- Shelf-basin exchange times of Arctic surface waters estimated from
- 2 ²²⁸Th/²²⁸Ra disequilibrium
- 3 M. Rutgers van der Loeff¹, P. Cai^{1,2}, I. Stimac¹, D. Bauch³, C. Hanfland¹, T. Roeske¹ and
- 4 S.B. Moran⁴

- 6 ¹Alfred-Wegener Institute for Polar and Marine Research, D27570 Bremerhaven, Germany
- ²State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen
- 8 361005, China
- 9 ³Leibniz Institute of Marine Sciences at University Kiel (IFM-GEOMAR), D24148 Kiel,
- 10 Germany
- ⁴Gradulate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island,
- 12 USA

13

14 Keywords: Radium isotopes, Arctic Ocean, GEOTRACES, natural radionuclides

15

- 16 *Corresponding author:
- 17 Michiel Rutgers van der Loeff
- 18 Alfred Wegener Institute for Polar and Marine Research
- 19 PO Box 120161, D 27515 Bremerhaven, Germany
- 20 E-mail: mloeff@awi.de
- 21 Phone: +49 471 4831 1259
- 22 Fax: +49 471 4831 1425

23

1

Abstract

1	5
L	J

The Trans Polar Drift is strongly enriched in ²²⁸ Ra accumulated on the wide Arctic shelves
with subsequent rapid off-shore transport. We present new data of Polarstern expeditions to
the central Arctic and to the Kara and Laptev Seas. Because ²²⁶ Ra activities in Pacific waters
are 30% higher than in Atlantic waters, we correct ²²⁶ Ra for the Pacific admixture when
normalizing 228 Ra with 226 Ra. The use of 228 Ra decay as age marker critically depends on the
constancy in space and time of the source activity, a condition that has not yet adequately
been tested. While ²²⁸ Ra decays during transit over the central Basin, ingrowth of ²²⁸ Th could
provide an alternative age marker. The high $^{228}\text{Th}/^{228}\text{Ra}$ activity ratio (AR=0.8 – 1.0) in the
central basins is incompatible with a mixing model based on horizontal eddy diffusion. An
advective model predicts that ²²⁸ Th grows to an equilibrium AR, the value of which depends
on the scavenging regime. The low AR over the Lomonosov Ridge (AR=0.5) can be due to
either rapid transport (minimum age without scavenging 1.1 year) or enhanced scavenging.
Suspended particulate matter (SPM) load (derived from beam transmission and particulate
²³⁴ Th) and total ²³⁴ Th depletion data show that scavenging, although extremely low in the
central Arctic, is enhanced over the Lomonosov Ridge, making an age of 3 yr more likely.
The combined data of ²²⁸ Ra decay and ²²⁸ Th ingrowth confirm the existence of a
recirculating gyre in the surface water of the eastern Eurasian Basin with a river water
residence time of at least 3 years.

1. INTRODUCTION

The Arctic Ocean comprises just 1% of World Ocean volume but receives 10% of W	/orld
river discharge. Surface water with a large river water component and imprints from	the wide
shelf areas are carried across the central Arctic in the Trans Polar Drift (TPD). With	the rapid
reduction of summer ice cover in the deep central Arctic major changes can be expec	cted in
primary production and biogeochemical cycles. How the central Arctic ecosystem w	ʻill
develop will strongly depend on the composition and circulation of the surface water	r. It is
therefore important to quantify the rate and mode of surface water exchange between	n shelves
and central basins. The circulation of surface waters in the central Arctic is not know	vn as
accurately as we know the ice drift. It took the ice 2.9 y to carry Nansen's Fram from	n the
Laptev Sea before leaving the Arctic at 80°N, but with 1979-2006 climatology this d	lrift
would on average have taken 3.7y (PFIRMAN et al., 2009). The rapid drift of Tara in	the years
2006-2008 (ca 1.5 years, DAMOCLES Project) shows that the ice drift has lately account	celerated,
as is also documented by numerous buoys deployed in the ice and tracked by satellit	e
(International Arctic Buoy Programme). The surface water residence time, which ne	eds not
be the same as that of the ice, was estimated by Schlosser et al. (1999) to be 2-5 yr, be	out these
authors mention that their method (tritium/ ³ He ages) gives a minimum estimate beca	iuse of
possible losses of ³ He to the atmosphere through leads in the ice. The residence time	of
freshwater in the Arctic is approximately 10 years (SERREZE et al., 2006).	
The natural radionuclide ²²⁸ Ra is a powerful tracer for shelf inputs to the open ocean	(Moore
et al., 1986) and is particularly well suited for such studies in the Arctic Ocean, which	:h

19 January 2012 3

comprises 25% of the World shelf areas. Earlier ²²⁸Ra measurements from 1991 (RUTGERS

VAN DER LOEFF et al., 1995) and 1994 (SMITH et al., 2003) showed high surface water ²²⁸Ra activities in the TPD. Kadko and Muench (2005) confirmed low ²²⁸Ra/²²⁶Ra in the Beaufort Gyre due to decay during the long residence time in this basin. Hansell et al. (2004) and Letscher et al. (2011) used this decay to derive decomposition rates of dissolved organic carbon. Kadko and Aagaard (2009) derived water mass ages of halocline waters using submarine-collected samples. This use of the decay of ²²⁸Ra to derive the time since a water parcel left the shelf is critically dependent on the assumption that the ²²⁸Ra activity of waters, when they leave contact with the shelf, is known and constant over time and space. This has not been tested yet. In fact, there are indications that there are differences between individual shelf areas (RUTGERS VAN DER LOEFF et al., 2003). Indications of a systematic difference between Eurasian and American shelf concentrations (SMITH et al., 2003) were not supported by Kadko and Muench (2005) who argue that their data from the Chukchi are in accord with published distributions in the Eurasian Arctic.

