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Abstract

On the basis of the assumption that natural selection should tend to produce organisms optimally adapted to
their environments, we consider optimality as a guiding concept for abstracting the behavior of aquatic micro-
organisms (plankton) to develop models to study and predict the behavior of planktonic organisms and
communities. This is closely related to trait-based ecology, which considers that traits and functionality can be
understood as the result of the optimization inherent in natural selection, subject to constraints imposed by
fundamental processes necessary for life. This approach is particularly well suited to plankton because of their
long evolutionary history and the ease with which they can be manipulated in experiments. We review recent
quantitative modeling studies of planktonic organisms that have been based on the assumption that adaptation of
species and acclimation of organisms maximize growth rate. Compared with mechanistic models not formulated
in terms of optimality, this approach has in some cases yielded simpler models, and in others models of greater
generality. The evolutionary success of any given species must depend on its interactions with both the physical
environment and other organisms, which depend on the evolving traits of all organisms concerned. The concept of
an evolutionarily stable strategy (ESS) can, at least in principle, constrain the choice of goal functions to be
optimized in models. However, the major challenge remains of how to construct models at the level of organisms
that can resolve short-term dynamics, e.g., of phytoplankton blooms, in a way consistent with ESS theory, which
is formulated in terms of a steady state.

Phytoplankton are an excellent model system for
ecological studies because of their small size, short
generation times, large population numbers, and ease of
manipulation (Litchman and Klausmeier 2008), and the
same is true at least to some extent of plankton in general
(including bacteria). Furthermore, the long evolutionary
histories of phytoplankton (3 billion yr; Hedges et al. 2001),
bacteria, and archaea (3–4 billion yr; Battistuzzi et al. 2004)
make them particularly suited for examining the concept of
optimality. Ecological stability and protection from extinc-
tion afforded by high dispersal have permitted planktonic
organisms to evolve gradually through millions of years in
spite of strong climate variability (Cermeño et al. 2010).
Beyond basic ecology, there is much interest in under-
standing the major roles of plankton in the biogeochemical
cycles of carbon and nutrients on Earth and as the
foundation of aquatic food webs.

Deterministic modeling is the primary means of
expressing and examining quantitatively our understand-
ing of ecological and biogeochemical systems. In an
approach that is complementary to trait-based ecology
(McGill et al. 2006; Bruggeman and Kooijman 2007;
Litchman and Klausmeier 2008), several recent studies
have developed improved models of phytoplankton,
bacteria, and zooplankton on the basis of some form of
the assumption that organisms dynamically rearrange their
physiology or alter their behavior to make the most
efficient use of their resources (Merico et al. 2009). The
basis for the optimality assumption is that through natural

selection only organisms with the most efficient strategies
could survive and reproduce in the continual competition
for resources. Optimality-based approaches are of course
not restricted to plankton but have also been very
successful in the analysis of terrestrial systems (Verdolin
2006).

We review recent studies that have applied the concept of
optimality to physiological acclimation or behavioral
regulation of planktonic organisms or to the dynamics of
communities by formulating models to represent the
adaptive capacity of life in terms of trade-offs, balancing
the benefits vs. costs of competing resource requirements.
Rather than organizing our review around the entity
(organism or species) considered in each study, we proceed
by considering major ecophysiological processes (e.g.,
uptake, photosynthesis, grazing, Fig. 1) as they affect the
fitness of organisms, populations, species, and communi-
ties, similar to the process-based view of Wilkinson (2003)
for ecosystems and life in general. However, to be as
concrete as possible we consider only processes about
which extensive studies have yielded detailed information
specifically for plankton, which we classify as follows: (1)
community dynamics, (2) autotrophic growth (including
regulation of multiple physiological processes), and (3)
uptake and grazing (considered as a continuum of
processes, all of which include both internalization and
processing of resources). We frame the review in the
context of these classes of processes to transcend the
specifics of each organism and process. Thus we aim to give
a coherent overview of the concept of optimality as applied
to modeling planktonic organisms.* Corresponding author: lanimal@jamstec.go.jp
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Optimization, acclimation, and adaptation

The performance of an organism subject to typically
fluctuating intra- and interspecific interactions with other
organisms and its abiotic environment depends on its traits.
Variations in the traits may result from both acclimation,
i.e., often reversible physiological or behavioral changes
not inherited to the next generation, or adaptation, i.e.,
evolutionary change ensuing from natural selection. The
ability to acclimate may itself be viewed as an adaptation to
cope with a variable environment.

In an optimality-based model, traits of a species are
collectively viewed as a manifestation of a solution,
whether exact or approximate, to an optimization problem.
Modeling optimal acclimation generally comprises two
main tasks: defining an appropriate optimization problem
or goal function, and determining trade-offs the organisms
face in maximizing this goal function. Evolutionary
adaptation can be modeled in the same way, although
timescales will in most cases be much longer. Competitive
displacement among differently adapted species (Brugge-
man and Kooijman 2007; Hickman et al. 2010) can be
modeled with essentially the same approach (Merico et al.
2009).

Goal functions

Optimality-based modeling approaches define a measure
of fitness and assume that the optimization consists of
maximizing fitness on some representative timescale for
each organism considered. For plankton, an obvious choice
is to define fitness (F) as net growth rate, given by the
balance between assimilation and loss terms:

F~G~A{L, ð1Þ

where G is net growth rate, A gross assimilation, and L loss,
which may comprise respiration (energetic cost) as well as
predation mortality (Fig. 1).

Any goal function geared toward maximizing short-term
fitness must also enable the species to survive in the long
term for the strategy to be viable on evolutionary
timescales; i.e., it must be an evolutionarily stable strategy
(ESS) (Maynard Smith and Price 1973; Maynard Smith
1982; Mylius and Diekmann 1995). At least in principle,
ESS theory can therefore provide constraints on the choice
of goal function. For example, a central condition for an
ESS is that it must exclude the possibility of invasion by a
competing species, which would require the invader’s net
growth rate to exceed that of the resident species. Thus,
maximizing net growth rate (G) in Eq. 1 is an obvious
choice for the fitness term for an ESS.

