (minimum of about 7.7 pH and 0.9 Omega,
with a corresponding 495 µatm CO2) at constantpCO2.
Thus, the carbonate system from both the last pre-culture and
the experiment were monitored through TA and DIC mea-
surements. Both pre-cultures and experimental cultures were
grown in 0.2 µm sterile filtered North Sea water, at 15◦C, and
a photon flux density of 150 µmol m−2 s−1 (supplied from
cool white fluorescent bulbs, Philips TLD 36W/54) and a
14/10 h light/dark cycle. Nutrient enrichment followedf /2
(Guillard, 1975; Guillard and Ryther, 1962) for the pre-
cultures andf /20 (88 µmol l−1 nitrate and 3.6 µmol l−1 phos-
phate) for the experiment. The carbonate system of the media
was adjusted shortly before the day of the experiment by ad-
dition of 1 molar NaOH or HCl. For the experiment, cells
were inoculated just before the beginning of the light phase
to a starting concentration of about 3.5×104 cells ml−1 in
each of the 4 CO2 treatments ranging from minimum val-
ues approximately 182 to maximum 1591 µatm. This corre-
sponded to pHtotal scalevalues ranging from 8.36 to 7.47 with
a concomitant 8.5-fold increase in CO2, a 1.1-fold increase
in bicarbonate (HCO−3 ), a 7-fold decrease in carbonate ion
(CO2−

3 ) concentrations and a calcite saturation state ranging
from 7.6 to 1.1 (Table 1). The cell abundance chosen assures
that less than 2% of DIC was taken up by the cells during
the experiment. After carefully mixing the culture inocula
with the manipulated media, each CO2 treatment was sub-
divided into smaller bottles for the determination of carbon
fixation rate (in duplicate), carbonate chemistry, cell num-
bers and diameter andFv/Fm. Additionally, samples were
taken for scanning electron microscopy. Sampling occurred
2 h, 4 h, 8 h, 14 h, 24 h and 26 h after the start of the first light
phase.

2.2 Carbonate system

Carbonate chemistry was calculated from temperature, salin-
ity, phosphate, DIC and TA using CO2sys (Lewis and Wal-
lace, 1998), with the equilibrium constants given in Roy
et al. (Roy et al., 1993). DIC was measured photochem-
ically (Stoll et al., 2001) using an automated segmented-
flow analyzer (Quaatro) equipped with an auto-sampler
(+/−10 µmol kg−1 accuracy and 5 µmol kg−1 precision).
DIC measurements were calibrated with certified reference
material (Dickson standard). Alkalinity was measured ac-
cording to Dickson et al. (2003) in duplicate (minimum)
through potentiometric titration, using a Metrohm Titrano
808 with about 24 µmol kg−1 accuracy (calibration with
Dickson standard) and 3.5 µmol kg−1 precision.
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Table 1. Carbonate system data determined from total alkalinity (TA) and dissolved inorganic carbon (DIC) at 15◦C, 34 salinity and
3.4 µmol l−1 phosphate using CO2sys (Lewis and Wallace, 1998) with the equilibrium constants given in Roy et al. (1993) at different times
of the experiment. While all TA values were measured, meaningful values of DIC could only be obtained for the initial water (start) due to
storage problems of the remaining samples (calculated DIC in italic).

Sample Timing TA DIC pCO2 pH free pH total HCO−3 CO2−

3 CO2 Omega
(µmol kg−1) (µmol kg−1) (µatm) scale scale (µmol kg−1) (µmol kg−1) (µmol kg−1) for calcite

pre-culture start 2328 2135 502 8.05 7.97 1971 145 19 3.5
pre-culture end 1084 1029** 495 7.75 7.67 975 36 19 0.9

