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Abstract. Marine records of the radiogenic isotope composition of the elements neodymium 

(Nd), lead (Pb), hafnium (Hf), strontium (Sr), and osmium (Os) allow the reconstruction of 

past continental weathering inputs on different time scales as a function of their respective 

oceanic residence times. Sr and Os have oceanic residence times significantly longer than the 

global mixing time of the ocean and are efficiently mixed on a global scale. Their isotope 

composition changes on long time scales as a function of plate tectonics and major orogenies, 

which allows their use as precise stratigraphic tools for the entire Phanerozoic. In contrast, Hf, 

Pb, and in particular Nd, have residence times on the order of or shorter than the global mixing 

time of the ocean, which results in distinct isotopic signatures of water masses and allows the 

reconstruction of past water mass mixing and weathering inputs on both long and short time 

scales. Here applications of these isotopes systems with a focus on the shorter residence time 

tracers are reviewed (without claiming to be comprehensive) and problems and potential 

solutions are discussed. Keywords: Radiogenic isotopes, paleo-oceanography, ocean 

circulation, water mass mixing, continental weathering   

1.  Introduction 

The radiogenic isotope signatures in rocks vary because one of the isotopes has changed its abundance 

over time due ingrowth caused by decay of a radioactive parent isotope (i.e. 
143

Nd is the decay product 

of 
147

Sm, which means that the ratio between 
143

Nd and primordial 
144

Nd is variable). Consequently 

the 
143

Nd/
144

Nd ratio of the rocks changes as a function of their age and the ratio between the 

concentrations of samarium (Sm) and Nd. The radiogenic isotope composition of dissolved trace 

metals in the ocean primarily reflects the balance between the radiogenic isotope composition of the 

continental weathering inputs and mantle derived sources, either weathering of mantle-derived basaltic 

rocks or hydrothermal contributions (Figure 1) (see [1,2] for a review).  
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Figure 1. Sources, sinks and pathways of trace metals with radiogenic isotope signatures. 

 

Strontium and osmium have long oceanic residence times between about 10,000 years and 2 

million years, respectively. Their radiogenic isotope compositions are consequently homogenously 

distributed in global seawater. Stored in authigenic carbonates, such as microfossil shells Sr and Os 

isotope records provide information about long term changes in weathering inputs as a function of 

tectonic changes, such as major orogenies or changes in the production rate of oceanic crust as a 

consequence of the break-up of continents. Due to these systematic global variations, which have been 

recorded at many locations and on many geological time scales, Sr isotopes have successfully been 

used for establishing a reliable marine stratigraphy over the entire Phanerozoic [3]. The global data 

base for variations in the Os isotope composition of global seawater is currently much smaller (e.g. 

[4]) but the data base is constantly growing [5] and Os isotopes have for example successfully been 

used for dating marine hydrogenetic ferromanganese crusts [6], in which Sr isotope variations are not 

reliably preserved (e.g. [7,8]).         

In contrast, Nd, Hf and Pb are particle reactive in seawater and thus their concentrations and 

radiogenic isotope compositions are not homogenously mixed in global seawater. These elements have 

residence times between 50-200 years (Pb, [9]) and 400 to 2000 years (Nd, Hf, [10,11,12]) which is on 

the order of or shorter than the global ocean mixing time. In the open ocean, where these metals are 

not directly influenced by weathering inputs, the radiogenic isotope systems of Nd and Hf can serve as 

isotopic fingerprints of water masses and thus quasi-conservative tracers of water mass mixing 

[12,13,14,15,16,17]. The water masses acquire their isotopic signatures in the source areas of the water 

masses through weathering inputs and subsequently only change their isotope composition by mixing 

with other water masses if circulation is vigorous enough, as is the case for Nd isotopes in the present 

day Atlantic Basin (Figure 2). These radiogenic isotope signatures are not influenced by any biological 

fractionation, which makes them valuable paleo proxies of past ocean circulation and weathering 

inputs provided that suitable archives are available.          
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Figure 2. Water mass distribution on a N-S transect in the present day Atlantic Ocean as 

characterized by salinity (in ‰) [18]. North Atlantic Deep Water (NADW) flowing south is 

characterized by its high salinity and is compensated by northward flowing cold Antarctic Bottom 