However, to resolve short-term dynamics, e.g., phyto-
plankton blooms and response of grazers, it is necessary to
consider the timescales relevant to individual organisms, as
opposed to the much longer timescales (or the assumption
of steady state) often considered for ESS-centered models
in theoretical ecology. In the latter, it is common to solve
for the ESS having zero net growth rate, such that any
other strategy has negative net growth rate. This ensures
that the ESS cannot be invaded. However, it is often not
practical to formulate detailed models of short-term
processes at the level of organisms in ways that include
external loss terms such as grazing by other organisms.
Hence many studies at the organism level have taken
specific growth rate (excluding external losses), as a goal
function to be maximized, to a nonzero value (Fig. 2). Goal
functions can also be specified for cellular subsystems
relevant to particular processes. For example, the recently
developed optimal uptake kinetics considers the goal of
maximizing nutrient uptake as an isolated process (Pahlow
2005; Smith and Yamanaka 2007).

We will show below that studies have successfully
applied this approach of maximizing specific growth rate
to yield improved models. Such goal functions that exclude
external loss terms are not sufficient to solve for an ESS.
However, neither is the steady-state condition of ESS
sufficient to resolve the short-term dynamics of planktonic
organisms.

Furthermore, ESS theory rests on the assumption of
asexual reproduction, and most models of plankton assume
asexual reproduction and constant cell size, in which case
growth rate is equivalent to rate of reproduction. However,
to model short-term dynamics of sexually reproducing
organisms, including zooplankton and some phytoplank-

Fig. 1. Major processes and associated trade-offs. Fitness is
the balance of gains (assimilation) and losses (energetic cost and
mortality). Connecting lines mean ‘‘increases’’ or ‘‘induces’’ (solid
with plus symbols), or ‘‘reduces’’ (dashed with minus symbols).
Individual processes are categorized into tasks of resource
acquisition, predation, and defense. Allocation cost reflects
resource utilization for purposes other than growth, as opposed
to energy cost and mortality, which are actual loss terms.
Resource acquisition, in addition to energy and resource
demands, inevitably enhances the risk of predation through
interacting with the environment. Processes discussed in the
review are italicized.
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ton, it may be necessary to consider goal functions that
explicitly account for the distinction between rates of
reproduction vs. growth.

Trade-offs

The choice of trade-offs (Table 1) and how to represent
them is central to optimality-based modeling. To the extent
that general trade-offs can be quantified, this strategy
provides a basis for constructing models that can predict
how organisms acclimate (through physiological or behav-
ioral dynamics), how species evolve, and how species
compositions change within communities in response to
changing environmental conditions. Thus a model formu-
lated for processes at the level of an organism can also
represent the interspecies differences that result from
adaptation (Smith et al. 2009), if general trade-offs can be
defined for the relevant traits. The biological problems of
how best to allocate multiple resources subject to trade-offs
have analogs in microeconomics, as Bloom et al. (1985)
showed for plants.

The large amount of data compiled for variations in the
values of parameters fitted to empirical relationships has
been valuable for identifying and quantifying trade-offs for
phytoplankton (Litchman et al. 2007) and bacteria (Vallino
et al. 1996). Although not defining a trade-off per se, the
trait of stoichiometric body composition, together with
mass balance, can provide constraints relating resource
supply, species composition, and nutrient recycling (Hall

2009). This can play an important role in quantifying trade-
offs (Vallino et al. 1996; Bruggeman and Kooijman 2007).

Trade-offs can be incorporated into models with the help
of empirical functions or with mechanistically motivated
postulates about the processes under consideration. For
greater generality, a model must account for opportunity
costs and indirect costs of resource allocation, in which case
the allocation of resources can alter both the strength and
shape of multiple functional relationships as in the work of
Armstrong (1999). A major challenge lies in deriving trade-
offs between processes linked to dissimilar gain and cost
terms: how could a gain in light-harvesting ability be related
to the cost of reduced nutrient-uptake capacity? This apples-
and-oranges problem can be circumvented as long as trade-
offs can be formulated in a single currency, e.g., energy as in
Armstrong (1999), although this is not generally possible,
particularly in cases where more than two different
currencies are required (e.g., C, N, P, chlorophyll [Chl] in
phytoplankton, Wirtz and Pahlow 2010).

Adaptation: A community perspective

Competition for resources determines ecological dynam-
ics, and at longer timescales populations are also subject to
mutations that determine long-term evolutionary dynam-
ics. Evolutionary changes are driven by the appearance of
new genetically distinct forms of organisms, the mutants,
characterized by changes in their traits with respect to other
organisms of the same species.

Fig. 2. Diagram showing one example of an optimality-based model for each of the three classes of processes considered in this
review. The essential trade-off in each model is indicated by a bold double arrow, connected by a vertical line to the quantity optimized,
above. The gray dashed lines indicate that specific growth rate and uptake rate are expected to be positively related to net growth rate,
which is the rationale for maximizing them in models that do not explicitly calculate net growth rate.
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Ever since Darwin proposed the theory of evolution of
species by mutation and natural selection (Darwin 1859),
scientists have been trying to describe adaptation and
evolutionary changes with mathematical models. However,
Fisher (1930), Wright (1931), and Haldane (1932), founders
of the field of population genetics, made the first real
attempts to combine into a rigorous framework the detailed
mechanisms of inheritance with environmental selection
forces.

In population genetics, evolution is considered as a sort
of improvement and progress, so that the long-term
evolutionary dynamics of a trait x can be pictured as a
hill-climbing process on a so-called fitness landscape F(x,
e), which measures the advantage of bearing the trait value
x in environment e (Wright 1931, 1969). The evolutionary
rate of change of a certain trait (x) is given by its fitness
gradient

dx

dt
~dx

LF x,eð Þ
Lx

, ð2Þ

where the fitness function (F) describes the interaction of
individuals with their environment (e) and hence how such
interactions select the most advantageous trait, and the
proportionality factor dx represents functional diversity
(Fisher 1930). The solution of Eq. 2 is obtained by finding
the x that maximizes F(x, e), a standard problem of
optimization theory.