The general circulation of surface waters in the Arctic Ocean is characterized by an anticyclonic (clockwise) circulation in the Beaufort Gyre and a cyclonic circulation in the Eurasian Basin. The two systems meet in the TPD (PFIRMAN et al., 1997; RUDELS, 2009) which forms the transition between waters of Pacific and Atlantic origin. Depending on the Arctic Oscillation the general circulation changes between periods with stronger cyclonic or anticyclonic character (PROSHUTINSKY and JOHNSON, 1997). In the 1990s, a strong change towards cyclonic circulation weakened the Beaufort Gyre and the Atlantic/Pacific front shifted from approximately the Lomonosov to the Alpha/Mendeleev Ridges (MCLAUGHLIN et al., 1996; EKWURZEL et al., 2001), which resulted in a shift in the geographic positions of

maximum ²²⁸Ra concentrations (SMITH et al., 2003). Such changes in surface circulation likely change the residence time of water over the shelves and may therefore also have changed the accumulated ²²⁸Ra activities. While ²²⁸Ra may thus be a useful tracer for the variability in the outflow of shelf water from the Laptev Sea (SMITH et al., 2003), the calculation of surface water age from ²²⁸Ra activities becomes questionable. It is therefore desirable to have additional tracers of the transit time of water in the TPD.

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

92

93

94

95

96

97

The ingrowth of ²²⁸Th into its parent ²²⁸Ra could serve that purpose. We know from studies of ²³⁴Th that thorium is effectively removed on the shelves (Barents Sea: (COPPOLA et al., 2002; RUTGERS VAN DER LOEFF et al., 2002); Chukchi Sea: (MORAN et al., 1997; MORAN et al., 2005; LALANDE et al., 2007; LEPORE et al., 2007); Beaufort Sea (MORAN and SMITH, 2000), Laptev Sea (CAI et al., 2010)). These high thorium scavenging rates also cause ²²⁸Th to be depleted with respect to 228 Ra (TRIMBLE et al., 2004; LEPORE and MORAN, 2007). In the Canada Basin thorium scavenging rates decrease northward (MORAN et al., 1997; TRIMBLE et al., 2004; TRIMBLE and BASKARAN, 2005) and reach very low values on the Alpha Ridge in the central Arctic (BACON et al., 1989). Indeed, in large areas of the central Arctic, scavenging rates are extremely low (CAI et al., 2010). Thus, when ²²⁸Th-depleted shelf waters are carried along in the Trans Polar Drift and flow into the low-scavenging regime of the central Arctic, it can be expected that ²²⁸Th grows into equilibrium with its parent ²²⁸Ra. Here we investigate to what extent the ²²⁸Th/²²⁸Ra ratio in Arctic surface waters can be used to derive the age of a surface water parcel since it left the high-scavenging regime on the shelf.

114

113

2. METHODS

118 2.1. ARK XI/1 (1995)

During the German-Russian expedition with RV Polarstern to the Laptev Sea, 7 July to 20 Sept. 1995 (RACHOR, 1997), seawater samples of about 40 L were collected at 37 stations (Table 1) with the 24 x 12 L Rosette sampler. After filtration, a solution of barium chloride was added to the samples to coprecipitate radium with BaSO₄. At 16 of these stations the samples had previously been acidified, spiked with Fe and 230 Th and neutralized with ammonia to isolate Th isotopes on a Fe(OH)₃ precipitate. This coprecipitation does not remove Ra (LI et al., 1980). The BaSO₄ precipitates were dried and put in small tubes. Radium activities were determined by gamma spectrometry at the home laboratory. The freshwater components were calculated using the δ^{18} O data of Frank (1996) and the three-component (Atlantic water, meteoric water and ice melt) mixing model of Östlund and Hut (1984) with endmember compositions according to Ekwurzel et al. (2001).

131 2.2. ARK XXII/2 (2007)

Surface water samples (150-300L) were collected during Polarstern Expedition ARK XXII/2, 29 July – 7 Oct 2007 (SCHAUER, 2008) (Fig. 1). Samples from the seawater intake at 7m depth were filtered over 1-μm polypropylene cartridges, passed over MnO₂ fibre at a flow rate of at most 1 L/min to obtain a Ra extraction efficiency of at least 97% (MOORE, 2008) and counted for ²²⁴Ra with delayed coincidence scintillation counting (MOORE and ARNOLD, 1996). For the calculation of counts due to ²²⁴Ra we used the chance coincidence correction,

not the alternative procedure based on total counts (MOORE, 2008). The expected error is 8-14% (GARCIA-SOLSONA et al., 2008). The same procedure can in principle be used to determine ²²⁷Ac through ²²³Ra (GEIBERT et al., 2008) but count rates were influenced by the high count rates of ²²⁴Ra and buildup of ²²²Rn and activities were low and are not reported here. In the home laboratory, Ra was leached from the fibre (ELSINGER et al., 1982), coprecipitated as BaSO₄ (CUTTER et al., 2010) and counted with gamma spectroscopy for ²²⁶Ra and ²²⁸Ra (MOORE, 1984). Beyond the reach of the unsupported ²²⁴Ra from its shelf source (cf. KADKO et al., 2008), ²²⁴Ra must be in equilibrium with its parent ²²⁸Th. That means that in offshore regions, the delayed coincidence technique provides an indirect technique to monitor ²²⁸Th. In studies where excess ²²⁴Ra is measured, the ²²⁴Ra is recounted after the decay of the first generation ²²⁴Ra in order to determine ²²⁸Th-supported ²²⁴Ra. We have recounted the samples after two half lives and found generally a 20% reduction in count rate. Because we observed this difference even in the central Arctic where an excess activity is not possible at large distance to any potential source, we interpret this not as indication of real in-situ ²²⁴Ra excess, but rather as an apparent excess due to insufficient collection of ²²⁸Th. This could be due either to filtration, which removes the particulate ²²⁸Th, or to non-quantitative adsorption of Th to the Mn fibres. We have also considered the possibility that the seawater inlet of Polarstern had accumulated ²²⁸Th during previous expeditions, which would then serve as a continuous source of ²²⁴Ra as has been observed on other ships. The fact that we were able to measure low ²²⁴Ra in the Atlantic inflow makes it unlikely that such a contamination was a significant contribution to the observed excess ²²⁴Ra. We therefore consider the ²²⁴Ra activities derived from the initial count rates to represent the total ²²⁸Th activity and in this paper will report

