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Summary

Since the beginning of the industrial  revolution the atmospheric  partial  pressure of  CO2 

(pCO2) has increased exponentially, reaching 380 μatm nowadays, and is expected to rise to values 

up to 700 μatm by the end of this century. These changes affect marine plankton in various ways, 

positively as for cyanobacteria, or in most cases, negatively as for coccolithophores. However there 

is a lack in the understanding of the effect of this increase in carbon for some important organisms 

as diatoms, an important primary producer in the ocean. Diatoms have not been reported as affected 

by ocean acidification, although several studies have reported a change of the total lipid content in 

some diatoms when cultured at high CO2 conditions. With this perspective, a set of two experiments 

were  designed;  the  first  was  intended  to  determine  if  the  amount  of  different  fatty  acids  (the 

building blocks of lipids) of the diatom Thalassiosira pseudonana  is altered when cultures under 

diverse CO2 conditions; while the second experiment was intended to determine the possible effects 

of the change in the fatty acids of  T. pseudonana on the life cycle of the copepod Acartia tonsa 

when  feed  with  this  diatom.  The  first  experiment  showed  that  the  fatty  acid  content  of   T.  

pseudonana change toward high CO2 levels, with an increase in the amount of saturated fatty acids 

and a decrease of unsaturated fatty acids content. The second experiment showed that the growth 

rate, amount of egg produced per female, and fatty acid content per female are reduced when feed 

with T. pseudonana cultured at high CO2 conditions. Our results show that CO2 actually affects the 

fatty acid composition of  T. pseudonana and that this fatty acid alteration in the diatom have a 

significant influence on the life cycle of A. tonsa. However, further studies are required to determine 

if the effects observed in this study also take place in the environment. 
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Effect of CO2 on elemental composition and fatty acids of diatoms and 
concomitant effects on copepods

1.  Introduction

 1.1  Carbonate system 

1.1.1  The Carbonate System of the Ocean 

The ocean represents the largest carbon reservoir (~38,000 Pg C) of Earth's carbon cycle. 

The mean concentration of inorganic carbon in the ocean is about 2.3 mmol kg-1; its residence time 

is  ~200  ka.  Ocean  and  atmosphere  exchange  carbon  in  the  form  of  carbon  dioxide  (CO2). 

Atmospheric  CO2 is  therefore  strongly  coupled  to  the  oceanic  reservoir.  The  total  amount  of 

dissolved  inorganic  carbon  in  the  modern  ocean  is  about  sixty  times  larger  than  of  the  pre-

anthropogenic atmosphere  (Zeebe and Wolf-Gladrow, 2001).

Dissolved carbon dioxide in seawater occurs mainly in three inorganic forms (Figure i, left 

panel):  free aqueous carbon dioxide  (CO2,aq),  bicarbonate (HCO3
-),  and carbonate ions (CO3

2-). 

Typical concentrations of dissolved carbonate species in seawater as a function of pH. The majority 

of  dissolved inorganic carbon in the ocean is  in  the form of  HCO3
- (>85%) (Zeebe and Wolf-

Gladrow,  2001).  Gaseous  carbon  dioxide  (CO2,g),  and  [CO2]  are  related  by  Henry's  law  in 

thermodynamic equilibrium: 

CO2,g = CO2 ;   K0      

where K0 is the solubility coefficient of CO2 in seawater. The concentration of dissolved CO2 

and the fugacity of gaseous CO2, fCO2, then obey the equation [CO2] = K0 ×  fCO2. The fugacity is 

practically equal to the partial pressure, pCO2  (within ~1%) (Zeebe and Wolf-Gladrow, 2001). The 

dissolved carbonate species are related by:

CO2 + H2O  ↔  HCO3
- + H+ ;   K*1      

HCO3
-  ↔  CO3

2-  + H+ ;   K*2     
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The pK*'s  (= −log(K*))  of  the  stoichiometric  dissociation constants  of  carbonic  acid  in 

seawater are pK*1 = 5.94 and pK*2 = 9.13 at  temperature T=15°C, salinity S=35, and surface 

pressure  P=1 atm on the  total  pH scale.  At  typical  surface  seawater  pH of  8.2,  the  speciation 

between [CO2], [HCO3
-], and [CO3

2-  ] hence is 0.5%, 89%, and 10.5% (Zeebe and Wolf-Gladrow, 

2001). The sum of the dissolved carbonate species is denoted as total dissolved inorganic carbon 

(DIC ≡ ΣCO2 ≡ TCO2 ≡ CT): 

TCO2 = [CO2] + [HCO3
-] + [CO3

2- ]     

Another critical parameter to describe the marine carbonate system is the total alkalinity 

(TA). Total alkalinity is is related to the charge balance in seawater and can be defined as the excess 

of proton (H+ ion) acceptors over proton donators (with respect to a zero level of protons) (Zeebe 

and Wolf-Gladrow, 2001):

TA = [HCO3
-] + 2 [CO3

2-] + [B(OH)4
-] + [OH-] - [H+] + minor compounds  

Of  the  carbonate  system  parameters,  pCO2,  pH,  TCO2,  and  TA  can  be  determined 

analytically. However, if any two parameters and total dissolved boron are known, all parameters 

(pCO2, [CO2], [HCO3
-], [CO3

2-], pH, TCO2, and TA) can be calculated at given temperature, salinity 

and pressure  (Zeebe and Wolf-Gladrow, 2001). 

Figure i.- Left: Typical concentrations of dissolved carbonate species in seawater as a function of pH. 
(Zeebe and Wolf-Gladrow, 2001). Right: increase in the CO2 concentration in the atmosphere in the last fifty years 

(Keeling et al. 2004).
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1.1.2  Anthropogenic CO2 

Since the beginning of the industrial  revolution the atmospheric  partial  pressure of  CO2 

(pCO2) has increased exponentially (Figure i,  right panel)  reaching 380 μatm nowadays,  and is 

expected to rise to values  up to 700 μatm by the end of this century if the rate of CO2 emissions 

continues according to a “business as usual” scenario ( IPCC Scenario IS92a. 2007; Houghton et al. 

2001; Raven et al. 2005; Raupach et al. 2007). 

A pH value of 8.1 is nowadays typical for the surface ocean. At this value, less than 1% of 

the CO2 coming from the atmosphere remains as dissolved CO2, while the rest is converted into 

HCO3
- (~90%) and CO3

2– (~9%).   The reaction of CO2  with water generates one proton (H+)  for 

each  HCO3
-  and two protons for each  CO3

2– formed. This acidification causes a shift of the pH-

dependent equilibrium between CO2, HCO3
- and CO3

2– causing a higher CO2 concentration, a slight 

increase in the concentrations of HCO3
- and a lower carbonate ion concentrations [CO3

2–]. (Murray, 

2002;  Riebesell, 2004).  It is expected that the projected CO2 emissions will lead to a decrease of 

~0.3 units of surface ocean pH by the end of this century, along with a threefold increase in the 

concentration of CO2,  and a decrease of the CO3
2– ion concentration by nearly 50% (Riebesell, 

2004).

These changes  affect  marine plankton in  various  ways.  For  example  at  cellular  level,  a 

moderate increase of CO2 might facilitate photosynthetic carbon fixation of some phytoplankton 

groups like  nitrogen fixing cyanobacteria (Kranz et al, 2009; Barcelos e Ramos 2007). However 

there is a lack in the understanding of the effect of this increase in carbon for some important 

organisms as diatoms, fast growing  algae and important primary producer in the ocean.

1.2  Diatoms 

The most diverse group of phytoplankton is the  microscopic,  eukaryotic microorganisms 

known  as  diatoms;  with  an  estimated  200.000  different  species,  ranging  in  size  from  a  few 

micrometers to a few millimeters and existing either as single cells or as chains of connected cells 

(Kooistra et al, 2007 ). 
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Diatoms are quickly bloomers, increasing in cell number by many orders of magnitude in 

just  a few days  (Armbrust  ,  2009),  primarily by mitotic  divisions,  interrupted infrequently by 

sexual events (Jewson, 1992). 

Diatoms tend to dominate phytoplankton communities in well-mixed coastal and upwelling 

regions, as well as along the sea-ice edge, where sufficient light, inorganic nitrogen, phosphorus, 

silicon and trace elements are available to sustain their growth (Morel and Price, 2003). About one-

fifth of the photosynthesis on Earth is carried out by this microorganisms, producing  about as much 

organic carbon as all the terrestrial rain-forests combined (Nelson et al, 1995). This organic carbon 

produced by diatoms is consumed rapidly and serves as a base for marine food webs. In coastal  

waters,  diatoms  support  the  most  productive  fisheries.  In  the  open  ocean,  a  relatively  large 

proportion of diatom organic matter sinks rapidly from the surface, becoming food for deep-water 

organisms  (Sarthou  et  al,  2005).   In  polar  environments,  where  glaciers  and  permafrost  limit 

photosynthesis on land, diatoms are critical components of the food webs that sustain both marine 

and terrestrial ecosystems (Armbrust , 2009).

1.3  Copepods 

The copepods, small aquatic crustaceans, classifiedd in the subclass Copepoda, comprise 

over 14.000 species (both valid and invalid, including senior and junior synonyms), being the most 

numerous metazoans in the water community. Their habitat range from the shallow coastal line to 

the  deepest  ocean  trenches  and  from  the  cold  polar  ice-water  interface  to  the  hot  active 

hydrothermal vents (Mauchline, 1998). 

Copepods may be free-living, symbiotic, or internal or external parasites on almost every 

phylum of animals in water. The usual length of adults is 1-2 mm, but some species may be as short  

as 0.2mm and others may be as long as 10mm or even longer in the case of parasites (Mauchline, 

1998).

Ecologically planktonic copepods are important links in the aquatic food chain, connecting 

microscopic algal cells, to juvenile fish, to whales (Mauchline, 1998).

4



1.4  Fatty acids

  

NOTE: In this  manuscript,  for purposes of simplicity,  the fatty acids were classified in 

saturated and unsaturated (regardless of the number of double bonds).

Fatty acids are long hydrocarbon chains of diverse length (number of carbon atoms) that can 

contain singles or double bonds between the carbon atoms, with a carboxyl (  \ COOH) group attach 

in one extreme and a methyl group (CH3) in the other; being the first the hydrophilic part second the 

hydrophobic (Mouritsen, 2005). 

The plainest way to classify fatty acids is to write the number of carbon atoms, followed by 

the number of double bonds, follow with an n (or ɷ, omega) that refers to the position of the double 

bond nearest to the methyl end of the molecule. eg: linoleic acid is notated as 18:2n-6. According to 

the  number  of  double  bonds  the  fatty  acids  are  called:  Saturated  (no  double  bonds),  Mono-

unsaturated (one double bond), Poly-unsaturated (one to four) and Super-unsaturated (five or more) 

(Mouritsen, 2005).  

Fatty acids are the fundamental building blocks of cell  membranes and, naturally,  of all 

lipids in living matter. Plants and animals use a variety of fatty acids with chain lengths ranging 

from two to thirty-six. The most common chain lengths fall between fourteen and twenty-two; the 

length of the chain is likely to be controlled by the need of cells to have membranes with a certain 

thickness in order to function properly.  In animals and plants most of the fatty acid chains are 

unsaturated, most frequently with a single double bond and in some cases with as many as six 

double bonds (Mouritsen, 2005).