exp. 0 h 2558 2135 203 8.41 8.33 1822 305 8 7.3
exp. 0 h 2359 2135 432 8.11 8.04 1954 165 16 4.0
exp. 0 h 2228 2135 899 7.81 7.73 2017 85 34 2.0
exp. 0 h 2150 2135 1588 7.56 7.49 2027 48 60 1.2
exp. 14 h 2511 2071 182 8.44 8.36 1750 315 7 7.6
exp. 14 h 2305 2068 386 8.14 8.07 1882 172 15 4.1
exp. 14 h 2183 2069 750 7.87 7.79 1946 95 28 2.3
exp. 14 h 2106 2081 1435 7.60 7.52 1976 51 54 1.2
exp. 26 h 2490 2060 186 8.43 8.35 1746 307 7 7.4
exp. 26 h 2263 2047 418 8.12 8.03 1874 157 16 3.8
exp. 26 h 2174 2065 772 7.86 7.78 1944 92 29 2.2
exp. 26 h 2077 2066 1591 7.55 7.47 1961 45 60 1.1

** Estimated from TA and pH measured through potentiometric titration.

Due to storage problems not all DIC measurements were
meaningful. Therefore, we used the DIC measurements
(2135 µmol kg−1) of the pre-culture media (which was the
same media as used in the experiment) to calculate the car-
bonate system at the start of the experiment (0 h). To esti-
mate DIC values 14 h after the label addition (at the end of
the light phase), the DIC drawdown (calculated from total
particulate carbon, which was measured by the14C method,
see below) for each CO2 concentration was subtracted from
the measured starting value. Between 14 and 24 h, during
the dark phase, DIC continues to change due to calcification
and respiration, but no TPC measurements were done for this
interval. The next TPC sampling occurred after 26 h, being
DIC then influenced by calcification, respiration and organic
carbon fixation (between 24 and 26 h). Hence, the change in
DIC by calcification (14 to 26 h) was estimated from changes
in total alkalinity, divided by 2, since it decreases both DIC
and TA in a 1 to 2 relation. As it was not possible to quantify
respiration in the dark phase (14 to 24 h), it was assumed that
organic carbon fixation in the first 2 h of the following day
(24 to 26 h) decreased DIC with similar magnitude as did the
increase in DIC due to respiration.

2.3 Carbon fixation

For each data point (time after onset of light: 2 h; 4 h; 8 h;
14 h; and 26 h) 6×65 ml culture flaks were spiked with 100 µl
of a 1.85×1012 Bq H14CO−

3 solution, of which 4 flasks were
incubated under experimental conditions and 2 were kept in
the dark. Radioactive label was added to all samples just
before the light phases of the experiment days (0 and 24 h).
Duplicate subsamples for total (25 ml) and organic (40 ml)

particulate carbon, plus the corresponding samples which
were kept in the dark were filtered onto cellulose acetate
(0.45 µm) filters under low pressure (200 mbar). After fil-
tration, 1 ml HCl (0.1 molar) was added to the particulate or-
ganic carbon filter (organic carbon fixation) for 30 s, assuring
the dissolution of all calcium carbonate (see Müller et al.,
2008). Both filters were rinsed with 0.2 µm filtered seawater,
removing excess of radioactive dissolved inorganic carbon.
Lumagel Plus (Universal LSC cocktail) was then added to the
filters in scintillation vials and the radioactivity measured in
a Liquid Scintillation Analyser (Tri-Carb 2900TR, Packard).
Particulate inorganic carbon fixation (calcification) was cal-
culated as the difference between total carbon (not acidified
filters) and organic carbon (acidified filters) fixation.

For the carbon fixation calculation it was assumed that the
uptake of14C is 5% slower than12C and that 6% of the
fixed carbon is lost in respiratory process throughout the day
(based on Steeman-Nielsen, 1952).