Water (AABW) and warmer low salinity Antarctic Intermediate Water (AAIW). Water column 

Nd data are superimposed, which clearly reflect this distribution of the water masses [14,15,16] 

( Nd values represent the deviation of the measured 
143

Nd/
144

Nd of a sample from that of the 

Chondritic Uniform Reservoir (CHUR) in parts per 10,000). The figure has been reprinted with 

permission from [16]. Copyright 1999 American Association for the Advancement of Science 

 

The radiogenic isotope composition of past seawater is either recorded in chemical 

sediments or seawater-derived chemical components, which incorporate the radiogenic isotope 

composition of seawater during their growth. Suitable chemical sediments recording long term 

changes in the radiogenic isotope composition of past deep waters are hydrogenetic ferromanganese 

crusts or nodules (see [1] for a review). Records from these chemical precipitates are generally 

restricted to a relatively coarse time resolution due to their extremely low growth rates on the order of 

few millimeters per million years. Advances in resolution of these archives were achieved through 

laser ablation measurements of Pb and Nd isotopes [19,20], which, however, still only allow a 

resolution on the order of 10,000 years per measurement making it difficult to reliably reconstruct 

glacial-interglacial variations.  

More recent efforts have therefore been focussed on the extraction of the radiogenic isotope 

signatures of seawater from archives permitting higher time resolution records. It has been shown for 

Nd isotopes that foraminiferal shells deposited in marine pelagic sediments can serve as archives for 

deep water [21] and even surface water Nd isotope signatures of the past [22,23,24,25]. The paleo 

surface water records have for example been used to reconstruct changes in riverine inputs or 

erosional signals in the Labrador Sea or the Bay of Bengal on millennial to million year time scales. 

The extraction of the Nd isotope signatures, in particular those of surface waters, is, however, 

complicated by the fact that the concentrations within the foraminiferal carbonate itself are extremely 

low. Despite the fact that several recent studies have suggested that the methods to acquire surface 

water data of the past are now reliable [e.g. 26] the method still needs further studies to determine the 

effects of potential diagenetic additions of Nd from deep waters with a different isotope signature [27].  

Other archives that have been successfully and reliably used to reconstruct the past Nd 

isotope composition of deep waters are fossil fish teeth, which incorporate the deep water Nd isotope 

composition during early diagenesis of the phosphate at the sediment water interface [28,29,30], and 

more recently deep water corals, which incorporate the Nd into their carbonate skeleton [31,32,33,34]. 

In the past ten years the most commonly used archive to extract deep water radiogenic isotope 

compositions for reconstructions of past weathering inputs and ocean circulation has been thin 

ferromanganese coatings on foraminifera or other sediment particles, which form through early 

diagenetic processes at the sediment water interface [35,36,37]. At particular locations the reliability 
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of this archive is also currently under debate due to effects of sediment redistribution or partial 

dissolution of volcanic glasses during leaching of the sediments.   

2.  Applications and case studies: Progress and problems    

2.1.  Pb and Hf isotopes: Tracing past weathering regimes and continental inputs 

Pb has a very short average residence time in seawater due to its high particle reactivity and 

consequently cannot be transported very far without vertical additions. The isotopic composition of Pb 

shows a large range of variations in continental rocks and is thus a suitable tracer for nearby 

continental weathering inputs in the past and with some restrictions also for short range water mass 

exchange in the past [38,39]. While the Nd isotope composition of a source rock is essentially 

transferred into seawater without large changes, the Pb and Hf isotope compositions are fractionated 

during weathering on land (incongruent weathering) and therefore also carry information about the 

prevailing weathering regime near the source regions of particular water masses. In the case of Pb, the 

controlling process has been the preferential release of highly radiogenic Pb, which is weakly bound in 

the mineral lattices due to radiation damage, from rock surfaces freshly eroded by glaciers [40]. Based 

on this process, Pb isotope time series from sediments in the western North Atlantic have for example 

been used to reconstruct the past retreat of the Laurentide ice sheet since the Last Glacial Maximum 

and thus the transition from dominantly glaciated landscapes with reduced chemical weathering to the 

modern weathering regime [41].  