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

them as ²²⁸Th. In shelf regions this procedure might overestimate ²²⁸Th if a significant 161 contribution of unsupported ²²⁴Ra were present. On stations 407 and 411 on the Laptev shelf 162 we deployed in situ pumps and measured ²²⁸Th with the double-MnO₂ cartridge technique 163 (BASKARAN et al., 1993) at four horizons. Dissolved ²²⁸Th was 13±8 dpm/m³, particulate 164 ²²⁸Th was 1-2 dpm/m³ compared with a ²²⁴Ra activity of 21±15 dpm/m³ measured with 165 166 RaDeCC in discrete water samples collected at these stations (Table 2), resulting in an average ²²⁴Ra/²²⁸Th ratio of 1.45. In five cases where we measured ²²⁴Ra (RaDeCC) and 167 ²²⁸Th (in situ pumps) at the same station and depth, ²²⁴Ra/²²⁸Th AR ranged from 0.3-2.1 168 (Table 2). As values of this AR below 1 are unlikely, we explain the wide range by 169 170 inhomogeneity while the two isotopes were sampled three hours apart with different gear. We conclude that in individual shelf water samples the measured ²²⁴Ra/²²⁸Ra may 171 overestimate in situ ²²⁸Th/²²⁸Ra by up to a factor of 2 (Table 2). 172 173 The freshwater and Pacific components for ARK XXII/2 (2007) were calculated using $\delta^{18}O$ 174 175 and nutrient data following (BAUCH et al., 2011) using the N/P characteristics of Atlantic and 176 Pacific waters following Jones et al. (1998) and Yamamoto-Kawai et al. (2008). further 177 details on calculations and errors refer to Bauch et al. (2011). For stations where the 178 calculated Pacific component f_P was negative and for stations on the Laptev shelf (Sta 385 179 and beyond) f_P was set to zero. 180 Some depth profiles were obtained on the Laptev shelf with in situ pumps equipped with 181 size-fractionated filters and twin MnO₂-coated cartridges. Cartridges were leached with a 182 Soxhlet system and Ra was precipitated as BaSO₄ and gamma counted as the other samples.

183 The Th fractions of the Soxhlet leaches and of the filter digest solutions (CAI et al., 2010) were analysed for ²²⁸Th with alpha spectrometry. 184 185 Particulate ²³⁴Th was monitored with a semi-automated filtration apparatus (RUTGERS VAN 186 187 DER LOEFF et al., 2011; RUTGERS VAN DER LOEFF et al., 2006) set to filter approximately 188 every 4 hours 4.9 L of surface water from the ship's seawater intake over 25mm QMA filters 189 that were subsequently dried and counted for beta activity. Graphics were produced with the ODV software package (SCHLITZER, 2010). All data of ²²⁸Th and Ra isotopes are presented in 190 191 Tables 3 and 4 and are available in the database PANGAEA 192 (doi:10.1594/PANGAEA.772682). On this GEOTRACES expedition a wide spectrum of 193 other trace elements and isotopes was measured (see 194 http://www.bodc.ac.uk/geotraces/data/inventories/arkxxii_2/). 195 196 3. RESULTS 197 3.1 ²²⁶Ra 198 199 In many studies on ²²⁸Ra in the open ocean the long-lived isotope ²²⁶Ra has been used as a 200 201 yield tracer determined either in discrete samples (SMITH et al., 2003; RUTGERS VAN DER LOEFF et al., 2003) or derived from published relationships between ²²⁶Ra, salinity and 202 203 silicate (Broecker et al., 1976; Moore and Smith, 1986; Rutgers van der Loeff et al., 204 1995). 205

A plot of ²²⁶Ra activity against f_r (Fig. 2a) shows the major features of ²²⁶Ra in surface waters in the Arctic Ocean: First, ²²⁶Ra activities in all samples with a significant component of Pacific water are approx 30% higher than in the Eurasian Basin (Fig. 2a and map in Fig. 3). Moore and Smith (1986) had already observed that the surface water concentration of ²²⁶Ra at the Cesar Ice camp station (85°50′N, 108°50′W: 107 dpm/m³) was somewhat higher than reported North Atlantic and Greenland Sea surface values corrected to 35 % salinity and zero dissolved silicate (68-73 dpm/m³, BROECKER et al., 1976); (70±2 to 77±2 for TTO samples N of 70°N KEY et al., 1992). Moore and Smith (1986) argued that the Cesar values were closer to North Pacific surface values from the GEOSECS program (96 dpm/m³ at 32 μM Si, CHUNG and CRAIG, 1980). Similarly high ²²⁶Ra activities (113.8, 113.8, 109.7 dpm/m³) were observed in surface waters of the deep (>1000m) Canada Basin by Smith et al. (2003) but data published for the Chukchi and Beaufort shelf areas (SMITH et al., 2003; KADKO and MUENCH, 2005; LEPORE et al., 2009) are more variable and appear to be strongly affected by biological uptake and release in these productive shelf regions.

Second, offshore surface values in the Eurasian Basin, excluding samples with Pacific influence and samples with significant Ba uptake on the Laptev (Sta 400-411) and Barents (Sta 239) shelves (blue symbols without annotation in figure 2a) have a slight tendency to lower values at higher $f_{\rm r}$

225
226
Ra = 71.5 -56 f_r; R^2 = 0.33, n=26 (1)

This trend can be compared with data from the Kara Sea (RUTGERS VAN DER LOEFF et al., 2003) that follow the regression 226 Ra = 75.2 -48 f_r; R^2 = 0.91, n=14, excluding a pure fresh water sample from the Ob river.