2.4 Cell diameter and numbers

Cell abundance and diameter were determined immediately
after sampling at each time point by using a Coulter Counter
Z series (Beckman Coulter). Cell division rate (µ) was cal-
culated according to:

µ= (lnCe− lnCi)/1t (1)

where Ce and Ci refer to end and initial cell concentrations,
respectively and1t to the duration of the experiment in days.
For Fig. 4 Ce corresponds to 24 and 26 h and Ci to 0 and 2 h
respectively.
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2.5 Maximum photochemical quantum yield of
photosystem II (Fv/Fm)

Photosynthetic efficiency was determined asFv/Fm by using
a PAM (PhytoPAM, Phyto-ED Walz, PPAA0138). Samples
were placed in the dark for 20 min (without any previous
treatment) before determination ofFv/Fm.

2.6 Scanning electron microscopy (SEM)

SEM samples were fixed with formaldehyde (1% final con-
centration) at each time point. Samples were then filtrated
onto polycarbonate filters (0.45 µm pore size) under low pres-
sure (<200 mbar), dried for 12 h at 60◦C and glued on alu-
minium stubs. The filters were coated with gold-palladium
and photographs of the most representative specimens taken
with a CamScan-CS-44 (Scanning electron microscope) at
the Institute of Geosciences of the Christian Albrechts Uni-
versity in Kiel.

2.7 Statistic analysis

The data was analyzed with a linear correlation test (R),
which was calculated using a Matlab function.

3 Results

After 8 h of exposure to the experimental CO2 levels (with
26 h average of each condition being∼190, 410, 800 and
1500 µatm) cumulative organic carbon fixation inEmilia-
nia huxleyiincreased with CO2 concentration (Fig. 1a), with
statistical significance (p = 0.0499) and a linear correlation
factor (R) of 0.7069. After 14 h, however, this increase
was not statistically significant (R = 0.1941, p = 0.6766).
The opposite trend, a decrease with increasing CO2, was
obtained for cellular calcification (Fig. 1b) (R of −0.7699
(p = 0.0255) 8 h after the addition of the14C label and
−0.7892 (p = 0.0199) after 14 h). Due to a stronger decrease
in calcification compared to the increase in organic carbon
fixation the cumulative total carbon fixation decreased with
rising CO2 (Fig. 1c). Carbon fixation rates were also de-
termined for each period between 2 consecutive sampling
points. From 4 to 8 h after the inoculation, organic carbon
fixation rate increased 35% from the lowest to the highest
CO2 level, 15% from 410 to 1500 µatm and 27% from 190
to approximately 800 µatm (Fig. 2a). For the same period of
time, this corresponded to a 19% decrease in the calcifica-
tion rate from 190 µatm to approximately 800 µatm and 44%
from 190 to 1500 µtam (Fig. 2b). Total carbon fixation and
calcification rates increased during the whole light phase. Or-
ganic carbon fixation rates increased in two treatments over
the course of the day, one treatment (410 µatm) displayed a
decrease and one treatment did not vary between 8 and 14 h.
After 26 h, at the beginning of the new light phase, carbon
fixation rates were again at the low levels measured at the
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Fig. 1. Cumulative carbon fixation ofEmiliania huxleyithrough
time. (a) organic carbon fixation per cell,(b) calcification per cell,
(c) total carbon fixation per cell and(d) ratio between calcification
and organic carbon fixation. 190 µatm CO2 (blue), 410 µatm CO2
(grey), 800 µatm CO2 (green), 1500 µatm CO2 (red). Data from the
26 h considers only a 2 h incubation period. Each CO2 level has
duplicate measurements. Vertical error bars represent the range of
the data and the lines connect the averages of each time point. The
white/black bar on top represents the light/dark diel cycle, vertical
grey bars denote the dark phase.
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Fig. 2. Carbon fixation rates ofEmiliania huxleyidetermined for
each period of time between consecutive sampling points.(a) or-
ganic carbon fixation per cell per h,(b) calcification per cell per h
and(c) total carbon fixation per cell per h. For each period of time
the data point marks the end of the incubation. Each CO2 level has
duplicate measurements. Vertical error bars represent the range of
the data and the lines connect the averages of each time point. Line
and color coding as in Fig. 1.

start of the experiment (Fig. 2). At this point, organic car-
bon fixation rates slightly increased and calcification rates
slightly decreased from 190 to 1500 µtam (difficult to spot at
the y axes range in Fig. 2).