The fractionation of Hf isotopes, in contrast, predominantly occurs because weathering-

resistant zircons contain large amounts of unradiogenic Hf, which are not released during chemical 

weathering, but can only significantly be introduced into seawater when glacial grinding of rocks 

releases a significant fraction of the Hf contained in the zircons (see [42] for a review). This process, 

together with preferential release of radiogenic Hf from some labile minerals [43,44] and potential 

hydrothermal inputs of Hf [45] are mainly responsible for the fact that seawater and its archives for a 

given Nd isotope signature show a more radiogenic Hf isotope composition if compared to expected 

values from bulk rock analyses. In addition, the weathering effects result in a reduction of the global 

range of Hf isotope ratios in seawater compared with bulk rock signatures. A trend towards more 

congruent weathering in the North Atlantic Ocean over the past 2-3 million years has been revealed by 

combined Hf-Nd isotope analyses of ferromanganese crusts from the western North Atlantic, which 

has been interpreted as a consequence of weathering conditions increasingly controlled by physical 

weathering during glacial periods since the major intensification of Northern Hemisphere Glaciation at 

2.7 million years ago [46]. 

2.2.  Nd isotopes: Reconstructing past ocean circulation  

The main interest in radiogenic isotope systems for paleo-oceanography, however, arises from the fact 

that radiogenic isotope systems can be used to constrain past water mass mixing on ocean basin scales. 

The most suitable system for this purpose is that of Nd, which can be measured precisely both in 

seawater and sedimentary archives and can provide clear information about the water mass structure, 

such as for example in the Atlantic Ocean (Figure 2). 

As a case study the evolution of the export of NADW from the North Atlantic to the 

Southern Ocean, one of the key currents of the global thermohaline circulation system, is discussed 

here. Such reconstructions have been carried out on different time scales. On the million years time 

scale ferromanganese crust records in the North Atlantic have revealed a substantial shift of the Nd 

isotope signature of NADW to less radiogenic values over the past 3 million years [38,47], probably 

mainly caused by increased supply of unradiogenic Nd from Northern Canada and Greenland in the 

course of the major intensification of Northern Hemisphere Glaciation [47]. Over the same period of 

time this shift was not mirrored by similar changes of the Southern Ocean’s main water mass, the 

Circumpolar Deep Water (CDW) [48], into which NADW is ultimately entrained and which today 

constitutes about 50-70 % of the Nd in CDW, the other 30-50 % being of Pacific origin with much 
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higher Nd isotope signatures [49]. This absent shift was interpreted as an overall decrease of NADW 

export by 15-35% over the past 3 million years although the observed Nd isotope variations of the 

Southern Ocean crusts may entirely have been caused by a progressively stronger decrease of NADW 

export only during glacial periods because samples from ferromanganese crusts integrate over several 

10,000 years of growth history [48].              

The major interest in past changes of the export of NADW is on much shorter millennial to 

centennial time scales. The first higher resolution record of CDW for the past 70,000 years was 

obtained from the ferromanganese coatings of a sediment core in the Cape Basin, which clearly 

revealed much more Pacific-like Nd isotope signatures of CDW during glacial Marine Isotope Stages 

(MIS) 4 and 2 [50]. In agreement with previously obtained benthic carbon isotope records this was 

interpreted as a significant decrease in NADW export to the Southern Ocean during glacial periods. 