Short chain fatty acids can be produced by electrical discharges out of inorganic compounds, 

eg: CO2 and methane. Intermediate- and long-chain fatty acids are believe to be produced only by 

biochemical synthesis in living organisms. Animals acquire fatty acids through the diet, and are able 

to  transform saturated fatty acids in mono-unsaturated fatty acids with a double bond in position 9 

along the chain, but are unable to make unsaturated bonds in the positions 12 and 15, only plants 

have the capacity to do so. Since animals need to get them from their diet, they are call  essential  

fatty acids.  This essential fatty acids are the linoleic acid  18:2n-6 and the α-linoleic acid  18:3n-3, 
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with  two  and  three  double  bonds  respectively.  From  these  fatty  acids,  two  families  of 

polyunsaturated and super-unsaturated fatty acids can be formed by elongation and desaturation: the 

n-6 (or ɷ-6) and n-3 (also ɷ-3) (Appendix, Figure 1).  Linoleic acid is found in oils from various 

seeds  (as  sunflower)  and  the  α-linoleic  acid  is  synthesized  only  in  higher  plants,  algae  and 

phytoplankton.  From the  the  fatty  acids  formed  by elongation  and  desaturation  the  two  most 

important are the docosahexaenoic or DHA (22:6n-3), arachidonic or AA (20:4n-6)  both important 

constituents of the neural tissue, and the  eicosapentaenoic acid (EPA; 20:5n-3), precursor of DHA 

(Mouritsen, 2005).

 

1.5  Variation of the C:N:P stoichiometry and macromolecular partitioning in diatoms

The availability of nutrients have an important influence on the elements stoichiometry of 

phytoplankton (Hecky et al, 1993); in response to different nutrient concentrations, diatoms, like 

other phytoplankton cells, could show a different C:N:P ratio (Burkhardt et al. 1999). Alterations in 

the nutrient ratio produce a metabolic acclimatisation, that is changes in the cellular composition of 

macromolecules in the cells (Wilhelm et al,  2006). For example nitrogen limitation reduces the 

ability  to  use  photosynthetically  fixed  carbon  for  protein  synthesis,  but  does  not  prevent  the 

formation  of  photosynthetic  storage  products  (Berges  et  al.  1996;  Granum  et  al.  2002). 

Consequently,  a  gradual  increase  in  cellular  carbon reserves  without  a  concomitant  increase  in 

organic  nitrogen  (expressed  as  increased  C:N  ratio)  as  well  as  a  decline  of  Chl-a and  of 

photochemical efficiency are observable (Berges and Falkowski 1998; Lippemeier et al. 2001).

Recently, Hein & Sand-Jensen (1997) Engel et al. (2002) and Riebesell et al. (2007) reported 

an  increase  in  photosynthetic  carbon  uptake  under  elevated  CO2 concentrations  in  sea  water; 

particularly Riebesell et al. (2007), in a natural assemblage dominated by diatoms, report a shift in 

the exported organic matter C:N ratio from 6,0 at low CO2 to 8,0 at high CO2 concentrations, thus 

exceeding the today’s ocean  ratio of 6,6. Also Burkhardt et al. (1999) during a study on the effect 

of  variable  concentrations  of  dissolved  carbon  dioxide  (CO2),  on  C:N:P  ratios  in  marine 

phytoplankton in batch cultures, reported that the elemental composition in six out of seven species 

tested was affected by variations in CO2. Either an increase or a decrease in the C:N and C:P ratios 

with increasing CO2 concentrations was observed, depending on the species tested.
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Actually,  some  authors  working  on  phytoplankton  species  used  in  aquaculture  found  a 

change  in the macromolecular composition under elevated CO2 concentrations. Castro Araújo et al. 

(2005) showed that in the diatom Chaetoceros wighamii an increase in protein and a reduction of 

carbohydrates content cultured under high CO2 conditions, but no effect on lipids.  Brown et al. 

(1997), in an study with over 40 species, grown in media enriched with 1% carbon dioxide, noticed 

increases in  the average protein concentration of about 10%. Chrismadha & Borowitzka (1994), 

reported  that  the  protein  content  was  increased  with  carbon  dioxide  additions  in  the  diatom 

Phaeodactylum tricornutum. Finally, Chu et al. (1996) observed an opposite effect in the diatom 

Nitzschia inconspicua,  with increases in  lipids and carbohydrates  at  protein expenses when the 

culture was enriched with 5% (v/v) of carbon dioxide.

1.6  Copepods dietary requirements and the influence of prey as food source

Phytoplankton  is  mainly  consumed  by zooplankton  species  such  as  calanoid  copepods, 

which themselves are the food source for higher trophic levels, such as fish. As a consequence, 

interactions between phytoplankton and zooplankton determine the trophic transfer and the energy 

flow in aquatic environments (Wichard et al. 2007). 

 It  is  often  argued that  the  macronutrient  stoichiometry of  the  food (C:N:P ratio)  is  an 

important factor in the trophic transfer in marine food webs (Jones and Flynn, 2005; Mitra and 

Flynn,  2005).  Thus,  minor  changes  in  the  prey's  stoichiometry  is  traduced  in  changes  in  its 

macromolecular  partitioning,  that  have  been  associated  with  more  significant  changes  in  prey 

quality (Mitra and Flynn, 2005). These changes may have a disproportionate effect on the predator's 

growth efficiency  (Mitra and Flynn, 2005), egg production and hatching success (Jónasdóttir, 1994; 

Jónasdóttir and Kiørboe 1996). In this respect, one of the main aspects of food quality under study 

in  marine systems is the biochemical composition of the food,  for instance the Carbon:Nitrogen 

ratio (C:N) that has a crucial influence on the fatty acid spectrum of different algal groups (Klein 

Breteler et al, 2005). 

Studies on the nutritional requirements of crustaceans indicate that fertility and development 

may require specific fatty acids (Jónasdóttir, 1994; Jónasdóttir and Kiørboe 1996) because they do 
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not or cannot easily biosynthesize the polyunsaturated fatty acids (PUFAs) n3 and n6, being found 

in the crustaceans in proportion to their availability in its diet (Fraser et al. 1989).  Between the 

different PUFAs, the long chain n3 fatty acids are recognized to have a high nutritional value for 

copepods,  especially  the  eicosapentaenoic  acid  (EPA;  20:5n-3)  and  the  docosahexaenoic  acid 

(DHA; 22:6n-3) (Moreno et al., 1979). Particularly PUFAs and copepod reproduction have been 

reported to be correlated; Arent et al. (2005) report a positive relationship between the amount of 

EPA in the diatom Thalassiosira weissflogii used to feed the copepod  Temora longicornis and its 

egg production and hatching success. Jónasdóttir (1994) reported that the egg production of Acartia 

tonsa and Acartia hudsonica was correlated with specific fatty acids [16:1n-7 (negative), 20:5n-3, 

22:6n-3, and 18:0 (positive)] present in young cultures of T. weissflogii. 

Nutrient  variations  alter  the  stoichiometry of  diatoms  and  affect  strongly  its  lipid 

composition;   Klein  Breteler  et  al.  (2005)  reported  that  young  copepodite  stages  of  Temora 

longicornis and  Pseudocalanus elongatus developed at significantly reduced rates (1,5 to 4 days 

delay in relation to the control culture) when fed with T. weissflogii grown under different levels of 

nitrogen and phosphorus limitation and that the proportion and the content of  PUFAs were reduced, 

particularly under phosphorus limitation.

As is  show above,  CO2 can  change the C:N:P ratio  and macromolecular  partitioning in 

phytoplankton, affecting the development of other organisms as copepods. Under this perspective, 

become of great importance the study of the biochemical composition of phytoplankton species 

under the predicted future CO2 scenario, and the consequences this could have on other organisms 

of higher trophic levels.

To assess these consequences, two sets of experiments were performed, one with focus on 

the variation in the C:N:P ratio and lipid composition of diatoms under a range of different CO 2 

levels (seven), and a second focus on the lipid content, egg production and growth rate of copepods 

cultured under two different pCO2  (380 and 750 pCO2) and feed with diatoms growth under the 

same two CO2 levels.
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2.  Hypothesis

H1 Diatoms experiment: The C:N:P ratio and lipid composition in diatoms change under 

different CO2 levels.

H1 Copepods experiment: The  growth, egg production, and lipid content of copepods is 

affected as  consequence of  the change in the lipid composition of its food source.  

The objectives of this study are:

• Determine the change in the C:N:P ratio and macromolecular composition of diatoms in 

terms of fatty acids variations −with emphasis on unsaturated fatty acids− under a gradient 

of pCO2 and nutrient repleted conditions.

• Determine  if  the  variations  in  the  diatoms macromolecular  composition affect  copepods 

development  in  terms  of  growth  rate,  egg  production  and  fatty  acids  composition,  as 

consequence of its use as food source.
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3.  Materials and methods

3.1  Diatoms cultured in a pCO2 gradient

The  centric  diatom  Thalassiosira  pseudonana, a  well  studied  species  was  used  in  the 

experimental cultures.

A set of one laboratory batch culture with a constant alkalinity of 2350 μmol kg-1, typical for 

open  ocean  surface  conditions  (Sarmiento  & Gruber,  2006)  was  carried  under  nutrient  replete 

conditions and seven different dissolved inorganic carbon (DIC) concentrations, (Appendix, Figure 

2). 

The range of DIC set for the nutrient-replete cultures under the above mentioned alkalinity 

was: 1550, 1702, 1854, 2007, 2159, 2311 and 2463 μmol kg-1. 

3.1.1  Culture conditions

The Pre-cultures and experimental  cultures  were kept in an incubation chamber with an 

incident  photon  flux  density  of  150  μmol  photons  m-2s-1,  on  a  16:8   light:dark  cycle,  and  a 

temperature of ~15 ᵒC.

Artificial seawater (ASW) was the culture media, prepared following the protocol by Kester 

et al. (1967) with a salinity of 35 ‰. The advantage of using ASW is the possibility of a more easy 

carbonate system manipulation and the exclusion of possible contaminants presented in seawater 

that could alter the physiological condition of the cultures. Nitrate, silicate, and phosphate were be 

added to concentrations of ca.  64, 64, and 4  μmol kg-1 respectively, to avoid nutrient limitation. 

Trace metals and vitamins were added at concentrations of f/2 medium, following  the protocol of  

Guillard & Ryther (1962).  Also 10 ml per liter  of natural  seawater was added to avoid micro-

nutrient limitation.
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3.1.2  DIC manipulation

To adjust the above mentioned CO2 range in the culture media, varying amounts of DIC 

were   added  in  form  of  sodium  carbonate  (Na2CO3)  solution.  After  the  addition  of  sodium 

carbonate, a precise amount of 3,571 molar HCl was added to regulate the alkalinity and keep it 

constant  (2350  μmol  kg-1).  This  is  simulating  the  ongoing  accumulation  of  DIC  at  constant 

alkalinity.

3.1.3  Cultures

An aliquot of the culture was inoculated in  a 600 ml polycarbonate flask with artificial 

seawater to acclimate the cells to this media for ~10 generations.  Here, the DIC and alkalinity was 

set  at  ~2100 and  ~2350  μmol  kg-1 respectively,  both  representative  values  of  today's  ocean. 

Afterward, an aliquot of the culture was inoculated in 7 different bottles with the above mentioned 

CO2 gradient,  to acclimate the cells to different carbonate chemistry for about  ~10 generations. 