A recent theory called Adaptive Dynamics, which
combines the frequency principle of game theory with the

population genetics framework outlined above, describes
the long-term evolutionary dynamics of quantitative traits
as driven by mutation and selection (McGill and Brown
2007). Adaptive Dynamics is being applied to ecological
and evolutionary problems (Litchman et al. 2009). The
theory is based on two important assumptions: mutations
are extremely rare with respect to ecological timescales, and
mutations are small, implying that evolutionary trajectories
can be described by means of ordinary differential
equations. Since ecological and evolutionary timescales
are kept separated, the resident population can be assumed
to be in a dynamical equilibrium when new mutants
appear. In practice, Adaptive Dynamics aims at investigat-
ing the outcome of competition between the resident and
the invader (i.e., the mutant with a slightly different trait
from that of the resident) by determining the ESS, which is
the trait such that, when the vast majority of individuals
have it, no rare mutant with a different trait can increase in
numbers.

Several studies (Wirtz and Eckhardt 1996; Fussmann et
al. 2005) have relaxed these assumptions by considering the
appearance of mutants (an evolutionary process) and the
interaction with the resident population (an ecological
process) to occur on the same timescales, thus allowing the
coexistence of multiple types (mutants and residents) and
introducing other sources of trait variability (such as
immigration). This new framework, defined by Abrams
(2005) as ‘‘adaptive dynamics,’’ describes species succession
in ecosystems and the adaptive response of a community to

Table 1. Trade-offs considered for each class of processes reviewed.

Trade-offs References

Adaptive dynamics of communities

Max. growth rate vs. edibility Wirtz and Eckhardt 1996
Growth (minus cost of defense) vs. defense against grazers Fussmann et al. 2005
Max. growth rate vs. assimilation of nitrate Follows et al. 2007
Half-sat. value for ammonium vs. ability to use nitrate Follows et al. 2007
Half-sat. value for nutrient vs. resistance to grazing Merico et al. 2009
Half-sat. value for ammonium vs. ability to use nitrate Hickman et al. 2010
Half-sat. value for nutrients vs. optimal temp. for growth Hickman et al. 2010

Regulation of autotrophic growth

Energy requirements vs. inverse growth rate Shuter 1979
Iron for light harvesting vs. iron for N assimilation Armstrong 1999
Competitive ability for light vs. competitive ability for P Klausmeier and Litchman 2001
Energy for nutrient uptake vs. energy for biosynthesis Pahlow 2005
Energy for nutrient uptake vs. energy for biosynthesis Pahlow and Oschlies 2009
N for biosynthesis vs. N for photosynthesis Pahlow and Oschlies 2009
P for nucleus and membranes vs. P for N uptake, biosynth. Pahlow and Oschlies 2009
Energy for nutrient uptake vs. energy for C aquisition Wirtz and Pahlow 2010
Energy for light harvesting vs. energy for Calvin cycle Wirtz and Pahlow 2010
N for light reactions vs. N for dark reactions Armstrong 2006

Uptake and grazing

Accumulating energy stores vs. avoiding predation Fiksen and Carlotti 1998
Half-sat. value for substrate vs. max. growth rate Wirtz 2002
Energetic cost of predation vs. energy gained from prey Tschirhart 2004
Opportunity to capture prey vs. risk of being preyed upon Tschirhart 2004
Affinity for nutrient vs. max. uptake rate Smith and Yamanaka 2007
Affinity for nutrient vs. max. uptake rate Smith et al. 2009
Energy used swimming vs. energy gained from prey Pahlow and Prowe 2010
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environmental variability on ecological timescales. It
provides a computationally more efficient alternative to
resolving discrete trait distributions (Fig. 3).

Other studies have similarly found ways around the
considerable computational expense of explicitly modeling
discretized trait distributions. For example, Moisan et al.
(2002) derived an effective temperature function by
matching a temperature-optimum function to the overall
temperature dependence obtained from a simulated phyto-
plankton community. The resulting temperature function

thus reflects the trait variability within a certain spatio-
temporal realm. This is computationally convenient for
larger models compared with resolving explicitly the trait
distribution, but their effective functional relationship
mirrors a ‘‘frozen’’ image of trait variability and cannot
respond to changes, e.g., in global temperature distribution
or seasonality. Trait-based adaptive dynamics can also be
simplified by dynamically simulating moments, e.g., mean
and variance (Fig. 3), of a trait distribution (Wirtz and
Eckhardt 1996; Fussmann et al. 2005; Pahlow et al. 2008).
This approach retains the capacity of the trait distribution
to adapt to changes not only in current ambient conditions
but also in temporal and large-scale patterns. Direct
simulation of trait distributions does have the important
advantage of not requiring explicit formulations for the
dynamics of their moments. For example, Follows et al.
(2007) and Hickman et al. (2010) have simulated the
adaptation of phytoplankton by letting natural selection
operate on assemblages of species with relatively finely
resolved trait distributions embedded within spatially
explicit models of the marine environment.

These ideas have stimulated new developments in the
modeling of plankton communities. The trait-based ap-
proach (Wirtz and Eckhardt 1996; Norberg 2004) appears
particularly promising in this context. The key is a
mechanistic definition of a trade-off governing interspecific
differences; a realistic representation of community behav-
ior is then obtained by letting natural selection operate on
an assemblage of species with different trait values
(Bruggeman and Kooijman 2007). Extending the method
introduced by Norberg et al. (2001), Merico et al. (2009)
provided an example of how to model a plankton
community as a single adaptive entity such that the
adaptive capacity results from the sorting of species. Such
a modeling framework can be applied to any community of
competing species for which relevant trade-offs can be
defined.