Further work on the same sediment core at even higher, up to centennial scale resolution revealed 

similarly marked decreases in NADW export during the cold episodes (stadials) of MIS 3 [51]. While 

these stadial/interstadial excursions in Nd isotopes occurred synchronously with the benthic carbon 

isotope changes measured on the same samples, thus excluding uncertainties arising from the 

chronostratigraphy of the core, a phase lag has been observed at the main MIS transitions, in particular 

when going from warm to cold stages [51]. The records indicate that benthic oxygen isotope 

signatures and thus global ice volume started to change first, followed by benthic carbon isotopes 

some 2,000-3,000 years later, which were affected by changes in the carbon cycle. Lastly, Nd isotopes 

changed, again about 2,000 years later, indicating that changes of the ocean circulation cannot have 

triggered the sequence of events at these major climatic transitions but were only a consequence of 

other forcing factors [51].  

A major prerequisite for the validity of these conclusions is that the Nd isotope composition 

and concentration of Nd of the water masses from the Pacific and of NADW contributing to CDW 

have remained constant over at least the past 100,000 years. In the case of the Pacific mixing 

endmember, this is hard to prove by data due to a lack of suitable archives but given the size of the 

Pacific Basin and its dominant weathering inputs from mantle-derived rocks the assumption of a near 

constant endmember composition for this period of time seems justified. For the NADW, archives are 

available to reconstruct its Nd isotope composition at high time resolution. A laser ablation Nd isotope 

record of two ferromanganese crusts that grew in the water depth of present day NADW was just 

sufficient to resolve glacial and interglacial Nd isotope signatures of NADW and did not indicate 

major changes over the past 500,000 years [20]. A similar conclusion was obtained from Nd isotope 

data of deep sea corals collected within present-day NADW in the western North Atlantic [31], 

although it was not possible to find corals that grew during the last glacial maximum. A third set of 

records was also generated from ferromanganese coatings of sediments from Blake Nose on the 

western North Atlantic continental slope [52]. These drift sediments deposited under vigorous current 

speeds were strongly affected by sediment redistribution (focusing). Sediment particles deposited in 

water depths of highest along slope velocities showed least influence by sediment focusing and closely 

reflected present day Nd isotope signatures of NADW at a nearby location [15], whereas the shallower 
last glacial main boundary current indicated Nd isotope values of εNd = -10. This either reflects a 

significantly less radiogenic signature of the glacial equivalent of NADW, the Glacial North Atlantic 

Intermediate Water (GNAIW) [52], or a periodically stronger influence of intermediate waters from 

the Southern Ocean [53], or a combination of both. The reason for these discrepant results on the past 

Nd isotope composition of NADW is not yet clear but the reconstruction of past water masses from 

continental slope sediments may at least partly be influenced by exchange of the bottom waters with 

the slope sediments themselves, a phenomenon described as boundary exchange [54].  

At the same time, glacial deep waters in the western Atlantic have become significantly less 

radiogenic in their Nd isotope composition due to enhanced northward flow of deep water masses of 

Southern Ocean origin [52,55]. The study of [55] also revealed that leaching of bulk sediments may at 

some locations in the North Atlantic result in too radiogenic Nd isotope compositions and that 

leaching of only the carbonate fraction may lead to more reliable results depending on location.  
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In summary, it is obvious that more groundtruthing studies are required in this rapidly 

emerging field of chemical oceanography/paleoceanography. This in particular, is the case for the 

methods applied to extract the radiogenic isotope signature of past water mass signatures from marine 

sediments, which need to be developed further in order to be able to exploit their full potential in 

paleo-ceanography. While at many locations, even with complex detrital sediment compositions, bulk 

sediment leaching worked well and provided reliable results [see above,56,57], this is not the case for 

others. In addition, sediment redistribution and downslope transport may bias a reliable reconstruction 

of water masses for example from sediments on continental slopes [52,58]. There is, however, also a 

clear need for a significant increase in the global data base for the present day dissolved and 

particulate Nd and Hf isotope distribution in the ocean, both in the frame of process studies at the 

margins of the oceans, but maybe more importantly along basin wide ocean sections. This is required 

to better understand the relationships of these isotope systems to present day water mass distribution 

and ocean circulation and is currently being investigated by the international GEOTRACES program 

[59].  
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