Finally the experiment began with the transfer of culture aliquots to 2,4 liter polycarbonate bottles  

filled with culture media and the respective carbonate chemistry (Appendix, Fig. 1).

The incubations were performed in dilute batch cultures, with a low initial cell inoculation. 

The cultures were harvested after 7 or 8 generations, to not exceed a cell concentration of 50.000 

cells ml-1 to avoid an excessive perturbation of the carbonate system, also the exponential growth 

phase has been reported as the period with the highest nutritional value in terms of fatty acids 

(Jónasdóttir, 1994).  

The  growth rate  was  determined  by cell  counts  using  a  Coulter  Counter  (Z2  Coulter® 

Particle Count and Size Analyzer, Beckman Coulter™). The specific growth rate (µ) was calculated 

as µ=(ln C1 – ln C0)/(t1 – t0), where C0 and C1 represent the cell concentrations at t0 (initial time) and 

t1(final time, during sampling) respectively. (The objective is to avoid a significant  alteration of the 

carbonate chemistry and growth conditions by the growing cells. 

3.1.4  DIC and Alkalinity measurements
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To minimize the exchange of CO2   in the samples with the atmosphere, DIC samples were 

take first, filtering 10 ml of water through a disposable sterile filter (Whatman® 0,2 μm Puradisc™ 

25 AS filter) with a syringe, into 4ml vials sealed air-tight with teflon coated septa, and finally 

sealed  with  parafilm® and  kept  at  4ᵒC   until  analysis.  The  DIC  concentration  was  measured 

according to the photometric method of Stoll et al. (2001).

500 ml of water were filtered through precombusted (450 ᵒC, 6 h) glass-fiber filters (GF/F, 

nominal pore size of 0,7 μm) and kept at 4  ᵒC until analysis. The samples were not poisoned with 

mercury-chloride (HgCl2) as recommended because they were measured shortly after recollection. 

A potentiometric titration was performed following the method of  Dickson et al. (2003).

3.1.5  Dissolved inorganic nutrient determination

At the end of the experiments, 100 ml of water was taken in plastic bottles and kept at -20ᵒC 

until analysis. A photometrical determination of NO3
- plus NO2

-, PO4
3- and SiO4

4- was achieved by 

the method of Hansen & Korolef (1999) to ensure that the cultures did not reach nutrient limited 

condition.

3.1.6  Particulate matter

A certain volume of of culture was filtered through precombusted (6 hours at 450ᵒ)  glass-

fiber filters (GF/F, nominal pore size of 0,7 μm) to determine particulate carbon, nitrogen (400 ml), 

silicate and phosphate (100 ml each), and kept at -20ᵒC. The analysis of POC, PON was performed 

by the Ehrhardt & Koeve (1999) method, POP by Hansen & Korolef (1999), and BSi by Strickland 

& Parsons (1972).

3.1.7  Lipid analysis
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The fatty acids were measured as fatty acid methyl esters (FAMEs). 400 or 200 ml of water,  

depending of diatom cell abundance, were filtered on precombusted GF/F filters 0.7 µm nominal 

pore size and stored at -80°C until analysis. Lipids were extracted over night from the filters using  

3ml of a solvent mixture (dichloromethane:methanol:chloroform in 1:1:1 volume ratios). As internal 

standard, a five component FAME Mix (company Restek, Bad Homburg, Germany; c= 18.09 ng 

component-1µl-1) was added, and a C23 FA standard (c= 25.1 ng µl-1) was used as an esterification 

efficiency control (usually 80-85%). Water-soluble fractions were removed by washing with 2.25 

ml of KCl solution (c= 1 mol L-1), and the remainder dried by addition of NaSO4. The solvent was 

evaporated to dryness in a rotary film evaporator (100-150mbar), redissolved in Chloroform and 

transferred into a glass cocoon. Again, the solvent was evaporated (10-30mbar), and esterification 

was performed over night using 200µl 1% H2SO4 (in CH3OH) and 100µl toluene at 50°C. Phases 

were split using 300µl 5% sodium chloride solution, and FAMEs were separated using n-Hexane, 

transferred into a new cocoon, evaporated, and 100µl (final volume) added. All solvents used were 

gas chromatography (GC) grade. FAMEs were analyzed by a Thermo GC Ultra gas chromatograph 

equipped with a nonpolar column (RXI1-SIL-MS 0.32µm, 30m, company Restek) using a FID. The 

column oven was initially set to 100°C, and heated to 220°C at 2 °C min-1. The carrier gas was 

helium at a constant flow of 2ml min-1. The flame ionization detector was set to 280°C, with a gas 

flow of 350, 35 and 30 ml min-1 of synthetic air, hydrogen and helium, respectively. Injected were 

1-µl aliquots of the samples. The system was calibrated with a 37-component FAME-mix (company 

Supelco,  Germany)  and  chromatograms  were  analyzed  using  Chrom-Card  Trace-Focus  GC 

software (Klein Breteler et al. 1999). 

3.2  Diatom feeding of copepods at two pCO2 levels 

3.2.1  Diatoms for copepod feeding

 Once again the diatom used for this experiment was Thalassiosira pseudonana, because it is 

a well studied specie, its size (~5 μm) is suitable to be consumed by the copepods, and have been 

used as prey in previous copepod feeding experiments (Jones and Flynn, 2005). 

3.2.1.1  Cultures

A set  of  one  laboratory batch  cultures  with  a  constant  alkalinity  of  2014  μmol  kg-1,  to 
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reproduce  the same in the copepods growth media, was carried in nutrient replete conditions and 

two different Dissolved Inorganic Carbon (DIC) concentrations (Appendix, Figure3). 

The pre-cultures and cultures were kept in a culture room with an incident photon flux of 

150 μmol photons m-2s-1, on a 18:6  light:dark cycle, and a temperature of 18 ᵒC. 

Artificial seawater (ASW) was the culture media, prepared following the protocol by Kester 

et al. (1967) with a salinity of 18 ‰ to simulate the same of the copepod´s growth media. Nutrients, 

vitamins and micro-nutrients were added as mentioned in section 3.1.1.

A portion  of  the  culture  was  inoculated  in  a  600 ml  polycarbonate  flask  with  artificial 

seawater to acclimate the cells to this media and salinity for ~20 generations.  Here, the DIC and 

alkalinity was set  at   ~1950 and ~2014 μmol  kg-1 respectively,  as was in the copepods culture 

media. Afterward, a portion of the culture was inoculated in 2 different bottles with the above two 

mentioned  DIC  values  to  acclimate  the  cells  to  different  carbonate  chemistry  for  about  ~10 

generations.  Finally  the  experiment  began  with  the  transference  of  the  culture  to  25  liter 

polycarbonate bottles filled with culture media and the respective carbonate chemistry (Appendix, 

Figure 3). The incubation and cell number estimation was made as mention in section 3.1.3.

 Finally the cells were concentrated via gravity filtration (to avoid cell damage) through a 

2,5 cm-diameter, 3 μm pore size Policarbonate filters, until reaching the wanted amount of cells per 

milliliter in terms of carbon wanted for copepods feeding (~600 µg  per liter of copepod media).

The nutrients,  particulate  matter  and lipid analysis  were perform in the same way as in 

mention in section 3.1.5 and 3.1.6.

3.2.1.2  DIC manipulation

The range of DIC set for the cultures was: 1908.7±20 in the low DIC bottles and 1988.4±40 

μmol kg-1 in the high DIC bottles. 
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To adjust the above mentioned DIC range in the culture media, varying amounts of DIC 

were  add in form of sodium carbonate (Na2CO3) solution. After the addition of sodium carbonate, a 

precise amount of 3,571 molar HCl is added to regulate the alkalinity and keep it constant (2014 

μmol kg-1). 

3.2.2    Acartia tonsa   culture  

The species selected to perform the experiment was Acartia tonsa, a fast growing (~2 weeks 

at 18 ᵒC) and easy maintenance calanoid copepod, that has been used in several experiments (Jones 

and Flynn, 2005; Jónasdóttir, 1994;  Jónasdóttir and Kiørboe 1996, Kleepel et al. 1998); and most 

important,  the  females,  unlike  other  species,  release  its  eggs  in  the  media,  allowing  an  easier 

concentration and counting.  

To determine if only the pCO2, only the food or a combination of both could have influence 

on copepod development, a set of four treatments, each in triplicates, was implemented (Appendix, 

figure 2):

Low/Low: Copepods grown at low pCO2 feed with diatoms cultured at low pCO2 (380/380 pCO2).

Low/High: Copepods grown at low pCO2 feed with diatoms cultured at high pCO2 (380/740 pCO2).

High/Low: Copepods grown at high pCO2 feed with diatoms cultured at low pCO2 (740/380 pCO2).

High/High: Copepods grown at high pCO2 feed with diatoms cultured at high pCO2 (740/740 pCO2).

(Color code: Red is for the pCO2 in the copepods media and Green for the diatoms pCO2 

media).

3.2.2.1  Cultures conditions and DIC manipulation

The cultures were kept in a culture room with an incident photon flux of 150 μmol photons 

m-2s-1, on a 14:10  light:dark cycle, and a temperature of 18 ᵒC.
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Natural seawater (NSW) collected in the Kiel fjord, with a salinity of 18 ‰ and filtered by a 

0,2 μm pore size filter was the culture media. 

The required pCO2 was achieved by bubbling of the water during 5 days prior the beginning 

of the experiment with normal air to reach the actual environmental pCO2 in the case of the 380 

pCO2, and air enriched with CO2 in the case of the 740 pCO2.  

3.2.2.2  Rhodomonas culture

Right after hatching, the first copepodite stage was feed with Rhodomonas sp. The feeding 

with  Rhodomonas is intended to avoid a lack of essential  nutrients that have been attributed to 

diatoms and affect  the first  development  stages  and produce  early mortality  (Jones  and Flynn, 

2005).

Two high cell concentration Rhodomonas cultures were grown using f/2 medium, following 

the protocol of  Guillard & Ryther (1962), these cultures were in continuous bubbling with the same 

air and pCO2 used for the copepods media.

 

3.2.2.3  Cultures

A set of  A. tonsa eggs from the island of Helgoland was kept in a 200 liter NSW tank to 

hatch and until the individuals reached copepodite stage I or II. After this point the copepodites 

were transfer to 2 liters polycarbonate bottles in an initial concentration of 1000 individuals per liter 

according to the recommendations of Medina and Barata (2004), expecting that only ~1/4 of the 

total initial amount will reach adult stage. 

The copepodites were feed with Rhodomonas sp. every  second day until reaching stage 6 (2 

times, 6 days after hatching).  After this point the copepods were feed with  T. pseudonana until 

reaching sexual mature stage and the beginning of egg production. In every feeding a calculated 

minimum of  600 µg of carbon per liter of copepod media, calculated from the carbon cell content 

in the diatoms was given to the copepods.  
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3.2.2.4  Copepods growth, egg production and fatty acid content

Along with the replacement of the media, an small sample of copepods was taken for the 

determination of its stage of development by microscopy counts.

Two days after the copepods had reached the adult stage, the egg production experiment was 

prepared (Appendix, Figure 3). From each experimental unit (2 l bottles) a set of four 500 ml bottles 

containing 5 female copepods and a small amount of algae (to avoid starvation) was incubated 

during 24 hours at the same conditions as the culture. Each 500 ml bottle was equipped with a 100 

μm net to separate eggs and females to avoid predation on eggs. After this period the females were 

removed and the eggs concentrated and counted.