Autotrophic growth

Physiological acclimation—Linkages between multiple
resources: Probably the first optimization-based model of
physiological acclimation in phytoplankton was that of
Shuter (1979). Shuter described trade-offs in terms of
intrinsic and extrinsic costs, which is a somewhat confusing
terminology, with intrinsic costs defined as the energy
requirements for maintenance and biosynthesis, and
extrinsic cost as the inverse of growth rate. Armstrong
(1999) described the interaction among Fe, NH z

4 , NO {
3 ,

and light by optimal allocation of Fe between N- and C-
acquisition machinery, such that one element (Fe) con-
trolled assimilation of another (N). Ågren (2004) intro-
duced the conceptually similar idea that N assimilation
could be controlled by the capacity to combine amino acids
into polypeptides during protein biosynthesis at the
ribosomes. Since ribosomal ribonucleic acid constitutes a
major cellular P pool (Sterner and Elser 2002), this
mechanism implies a strong dependence of N assimilation
on P quota. The chain model of Pahlow and Oschlies

Fig. 3. Schematic of the three different approaches to solving
optimality-based models: (a) discrete representation of the
distribution of trait values, (b) ‘‘adaptive dynamics,’’ which
calculates the rate of change of moments of trait distributions
assuming Gaussian (normal) distributions, and (c) directly
calculating only the optimal solution. Although approach (a),
e.g., Follows et al. (2007), provides the most detailed and versatile
representation of trait distributions, it is computationally very
intensive. At the other extreme, approach (c), e.g., Smith and
Yamanaka (2007), is computationally very efficient but makes the
strong assumption that all organisms attain precisely the optimal
trait value.
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(2009) extends the optimal growth model of Pahlow (2005)
on the basis of the same idea.

Nutrient uptake and light: Armstrong (1999) considered
a trade-off defined through the allocation of Fe between
nitrate reduction and light harvesting to address the long-
vexing problem of how to consistently describe the
interaction between NH z

4 and NO {
3 , the two most

important forms of nitrogen. He postulated that phyto-
plankton should have evolved to allocate scarce iron
between these uses to maximize growth rate. Because
nitrate reduction requires iron and more energy, ammoni-
um is the preferred nitrogen source, and nitrate was
predicted to be taken up only when ammonium uptake is
insufficient to maximize growth rate. By allowing growth
rate to be colimited by any combination of Fe, light, NO {

3 ,
and NH z

4 , the model was able to consistently reproduce
the different characteristic shapes of the relationship
between nitrate uptake and ammonium concentration
observed in different oceanic regions.

Phytoplankton can also acclimate to ambient light and
nutrient environment by swimming or regulating their
buoyancy. Klausmeier and Litchman (2001) constructed a
model of poorly mixed water columns with nutrient supply
only from the sediments, assuming that phytoplankton can
be limited by either light or nutrient availability and that
they can move vertically. They showed that, if mixing is not
important and mortality is density independent (constant
specific mortality rate), an ESS consists of forming a thin
layer at the optimal depth as determined by the balance of
competitive abilities for light and nutrients (see below).

Photoacclimation: Chl and nutrient content

Although Chl dynamics was part of Shuter’s (1979)
model, Chl : C variations in the photosynthetic apparatus
were not formulated in terms of optimality arguments.
Geider (1997) and MacIntyre et al. (2002) argued that
maximizing growth rate could not explain photoacclima-
tion because there could be no nitrogen trade-off between
light and dark reactions since that would conflict with the
observed invariance of maximum growth rate, and because
Chl synthesis is down-regulated at relatively low light
intensities. However, Armstrong (2006) pointed out that
neither of these arguments contradicts optimality-based
regulation of pigment synthesis and introduced a nitrogen
trade-off between dark and light reactions with no effect on
maximum photosynthetic rate, which correctly predicted
the down-regulation of pigment synthesis as a function of
light intensity. Optimal photoacclimation was based on a
trade-off in carbon use instead in Pahlow (2005) and
Pahlow and Oschlies (2009), which also avoids affecting
maximum growth rate (because that depends only on
nitrogen). Figure 4 contrasts the behavior of the formula-
tions by Geider et al. (1998), Armstrong (2006), and
Pahlow and Oschlies (2009) in terms of Chl : C and N : C.
Only the two optimal-growth models can reproduce the
relationship between N : C and Chl : C ratios for light-
limited growth (upper right part of Fig. 4), where the model
of Geider et al. (1998) predicts almost constant N : C. Even
though the trade-offs in the optimality-based models are

qualitatively different, both explain the down-regulation of
Chl : C at intermediate to high irradiance levels as a
consequence of a negative relation between the light-
harvesting and biosynthetic apparatuses.

Dynamic regulation of multiple resource uptake

Plankton require a variety of different resources, ranging
from photosynthetically active radiation to organic sub-
strates, macronutrients like nitrogen or phosphorous, to
numerous trace elements. As a reflection of changing ratios
in these resources, both in time and in space, the internal
composition of planktonic organisms also varies. Because
the cellular or organismic stoichiometry strongly affects
physiological and ecological functions (Sterner et al. 1992;
Hall 2009), a quantitative understanding of this variation is
believed to be critical for advancing plankton modeling as a
whole (Flynn 2003).

Klausmeier et al. (2004) suggested that phytoplankton
cells manage internal pools (of energy, proteins) that can be
freely diverted into individual uptake machineries. Varia-
tions in their stoichiometry then mirror the solution of an
optimal partitioning problem: relative uptake rates of
multiple resources are organized such that the steady-state
growth rate becomes maximal. Optimal partitioning, not
unlike analogous model approaches in microbiology
(Vallino et al. 1996) or plant physiology (Givnish 1986;
Wirtz 2003), at least qualitatively predicts physiological
responses to varying environmental conditions (Klausmeier
et al. 2004). More recently, Wirtz and Pahlow (2010)
relaxed the steady-state assumption. Modeling the dynam-
ics of multiple resource uptake regulation, however,
requires solving the apples-and-oranges problem men-
tioned above. A partitioning coefficient, or more generally
a trait x that regulates the nutrient uptake rate (U[x]) has

Fig. 4. Predicted relationship between Chl : C and N : C for
the mechanistic model of Geider et al. (1998) and the optimality-
based models of Armstrong (2006) and Pahlow and Oschlies
(2009) compared with observations from Laws and Bannister
(1980) for the diatom Thalassiosira fluviatilis.
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no direct relation to the actual nutrient quota (Q) itself.
What, then, is the growth benefit of changing x? This is
equivalent to asking for the effect of varying x and, as a
consequence, also U(x), on the goal function (G), here
taken as growth rate. Interestingly, one can produce all
necessary terms for dynamic optimization using the steady-
state balance equation (U – QG 5 0) and implicit
differentiation:

dG

dx
~

LG

Lx
z

LG

LQ

dQ

dx
, ð3Þ

with

dQ

dx
~{

LGB

Lx

LGB

LQ

� �{1

, ð4Þ

GB~U xð Þ{QG Q,xð Þ, ð5Þ

where GB is the balance between uptake and growth, which
is set equal to zero at steady state. This extension of the
single-goal optimality approach allows quantitative repro-
duction of a wider spectrum of physiological responses
observed in planktonic organisms (Wirtz and Pahlow
2010). It particularly helps by eliminating the need for
some formerly required empirical assumptions and simpli-
fications (e.g., Droop terms or lack of colimitation,
Klausmeier et al. 2004). The extension also includes a
consistent rationale (and refinement) for the trade-off
between Chl synthesis and nitrogen uptake used by the
photoacclimation model of Pahlow (2005).