The decrease in the ratio of calcification to organic carbon
fixation (Calcification/OCfix) with rising CO2 (Fig. 1d) be-
came evident about 8 h after the inoculation. This trend is
maintained even after the start of the next light phase, even
though with a smaller slope of the linear regression and abso-
lute values. Scanning electron microscopy after 8 h and 26 h
reveals some under-calcified coccoliths on cell’s exposed to
high CO2 concentration (Fig. 3). The under-calcified coc-
coliths are mostly in the layer closest to the cells surface,
as is expected for newly produced coccoliths. After 8 h

Fig. 3. Scanning electron microscope pictures ofEmiliania hux-
leyi grown under different CO2 concentrations after 8 h of exposure
to (a) 410 µatm,(b ande) 800 µatm and(c) 1500 µatm, and after
26 h of exposure to(d) 410 µatm and(f) 1500 µatm. The photos
chosen are representative of the trend observed. Note the presence
of under-calcified coccoliths under enhanced CO2 conditions, es-
pecially visible in the connections between the elements forming
the “outer ring” (orange arrows) and in the frequent enlargement
of the central area. For the 800 µatm treatment both photographs
correspond to cells exposed to the increase on CO2 concentrations
for 8 h, because no differences were found within the time consid-
ered (8 and 26 h) and the photographs taken after 26 h were not well
focused. Scale bars correspond to 1 µm.
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Fig. 4. Cell division rate (µ) based on cell counts ofEmiliania hux-
leyi in relation to CO2 levels (pCO2). Black diamonds correspond
to calculations based on cell counts conducted at the beginning of
the light phase (0 h) and after 24 h and grey diamonds to those done
2 h after the start of the light phase and after 26 h.

the under-calcified coccoliths of the 1500 µtam CO2 treat-
ment were mostly observed in smaller cells, because it is
on those that the most recently formed layer becomes visi-
ble. The 800 µtam CO2 treatment showed only slight under-
calcification both 8 and 26 h after the manipulation.
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Fig. 5. (a) Cell diameter and(b) Fv/Fm of Emiliania huxleyi
through time. In Fig. 5a each CO2 level has 4 measurements
from each bottle with vertical error bars representing standard
errors. In Fig. 5b each data point results from the average of
measurements done at 470, 520, 645 and 665 nm in one bottle.
190 µatm CO2 (blue), 410 µatm CO2 (grey), 800 µatm CO2 (green),
1500 µatm CO2 (red). The white/black bar on top represents the
light/dark diel cycle, vertical grey bars denote the dark phase.

Cell division rate decreased from 1.01 at∼190 µtam to
0.90 at∼1500 µtam, having aR value of−0.8827 andp =

0.0037 (Fig. 4). Cell size increased during the light phase,
with a weak trend of decreasing cell diameters with increas-
ing CO2 concentrations at the end of the light phase (Fig. 5a).
This trend was reversed after cell division.Fv/Fm increased
during the light phase and was lower in the lowest CO2 treat-
ment between 2 and 26 h after changing the CO2 levels (al-
though no significant trend was observed across the 4 CO2
treatments), maintaining the same trend at the beginning of
the following light phase (Fig. 5b).

4 Discussion

4.1 From short-term to acclimated response

The effect of increasing CO2 concentrations in the ocean
has generally been assessed by the physiological response
of acclimated phytoplankton cultures (from days to weeks).
However, virtually nothing is known about their short (within
24 h) and long-term (months to years) response.