As the female copepods are the egg spawner and therefore its lipid content and composition 

have a direct influence on the amount of the spawned eggs, a total of 45 individuals from each 

experimental unit, including the females used for the egg production experiment, were collected and 

analyzed to determine its lipid content and composition. The method was the same used for the lipid 

measurement in diatoms, described in section 3.1.7.   
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4.  Results

4.1  Alkalinity, DIC and pH

The measured alkalinity in the T. pseudonana batch culture under a pCO2 gradient at the end 

of  the  experiments  was  2386,8  ± 60,5  μmol  kg-1.  In  the  T.  pseudonana for  copepod  feeding 

experiment the alkalinity was 2041,6 ± 48,99 μmol kg-1. The measured DIC, calculated pCO2 and 

pH is summarized in the Appendix, Table 1. 

The DIC and pCO2 in the copepod feeding experiment was not directly measured in the 

samples but calculated from alkalinity measurements of each sample using the software CO2sys 

(Appendix, Table 1). The average calculated DIC show significant differences (t-test, t= -3,42; p < 

0,05) between the two treatment levels.

                          

4.2  Nutrients 

The nutrients measured after the experiments are summarized in the Appendix, Table 2. Any 

of the samples was below the detection level of the methods used for its determination.

4.3  Growth rate of T. pseudonana 

The analysis  of the calculated specific growth rate (µ) in  T. pseudonana culture under a 

pCO2 gradient show a statistically significant  Log Normal distribution (r  = 0,909; Chi square= 

16,69;  p<0,05; Figure 4, left panel). When analyzed the triplicate cultures inside the gradient at 422 

± 36 and 536 ± 17 µatm pCO2, the second group show a minor growth rate than the firsts, however 

this difference is not significant (t test, t= 2,75; p= 0,0509; Figure 4, right panel).
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Figure 4.- Growth rate vs. pCO2 of  T. pseudonana. Left panel: growth rate  in the gradient; right panel: growth 
rate of the triplicates inside the gradient.

However the analysis of the growth rate in the replicated cultures of T. pseudonana used for 

copepod feeding show show the same trend, altough also not significant (t-test, t= 1,70; p > 0,05; 

Figure 5) relation between the growth rate and the DIC concentration in the media.

Figure 5.- Growth rates of T. pseudonana under two different DIC concentrations. 
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4.4  Nutrients ratio

4.4.1    C  ell  ular quota  

The nutrient cellular quota and its relation with the final cell number was revised in order to 

determine  the  possible  formation  of  precipitates  that  could  have  been  measured  as  particulate 

matter. In Table 3 the correlation analysis for  T. pseudonana is show, the  phosphate have formed 

precipitates in the culture and appears with a significant correlation with the cell number. Therefore 

was not consider in the analysis of nutrient ratios.

Table 3.- Correlation between nutrient content per cell (picomol) and final cell number. At the top are the r values 
and under them the confidence p values (n= 11).

The correlation between the cellular quota and pCO2 show that the nitrogen content per cell 

increase with higher pCO2 levels. The results for each nutrient are summarized in Table 4. 

Table 4.- Correlation between nutrient content per cell (picomol) and the gradient of calculated pCO2  (µatm) in 
each culture bottle (n= 11)

4.4.  2      C:N:Si   Ratios  

The carbon-to-nitrogen ratio vs. in response to pCO2 showed a negative and significant trend 

in T. pseudonana (Pearson r = -0,73; p< 0,05;  Figure 6, top panel). The carbon-to-silicate ratio is 

positive but not significant(Pearson r = 0,33; p> 0,05; Figure 6, middle panel). Finally, the silicate-

21

Final Cell N° Si N C P

T. pseudonana -0,2300 -0,2118 -0,0238 -0,9165
p= 0,472 p= 0,509 p= 0,942 p= 0,000

DIC Si N C

T. pseudonana -0,1165 0,7026 0,1350
p=0,733 P= 0,016 p= 0,692



to-nitrogen is negative and significant (Pearson r = -0,70; p< 0,05; Figure 6, bottom panel).

The carbon-to-nitrogen ratio in T. pseudonana used for copepod feeding show no significant 

difference between the two pCO2 treatments (t-test, t= 0,87,  p > 0,05), however the average values 

are lower than the lowest C:N ratio of the samples from the DIC gradient, being 5,45±0,31 for the 

low DIC and 5,690±0,36 for the high DIC treatment. 

Figure 6.- The carbon-to-nitrogen (top), carbon-to-silicate (middle) and silicate-to-nitrogen (bottom) ratios in 
response to pCO2 of Thalassiosira pseudonana. All the correlations (Pearson)  and its significance are show in 

each plot, being significant the carbon-to-nitrogen ratio (top) and silicate-to-nitrogen (bottom) ratios.
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4.5  Fatty acid composition of T. pseudonana in response to pCO2

The total  ammount of saturated and unsaturated fatty acids per cell of  T. pseudonana is 

presented in Figure 7. The data show a positive but no significant correlation between the total fatty 

acid content and pCO2 (Pearson,  r=  0,894; p  > 0,05). The totals unsaturated fatty acids show no 

relation with the pCO2  content (Pearson,  r= -0,093; p > 0,05), however the total saturated fatty acid 

content show a high positive and significant correlation (Pearson,  r= 0,991; p< 0,05). 

Is also interesting  that the amount of saturated and unsaturated fatty  shift with the  pCO2, 

whit the first becoming more abundant at increasing pCO2  concentrations (Figure7).

Figure 7.- The saturated, unsaturated and total fatty acid content of T. pseudonana growth under different pCO2 

concentrations. 

23

pCO2 (µatm)

Fa
tty

 a
ci

ds
 c

on
te

t p
er

 c
el

l (
pg

)

0,00

0,01

0,02

0,03

0,04

0,05
Saturared fatty acids
Unsaturated Fatty acids
Total Fatty acids

70,4                      171,9                    556,3                    2215,6



4.5.1  Specific saturated and unsaturated fatty acids.

A total  of  twelve  fatty  acids  where  detected  and  quantified;  four  saturated  and  eight 

unsaturated fatty acids. 

The myristic (14:0), palmitic (16:0) and stearic acid (18:0) were present in all the samples, 

being more abundant at high DIC concentrations (Table 5). 

From the total  unsaturated fatty acids,  four were present  in  all  the samples:  palmitoleic 

(16:1), g-linolenic (18:3n-6), the tandem (measured together due to co-elution) arachidonic (20:4n-

6) - eicosapentaenoic or EPA (20:5n-3) and docosahexaenoic or DHA (22:6n-3)  (Table 5).

Table 5.- Saturated and unsaturated fatty acids detected and measured in the diatom T. pseudonana cultured under 
a gradient of pCO2 (µatm) and constant alkalinity. The concentration is expressed as femtograms of fatty acid per 

cell (fg cell-1) . Note that some saturated fatty acids are more abundant at higher pCO2 concentrations.
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70,40 171,90 556,30 2215,60

Saturated fatty acids

14:0           3,56 3,51 4,76 8,07
16:0           4,97 6,48 6,67 13,23
18:0           1,09 2,23 0,93 3,11
22:0           -- -- 0,53 1,15

Unsaturated fatty acids

16:1           5,19 5,65 4,27 5,92
2,48 2,84 1,62 2,45
0,47 -- 0,27 1,11
0,28 0,46 -- --
0,09 1,24 -- --
3,96 4,57 2,78 3,69
0,05 -- -- --
0,74 0,84 0,42 --

TOTAL 22,878 27,836 22,238 38,734

pCO
2

18:3n-6         
18:1n-9t        
18:3n-3, 18:2n-6 
18:1n-9c, 18:2n 
20:4n-6, 20:5n-3 
20:3n-6         
22:6n-3         



4.5.2    pCO  2 and relative content of saturated and unsaturated fatty acids

Is important to note that the relative amount of  fatty acid in relation to the others in each 

sample present a decreasing content towards higher  pCO2   in the case of unsaturated fatty acids 

(Figure  8,  left  panel);  while  the  saturated  fatty  acids  show  the  opposite  trend,  with  a  higher 

proportion toward higher pCO2  (Figure 8, right panel). 

A significant positive correlation between pCO2 and the saturated myristic (14:0) (Pearson 

r= 0,996; p< 0,05) and palmitic (16:0) (Pearson r= 0,988; p< 0,05) fatty acids was observed.

 From the  unsaturated  fatty  acids  only  the DHA  (22:6n-3)  show a  significant  negative 

correlation with the pCO2 (Pearson r= -0,952; p< 0,05).

Figure 8.- Relative content of unsaturated (left) and saturated (right) fatty acids in each sample. Note that Y axis 
are in a different scale.  

4.6  Fatty acids composition in T. pseudonana used for A. tonsa feeding

One of the cultures  intended to be growth at  a  high pCO2 concentration,  after  analysis, 

appeared with a lower pCO2 than the one expected (740 Day 2, Table 1); this may be a consequence 

of an error in the set up of the carbonate system. After a very, very careful analysis of the pCO2 
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calculations and fatty acid data, was conclude that the sample presented all the characteristics of the 

low pCO2  samples, thus, it was analyzed as a part of this group, since one of the objetives of this 

study was to determine if with a given pCO2 the fatty acids in T. Pseudonana change, and as is show 

in the following lines that efectively hapen.  However the implications  of feeding the high pCO2 

copepods  (Treatments  High/Low and  High/High)  with  this  diatoms,  as  can  be  consider  a 

unexpected factor affecting the results of the experiment, is discussed in section 5.4. 

The total concentration of fatty acids in the diatoms cultured at lower pCO2 concentrations is 

higher  that  the  one observed for  the  diatoms under  high pCO2 (Figure  9,  left  panel)  ,  but  not 

significant (t-test, t= 1,84; p > 0,05).  However the total content of unsaturated fatty acids in the low 

pCO2  diatoms is significantly higher that the total saturated fatty acids in the same sample (log data, 

t-test,  t= -3,62; p< 0,05; Figure 9, right panel), and than the total unsaturated fatty acids in the 

diatoms under high DIC (t-test, t= 2,69; p< 0,05; Figure 9, right panel). 

Figure 9.- Total (left panel), saturated and unsaturated (right panel) fatty acids in  T. pseudonana growth 
at two different pCO2.
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4.6.1  Specific saturated and unsaturated fatty acids

A total  of  seventeen  fatty  acids  were  detected  and measured,  five  saturated  and twelve 

unsaturated (Table 6).  

The lauric (12:0), myristic (14:0), palmitic (16:0) and stearic (18:0) acids were present in all 

the samples at both  pCO2 levels. In reference to the unsaturated fatty acids, the palmitoleic (16:1), 

g-linolenic (18:3n-6), linolenic, α-linolenic (18:2n-6 and 18:3n-3 respectively, measured in tandem 

due  to  co-elution),  oleic  (18:1n-9c),  eladic  (18:1n-9t),  arachidonic-EPA  (20:4n-6,  20:5n-3 

respectively, measured in tandem due to co-elution ), dihomo-g-linolenic (20:3n-6), DHA (22:6n-3), 

and nervonic acid (24:1n-9) were present in all the samples, being more abundant at low pCO2 .