Uptake and grazing

Optimal uptake (OU) kinetics—Considering the obser-
vations of Kudela and Dugdale (2000) that values of
maximum uptake rate for nitrate (as fit to the Michaelis–
Menten [MM] equation) increased hyperbolically with
increasing nitrate concentration, Pahlow (2005) developed
an equation for optimal nutrient uptake as part of his
phytoplankton optimal growth model. This study extended
the mechanistic uptake equation of Aksnes and Egge (1991)
by separating the uptake sites into surface sites (nutrient
transporters) and internal enzymes (for assimilating nutri-
ents into biomass), and adding the optimality assumption
that some portion of a cell’s nitrogen subsistence quota is
allocated instantaneously between these two proteinaceous
components to maximize uptake rate, which would tend to
maximize growth rate.

In contrast to the assumption of instantaneous acclima-
tion, Smith et al. (2009) considered that in many cases the
timescale for experimental determination of nutrient uptake
kinetics is shorter than the time required for acclimation.
Their short-term approximation predicts that the half-
saturation constant for nutrient uptake should increase as
the square root of the ambient nutrient concentration, which
agrees with two independent compilations of data from
oceanic field experiments (Smith et al. 2009).

Straightforward application of MM kinetics to growth
on several nutrients can greatly overestimate uptake of

nonlimiting nutrients (Droop 1974; Gotham and Rhee
1981a,b). Various models have been formulated by adding
parameters to inhibit uptake as a function of internal
nutrient concentration (Gotham and Rhee 1981a,b; Flynn
2003). Taking a different approach, Smith and Yamanaka
(2007) extended the equation of Pahlow (2005) to multiple
nutrients without adding new parameters by assuming that
the uptake hardware for all nutrients acclimates in the same
proportion on the basis solely of the ambient concentration
of whichever nutrient limits growth. The agreement with
observations is comparable with that of the considerably
more complex inhibition model of Gotham and Rhee
(1981a,b) and that of Flynn (2003) (Fig. 5). Flynn’s
equation fits the data best, but requires choosing values
for six parameters per nutrient to describe the feedbacks
and the degree to which each nutrient is accumulated. The
optimality-based simple phytoplankton optimal nutrient
gathering equations (SPONGE) (Smith and Yamanaka
2007) has only two parameters per nutrient (the same as
MM) and provides a very different interpretation for the
observations. The key differences that allow this relative
simplicity are the specification of the goal (namely,
maximizing uptake rate of the growth-limiting nutrient)
and the trade-off between maximum uptake rate and
affinity.

The assumption of Smith and Yamanaka (2007) that
uptake hardware for all nutrients is adjusted in the same
proportion is not optimal in an immediate sense; i.e., an
internutrient trade-off, allocating more resources to uptake
of the limiting nutrient and less to the uptake of
nonlimiting nutrients would allow faster growth. However,
because that assumption agrees with observations from
chemostats, Smith and Yamanaka (2007) hypothesized that
phytoplankton may not adjust their uptake apparatus in
response to changing ratios of ambient nutrient concentra-
tions, but rather only in response to changes in the
concentration of the growth-limiting nutrient. We caution
that their argument depends on the existence of a unique
optimal elemental composition. According to Klausmeier
et al. (2007), colimitation indicates optimal composition,
but colimitation is associated with a unique elemental
composition only in threshold models, which do not
adequately describe N-P interactions (Ågren 2004; Pahlow
and Oschlies 2009). In general, colimitation can occur over
a wide range of elemental compositions (Pahlow and
Oschlies 2009) and, therefore, should not be relied upon to
define optimal composition. Ideally, optimality criteria
(goal functions) should not be based on specific assump-
tions implicit in (empirical) models that lack a mechanistic
foundation, such as the threshold cell-quota formulation
(Liebig’s Law of the Minimum) considered by Smith and
Yamanaka (2007).

Bacterial growth on multiple resources

Vallino et al. (1996) optimized bacterial growth rate in
terms of a set of basic metabolic reactions, subject to
constraints from energetics, electron balance, and the C : N
of biomass. Their results agreed with observations of
growth yield as a function of the degree of oxidation of
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substrate. Vallino (2003) extended this approach to model
bacterial consortia as distributed metabolic networks,
which makes possible the interpretation of biogeochemistry
as independent of the specific organisms responsible for
mediating reactions. The idea is that some organism will
evolve to exploit whatever chemical potential can yield
energy for growth, and that therefore at least for
biogeochemistry it is only necessary to represent the
underlying chemical reactions.

Bacterial growth kinetics

Wirtz (2002) expressed as variables the ‘‘constants’’ in
the Monod equation for growth rate, using optimization
subject to a trade-off between maximum growth rate (mmax)
and half-saturation concentration for growth on substrate
(Ks). The model consistently reproduced observations from
long-term chemostat experiments, whereas a Monod-type
model with constant parameter values could not. This was
achieved without increasing the number of parameters
compared with the Monod model, but merely by specifying
the optimization subject to a trade-off, which was based on
the observed relationship between mmax and Ks (as fit to the
Monod equation). The shape of this empirical trade-off is
strikingly similar to the central trade-off in OU kinetics
(Fig. 6).