4.2 Calcification

Our results showed that within hours after the high CO2 ex-
posure the calcification response of non-acclimatedEmilia-
nia huxleyiis similar to that observed in acclimated cultures
(Riebesell et al., 2000b), under the same light irradiance
(150 µmol m−2 s−1), temperature (15◦C), similar CO2 range
(∼190 to 800 µatm) and L/D cycle (in this study 14/10 while
others 16/8). In fact, after 8 h we found a 19% decrease in
calcification with rising CO2 concentrations which compares
well with the 15.7% found by Riebesell et al. (2000b). In
terms of the absolute values, calcification was slightly higher
in this compared to the previous study.

Remarkably the decrease in calcification could be seen
with scanning electron microscopy already after short-term
exposure to high CO2 (1500 µatm). Cells grown under ele-
vated CO2 levels showed increased numbers of incomplete or
under-calcified coccoliths. However, because newly formed
coccoliths are positioned at the cell surface and were there-
fore hidden by a second layer of coccoliths formed under
pre-experimental conditions (approx. 1 coccolith per hour,
Paasche, 2002), a systematic analysis of the degree of calci-
fication and the frequency of malformations was not possible
in this short-term incubation.

4.2.1 Organic carbon fixation andFv/Fm

As previously reported, elevated CO2 stimulated organic car-
bon fixation, although the effect was almost 3-fold higher
(8 h after changing CO2 concentrations) than observed in an
earlier study (Riebesell et al., 2000b).

In Riebesell et al. (2000b) carbon fixation rates are inte-
grated over several days representing, therefore, net carbon
fixation. Here14C samples taken after a few hours would
measure gross carbon fixation since during this period most
of the organic matter being respired was produced prior to
14C label addition. For that reason, all calculations of14C in-
corporation assumed that 6% of the fixed carbon was lost in
the respiratory process, giving this way also net carbon fix-
ation (Steeman-Nielsen, 1952). Longer incubations, includ-
ing respiration in the dark phase, result in net carbon fixation
rates. Thus the use of 6% in the calculations might slightly
underestimate the values obtained at 8 and 14 h, but this small
bias does not influence our conclusions.

Biogeosciences, 7, 177–186, 2010 www.biogeosciences.net/7/177/2010/
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In agreement with the increase of organic carbon fixation
rates under enhanced CO2 conditions there was an increase
of the maximum photochemical quantum yield of photosys-
tem II (Fv/Fm) during the first 14 h. Interestingly, cells sub-
jected to a decrease in the CO2 concentration (from aver-
age∼500 µatm in the pre-culture to 190 µatm) had the low-
estFv/Fm between 2 and 26 h after changing the CO2 levels.
Fv/Fm is lower when the electrons can not be transported as
fast as their production. In this case, a decrease in organic
carbon fixation rate due to a change in CO2 supply might be
faster then the re-organization of the Calvin-Benson Cycle
substrates, with consequent “clogging” of the electron trans-
port chain.

4.2.2 Calcification/OCfix

There was a decrease in the calcification to OCfix ratio (al-
ready 8 h after the beginning of the light phase) like in pre-
vious studies with acclimated cultures within a similar CO2
range (Riebesell et al., 2000b; Zondervan et al., 2001). How-
ever, there was an overall higher Calcification/OCfix which
can be explained by higher calcification rates in this study,
since the organic carbon fixation was quite similar to that in
a previous study (Riebesell et al., 2000b). Interestingly, the
decrease of the Calcification/OCfix ratio after the start of the
next light phase had a less pronounced slope of the linear
regression with rising CO2.

4.2.3 Diel cycle

The diurnal variation of cellular calcification and organic car-
bon fixation was higher than the differences encountered be-
tween the CO2 levels ranging from∼190 to 1500 µatm. This
highlights the importance of the timing of sampling during
experiments. For most of the time considered, both our study
and Zondervan et al. (2002) show higher organic carbon fixa-
tion and lower calcification at enhanced CO2 concentrations.