The most representative of the unsaturated fatty acids,  DHA (22:6n-3), show a significant 

difference in its concentration  between the low  and high  pCO2   cultures (t-test,  t=  2,5; p< 0,05; 

Figure 10, panel F) as well as the linolenic acid (18:3n-6) (t-test, t= 2,60; p<0,05; Figure 10, panel 

E),  the group  arachidonic-EPA (20:4n-6, 20:5n-3) although showing a big diference,  this  is not 

significant (t-test, t= 2,01; p > 0,05) (Figure 10, panel D). 

The most representative saturated fatty acids did not show any significant diference between 

low and high pCO2 treatments, those are: palmitic (16:0) (t= -0,42; p> 0,05;), myristic (14:0)  (t= 

-0,36; p> 0,05;) and stearic (18:0) (t= -0,68; p> 0,05) (Figure 10, panel A, B and C respectively). 
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Table 6.- Specific saturated and unsaturated fatty acids  per cell (fg cell-1) in T. pseudonana used to feed the 
copepod A. tonsa cultured at two different pCO2 (µatm) levels. The values are averages of  five different 

measurements at low pCO2  and three measurements at high pCO2.

Figure 10.- Average and standard deviation of  some saturated (A, B, C) and unsaturated (D, E, F) fatty acids in 
the diatom T. pseudonana culture under two different  pCO2 (µatm) levels. The fatty acids that show an significant 

difference are mark with an * (see text for details).
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Saturated fatty acids

12:0           0,015 ± 0,030 0,015 ± 0,018
14:0           2,976 ± 0,928 3,217 ± 0,314
16:0           4,878 ± 2,043 4,987 ± 3,778
18:0           0,897 ± 0,362 1,235 ± 1,053
24:0 -- 0,046 ± 0,079

Unsaturated fatty acids

14:1           0,003 ± 0,01 0,007 ± 0,012
15:1           0,002 ± 0,01 --
16:1           5,534 ± 1,49 3,261 ± 1,273

3,053 ± 0,97 1,337 ± 0,729
1,856 ± 0,56 1,001 ± 0,646
0,415 ± 0,41 0,105 ± 0,181
0,095 ± 0,14 0,074 ± 0,129
5,806 ± 3,49 1,564 ± 0,677
0,054 ± 0,08 0,029 ± 0,050
0,956 ± 0,33 0,328 ± 0,362
0,196 ± 0,22 --
0,057 ± 0,07 0,121 ± 0,122

pCO2
366,3 ± 22 914,9 ± 269

18:3n-6         
18:3n-3, 18:2n-6 
18:1n-9c, 18:2n 
18:1n-9t        
20:4n-6, 20:5n-3 
20:3n-6         
22:6n-3         
22:1n-9
24:1n-9         



4.7  A. tonsa growth (data obtained by Dennis Rossoll)

The  relative  copepod  stage  development  showed  an  apparent  difference  between  the 

treatments (Figure 10), with the treatments Low/Low (Low pCO2 copepods - Low pCO2 diatoms) 

and  Low/High  B  (Low  pCO2 copepods  -  High  pCO2 diatoms)  showing  advanced  copepods 

development stages than treatments  High/Low (High pCO2 copepods - Low pCO2 diatoms) and 

High/High (Low pCO2 copepods - Low pCO2 diatoms) in all the analyzed days during the culture 

period. 

On  Day 5  about  80% of  the  individuals   had  reached  copepodite  3  stage  in  treatment 

Low/Low  and  Low/High, while in  High/Low and  High/High  only a 50% had reached this stage 

(Figure 11, top panel). On Day 9, 80% of the individuals in treatment Low/Low and Low/High had 

reached the copepodite 6 stage,  and in treatments  High/Low  and  High/High  only about  a 25% 

(Figure 10, middle panel). However on Day 12 the amount of individuals in the copepodite stage 6 

is similar in all treatments (Figure 10, bottom panel). (This change in the copepodites development 

is analyzed in section 5.4). 

Figure 11.- Relative copepodite stage development analysed at three different days.
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4.8   A. tonsa egg production (data obtained by Dennis Rossoll)

The  A. tonsa egg production experiment, realized with 12 replicates from each treatment 

level, four per experimental bottle (Appendix, Figure 3), was intended to determine the reproductive 

success  of the copepods, measured as the number of eggs produced per female in a period of 24 

hours (eggs female-1 day-1).

 The  result  showed  a  decreasing  trend  in  the  production  of  eggs  (Figure  12),  with  a 

significant  (Mann  Whitney,  U=  0,00;  Z=  4,156;  p  <  0,001)  difference  in  the  amount  of  eggs 

produced between the two extreme treatments  Low/Low  (28,8±14,6 eggs/female) and  High/High 

(4,9±1,3 eggs/female). In treatment Low/High (13,3±6,9 eggs/female) the amount of eggs produced 

was slightly superior than in treatment High/Low (8,4±4,16 egg/female); the possible causes of this 

apparently counter-intuitive result as a mayor egg production in treatment Low/High is analyzed in 

section 5.4.  

Figure 12.-  Number of eggs produced per female of  A. tonsa in a period of 24 hours, grown under two different 
pCO2 levels (~350 and ~740 µatm) and feed with the diatom T. pseudonana growth under  similar  pCO2 

conditions as the copepods. 
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4.9  A. tonsa fatty acid composition  

The analysis of the fatty acids composition of female  A. tonsa copepods realized after the 

beginning of the egg production show a marked decrease in the lipid content per female (Figure 13, 

left panel) when cultured at high pCO2. The difference is significant (t-test with Log data, t= 5,37; p 

<  0,01) between  the  extreme  treatments:  Low/Low  (8,9±5,7  ngFA/female)   and  High/High 

(0,85±0,24 ngFA/female). 

Between  the  treatments  Low/High  (3,9±0,95  ngFA/female)  and  High/Low  (0,79±0,17 

ngFA/female) there is a significant difference (t-test with Log data, t= 7,85; p < 0,01). Finally there  

is no significant difference between treatment Low/Low and Low/High (t= 1,76; p > 0,05) and also 

between High/Low and High/High (t= 0,27; p > 0,05).  

The concentrations of saturated and unsaturated fatty acids per female copepod also show 

variation  between  treatments  (Figure  13,  right  panel).  The  unsaturated  fatty  acids  were  more 

abundant in the treatments  Low/Low  and  Low/High, however the difference is not significant in 

Low/Low  (t= -0,72; p  >  0,05) and  Low/High  (t= -0,2; p  > 0,05). On the other hand treatments 

High/Low  and  High/High  showed the opposite, with more saturated than unsaturated fatty acids, 

being this difference in content significant in both, High/Low(t= 6,99; p < 0,05) and  High/High (t= 

4,11; p < 0,05).

Figure 13.-  Left: content of total fatty acids per female of  A. tonsa. Right: Average content and standard 
deviation of saturated and unsaturated fatty acids content per female copepod.
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4.9.1  Specific saturated and unsaturated fatty acids.

A total of 18 fatty acids where detected in the female copepods, from those, seven where 

saturated and eleven unsaturated fatty acids (Table 7). However, not all the fatty acids where present 

in all samples. All the seven measured saturated fatty acids where present in treatment High/High, 

while  in  treatment  Low/Low  only  five  were  detected,  finally  in  Low/High  and   High/High 

treatments  only  four  where  detected.   The  myristic  (14:0),  palmitic  (16:0),  stearic  (18:0)  and 

lignoceric   acids  (24:0),  were  present  in  all  samples,  being  far  more  abundant  in  treatments  

Low/Low  and  Low/High. On the other hand, from the unsaturated fatty acids, ten out of eleven 

where present in treatment Low/Low, eight in treatment Low/High, five in treatment High/Low, and 

seven in treatment  High/High; here the linolenic,  α-linolenic (18:2n-6 and 18:3n-3 respectively) 

gondoic (22:1n-9) and nervonic acid (24:1n-9) are present in all the samples, being more abundant 

in treatment  Low/Low and Low/High. (Table 7).

Table 7.- Average concentration (ng ind.-1) and standard deviation of saturated and unsaturated fatty acids per 
copepod female  measured in each treatment. Note that treatment High/High show more saturated fatty acids and 

treatment  Low/Low show more unsaturated fatty acids. 
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Saturated fatty acids

12:0 -- -- -- 0,003 ± 0,005
14:0 1,122 ± 0,819 0,400 ± 0,077 0,090 ± 0,024 0,072 ± 0,009
16:0 1,910 ± 0,983 1,028 ± 0,211 0,440 ± 0,100 0,415 ± 0,119
18:0 0,376 ± 0,089 0,282 ± 0,063 0,174 ± 0,028 0,208 ± 0,089
20:0 0,014 ± 0,024 -- -- 0,003 ± 0,005
22:0 -- -- -- 0,003 ± 0,006
24:0 0,150 ± 0,035 0,175 ± 0,029 0,025 ± 0,033 0,037 ± 0,045

Unsaturated fatty acids

16:1 1,847 ± 1,667 0,407 ± 0,153 -- 0,005 ± 0,008
17:1 0,005 ± 0,008 -- -- 0,001 ± 0,003

0,433 ± 0,469 0,074 ± 0,033 -- --
0,052 ± 0,035 0,031 ± 0,012 0,008 ± 0,004 0,010 ± 0,001
0,204 ± 0,128 0,088 ± 0,028 0,003 ± 0,005 --

-- -- 0,010 ± 0,003 0,009 ± 0,007
1,529 ± 1,105 0,580 ± 0,238 -- --
0,004 ± 0,021 -- -- --
1,019 ± 0,438 0,561 ± 0,166 -- 0,035 ± 0,061
0,031 ± 0,032 0,029 ± 0,005 0,017 ± 0,015 0,008 ± 0,013
0,234 ± 0,049 0,236 ± 0,044 0,020 ± 0,034 0,041 ± 0,071

TOTAL 8,942 ± 5,764 3,892 ± 0,950 0,786 ± 0,172 0,850 ± 0,245

Low/Low Low/High High/Low High/High

18:3n-6
18:3n-3, 18:2n-6
18:1n-9c, 18:2n
18:1n-9t
20:4n-6, 20:5n-3 
20:3n-6         
22:6n-3         
22:1n-9         
24:1n-9         



4.10  A. tonsa fatty acid and egg production correlation

The correlation between the total fatty acids content per female and the egg produced show a 

significant positive correlation (Pearson r=0,871;  p < 0,01; Figure 14)  A correlation between the 

average egg number produced per female and the specific saturated and unsaturated fatty acids per 

female was positively and significantly correlated with three saturated and five unsaturated fatty 

acids  (Table  8).  After  performing  an  univariate  test  of  significance  for  the  above  mentioned 

significant  correlations  all  the  results  where  highly  significant  (Table  8).  However,  the  most 

significant between them were the  palmitic (16:0) and the tandem oleic (18:1n-9c) linoleic acids 

(18:2n) (Table 8). 