This suggests a more concise equation for the essential
result of Wirtz (2002), at least for steady state. Assuming
constant growth yield, it is straightforward to derive an
equation of the same form as the OU equation (Pahlow
2005; Smith et al. 2009), instead for growth rate (m):

m~
m0S

m0

A0
z2

ffiffiffiffiffiffiffiffi
m0S

A0

s
zS

, ð6Þ

where m0 is the potential maximum growth rate, A0 is the
potential maximum affinity, and S is the substrate
concentration. We term this the optimal growth (OG)
equation. The data set of Senn et al. (1994) were collected
with multiple replicates over a wide range of growth rates in
chemostats, specifically to test different equations relating
growth rate to substrate concentration. Compared with the
Monod equation, Eq. 6 agrees better with the shape of this
data set overall and yields more consistent estimates of
parameter values when fitted to different subsets of the
data (Fig. 7). For this bacterium, the Monod equation
would be much more likely to give erroneous estimates of
initial slope (affinity, which measures competitive ability) if
data were only available over a limited range of growth
rates.

Fig. 5. Data (circles) for composition of phytoplankton
biomass from the chemostat experiments of (a, b) Rhee (1974)
and (c) Rhee (1978), and fits of models (lines). (Note that in [b]
two simulations were run for each model, respectively, with input
N : P 5 1 or 2, as used in the experiments, which causes the models
to diverge at low dilution rates.) Each model consists of the Droop

r

quota model (Droop 1968) for growth combined, respectively,
with a different equation for uptake rate: eq. 14 from Flynn
(2003), the Michaelis–Menten equation (Dugdale 1967), and the
optimality-based SPONGE (Smith and Yamanaka 2007).
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Regulation of foraging activity

In zooplankton optimal-foraging models, the goal func-
tion is usually (often implicitly) assumed to be instantaneous
net growth rate. Other goals (e.g., longevity or a diverse gene
pool) could also be considered, in particular on longer
timescales, although these may be more closely related to life
cycle rather than foraging strategies.

To maximize net growth, an optimal foraging strategy
must balance the gain from ingestion of prey against
several loss terms (L), namely respiratory requirement (R)
of foraging, excretion (E) of undigested food, and mortality
(M) due to predation (Visser et al. 2009), all of which may
or may not be directly linked to foraging activity:

L~RzEzM, ð7Þ

The trade-offs can be derived from empirical or mechanis-
tic links among the gain and loss processes. The exact
nature of these links can have profound consequences for
the predicted foraging behavior, which we will illustrate
here with the example of the relationship between the
formulation of the cost of foraging and the prediction of
feeding thresholds. A feeding threshold can be understood
in terms of optimality as the minimal food concentration
that allows the predator to achieve a net energy gain from
foraging, i.e., the predator gains more energy from
ingestion than it has to spend for foraging (Pahlow and

Fig. 7. Results of fitting the inverse of the Monod and OG
equations, respectively, to observed glucose concentration (S) vs.
growth rate for the: (a) lower half, (b) entire, and (c) upper half of
a data set for glucose-limited growth of Escherichia coli in
chemostats (Senn et al. 1994). Parameter values obtained by
fitting to different subsets of the data (d) differed more for the
Monod than for the OG equation. The initial slope is Vmax/Ks for
the Monod equation, and A0 for the OG equation.

Fig. 6. Data (circles) for maximum growth rate vs. half-
saturation constant for growth of the bacterium Escherichia coli
on glucose, as compiled by Wirtz (2002) together with the
empirical trade-off (thin line) and the theoretical OU trade-off
(thick line). The empirical trade-off is: mmax~m�ln Ks

�
K�s

� ��
1zln Ks

�
K�s

� 	� �
{r, where the last term is for respiration. Here

the central trade-off in OU kinetics has been rewritten by
combining the short-term equations for apparent maximum
uptake rate V app

max and half-saturation constant K app
s (Smith et

al. 2009), and a constant yield has been assumed, making growth
rate directly proportional to uptake rate: mmax~YV app

max for some
constant Y. The OU trade-off for growth is then: mmax~
YV0Kapp

s

�
V0=A0zKapp

s

� �
{r. Values of V0 and A0 in the latter

equation were fit to match the empirical equation as reported by
Wirtz (2002).
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Prowe 2010) or than is lost due to increased risk of
predation (Mariani and Visser 2010). A feeding threshold
differs from a growth threshold, which is the minimal food
concentration allowing for positive net growth and thus
additionally providing enough energy to cover maintenance
and other energy requirements not directly related to
foraging and assimilation.

In the absence of predators, e.g., in laboratory experi-
ments, a linear relationship between R and L leads to a
feeding threshold, whereas quadratic or higher-order
relationships do not (Pahlow and Prowe 2010). R has been
commonly taken to be a quadratic function of foraging
activity for small planktonic predators because the drag
force of a laminar flow is linearly related to velocity
(Lehman 1976; Gerritsen and Strickler 1977; Visser et al.
2009). This view is based on the two implicit assumptions:
viscous energy dissipation due to swimming or feeding-
current generation is mainly responsible for the energy
requirement of foraging, and foraging activity is directly
proportional to swimming or feeding-current velocity. Both
of these implicit assumptions are incorrect. Viscous energy
dissipation contributes only a few percent to the total
energetic cost of swimming (Buskey 1998), implying that
the cost of foraging is dominated by processes inside the
organism. Foraging activity appears to be regulated via the
fraction of time spent foraging rather than swimming or
feeding-current velocity, at least in current-feeding cope-
pods (Price and Paffenhöfer 1986). Such a regulation of
foraging activity also seems more practical since flow
velocity directly affects not only encounter rate but also
signal strength and, therefore, both mechano- and chemo-
receptors used for prey detection can reasonably be
assumed to operate most efficiently within a narrow range
of flow velocities. Regulating the active time fraction
implies a linear relation between foraging activity and cost
of foraging (Pahlow and Prowe 2010) and consequently
leads to the prediction of a feeding threshold.

Although feeding thresholds have often been demon-
strated for copepods (Wlodarczyk et al. 1992; Kiørboe and
Saiz 1995), and recently for ciliates (Gismervik 2005), there
is no evidence of feeding thresholds for other protist
microzooplankton (Strom et al. 2000). Further research is
warranted, because feeding thresholds are important for
the stability of ecosystem models (Frost 1993) and have
been implicated in the maintenance of minimum phyto-
plankton concentrations in oligotrophic and high-nutrient
low-Chl areas (Strom et al. 2000).