4.2.4 Cell division rate and diameter

While cell division ofEmiliania huxleyiwas not found to be
affected by elevated CO2 concentrations in previous studies
(Buitenhuis et al., 1999; Clark and Flynn, 2000; Rost et al.,
2002) a slight decrease in cell division rate with rising CO2
was observed in this investigation. This difference may be
due to the broader range of CO2 levels applied here. We
do not expect the CO2 effect on cell division rate to be a
short-term stress response caused by changing the CO2 ma-
nipulation procedure (aeration in the pre-cultures and non-
aeration in the experiment) or other factors derived from
the experimental procedure because cell division rate of the
410 µatm treatment (1.01 d−1) was very similar to that of the
pre-cultures (1.02 d−1

± 0.09, 4 replicates) exposed to sim-
ilar CO2 conditions. Moreover, a similar effect on cell di-
vision rate was also found during a long-term (>100 gen-
erations) high CO2 exposure by M̈uller et al. (personal com-

munication, 2009), indicating that the observed response was
unrelated to the abrupt change in CO2 concentrations applied
in this approach. The opposite trend in cell division rate with
rising CO2 concentration has been observed in other phyto-
plankton groups, such as diatoms (Riebesell et al., 1993) and
the cyanobacteriumTrichodesmium(Barcelos e Ramos et al.,
2007; Hutchins et al., 2007; Levitan et al., 2007). The appar-
ent difference in specific growth rate responses between var-
ious taxonomic groups may be related to the process of cal-
cification, but further investigation is needed to clarify this.

In this study, the cell diameter decreased with increasing
CO2 concentration during the first 14 h. This is most likely
due to a more pronounced decrease in calcification than the
increase of organic carbon fixation with a consequent de-
crease in the cellular total carbon. After the dark period,
when most cells had divided, on average cells exposed to
elevated CO2 levels had a larger cell diameter. This may be
due to the slightly lower cell division rate of high CO2 ex-
posed cells resulting in a larger number of cells which had
not yet undergone cell division. Lower cell diameters at the
beginning of the experiment in all treatments may have re-
sulted from higher coccolith detachment due to aeration of
the pre-culture.

5 CO2 and pH, a combined effect

Rising CO2 concentration in the ocean also changes pH,
[HCO−

3 ] and [CO2−

3 ], so it is hard to separate the potential
effect of each parameter individually. Maintaining a high
concentration of CO2 at the site of carboxylation to ensure
efficient operation of the CO2 fixing enzyme ribulose-1, 5-
biphosphate carboxylase/oxygenase (RuBisCO) is an energy
demanding process. A CO2 increase in the surrounding en-
vironment of a cell is likely to decrease the net diffusive ef-
flux of CO2, reducing the energy needed to maintain high
CO2 inside the cell. The lower energetic cost may be used
to increase organic carbon fixation. As for calcification, the
decrease in the calcite and aragonite saturation states has
been connected to the observed decrease in calcification in
foraminifera (Bijma et al., 1999) and corals (Langdon et al.,
2000; Leclercq and Gattuso, 2002; Leclercq et al., 2000). As
coccolithophore calcification occurs intracellularly and there
is no evidence of CO2−

3 utilization or any known CO2−

3 trans-
porters, the observed response may rather reflect sensitivity
to a decrease in pH, associated with increased energetic costs
of transporting protons generated during calcification outside
the cell.

Based on the observed increase of organic carbon produc-
tion at high CO2 concentration one might expect a concomi-
tant increase in cell division rate, but a slight decrease was
observed instead. This effect on cell division rate could be
a direct consequence of changing seawater pH, affecting cel-
lular acid-base regulation. In a study on 3 red-tide dinoflag-
ellates Hansen et al. (2007) concluded that growth is mostly
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affected by pH and that inorganic carbon only plays a minor
role under low initial dissolved inorganic carbon concentra-
tions and high pH.

Whatever parameter or combination of parameters influ-
ences the different cellular rates in this study the cells showed
a fast physiological adjustment (probably with the exception
of calcification) potentially at the expense of intracellular
regulation of DIC content and pH. This possibly happened
at the regulation level of both transporters in the membrane
and electron chain, and/or enzymes.