Figure 14.- Correlation between total fatty acid per female and eggs produced in 24 hours in the for different 
treatments.
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Table 8.- Correlation analysis and its respective significance between the content of specific saturated and 
unsaturated fatty acids per female (ng ind.-1) and the average number  of eggs produced per female. The significant 

values are highlighted in red. 
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Correlation Significance
r p F p

Saturated fatty acids

12:0           -0,25 P=0,436 -- --
14:0           0,85 P=0,000 26,67 4,22E-004

16:0           0,90 P=0,000 40,61 8,12E-005

18:0           0,81 P=0,001 19,47 1,31E-003

20:0           0,57 P=0,055 -- --
22:0           -0,23 P=0,474 -- --
24:0           0,59 P=0,046 -- --

Unsaturated fatty acids

16:1 0,83 P=0,001 22,24 8,21E-004

17:1 0,56 P=0,060 -- --
0,75 P=0,005 -- --
0,86 P=0,000 29,67 2,82E-004
0,91 P=0,000 47,40 4,27E-005
-0,50 P=0,099 -- --
0,86 P=0,000 28,18 3,43E-004
0,59 P=0,043 -- --
0,88 P=0,000 28,18 3,43E-004
0,32 P=0,305 -- --
0,69 P=0,013 -- --

18:3n-6
18:3n-3, 18:2n-6
18:1n-9c, 18:2n
18:1n-9t
20:4n-6, 20:5n-3 
20:3n-6         
22:6n-3         
22:1n-9         
24:1n-9         



5.  Discussion

5.1  Growth rate of  T. pseudonana

CO2 is an important factor in autotrophic plankton physiology, because it is the source of 

inorganic carbon that is fixed by photosynthesis in a molecule of glucose (Falkowski and Raven 

2007).

The typical seawater CO2 concentrations range between 10 and 25 μmol kg–1 is not enough 

to satisfy the phytoplankton's carbon requirements (Riebesell, 2004). Most of the inorganic carbon 

is found as HCO3
- in the actual ocean, but this form of carbon does not diffuse through the cell walls 

and has to be taken up actively. For that purpose  marine phytoplankton have developed so-called 

Carbon  Concentration  Mechanisms  (CCMs)  (Figure  16,  A),  which  vary  between  taxonomical 

groups (Giordano et al, 2005). Its function is to increase the carboxylation reaction of the enzyme 

ribulose-1,5-bisphosphate carboxylase/ oxygenase (RubisCO), that fixes CO2 in to organic matter. 

RubisCO uses CO2 as the only carbon substrate and has a high half-saturation constant (20 to 70 

μmol kg–1 of CO2), that vary among phytoplankton species (Badger et al, 1998). 

CCM activity is driven by adenosine triphosphate (ATP) and is  regulated by a number of 

environmental factors, including light intensity and spectral quality, nutrient status and, importantly, 

by the availability of CO2 (Giordano et al, 2005). 

A central component of a CCM are Carbonic Anhydrases (CA), a group of zinc-containing 

enzymes  that  catalyze  the  slow  and  energy  consuming  reaction  (uncatalyzed  half-life  ~30  s) 

between CO2 and HCO3
- (Sültemeyer et al, 1998). Several authors have reported an up and down 

regulation of  CA in terms of its activity or gene expression, under diverse CO2 conditions. For 

example Satoh et al. (2001) determined a  reduction in the intracellular carbonic anhydrase (iCA) 

concentration in high CO2-grown cells of the marine diatom Phaeodactylum tricornutum. Rost et al 

(2003) reported in the diatom Skeletonema costatum an increase of extracellular carbonic anhydrase 

(eCA) activity with decreasing CO2 concentrations, while iCA did not show a clear trend. Trimborn 

et al (2008, 2009) also observed that eCA activity is strongly increased with decreasing CO2 supply 

in the diatoms  Eucampia zodiacus, Skeletonema  costatum, Thalassionema nitzchioides,  Pseudo-

nitzschia  multiseries and  Stellarima  stellaris. Finally  Burkhardt  et  al.  (2001)  reported  that 
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Thalassiosira weissflogii and Phaeodactylum tricornutum respond to diminishing CO2 supply with 

an increase in eCA and iCA activity.

Another factor still controversial in the CCM of diatoms is its cataloging as owners of a 

biochemical C3 pathway. Recently another biochemical pathway has been proposed, the so-called 

C4  pathway (Reinfelder et al., 2000; Granum et al, 2005; Roberts et al, 2007; Kroth et al, 2008) 

adding another enzyme that is regulated by the concentration of CO2. Have been shown that the 

enzyme  phosphoenolpyruvate  carboxylase  (PEPC),  belonging  to  a  putative  C4 mechanism  in 

diatoms,  is  up-regulated  under  low  CO2 levels  in  Thalassiosira  weissflogii,  Thalassiosira  

pseudonana and Phaeodactylum tricornutum (Roberts et al., 2007; McGinn and Morel, 2008). As 

part of a putative CCM, the PEPC gene expression  can be used to interpret the CCM activity in 

these diatoms, since its up regulation imply a mayor activity of this mechanism.

From those reports is possible to suggest that an increase in the CO2 concentration increases 

its diffusivity  through the cell and reduces its leakage from the cell's interior, therefore the activity 

of the CA and PEPC enzymes are reduced and its  energy consumption is diminished. This has 

already been proposed by Burkhardt  et al.  (2001) who speculated  that CO2  transport may be less 

energetically demanding than that of HC03
-,  so the enhanced operation of a CO2 transport system 

rather than a HC03
- transport system may provide energetic savings to cells as external CO2  levels 

rise (Beardall & Raven, 2004). 

However, it is still not clear what the consequences of this down-regulation are in terms of 

energy efficiency and resource  utilization.  One  of  the  suggested  possible  outcomes  of  it  is  an 

increase in the growth rate of diatoms in response of energy saving (Beardall & Raven, 2004). This 

have been reported by Tortell et al. (2008) who showed that elevated CO2  concentrations led to an 

increase in phytoplankton productivity and promoted the growth of larger chain forming diatoms in 

natural phytoplankton assemblages in the Southern Ocean. An increase in the growth rate can be 

considered as a signal of additional energy utilization by this process in diatoms. Actually Wu et al. 

(2010)  observed  that  the  diatom  Phaeodactylum  tricornutum,  when  cultured  at  elevated  CO2 

conditions, increased his growth rate by 5%. They observed that in the high CO2 grown cells, the 

electron transport rate from photosystem II (PSII) was photoinhibited  to a greater extent at high 

levels  of  photosynthetically  active  radiation,  while  non-photochemical  quenching  was  reduced 
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compared to low CO2 grown cells, suggesting that this was probably due to the down-regulation of 

CCMs activity, which could serves as a sink for excessive energy.

Nevertheless this seems to be an species specific effect and not all diatoms react in the same 

way to a high CO2 concentrations (Beardall & Raven, 2004)  and seems that each species have a 

preference for an specific form of inorganic carbon source (Trimborn et al. 2009). Elzenga et al. 

(2000) characterized Thalassiosira pseudonana as relying solely in HCO3
- as source of carbon. This 

may imply that at higher  pCO2 levels, and as HCO3
- become more scarce, this species up-regulate 

the CCM to supply  its carbon requirements, therefore consuming more energy in the process and 

reducing its  growth rate.  This could explain the results  observed in  our experiment where  the 

diatom show the highest growth rates at current CO2 concentrations and its decrease toward higher 

levels. However, this results are contradictory with the observations of  Trimborn et al. (2009) that 

show an independence of the carbon source in this diatom, using any of the available sources. A 

more  detailed  research is  needed to determine the  effect  of  the future  CO2 scenarios  over  this 

species and others.

5.2  Nutrients ratio

The most  interesting result  is  the increase in  the nitrogen cell  quota under higher  pCO2 

concentrations of T. pseudonana. This increase result in the negative C:N and Si:N correlations with 

pCO2 , that can be interpreted as the cell having more nitrogen at high pCO2 rather than less carbon 

or silicate. The reason under the nitrogen accumulation could be a physiological adaptation to the 

high  dissolved  CO2 or  lower  pH,  however  to  elucidate  the  reason  under  this  process  further 

investigation is needed.

The present study is, as far as we know, the first in report an effect of  CO2 on the C:N ratio 

of  T. pseudonana.  Burkhardt,  et al.  (1999), reported that the C:N in two diatoms of the gender 

Thalassiosira,  weissflogii  and  puctigera,  however  only  the  first  show  a  similar  trend  that  the 

observed in T. pseudonana, although less pronounced, while the second show the opposite, whit the 

lowest  C:N at  highest  CO2,aq concentrations.  Therefore  it  is  not  possible  to  generalize  a  trend 

observed in one species to all the other species of the same gender.
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Burkhardt & Riebesell, (1997)  and Burkhardt, et al. (1999) were not able to identify the 

physiological reason for the variations in the C:N, but Burkhardt, et al. (1999) proposed that the 

variation could be a consequence of a change in the cellular content of pigment-associated proteins 

or RubisCO, in the ability to synthesize storage carbohydrates or polyphosphates, or in the loss rates 

of dissolved organic carbon compounds.

The  amount  of  carbon  contained  in  the  fatty  acids  increased  towards  higher  DIC 

concentrations,  however  the  increase  is  not  enough  to  compensate  the  marked  nitrogen 

accumulation in the cell at higher DIC concentrations. Also the amount of carbon contained in the 

fatty acids is too small in comparison to the measured POC per cell, representing only about 0,01% 

of the total.  This  also implies that  its  increase at  high DIC have a  influence in  the C:N ratio, 

although can be neglected, and therefore other molecules, as the mentions by  Burkhardt, et al. 

(1999), could be the main drivers of the C:N ratio. 

The above observations also imply that the saturated fatty acid content appears inversely 

correlated to the C:N ration in T. pseudonana, with highest amounts of saturated fatty acids when 

lowest C:N ratios are observed; the opposite situation applies for the unsaturated fatty acids. This 

however may apply only for nutrient repleted conditions, as Klein Breteler et al. (2005) report that a 

high  C:N ration  caused for  a  N limitation  in  the  diatom  Thalassiosira  weissflogii,  produce  an 

increase in the content of saturated fatty acids in this species; this may also apply for T. pseudonana 

that show a similar trend in the C:N ratio under nutrient repleted conditions.

Another interesting finding was the significant negative correlation between the silicate-to-

nitrogen vs. pCO2 in T. pseudonana. Nitrogen has a influence on the silicate content when N stress 

results in an increase in the duration of G1 and G2 interphases of the cell division, prolonging the 

time of silicification, resulting in high Si cell quotas (Flynn & Martin-Jézéquel, 2000). Our cultures 

apparently were not under nitrogen stress (Appendix, table 2), as the negative correlation clearly 

show, its significance is consequence of the increase nitrogen cell content under higher DIC.  

5.3  Fatty acid composition of T. pseudonana and other species in response to pCO2 
 

To understand the mechanisms regulating the relative content of saturated and unsaturated 
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fatty acids in a cell it is important to understand how fatty acids are formed. 

Long  chain  fatty  acids  are  synthesized  from small  precursors,  in  general  photosynthate 

derivates,  for  example  stored  carbohydrates.  Two  enzyme  systems  are  utilized,  acetyl-CoA 

carboxylase and Fatty Acid Synthases (FAS). The end products of this synthesis are usually the 

saturated fatty acids palmitic (16:0)  and stearic acid (18:0). Once the long chain acids have been 

produced they can  be subject  to  elongation  done by elongases  and desaturation by desaturases 

(Appendix, Figure 15)  (Harwood, 2010). After its formation the fatty acids are incorporated in 

different kinds of lipids that are constituent parts of the cell membranes (Harwood, 2010). 

A similar effect than the one observed in this study over the fatty acids of  T. pseudonana 

cultured at high CO2   was observed by Sato et  al.  (2003) in the green algae  Chlorella kessleri, 

detecting higher saturation levels of the fatty acids in lipids of chloroplast  and extrachloroplast 

membranes when cultured under high-CO2 conditions (2% enrichment).