Switching and foraging strategies

Switching is a change in feeding preference for one kind
of prey in the presence of another. If feeding preferences
respond to concentration in addition to prey kind,
switching is active, otherwise passive. The kind of switching
strongly influences model behavior, as only active (but not
passive) switching has been found to impart stability to
model ecosystems (Franks et al. 1986; Fasham et al. 1990).
Evidence in laboratory observations for active switching
has been presented for microzooplankton (Goldman and
Dennett 1990; Strom 1991) and copepods (Paffenhöfer

1984; Saiz and Kiørboe 1995). Interestingly, active switch-
ing in copepods can be coupled to a change in foraging
strategy depending on the kind of prey: immotile prey is
gathered with a feeding current, whereas motile prey is
obtained by ambush feeding (Saiz and Kiørboe 1995). Since
feeding strategy is related to risk of foraging, such a
coupling can provide additional constraints for developing
optimal-foraging models (Mariani and Visser 2010).
However, effects of foraging activity on predation mortal-
ity are more difficult to quantify than those on metabolic
energy requirements. Computable general equilibrium
models (Tschirhart 2004) could be a promising tool for
this task and for defining optimal foraging strategies in the
presence of multiple linked trophic levels.

Active switching as currently used in nutrient–phyto-
plankton–zooplankton–detritus-type models can lead to a
reduction of ingestion with increasing food concentration,
which is generally considered paradoxical (Gentleman et al.
2003), but Mariani and Visser (2010) showed that this
approach is reasonable in an optimal-foraging context as
along as the reduced ingestion is offset by an even stronger
reduction in the risk of predation: Cruise feeding seems
very effective even at low concentrations of nonmotile
food, implying very low feeding thresholds (Pahlow and
Prowe 2010), but swimming over relatively long distances
will also increase the risk of predation by ambush feeders.
Current feeding should be less effective in promoting prey
encounter as the volume reached by the feeding current is
much smaller than what could be covered by swimming,
but the limited extent of the feeding current also reduces the
risk of encountering ambush feeders. Ambush feeding only
works for motile prey but has the least risk of predation
(Visser et al. 2009) and should display no feeding threshold.

Recycling and export

Active switching of copepods between phytoplankton
and microzooplankton food was the basis for the formu-
lation of the implicit microbial loop by Steele (1998), which
was the first attempt to rationalize differences in export
ratios between oligotrophic and more eutrophic ocean
regions in terms of the behavior of zooplankton commu-
nities. The implicit microbial loop assumed that food-chain
length was a function of nutrient content and effectively
increased assimilation efficiency at low phytoplankton
concentrations. Since assimilation efficiency determines
the ratio of export and recycling, this leads to lower export
ratios in low-nutrient environments. An inverse relation-
ship between food concentration and assimilation efficiency
has also been demonstrated for copepods in the lab
(Kiørboe et al. 1985), which may be due to reduced
digestive enzyme activity or shorter gut passage times (or
both) (Lehman 1976; Hassett and Landry 1983; Pahlow
and Prowe 2010). A comparison between Steele’s (1998)
implicit microbial loop with an optimal-foraging model
showed that the relationship between assimilation efficien-
cy and food concentration predicted by the optimal-
foraging model had a similar effect on export ratio as the
varying food-chain length in the implicit microbial loop
(Pahlow and Prowe 2010).
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Diel and seasonal vertical migrations of zooplankton are
also thought to affect export of carbon and nutrients from
the surface ocean (Hays et al. 1997; Steinberg et al. 2000;
Hannides et al. 2009), and they are usually explained as
strategies to minimize predation loss. The optimal life-
history model by Fiksen and Carlotti (1998) balances
predation avoidance against the need for accumulating
energy reserves required to survive the next winter. As their
model was developed for copepods in highly seasonal
environments, some modifications can be expected when
moving to lower-latitude regions where overwintering is
not necessary and zooplankton groups other than copepods
are relatively more important. As an alternative modeling
approach, balancing predation avoidance against (poten-
tial) ingestion could lead to a simpler and yet slightly more
general description that is not as tightly linked to copepods
and seasonality.

Challenges and future directions

Lack of observations of grazing—Advancement in
modeling remains dependent on the availability of ade-
quate observations suitable for hypothesis testing. For
example, whether and how far the presence of predators
can trigger feeding thresholds in microzooplankton is
currently unknown, and this represents a gaping hole in
the observational basis, preventing progress in the devel-
opment of zooplankton feeding models. No experiments
contrasting feeding as a function of prey concentration with
and without predators present have, to our knowledge,
been published. Given that observations are necessary for
model validation, all current formulations of relationships
between predation and feeding behavior are essentially
guesswork.

Remaining challenges

Seeking optimality—Evidence of optimal behavior may
be missed if one looks too narrowly at specific processes,
rather than holistically at the trade-offs between different
uses for a given resource. For example, the above-
mentioned arguments by Geider (1997) and MacIntyre et
al. (2002) against optimality were based on inappropriate,
overly restrictive goal functions. Optimality may manifest
itself as much in community compositions where each
organism is highly optimized for a narrowly constrained
and fixed set of conditions (Hickman et al. 2010) as in the
ability for acclimation within a highly variable environ-
ment, such as the near-surface ocean with its persistent
fluctuations in nutrient concentrations, light intensity, and
temperature.

Interpreting data—As noted above, existing compilations
of data, including parameter values fitted to empirical
equations (Litchman et al. 2007), can be quite useful for
defining and precisely quantifying trade-offs. However, as
Fig. 7 shows, biases in such parameter values can result if
the fixed shape of an empirical equation differs from that of
the true response. Care is required to ensure that the
parameter values were obtained from appropriate relation-

ships valid for the range of data and timescales considered
(Wirtz 2002; Smith et al. 2009), and that all data were
collected under comparable conditions. Preconditioning of
samples can strongly affect the parameter values obtained
from experiments (Smith et al. 2009; Wirtz and Pahlow
2010).

Defining trade-offs—The work of Wirtz and Eckhardt
(1996), still one of the few applications of adaptive trait
dynamics to in situ observations, formulated trade-offs in
phytoplankton physiology and ecology using laboratory
data and tested them through inverse modeling. However,
empirically derived trade-offs, as applied by Wirtz and
Eckhardt (1996), do not allow for reliable generalizations.
This major weakness in early optimality-based studies
should motivate us to seek and identify biophysical or
biochemical laws or models that can explain the functional
shape of relevant trade-offs. These models will have to go
beyond the optimal allocation schemes described above,
especially when extensive traits like body size or ecological
interactions are considered. Furthermore, it remains
challenging to define truly general trade-offs that apply
across different species or functional types. It is often easier
to obtain accurate models by making them more specific,
e.g., as Wirtz and Pahlow (2010) did by applying different
parameterizations for diatoms compared with other phy-
toplankton with respect to the regulation of light reactions
vs. the Calvin cycle.