5.1 Short (acclimated) to long-term experiments,
stepping stones in the understanding of the
effect of future climate change

Experiments done with acclimated cells often looked at how
the individuals of a clonal phytoplankton culture respond to
the projected changes in CO2 concentrations (acclimation re-
ferred to the individual’s phenotypic plasticity).Emiliania
huxleyi acclimated (already after hours) to increasing CO2
concentrations by decreased calcification and increased or-
ganic carbon fixation rates in several studies (this study; Feng
et al., 2008; Riebesell et al., 2000b; Zondervan et al., 2001).
However, the term acclimation is probably not applicable
to the changes observed in calcification, since its decrease
with increasing CO2 concentrations might simply reflect the
differences in the carbonate system (possibly pH). Indeed,
coccolith formation might be dictated by a biological clock
more than by a perfect final product, explaining malformed
coccoliths under high CO2 concentrations. The organic car-
bon fixation increase under high CO2 concentrations, on the
other hand, might result in a physiological readjustment by
reallocating excess energy saved in dissolved inorganic car-
bon transport to increase Calvin-Benson Cycle turnover rate
and/or substrates production.

While evolutionary adaptation to increasing CO2 concen-
trations has so far not been addressed inEmiliania hux-
leyi, helpful information can be obtained from work done
with the plantArabidopsis thaliana(Lau et al., 2007), the
alga Chlamydomonas(Collins and Bell, 2004) and natu-
ral populations from CO2 springs (Collins and Bell, 2006).
Both these species and natural populations from CO2 springs
showed phenotypic changes with increased CO2 treatments,
but no adaptation (e.g. correlations between CO2 treatment
and genetic variations, mostly due to mutation, which might
give competitive advantage as well as heritability, or the
transfer of that CO2-induced information to the descendents).
Still, these phenotypic changes might favour or even speed
up adaptive evolution. The lack of indications for adapta-
tion reinforces, on the one hand, the importance to further
study phenotypic plasticity changes with rising CO2 and, on
the other hand, to re-evaluate the long-term experimental de-
signs. Some long-term experiments consider that after 1000
generations there is enough genetic variability so that the cul-
ture is not clonal anymore and, therefore, can be treated as a

population (Collins et al., 2006). Nevertheless, future long-
term experiments could allow for more genetic variability
by using several clones, preferentially freshly isolated from
the same location, and/or inducing sexual reproduction. It
is also important to include some CO2 variability in these
experimental setups, since phytoplankton in its natural envi-
ronment will not evolve under constant CO2 concentration,
but to an average higher concentration with changes through
time. Even more so because the daily and seasonal changes
of CO2 concentration will be even more pronounced in the
future, due to decreasing ocean buffer capacity. Finally, one
has to start considering in both acclimated and long term
experiments, that phytoplankton will be exposed to a com-
bined CO2, temperature and potentially nutrient composi-
tion/availability change.

In summary, short/acclimated and long-term experiments
provide complementary information about the phytoplankton
response to increasing CO2 and other changes in the carbon-
ate system.

6 Conclusions

With this work we were able to show that the response of
acclimated cultures to rising CO2 apparently correspond to
establishing a new physiological “equilibrium” through the
change of rates of various essential processes, whichEmilia-
nia huxleyicells appear to achieve in less than 24 h. This im-
plies that the cellular adjustment to increasing CO2 concen-
trations is independent of cell division. If this relatively rapid
response applies to other phytoplankton species, it might
simplify the interpretation of studies with natural commu-
nities (e.g. mesocosm studies and ship-board incubations),
where often it is not feasible to allow for a pre-conditioning
phase before starting experimental incubations.

Acknowledgements.We thank Peter Wiebe for most helpful labo-
ratory assistance, Michael Meyerhöfer for the DIC measurements,
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