220	
44)	

And third, on the Laptev shelf, a prominent effect of biological cycling is observed with \$^{226}\$Ra values in surface waters being reduced by up to 48% relative to eq. 1 (Fig. 2a), while they are enhanced in subsurface waters. A reduction is also observed in the surface water at station 239 (cf. Fe data in Klunder et al., submitted). This biological cycling is closely linked to the cycling of Ba (cf. Guay and Falkner, 1997; Abrahamsen et al., 2009; Roeske et al., submitted) (Fig. 2b). Both Ba and \$^{226}\$Ra are depleted in the Laptev and Barents (Sta 239) surface waters, while they show enhanced values in Laptev bottom waters. Moreover, both Ba and \$^{226}\$Ra show an offset between Eurasian and Pacific surface waters in the central Basins (cf. Roeske et al., submitted).

240 3.2 ²²⁸Ra

3.2.1 Distribution of ²²⁸Ra in summer 2007

The distribution of ²²⁸Ra in 2007 (Fig. 4a) shows high values in the TPD. The surface water in the Atlantic inflow and over the Barents shelf has low ²²⁸Ra activities. The maximum activities were found over the Makarov Basin while activities decreased towards the Canadian and Amundsen Basins. For comparison with literature observations we also present the ²²⁸Ra data normalized to ²²⁶Ra (Fig. 4b). As a result of the Atlantic-Pacific gradient in ²²⁶Ra (Fig. 3), the maximum in the ²²⁸Ra/²²⁶Ra ratio is somewhat shifted towards the Lomonosov Ridge in comparison with the distribution of ²²⁸Ra, although this is not easily distinguished in the graphs (Fig. 4b compared to a). Anyhow, the maximum signal in ²²⁸Ra/²²⁶Ra ratio in the TPD has moved from the Alpha Ridge (SMITH et al., 2003) back

towards the Lomonosov Ridge (Fig. 4b), in agreement with hydrographic observations of this relaxation to anticyclonic, pre-1990s Arctic circulation (MORISON et al., 2006). It should be noted that all samples on the section over the Gakkel Ridge towards the Laptev shelf (section 5) have high ²²⁸Ra activities well in excess of the Atlantic inflow, showing the influence of shelf waters. Surface waters on this section have a substantial river water fraction (about 10%), much larger than further west toward Fram Strait at the longitude of the Voronin Trough (on section 3) where ²²⁸Ra activities were also much lower.

Bottom waters on the shelf are strongly enriched in ²²⁶Ra (Fig. 2b) but also in ²²⁸Ra (Fig. 2c). Even higher enrichment of ²²⁸Ra in bottom waters of the Chukchi shelf has been observed by Lepore and Moran (2007). Diffusive input of the long-lived ²²⁶Ra usually does not cause as prominent an accumulation of ²²⁶Ra in shelf waters as is seen for the shorter lived ²²⁸Ra. The enrichment of both isotopes in shelf bottom waters therefore implies that the ²²⁸Ra accumulation in bottom waters results not only from a release from shelf sediments but also from biological cycling on the shelf. It is not known whether Submarine Groundwater Discharge contributes to this enrichment.

3.2.2 ARK XI/1: defining the freshwater endmember in the Laptev Sea

Intensive sampling in 1995 (ARK XI/1) provides detailed data to define the ²²⁸Ra source in the Laptev Sea in that year. ²²⁶Ra and ²²⁸Ra activities in the Laptev Sea in 1995 are listed in Table 3. Offshore stations have lower ²²⁸Ra activities than most shelf stations when plotted against salinity (Fig. 5a). Even if we correct for the dilution by ice melt water by plotting

 228 Ra against the fraction of river water using δ^{18} O (Fig. 5b), the offshore waters still stand out by their low 228 Ra activities. Essentially the same results are obtained when plotting the 228 Ra/ 226 Ra activity ratio (AR) (Fig. 5c), implying that the pattern is not a consequence of biological uptake/release. This normalization with 226 Ra is justified in the Laptev Sea where the fraction of Pacific water can be neglected. The shelf waters correspond well with earlier data from the Laptev shelf (RUTGERS VAN DER LOEFF et al., 2003). The low offshore 228 Ra activities imply either a freshwater source with lower 228 Ra activity from the Kara Sea, or the existence of old recirculated water where 228 Ra has decayed.

 $3.3^{228} \text{Th}/^{228} \text{Ra}$

²²⁸Ra decays to ²²⁸Th (1.9 y half life), which in coastal waters is effectively scavenged giving a typical ²²⁸Th/²²⁸Ra ratio <0.05 in coastal waters (KAUFMAN et al., 1981). Indeed, such low values were also observed in coastal waters of the Canada Basin (TRIMBLE et al., 2004; LEPORE and MORAN, 2007). Further offshore in the Arctic, we know that Th scavenging rates are very low (CAI et al., 2010) which means that ²²⁸Th/²²⁸Ra ratios must increase by ingrowth.

The ratio of ²²⁸Th to its parent ²²⁸Ra (Fig. 6) in surface waters over section 3 and section 4+5 across the central Arctic Ocean shows how over the deep basins, the absence of strong scavenging allows ²²⁸Th to grow into equilibrium with its parent. The ingrowth of ²²⁸Th over the deep basins in contrast to the ²²⁸Th-depleted shelf waters is clearly seen in a map of ²²⁸Th/²²⁸Ra in surface water where the present data are compared with literature values (Fig.