Our study and the observations by Sato et  al.  (2003) show that  CO2 may influence the 

saturation state of the fatty acids in this two species. We propose that CO2 influence the mechanism 

involve in the fatty acid metabolism by the alteration of the cell's pH and fatty acid structure.  

A.- Reduction of the cell pH

An increase in the CO2 concentration of the surrounding media augments CO2 diffusivity 

through the cell and reduces its leakage from the cell's interior. But the CO2 that enters the cell 

reacts with the water in the cytoplasm (depending of the pH), forming HCO3
- and releasing a proton 

H+, therefore reducing the pH of the cytoplasm, that in general is keep in tight values by most 

organisms.  Indeed  this  reaction  is  the  reason  for  the  presence  of  internal  Carbonic  Anhydrase 

proteins (iCA), to convert this HCO3
- in CO2 to be transported in to the chloroplast where RubisCO 

is located (Figure 16, A).

B.- Membrane damage

As was mention before, fatty acids are the building blocks of lipids, the constituents of cell  

walls. Unsaturated fatty acids have a mayor number of double bound in its carbon chains that could 

be easily broken at lower pH values (Figure 16, B), producing damages in the cell wall and the lost 
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of its properties. 

The cell,  to  cope with this  two effects  that  may cause CO2 would start  to  produce cell 

membranes with a major proportion of saturated fatty acids. Shorter-chain fatty acids are more stiff,  

less viscous and have higher melting points; a membrane built with short chain fatty acids would be 

less fluid and permeable, reducing the influx of CO2 in the cell; also would be less susceptible to 

damage  by the  breaking  of  the  double  bonds  commonly  present  in  unsaturated  fatty  acids  as 

consequence of the low pH in the media.

A mechanism explaining how pH can affect the fatty acid production have been proposed 

very recently by Young et al. (2010) who determined that the the pH in the cytoplasm of baker's 

yeast cells, Saccharomyces cerevisiae, act as a signal that regulate the synthesis of cell membranes 

by controlling the production of enzymes that synthesize them. In general terms the authors propose 

that the acidity in the cell can play an important role in regulating Opi1, a central regulatory protein  

that  can  inhibit  the  production  of  a  number  of  membrane  synthesis  proteins,  the  authors  also 

propose that the elucidated mechanism is so simple and universal that it is highly likely to be widely 

distributed in the nature.

We hypothesize that a pH-dependent mechanism regulates the saturation state of the fatty 

acids in lipid membranes of phytoplanktonic organisms by the down regulation in the activity of 

elongases and desaturases enzymes, producing a cell membrane with a higher amount of saturated 

fatty acids. 

In T. pseudonana  a set of putative desaturases have been described by Tonon et al. (2005) 

but its regulation mechanism is unknown. We suggest that the reduction in the unsaturation of the 

fatty acids in this specie could be produce by the down regulation in the activity of the elongases 

and desaturases enzymes, diminishing the desaturation process of the newly formed saturated fatty 

acids and favoring its accumulation in the cell, this could also explain the reason for the increase of 

totals saturated fatty acids content towards higher CO2 concentrations (Figure 7). 
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Figure 16.- A: Current model of Carbon Concentration Mechanism (CCM) in eukaryotic phytoplankton where is 
show the release of H+ that could modify the cytoplasm pH (modified from the original of McGinn et al. 2008). B: 
The increase in the pH of the media could break the double bounds of the carbon chains in membrane fatty acids.

The shift in the relative content of saturated and unsaturated fatty acids in T. pseudonana as 

consequence  of  CO2 (Figure  16,  panel  A)  can  be  also  observe  in  other  phytoplankton species 

cultured  under  different  carbon  concentrations.  After  analyzing  the  data  presented  by 

Yongmanitchai and Ward (1991), the diatom Phaeodactylus tricornutum show a slight decrease in 

the  relative  concentration  of  the  polyunsaturated   eicosapentaenoic  acid  (EPA;  20:5n-3)  at 

increasing amounts of dissolved CO2 (Figure 17,  panel C). This trend can be also observed in the 

coccolithophores  Emiliania  huxleyi (Riebesell  et  al.,  2000)  that,  when  cultured  under  a  broad 

dissolved CO2 gradient, show a decrease in the relative amount of unsaturated fatty acids  toward 

higher CO2 concentrations  (Figure 17,  panel B).  The green algae  Chlamydomonas reinhardtii, 

Dunalliela tertiolecta Euglena gracilis  and Chlorella vulgaris, (Tsuzuki et al. 1990)  cultured in a 

media bubbled with air enriched at 2, 4 or 5% CO2 also show the above mentioned trend (Figure 17, 

panels C, D, E, F respectively). 

However, in all the above mentioned studies the shift in the fatty acid composition is not as 
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pronounced  as  in  T.  pseudonana;  and  although  being  perceptible  in  different  taxons  as 

Bacillariophytes, Haptophytes and Chlorophytes, this process seems to be species specific, and even 

the opposite trend can be observed in other species. As show the analysis of the data of Chu et al.  

(1996) for the diatom Nitzchia inconspicua, an increase in the relative content of unsaturated fatty 

acids  and a decrease in the saturate fatty acids can be observed when culture in a 5% air bubbled  

CO2 enriched media (Figure 18, left panel). This is also detected in the green algae Scenedesmus 

obliquus when cultured in a CO2 enriched media (Tang et al. 2010) (Figure  18, right panel).

Must be consider that most of the  above mentioned publications were intend for aquaculture 

studies and not  for the understanding of the future CO2 scenarios,  therefore the ranges  of CO2 

utilized in those experiments is far over any of the predicted ocean acidification scenarios (as Tang 

et al. 2010). They are show here with the intention of demonstrate that CO2 actually have influence 

in the fatty acid composition of phytoplankton. 
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Apparently diatoms have a higher amount of saturated fatty acids at current CO2 conditions, 

for example in  Nitzchia inconspicua around of 50% of the fatty acids are saturated under normal 

CO2  conditions (Chu et al. 1996) (Figure 18, left panel), in Chaetoceros sp. around a 50%; between 

56-37% in Phaeodactylus tricornutum (Esquivel et al. 1993), a 65-70% in Thalassiosira weissflogii 

(Jónasdóttir, 1994) and finally T. pseudonana with a 40% (this study). Under this perspective could 

be possible that the effect of high CO2   would modify more drastically the proportion of saturated 

and unsaturated fatty acids in diatoms when compared with other taxa, that at atmospheric  CO2 

conditions have around a 20% of saturated fatty acids (Figure 17, panels B, C,D,E,F), 

Since the observed influence in the fatty acids is broad distributed and apparently affects 

each species in a particular form, a community analysis become necessary to estimate the possible 

consequences of this effect on the fatty acids under the predicted possible future CO2 scenarios.

Figure 18.- Relative content of saturated and unsaturated fatty acids in different species of phytoplankton 
expressed as percentage of the total measured. Left panel (Chu et al. 1996) the diatom Nitzchia inconspicua, and 

in the right panel (Tang et al. 2010) the green algae Scenedeismus obliquus. Note the increase of the relative 
amount of unsaturated fatty acids under higher CO2 concentrations.
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5.3.1  pCO2 and shift in the fatty acid content

   

The diatoms cultured to feed  A. tonsa show the same trend in the fatty acids composition 

than  the  ones  cultured  in  a  CO2  gradient,  with  less  unsaturated  fatty  acids  at  higher  CO2 

concentrations (Figure 9), particularly some of the fatty acids consider essentials for heterotrophic 

organisms, as  linolenic acid (18:3n-6) and DHA (22:6n-3), with a significant difference between 

both treatments, showing that the content of them actually decline at higher CO2 levels, and being 

practically absent in the copepods maintained at high CO2 in treatments High/Low and  High/High 

(Table 3).  

However  this  make hard to explain the observed fatty acids content  of the copepods in 

treatment Low/High  (Low pCO2 copepods - High pCO2 diatoms) (Figure 13, right panel) which are 

higher than the ones observed in the diatoms used to feed them considering that copepods reflect the 

fatty acids of their preys (Fraser et al. 1989). 

This high content of fatty acids in the copepods of treatment Low/High could be explained 

by the fast adaptation of phytoplankton to different CO2 concentrations.

The increase in the saturated fatty acid content is a transitory adaptation of the cell to high 

CO2 conditions.  Tsuzuki  et  al.  (1990)  and  Sato  et  al.  (2003)  have  show  that  the  green  algae 

Chlorella kessleri shift its relative content of saturated and unsaturated fatty acids within hours of 

its  transference to  a different  dissolved CO2 concentration (Figure 19).  This  apparently happen 

because, as the cells divided in the new CO2 media and therefore different pH environment, they 

modify its fatty acid content to deal with the new conditions. 

We hypothesize  that  the  observed increase  in  the  fatty  acid  content  of  the  copepods  of 

treatment  Low/High could be a consequence of the change in the fatty acid condition of its prey, T.  

pseudonana, adapted to deal with the new CO2 and pH. This also apply for copepods in treatment 

High/Low.
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Summarizing,  T.  pseudonana culture with a  low pCO2   that  is  shift  to high  pCO2 may 

increase its content of saturated fatty acids in relation to the unsaturated ones. And the cells from 

high  pCO2 transferred to low  pCO2 would decrease  its content of saturated fatty acids. 

However this shift is seems to be dependent of the division rate of the phytoplankton, taking 

several generations and the disappearance of the oldest cells to appreciate the change in the fatty 

acids of the culture.

 An experimental test is required to determine the speed and magnitude of the change in the 

diatom. 

Figure 19.- Changes in fatty acid composition of  the green algae Chlorella kessleri after shift of CO2 

concentration  from 2 to 0.04% in panels A and B, and from 0.04 to 2% in panels C and D (Tzusuki et al. 1990). 

5.3.2  Denaturation of unsaturated fatty acids in to aldehydes.

The transfer  of  lipids  and fatty acids  from algal  cells  to  higher  trophic  levels  has  been 

typically studied by using simple extraction and quantification approaches (Jónasdóttir, 1994), that 

assume a transfer of the total nutrient content of the cell to the grazer, but predators as copepods do 

not always “swallow” the entire cell, many species disrupt the prey for its consumption, breaking 

and releasing its content.  Several authors have shown, in diatoms, that the cell disruption induces 

the transformation of the contained unsaturated fatty acids in to aldehydes (Pohert et al.  2002a; 
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Pohert et al. 2004; Wichard et al. 2007) that have adverse effects on the copepods hatch success and 

develop (Pohert et al. 2002b).

 Moreover, Wichard et al. (2007) have determined that the cell disruption of different diatom 

species change drastically its lipid and fatty acid content, reducing its quality as food source. For 

example in the diatom Thalassiosira rotula a depletion of 70% in its EPA (20:5n-3) content just 3 

minutes   after  its  breakage.  This  fatty  acid  is  transformed  to  (2E,4E/Z)-  hepta-2,4-dienal,

(2E,4E/Z,7Z)-deca-2,4,7-trienal  and  (5Z,8E/  Z,10E)-12-oxododeca-5,8,10-trienoic  acids.  The 

transformation is mediated by hydroperoxide lyases, halolyases and mainly lipoxygenases, these 

apparently being pH sensitive, with maximal activity at certain specific pH levels (Chedea et al. 

