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1. Abstract
The SPARC Data Initiative aims to produce trace gas 
climatologies for a number of species from a number of 
instruments. In order to properly compare these 
climatologies, and interpret differences between them, it is 
necessary to know the uncertainty in each calculated 
climatological mean field. The inhomogeneous and finite 
temporal-spatial sampling pattern of each instrument can lead 
to biases and uncertainties in the mean climatologies. 
Sampling which is unevenly weighted in time and space leads 
to biases between a data set's climatology and the truth. 
Furthermore, the systematic sampling patterns of some 
instruments may mean that  uncertainties in mean fields 
calculated through traditional methods that assume random 
sampling may be inappropriate. We aim to address these 
issues through an exercise wherein high resolution chemical 
fields from a coupled Chemistry Climate Model are sub-
sampled based on the sampling pattern of each instrument. 
Climatologies based on the sub-sampled data can be 
compared to those calculated with the full data set, in order to 
assess sampling biases. Furthermore, investigating the 
ensemble variability of climatologies based on sub-sampled 
fields will allow us to assess the proper methodology for 
estimating the uncertainty in climatological mean fields.
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2. How does instrument sampling 
affect the sample mean?

3. How does instrument sampling affect the 
standard error of the mean?
When one does not assume that measurements are independent and uncorrelated, the SEM can 
be written

where

and r̄  is the average correlation coefficient between the measurements of the sample (Jones et 
al., 1997). When r̄ = 0, the measurements are independent and uncorrelated, k = 1, and we get 
the familiar estimator for the SEM. The factor k thus describes the quality of the standard SEM 
expression, and that quality depends upon the degree of correlation between the measurements. 

By extending the sampling exercise described above, we assess the impact of orbital sampling 
patterns on the SEM of climatologies built from satellite based atmospheric measurements. 
Specifically, we estimate k for each latitude height bin of our grid using two methods.
1. Based on the definition of the SEM, we estimate the SEM by sampling the model data with an 

ensemble of 'equivalent' sampling patterns, which  are identical in latitude and time of day but 
randomly shifted in longitude. The SD of the sample means gives the SEM, and k is calculated 
as the ratio of the SEM and /√N.

2. k can be calculated explicitly by assessing the correlation between measurements. Using the 
model data, we calculate the correlation coefficient in time between the model anomalies 
from zonal mean at each location. 
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Figure 2: April sampling bias estimates are shown for solar 
occultation instruments ACE-FTS and SAGE II in terms of percent 
difference (left). Percent anomalies from monthly mean zonal 
mean are shown as a function of Julian day for the 1 and 10 hPa
surfaces, along with the locations of all measurements for the 
instrument within the month (right).
• Occultation instruments often sample specific latitudes only at 

one time of month, leading to bias when the sampled field 
exhibits sizeable variation over the month.

• Similar sampling patterns can lead to similar sampling biases. 
As a result, climatological means from these two instruments 
may agree with each other, but may differ from other 
instruments with uniform sampling.

Figure 3: April sampling bias estimates are shown for MIPAS 
and OSIRIS in terms of percent difference (left). Percent 
anomalies from monthly mean zonal mean are shown as a 
function of Julian day for the 1 and 10 hPa surfaces, along 
with the locations of where at least one measurement was 
collected within the month (right).
• The relatively uniform sampling of MIPAS leads to very 

little sampling bias, with values between -1 and +1%.
• The sampling of OSIRIS varies with the season, with dense 

sampling on the summer hemisphere. In transition 
months such as April, some latitudes care only sampled at 
the beginning or end of a month, leading to biases similar 
to those of the occultation instruments.
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Figure 4: Results of  SEM 
sampling exercise for 
ACE-FTS sampling in the 
month of April, and 
MIPAS sampling for the 
month of January. 
Quantities shown : 
“classic” SEM (a), SEM 
estimated by ensemble 
method (b), k calculated 
as ratio of a and b (c) 
and k calculated based 
on correlations of model 
data (d). 

4. Conclusions
• Sampling bias can easily affect the 

climatological means calculated from 
satellite instruments, especially those 
whose sampling pattern is irregular in 
time.

• Sample biases for O3 are estimated to 
reach values of 10% in some regions of 
the stratosphere.

• Similarities in the sampling patterns of 
instruments can lead to similar biases.

• Extending our sampling exercise to examine the standard error of 
the mean, we find the SEM of climatological means is often smaller 
than the one calculated by the classic equation.

• The uniform nature of sampling, along with large-scale variability in 
the stratosphere, can lead to negative correlations between 
measurements.

• Therefore, use of the classic SEM equation should generally 
produce a conservative estimate of the SEM. 
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Figure 5: Estimated sampling 
bias for O3 at 62.5°S for a 
selection of instruments.

*We use here daily mean O3 

fields from a WACCM version 3 
simulation , with 1.9° x 2.5°
horizontal resolution.

Case study: April sampling

Figure 1: Annual (ACE-FTS, 
SAGE II) and daily (MIPAS, 
OSIRIS) spatial sampling 
patterns for select instruments 
in the SPARC DI.

For both ACE-FTS and MIPAS sampling, the SEM estimated through the ensemble sampling experiment is less than 
the SEM estimate /sqrt(N),  at most latitudes and heights, leading to k values less than one. Exceptions to this 
occur at the edges of the latitudinal sampling extent of ACE-FTS, and at heights above 1  hPa for MIPAS. k<1 implies 
a negative mean correlation coefficient between measurements, which may be possible when a sampling pattern 
systematically samples opposite sides of the globe, and variability is dominated by large-scale, symmetric wave-like 
structures. k values obtained through the ensemble sampling exercise are confirmed by analysis of the correlation 
of model data for ACE-FTS sampling, but not for MIPAS.