7). Lowest ratios (<0.3) are observed on the Barents, Kara and Laptev shelf and in the Beaufort Sea. Highest ratios (>0.8) are found in the eastern Eurasian Basin including the section over the Gakkel Ridge and on Ice Island T3 in the central Canada Basin. The relatively high AR observed in the low-salinity Polar Surface Layer (PSL) at the ICEX station, only 200km offshore in the Canada Basin, may be explained if this water represents old recirculated water from the Canada Basin (KADKO and MUENCH, 2005). These authors also observed high ²²⁸Th/²²⁸Ra AR on the northern, deep side of their three sections across the Chukchi shelf (their stations 8-18 and 34: depth>500m, AR=0.45±0.08, n=9). All other stations from that study from the shallower waters in Bering Sea and Chukchi shelf had AR≤0.26 (AR:0.09±0.08, n=17). The inflow at the Bering Strait has very low ²²⁸Th/²²⁸Ra AR (<0.06, KADKO and MUENCH, 2005). Lepore and Moran (2007) showed that the wide variation in ²²⁸Th/²²⁸Ra ratios on the Chukchi shelf is in part a seasonal phenomenon.

4. DISCUSSION

314 4.1 ²²⁸Ra

316 4.1.1 ²²⁸Ra vs ²²⁸Ra/²²⁶Ra activity ratio

As mentioned above, the ²²⁸Ra/²²⁶Ra AR has often been used instead of the ²²⁸Ra activity itself as tracer. This has the advantage of somewhat better analytical precision because usually ²²⁸Ra is calculated from a ²²⁸Ra/²²⁶Ra AR multiplied by the absolute ²²⁶Ra activity determined separately. Moreover, the procedure corrects for biological uptake/release. On the

Laptev shelf, biological uptake removed 25-48% of ²²⁶Ra and 31% of Ba (ROESKE et al., submitted) in the surface water (Fig. 2). On the other hand, one should always be careful applying a mixing plot using ARs because ratios do not mix linearly (KADKO and MUENCH, 2005) (cf. Fig. 8). Moreover, in the Arctic we see that there are large differences in ²²⁶Ra activity between waters from Atlantic and Pacific origin (Fig. 2). In studies like ours with large geographical coverage in the Arctic Ocean, a normalization with ²²⁶Ra then requires a correction for the Atlantic/Pacific mixing ratio. For that purpose we introduce here the parameter ²²⁶Ra*, in which the ²²⁶Ra activity of a sample is corrected for the additional activity it obtained from its Pacific water fraction according to

331
$${}^{226}Ra^* = {}^{226}Ra \frac{(f_P + f_A)^{226}Ra_A}{(f_P^{226}Ra_P + f_A^{226}Ra_A)}$$
 (2)

where f_A and f_P are the Atlantic and Pacific water fractions and $^{226}Ra_A$ and $^{226}Ra_P$ are the ^{226}Ra activities of pure Atlantic and Pacific waters. In equation (2) the numerator (f_P + f_A) $^{226}Ra_A$ gives the ^{226}Ra if all seawater were of Atlantic origin while the denominator ($f_P^{226}Ra_P + f_A^{226}Ra_A$) gives the ^{226}Ra expected from a conservative mixing of the two seawater endmembers. It should be noted that there are few data for the Pacific source water, and that the ^{226}Ra activity for the northernmost Pacific GEOSECS station 219 (96 dpm/m³ at 20m depth) has a Si concentration of $32\mu M$. If we corrected this for salinity and zero silicate as this was done for Atlantic water by Cochran et al. (1995), we would find an unlikely ^{226}Ra activity in the Pacific source water of only 44 ± 7 dpm/m³. The value we use here for $^{226}Ra_P$, the average of all samples with a Pacific water component >50% (92.4 \pm 1.7 dpm/m³, n=4, cf. Fig. 2a), should therefore not be regarded as the ^{226}Ra of pure Pacific surface water but of the water that has been preconditioned during its passage through the Bering Strait and over the

neighboring Arctic shelves. This correction procedure introduces further uncertainties. In the following we therefore prefer to discuss ²²⁸Ra activities next to ARs.

4.1.2 ²²⁸Ra as age marker

The ²²⁸Ra distribution (Fig. 4) shows the pathway of the TPD centered over the Makarov Basin with decreasing activities towards the Canada and Amundsen/Nansen Basin. This is consistent with maximum concentrations observed for other tracers of terrigenous influences: Fe (KLUNDER et al., submitted), Mn (MIDDAG et al., 2011), CDOM (Walker and Amon personal communication and Walker 2009). The question we address here is to what extent the deviation from these correlations in the ²²⁸Ra data can be interpreted as decay and thus be used as age marker, or rather are due to variability in endmember concentrations. To that effect, we plot the ²²⁸Ra activity against the river water component (Fig. 8a). For comparison with literature data where ²²⁸Ra has usually been normalized with ²²⁶Ra we also show the same data after normalization with ²²⁶Ra* in Fig. 8b.

4.1.3 Formation of ²²⁸Ra excess on the shelf produces a range of endmembers.

There are two major sources of ²²⁸Ra to the ocean: first, by release from sediments, a source that is particularly important on the vast and shallow Siberian shelves. Some further ²²⁸Ra may be released from ice rafted sediments upon ice melt. The second major source is a phase adsorbed to riverine particles that is released in the first stages of estuarine mixing. In the Arctic, the first source is considered much more important than the second (Rutgers van der

Loeff et al. (2003) and references therein). Although this means that the major source of ²²⁸Ra in the Arctic does not coincide with the rivers, it has been argued that the combined effect of the river source and the diffuse shelf source on offshore surface waters (i.e. their "far-field" effect) would be similar to the input of a river component carrying a ²²⁸Ra signal. A surface water mass in the central Arctic could then be treated as a mixture of ²²⁸Ra-poor seawater, ice-melt water and a freshwater component represented by a virtual endmember ²²⁸Ra activity. The early data sets in the central Arctic could be well described by this model, although it was questioned whether the various shelf components could be treated as one single endmember composition (RUTGERS VAN DER LOEFF et al., 1995). In a subsequent paper we found much lower ²²⁸Ra activities at the same salinity or river water fraction in the Kara Sea compared to the Laptev Sea, (RUTGERS VAN DER LOEFF et al., 2003). In the Kara Sea the greater depth counteracts the rapid buildup of ²²⁸Ra. Schlosser (1994) gives an estimate of 3.5 ± 2 y for residence time of fresh water on Siberian shelves. During this time there is an eastward circulation and shallowing depths from the Kara to the Laptev to the East Siberian Sea before the waters turn northward and leave the shelf in the TPD. It is thus likely that ²²⁸Ra continues to accumulate eastward and there is no reason why this further accumulation should be correlated with continued freshwater inputs. This is why we concluded that water may thus reach the shelf edge with variable shelf signatures (RUTGERS VAN DER LOEFF et al., 2003).