Computational efficiency vs. realism—Although solving
directly for the steady-state optimal solution is computa-
tionally very efficient, this approach reveals nothing about
the dynamics of trait values or their distribution (Fig. 3).
The distribution is an important property related to the
dynamics, because the rate of acclimation is proportional
to the variance of traits (Eq. 2). Furthermore, this
approach cannot account for the potentially important
effects on the environment, and hence upon the fitness
function, of organisms other than those represented by the
single optimal solution. The adaptive dynamics approach,
which solves for the moments of trait distributions, is a
computationally efficient way to represent the distribution
of trait values, but it assumes Gaussian distributions, which
may not be realistic in all cases. Discrete resolution of trait
values using models that represent many different species
(or different mutants of each species) provides detailed
information about the distributions of trait values, without
assuming a fixed form of their distribution, but at great
computational expense. For example, the model of Follows
et al. (2007) requires supercomputers to resolve discrete
trait distributions for phytoplankton only (not for zoo-
plankton) within a three-dimensional ocean circulation
field.

There is much interest in understanding how biodiversity
affects the functioning and stability of ecosystems, and
modeling biodiversity in planktonic ecosystems poses a
major challenge (Duffy and Stachowicz 2006; Litchman et
al. 2010). Will it be necessary to model explicitly many
different species or functional types (LeQuere et al. 2005;
Follows et al. 2007; Hickman et al. 2010)? Or will the much
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more computationally efficient approaches of modeling the
dynamics of the moments of trait distributions (Bruggeman
and Kooijman 2007) or the adaptive dynamics of commu-
nities as in Merico et al. (2009) be adequate?

Constraints on model response—Trade-offs reflect ines-
capable physical or physiological constraints. These built-in
trade-offs more narrowly constrain the response of
optimality-based models compared with other mechanistic
models, particularly in cases where the former include fewer
adjustable parameters. This suggests a higher degree of
predictive ability for optimality-based models compared
with empirically based mechanistic models (Wirtz 2002;
Smith et al. 2009; Hickman et al. 2010). These constraints
on model response could alleviate some of the concerns
raised by Flynn (2003) about oversimplified models
generating unrealistic behavior in the ‘‘what if’’ scenarios
of exploratory and predictive modeling.

Optimality-based models can also respond more sensi-
tively to parameter values. For example, by assimilating an
extensive data set from an oceanic iron-fertilization
experiment, Smith et al. (2010) were able to constrain
values of OU parameters more narrowly than the
corresponding parameters for MM kinetics, with each,
respectively, embedded in an otherwise identical ecosystem
model. Still, the quantity and quality of observations can
limit our ability to distinguish between even models that
predict qualitatively different behaviors (e.g., it is difficult
to decide which of the two optimal-growth models fits the
data better in Fig. 4).

On the other hand, although it may not be intuitively
obvious, trait optimization can produce wide variability in
observed responses under relatively invariable environmen-
tal conditions. In case of a flat goal function, either
multiple local optimal solutions may exist, or a single
optimal state would only be weakly bound. Optimality-
based regulation of clearance activity in grazers at very low
prey concentration as in Frost (1975, fig. 1) and Pahlow
and Prowe (2010, fig. 5), or of internal stoichiometry in
algae at low growth rates (Wirtz and Pahlow 2010, fig. 2)
produce highly sensitive results in models. Some data for
both clearance (Frost 1972; Rothhaupt 1990; Gismervik
2005) and nitrogen stoichiometry (Elrifi and Turpin 1985;
Healey 1985; Hillebrand and Sommer 1999), especially at
low rates of ingestion (and hence also of growth), are in fact
widely scattered. This evidence suggests that the quasi-
stochastic behavior predicted by optimality-based models
under those exceptional conditions may be realistic.

Timescales—In experimental design as in modeling, the
timescale must be considered. The challenge remains of
resolving short-term dynamics in a way consistent with
long-term viability (ESS, as discussed above in the section
on Goal functions). In this context, it is important to
identify the timescales below which organisms should not
acclimate or adapt to changing conditions. Both acclima-
tion and adaptation require time and energy, which implies
that there should be a minimum timescale for each. For
example, yeast acclimate to slow changes in supply of
glucose, but effectively filter out variations with frequencies

*>1 h{1 (Bennett et al. 2008). If the acclimation or
adaptation process cannot keep up with the variability in
certain fluctuating environments, it may be optimal to
acclimate only to some extent or to temporally averaged
conditions, such that it could be rare to be perfectly
acclimated at any given time.

There is evidence for rapid evolution in laboratory
predator–prey systems (Yoshida et al. 2003; Fussmann et
al. 2005), where competitive ability and defense against
grazing in the phytoplankton prey varied on a timescale of
weeks. These results are interesting also in the respect that a
stable steady state (assumed by ESS theory) did not
develop but interaction between the predator and the
adapting prey resulted in cyclic alternation between more
competitive and more defensive populations. This kind of
observation may be critical for the development of optimal-
growth models also considering strategies for defending
against predation.

Compared with mechanistic models not formulated in
terms of optimality, several of the optimality-based models
reviewed herein have more accurately reproduced the
behavior of organisms over wide ranges of environmental
conditions without increasing (Armstrong 1999; Wirtz
2002; Smith et al. 2009), and in some cases even reducing
(Pahlow 2005; Smith and Yamanaka 2007; Pahlow and
Oschlies 2009), the number of adjustable parameters. Even
if organisms only tend toward optimality without ever truly
attaining it, optimality can still define the goal and the
expected limiting behavior of planktonic organisms. The
studies reviewed here constitute more evidence from the
past 2 decades supporting the argument made by Parker
and Maynard Smith (1990) that optimality-based models
can improve our understanding of acclimation and
adaptation, even if organisms are not perfectly optimal.
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