2008) depending of the enzyme. 

Although  could  be  consider  a  lost  of  unsaturated  fatty  acids  due  to  its  denaturation  in 

aldehydes after cell rupture by the copepod for its ingestion, T. pseudonana have been reported as 

unable of this response (i.e. after its rupture not produce alhehydes) (Wichard et al. 2007), with a 

lost of only around of 15% of the unsaturated fatty acids content after 30 minutes of the cell rupture. 

Then, would not be possible to attribute to this mechanism the observed results in development and 

egg production of the  copepods.

Anyway, considering that the enzymatic degradation occurs in the seawater (Wichard et al. 

2007),  the  future  expected  ocean  pH  could  affect  this  process,  increasing  or  reducing  the 

denaturation of fatty acids, affecting different trophic levels. This difference in activity caused by 

specific  pH requirements  could  be  also  the  reason of  the  discrepancy observed  between  some 

publications that report a neutral (Dutz et al. 2008) or negative (Turner et al. 2001) effect of the 

same diatom, Thalassiosira rotula, on the hatching success and larvae survival of copepods.

5.4  Copepods, fatty acids and its life cycle

Between  the  objectives  of  this  study was  to  determine  if  the  variations  in  the  diatoms 

macromolecular composition affect copepods development in terms of growth rate, egg production 

and fatty acids composition as consequence of its use as food source.
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The detected change in the macromolecular fatty acid composition of T. pseudonana used to 

feed  A.  tonsa,  as  consequence  of  CO2;  particularly  the  significant  differences  in  content  of 

unsaturated  fatty  acids  as  linolenic  acid  (18:3n-6),  precursor  of  highly unsaturated  fatty  acids, 

eicosapentaenoic  acid  (20:5n3,  EPA)  and  docosahexaenoic  acid  (22:6ω3,  DHA)  (Figure  10) 

important component of the neural system, apparently have affected the growth rate, egg production 

and fatty acids composition of the copepod.

Klein Breteler et al. (2005) report that the copepods Temora longicornis and Pseudocalanus 

elongatus show an increase of the average duration of the copepodite stages in around 1 or two 

days. when feed with the diatom Thalassiosira weissflogii that show a low content of unsaturated 

fatty acids as consequence of nutrient limitation. This trend was also observed in our study, where 

the  copepodites   feed  with  low unsaturated  fatty  acid  diatoms  (treatment  High/High)  show an 

smaller number of individuals in advanced copepodite stages in relation with the copepodites feed 

with  high  unsaturated   fatty  acid  diatoms (treatment  Low/Low) (Figure  11).  This  delay in  the 

copepodite development could be a consequence of the lack of enough unsaturated fatty acids that 

are used for example in the formation of neural tissue (Mouritsen, 2005).

In treatments Low/High (Low pCO2 copepods feed with High pCO2 diatoms) and High/Low 

(High pCO2 copepods feed with Low pCO2 diatoms) a different trend in the relative development 

was expected,  with a lower development  in treatment  Low/High  as this  was feed with diatoms 

cultured at high  pCO2, and a higher development in treatment High/Low that was feed with diatoms 

cultured at low  pCO2. But as was already analyzed in section 5.3.1 this contradictory effect could 

be caused by the diatoms that may undergo a  shift in its fatty acid composition after being transfer 

to a different pCO2, increasing (low pCO2) or diminishing (High pCO2) its unsaturated fatty acid 

content.

Probably the most interesting result in this study is the high and significant  difference in the 

egg production rate between the treatments Low/Low and High/High, that apparently was produce 

for the difference in the fatty acids composition of the diatoms used as food source, with a higher 

egg production rate when the  content of unsaturated fatty acids was high  (treatment  Low/Low). 

The correlation in the fatty acid content per female and egg production rate show that the most 

important fatty acids are the 18:1n-9c and 16:0 (Table 4).  
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This correlation between egg production rate and fatty acids in A. tonsa have been already 

described by Jónasdóttir (1994) who showed that the egg production rate was correlated with the 

the fatty acids 16:1n-7 (negative), 20:5n-3, 22:6n-3, and 18:0 (positive). Also Jónasdóttir & Kiorboe 

(1996) reported a similar trend in A. tonsa,  as well, where the egg production rate was high when 

both n3:n6 and 22:6n-3 versus 20:5n-3 fatty acid in the diet were high.

In treatments Low/High and High/Low an opposite trend was expected in terms of the egg 

production rate. A lower egg production rate in treatment Low/High as this was feed with diatoms 

cultured at high pCO2, and a higher egg production rate  in treatment High/Low that was feed with 

diatoms cultured at low pCO2. But as was already analyzed in section 5.3.1 and explained for the 

copepodited  development,  this  contradictory  effect  could   be  caused  by the  diatoms  that  may 

undergo a relative fast shift in its fatty acid composition after being transfer to a different  pCO2.

Finally the fatty acid content in the female copepods closely resembles the profile of the 

fatty acids in the diatoms. This resemblance have been already observed in A. tonsa by Hazzard & 

Kleppel (2003), who reported that for example 40 to 60% of the ingested omega-3 fatty acids in 

adult copepods were originally from its prey. 

This resemblance in the fatty acid profile of the predator to the one in its prey can go high in 

the food web as reported by Fraser et  al.  (1989) who determined that  fatty acids originated in 

phytoplankton  were  shown to  be  sequentially  incorporated  into  total  lipid  of  zooplankton  and 

triacylglycerol of herring (Clupea harengus) larvae.

The  feeding  of  the  high  pCO2 copepods  in  treatment  High/High  once  with  low  pCO2 

diatoms by an error in the initial manipulation of the carbonate system in the diatom culture seems 

that  did  not  have  affected  the  overall  outcome of  the  experiment  as  can  be  inferred  from the 

observed data. An effect would imply an increase in the egg production or fatty acids, that can not 

be observed in the data. The fact that the culture media was replaced every other day and then 

replenishment  with  fresh  diatoms,  apparently  avoided  an  impact  of  this  error  in  the  overall 

experiment.
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6.  Conclusions

• CO2 can modify the C:N:Si ratio in nutrient repleted conditions. 

• CO2 can influence the growth rate of diatoms. 

• CO2 affect the fatty acid composition of Thalassiosira pseudonana. 

• The change in the  fatty acid composition caused by CO2 seems to take place in other 
species and is  specie specific.  The quality of phytoplankton as food at  high CO2 

require further investigation. 

• The fatty acids alteration in diatoms have a significant influence in the development 
cycle of copepods, however further study is required to assert the possible impacts 
through the trophic webs. 

Finished the 19/09/2010, 05:32 am.
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7.  Appendix 

Figure 1.- Elongation and desaturation pathway for the essential fatty acids, linoleic acid  18:2n-6 and the α-
linoleic acid  18:3n-3. The three highlighted fatty acids, arachidonic acid (20:4n-6),  eicosapentaenoic acid (EPA; 
20:5n-3), and  docosahexaenoic or DHA (22:6n-3), are important for neural membranes and the brain (figure from 

Mouritsen O. G. 2005)
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Figure 2.- Experimental setup of the diatom batch cultures. A bottle, 600 ml polycarbonate flask with artificial 
seawater; diatoms were cultured during ~10 generations with a pCO2 and alkalinity set to ~380 (2100 μmol kg-1 

DIC) and ~2350 μmol kg-1 respectively. B bottles, set with a pCO2 gradient between 64 to 3000 (1550  to 2463 
μmol kg-1 DIC) to acclimate the cells to different carbonate chemistry, cultured for about ~10 generations. Set 1 

culture in 2,4 liter polycarbonate  bottles filled with culture media and the respective DIC concentration.

Figure 3.- Experimental setup of the copepods cultures. Diatoms production, 25 liters polycarbonate flask with 
artificial seawater; diatoms were cultured with a pCO2 set at ~380 and ~740 (2100 μmol kg-1 DIC) and alkalinity at 

~2014 μmol kg-1 respectively.  Copepods growth, culture in 2 liter polycarbonate  bottles filled with culture 
media and the respective pCO2. Egg production, 500 ml bottles with 5 copepod females and an small amount of 

diatoms, each in quadruplicate.
The treatments are:  Low/Low, Low pCO2 copepods - Low pCO2 diatoms; Low/High, Low pCO2 copepods - High 

pCO2 diatoms;  High/Low, High pCO2 copepods - Low pCO2 diatoms; and High/High,  High pCO2 copepods - 
High pCO2 diatoms.
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Table 1.- Measured  alkalinity, DIC, calculated pCO2 and pH of each phytoplankton specie used in the study. The 
DIC of the copepods feeding experiment was calculated from the DIC measurements using the CO2sys software. 

The K1 and K2 for the calculations are from Roy et al. (1993).

Table 2.- Nitrogen phosphate and silicate measured in each experiment in this study
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T. pseudonana 1a 8,161 0,942 29,192
1b 8,186 0,737 13,125
1c 11,903 0,853 16,988
2 11,325 0,867 21,184
3 11,162 1,291 25,150

4a 10,371 1,571 25,585
4b 9,429 1,421 25,073
4c 11,802 1,345 21,415
5a 9,492 1,455 27,427
5b 7,759 1,985 27,529
5c 6,504 0,963 16,323
6 12,066 0,799 16,630
7 11,664 1,127 17,142

T. pseudonana 740 Day 1 6,931 0,658 22,489
740 Day 2 1,959 0,084 16,246

feeding 740 Day 3 13,133 1,031 21,466
experiment 740 Day 4 8,965 0,658 16,886

380 Day 1 4,470 1,629 18,089
380 Day 2 5,512 1,205 18,165
380 Day 3 11,915 1,233 18,421
 380 Day 4 14,477 0,867 17,423

Phytoplankton 
specie

Bottle °N 
(2000ml)

Nitrogen 
(µmol/l)

Phosphat
e (µmol/l)

Silicate 
(µmol/l)

for A. Tonsa

Bottle °N (2000ml) pCO2

T. pseudonana 1a 1750,3 2410,1 70,4 8,720
1b 1712,8 2376,2 66,8 8,731
1c 1721,3 2414,2 62,2 8,757
2,0 1966,9 2404,4 171,9 8,439
3,0 1880,0 2352,7 140,5 8,498
4a 2081,7 2307,5 421,9 8,110
4b 2078,0 2323,3 385,3 8,146
4c 2115,6 2329,3 459,1 8,082
5a 2199,1 2386,2 556,3 8,019
5b 2201,3 2398,7 528,1 8,041
5c 2205,7 2406,1 525,7 8,044
7,0 2558,4 2550,1 2215,6 7,495

T. pseudonana 380 Day 1 1895,1 2043,4 379,2 8,159
380 Day 2 1921,1 2073,5 350,2 8,165

feeding 380 Day 3 1885,5 2032,6 390,8 8,157
experiment  380 Day 4 1926,7 2079,1 345,2 8,166

740 Day 1 1929,4 1993,2 1003,5 7,888
740 Day 2 1884,4 1943,8 1255,9 7,878
740 Day 3 1999,5 2069,2 733,1 7,903
740 Day 4 2023,3 2094,6 667,1 7,908

DIC 
(µmol/kg)

Alkalinity 
(µmol/kg)

pH free 
scale 

(mol/kg)

for A. tonsa



Figure 15.- Genera scheme of fatty acid biosynthesis (from Harwood 2010).
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