386

387

388

389

390

385

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

The low 228 Ra activities observed offshore in the Laptev Sea during 1995 (Fig. 5) could indeed be interpreted to result from a low- 228 Ra freshwater source, e.g. from the Barents or Kara Sea. This distribution is confirmed by the data of the 2007 expedition. Surface samples (with $f_r > 2.5\%$) from the Laptev shelf of both expeditions have high 228 Ra activities in

agreement with the mixing line based on 1991 data from the Eurasian Basin (RUTGERS VAN DER LOEFF et al., 1995). Surface samples of stations with >260m bottom depth of both expeditions have ²²⁸Ra activities that are only about half those predicted by the conservative, non-decayed mixing line (Fig. 5c).

At this point it cannot be decided whether the low offshore ²²⁸Ra activities are due to a lower freshwater endmember activity advected from the Kara Sea, or result from decay which would imply that the offshore surface waters contain a river water fraction with a long residence time in the deep Eurasian Basin.

This situation is very similar to the distribution observed by Kadko and Muench (2005) in the Beaufort Sea. These authors observed much lower ²²⁸Ra activities in offshore low salinity Polar Surface Water (Polar Surface Layer, PSL) and concluded that these were waters that had been recirculating in the Canada Basin. They used the ²²⁸Ra activities to estimate the age of the PSL water to be up to 14 years. But also in the Canada Basin the actual freshwater ²²⁸Ra endmember is not well constrained, and a rigorous distinction between variability in source concentration and radioactive decay cannot be made. In the following we will use the additional tracer ²²⁸Th/²²⁸Ra to distinguish between these alternative explanations.

4.2 ²²⁸Th/²²⁸Ra ratios

Here we will investigate to what extent the ingrowth of ²²⁸Th into the shelf-induced ²²⁸Ra can itself serve as a time marker. For this discussion it is essential to know the isotope composition of the water that constitutes the source of the Ra in the central Arctic ocean. In

Fig. 7 we have seen the gradual increase of ²²⁸ Th/ ²²⁸ Ra AR from shelf to central ocean, but
the differences are even more apparent in a plot of ²²⁸ Th versus ²²⁸ Ra (Fig. 9). There is a
large variation in concentrations on the shelves and part of the variation in ²²⁸ Th/ ²²⁸ Ra AR is
seasonal (LEPORE and MORAN, 2007). While plankton growth and export leads to the
removal of thorium, there is also a significant uptake of radium (Fig. 2), which might even
contribute to the sometimes relatively high AR values in shelf waters with low ²²⁸ Ra (Fig. 9).
However, these ²²⁸ Ra-depleted shelf waters clearly cannot be the source of the high ²²⁸ Ra
activities in the TPD (51-92 dpm m ⁻³ and one exceptionally high value of 123 dpm m ⁻³ , Sta
349). Instead we must look for source waters with at least a similarly high ²²⁸ Ra activity. At
high 228 Ra activities (>80 dpm m ⁻³) the 228 Th/ 228 Ra AR is only 0.1-0.2 (Fig. 9) and in the
following we will assume that the ²²⁸ Ra-enriched shelf water leaves the shelf with an AR
F_0 =0.15±0.05. As we will show later, the age estimates are not very sensitive to errors in F_0 .
4.3 Models for the distribution of ²²⁸ Ra and ²²⁸ Th.
4.3.1 constant ²²⁸ Ra: concordia with ²³⁴ Th/ ²³⁸ U.
In a system with a constant ²²⁸ Ra (and ²³⁸ U) activity and a constant scavenging rate of Th, the
steady state ²²⁸ Th/ ²²⁸ Ra values should be concordant with ²³⁴ Th/ ²³⁸ U ratios (KAUFMAN et al.,
1981). Indeed, the range of values we observed on the shelf is concordant with observed
234 Th/ 238 U ratios of 0.8-0.9 (CAI et al., 2010) (Fig. 10a).
A similar calculation can be made for the deep basins. Here, the very low thorium
scavenging rates found by Cai et al. (2010) must allow ²²⁸ Th activities to increase. Outside

the more productive shelf regions the depletion of ²³⁴ Th with respect to ²³⁸ U was largely
limited to the upper mixed layer which was usually only approx 20m deep. In 30 stations
over the slope and the central basin 234 Th/ 238 U in the surface layer (5m depth) was 0.89 \pm
0.11. But the depletion follows a distinct geographical trend (Fig. 11, data from CAI et al.,
2010). The five stations on the Barents slope (depth range 1533-3115m) stand out by strong
depletion (234 Th/ 238 U <0.8) (Fig. 11b) which we attribute to export related with production
influenced by the Barents shelf (WASSMANN et al., 1999; WASSMANN et al., 2004; LALANDE
et al., 2008), as was also observed in Ba (ROESKE et al., submitted) and Fe (KLUNDER et al.,
submitted) data. Excluding the Barents slope, the average ²³⁴ Th/ ²³⁸ U in the surface layer of
all stations with depth $>1500m$ was 0.942 ± 0.060 (n=18) in good agreement with the data
from three permanently ice-covered stations in the Canada Basin sampled by Trimble and
Baskaran (2005) (0.946 \pm 0.057). If we restrict the region further to the central Arctic N of
84°35'N the average becomes 0.958 ± 0.058 (n=11). These 234 Th/ 238 U ratios correspond in
steady state to a thorium scavenging rate of 0.46 (0-1.16) y ⁻¹ . Again in steady state, this
would cause a ²²⁸ Th/ ²²⁸ Ra ratio of 0.24-1.0. Indeed, in the central Eurasian and Canada
basins ²²⁸ Th/ ²²⁸ Ra ratios (our own and literature values) are far above the ratio of shelf waters
(Figs 6, 7, 9). But apart from the crude comparison in Fig. 10, the concordia concept is not a
satisfactory description of the data. The isotope distribution cannot be described as steady
state because, as we shall see, ingrowth of ²²⁸ Th causes gradual changes in the ²²⁸ Th/ ²²⁸ Ra
ratio. Seasonal variations are a further cause of large deviations from concordia, especially in
shelf areas (LEPORE and MORAN, 2007).

4.3.2 open system approach: eddy diffusion.

- In ocean margins where ²²⁸Ra is released from coastal sediments and where coastal waters
- exchange with offshore waters by horizontal mixing (eddy diffusion), ²²⁸Ra decreases
- exponentially with distance offshore by horizontal mixing and decay. In these systems the
- distribution of 228 Th (activity A_T) is governed by decay of 228 Ra (activity A_R), ingrowth and
- scavenging of 228 Th (scavenging rate λ_s) and mixing, as discussed by Broecker et al. (1973):

$$468 \qquad \lambda_R A_R = k \frac{\partial^2 A_R}{\partial x^2} \tag{3}$$

$$469 \qquad (\lambda_T + \lambda_s) A_T = A_R \lambda_T + k \frac{\partial^2 A_T}{\partial x^2} \tag{4}$$

- where k is the horizontal eddy diffusion coefficient, x is distance offshore and λ_R and λ_T are
- 471 the decay constants of ²²⁸Ra and ²²⁸Th, respectively. The offshore distribution of ²²⁸Ra
- follows a simple exponential decay (BROECKER et al., 1973):

$$A_R = A_{R^0} e^{-\sqrt{\frac{\lambda_R}{k}}x} \tag{5}$$

- 474 where the superscript ° denotes the situation when the water leaves the shelf. For the
- boundary condition of a constant 228 Th/ 228 Ra AR on the shelf (F₀) we find the solution:

$$A_T = \frac{\lambda_T A_{R^0}}{\lambda_T + \lambda_s - \lambda_R} e^{-\sqrt{\frac{\lambda_R}{k}}x} + (F_0 A_{R^0} - \frac{\lambda_T A_{R^0}}{\lambda_T + \lambda_s - \lambda_R}) e^{-\sqrt{\frac{\lambda_T + \lambda_s}{k}}x}$$
 (6)

- which for the condition of 100% scavenging on the shelf (F₀=0) simplifies to (BROECKER et
- 478 al., 1973)

$$A_{T} = \frac{\lambda_{T} A_{R^{0}}}{\lambda_{T} + \lambda_{s} - \lambda_{R}} \left(e^{-\sqrt{\frac{\lambda_{R}}{k}}x} - e^{-\sqrt{\frac{\lambda_{T} + \lambda_{s}}{k}}x} \right)$$
 (7)

480 Equations (5) and (6) define a relationship between ²²⁸Th and ²²⁸Ra,

481
$$A_{T} = \frac{\lambda_{T}}{\lambda_{T} + \lambda_{s} - \lambda_{R}} A_{R} + (F_{0} - \frac{\lambda_{T}}{\lambda_{T} + \lambda_{s} - \lambda_{R}}) A_{R^{0}} \left(\frac{A_{R}}{A_{R^{0}}}\right)^{\sqrt{\frac{\lambda_{T} + \lambda_{s}}{\lambda_{R}}}}$$
(8)

which is displayed in Fig. 12 for several values of the Th scavenging rate and a shelf source with a 228 Th/ 228 Ra AR F₀=0.15. We have already seen that the 228 Ra activity of this source is not well constrained. Based on the distribution of concentrations in shelf waters we use here 110 dpm m⁻³ although locally activities up to 180 dpm m⁻³ are found (Table 3), and even higher in bottom waters on the shelves. With these assumptions, the mixing model cannot explain our data. This conclusion is not affected by possible changes in F₀ (broken lines in Fig. 12) as might e.g result from our overestimate of 228 Th on the shelf due to excess 224 Ra. Especially for the high 228 Ra activities we observed in the TPD, the high 228 Th data are incompatible with the mixing model, even in the absence of scavenging (λ_s =0). The continued exchange in this model with the Th-depleted shelf water does not allow Th to grow to the high values observed offshore.

4.3.3 closed system approach: advection

Neither the steady state model with constant ²²⁸Ra and ²³⁸U activities leading to a concordia with ²³⁴Th/²³⁸U, nor a mixing model based on eddy diffusion gives an appropriate representation of the situation in the central Arctic. Here the surface circulation is characterized by the TPD. When the shelf waters turn offshore, lose contact with the shelf and flow as a thin lens over deep water, ²²⁸Ra is no longer supplied by the sediments and will decay. At the same time, the reduction in scavenging rate will allow the gradual ingrowth of ²²⁸Th. In this advective system it is more appropriate to calculate the time development of

parent and daughter as the net result of decay of ²²⁸Ra, ingrowth of ²²⁸Th and removal of ²²⁸Th by scavenging, but without horizontal mixing. If we assume that the scavenging is reduced to a low open ocean value as soon as the water mass leaves contact with the shelf, the ingrowth of ²²⁸Th will follow the two-decay curve:

507
$$A_{T} = A_{T^{0}} e^{-(\lambda_{T} + \lambda_{s})t} + \frac{\lambda_{T} + \lambda_{s}}{\lambda_{T} + \lambda_{s} - \lambda_{R}} A_{R^{0}} (e^{-\lambda_{R}t} - e^{-(\lambda_{T} + \lambda_{s})t})$$
(9)

where the superscript ° again denotes the situation a t=0 when the water leaves the shelf. This model does not include mixing. There is a strong vertical gradient in ²²⁸Ra activity in the halocline (RUTGERS VAN DER LOEFF et al., 1995). Although stratification is strong, mixing will cause some loss of ²²⁸Ra to deeper waters. As the ²²⁸Th gradient is in the same direction, the ratio should not be strongly affected by this loss by mixing.

In Fig. 13 the evolution of 228 Th and of the 228 Th/ 228 Ra AR has been modeled for several values of λ_s . Note that the evolution of the AR in this model is independent on the actual value of 228 Ra in the shelf source. An error in the value used for F_0 causes a relatively small error in the predicted ages. If for example a water parcel leaves the shelf with an F_0 of 0.1, it would take just 2-3 months for the ingrowth to reach the value of 0.15, the starting point of our model calculations.

The model results show that many observed 228 Th/ 228 Ra ratios in the central Arctic Ocean (Fig. 7) can never be reached with the 234 Th-based average scavenging rate of 0.46 y⁻¹. The observed 228 Th/ 228 Ra ratio of 0.8 sets an upper limit to λ_s of 0.21 y⁻¹. This can be explained when the scavenging rate over the longer time horizon recorded by 228 Th is lower than the recent summer value recorded by the short lived 234 Th. Based on the ingrowth model, we can

19 January 2012 23

now derive an age since the water mass detached from the shelf area. In a first

approximation, we assume that $\lambda_s = 0.21~\text{y}^{-1}$ throughout the deep Arctic Ocean and determine the age based on the $^{228}\text{Th}/^{228}\text{Ra}$ ingrowth using equation 9. The results (Fig. 14) confirm the high age of the fresh water component observed in the central Eurasian Basin over the Gakkel Ridge. Even in the absence of scavenging, ingrowth to the AR values observed at stations 371-382 (0.90 \pm 0.10 to 1.24 \pm 0.13) requires 2.7-4.1 to >5.2y, respectively. This is a strong argument that the low ^{228}Ra values observed offshore in the Laptev Sea in 1995 and 2007 (Fig. 5c) are due to decay during recirculation of these waters and not to an input of low-radium water from the Kara Sea.

In the age calculation above we have assumed that once the water has left the shelves, the scavenging rate is everywhere the same. The high ²²⁸Th/²²⁸Ra ratios in the Nansen Basin of 0.8 require an ingrowth period of at least 3 years even if no scavenging had occurred. But the reduced ²²⁸Th/²²⁸Ra ratios over the Lomonosov Ridge and over the southern part of the Gakkel Ridge could be explained either by a rapid transport from the shelf or by a somewhat higher scavenging rate. We have therefore looked for indications of spatial differences in suspended particulate material and scavenging rates.

4.4 Evidence for regional differences in scavenging rates

545 4.4.1 Transmissometry

The clearest waters, as deduced from transmissometer readings (Fig. 15) were found over the Nansen Basin and in the Makarov/Alpha Ridge region. Light transmission was reduced over

the Amundsen Basin and Lomonosov Ridge and over most of section 5 over the Gakkel Ridge towards the Laptev shelf.

4.4.2 Particulate ²³⁴Th

Particulate 234 Th in surface water can be considered as a proxy for the suspended matter load (RUTGERS VAN DER LOEFF et al., 2011). Indeed, the distribution of particulate 234 Th (Fig. 16) resembles well the distribution of light transmission, with the same features: relatively high values during passing of the Lomonosov Ridge, especially during the first section (3). On the second section (4) we observed again enhanced values, then especially on the Amundsen side of the Lomonosov Ridge. We found enhanced values also over most of section 5 over the Gakkel Ridge towards the Laptev Sea and slightly enhanced values over the Alpha Ridge. The lowest values, corresponding to the clearest water, were found in the Nansen Basin, the Siberian side of the Amundsen Basin and the southern part of the Makarov Basin. The large differences between the two sections over the Makarov Basin point at temporal changes in the composition of the TPD. Bauch et al. (BAUCH et al., 2011) came to a similar conclusion based on δ^{18} O data from these sections.

4.4.3 Total ²³⁴Th/²³⁸U: export from surface layer

In the far offshore region with latitude >84°35' we had found from the data of Cai et al. (2010) an average 234 Th/ 238 U ratio of 0.958 \pm 0.058 (n=11). The nine stations with depth >1500m (depth >1500m, lat>84°35') have 234 Th/ 238 U = 0.975 \pm 0.047 (n=9). The two stations close the Lomonosov Ridge stand out with 234 Th/ 238 U values of 0.90 \pm 0.04 (Sta 316,

1298m bottom depth) and 0.86 ± 0.04 (Sta 358, 1424m). The 234 Th/ 238 U ratio of 0.90 573 574 observed over the Lomonosov Ridge (station 316, August 30: 0.90 ± 0.04 ; station 358, Sept 11: 0.86 ± 0.04 .) corresponds in steady state with a scavenging rate of 1.17 v⁻¹. 575 576 With this scavenging rate, the 228 Th/ 228 Ra AR could not have increased above 0.26 (Fig. 577 578 13b). As we observed a ratio of 0.5, we again conclude that the scavenging must have been seasonally increased. The Th scavenging rate observed from ²³⁴Th/²³⁸U disequilibrium in 579 580 summer 2007 may thus represent a maximum over a year as primary productivity is typical at 581 its highest in this season. Also, particle export studies using sediment traps indicate that POC 582 export is at its highest in summer (CAI et al., 2010) (and references therein). Therefore, there 583 is a good reason to use for λ_s a lower year-round average value than the one calculated using summer 234 Th data. A short summer increase in λ_s would also affect 228 Th activities, but the 584 relative effect would be smaller for the longer lived ²²⁸Th, which would already be depleted 585 by about 50% before the summer, than for the short-lived ²³⁴Th, with a depletion of only 586 587 10%. 588 589 The combined evidence (Fig. 17) infers an enhanced particle load and scavenging rate in the 590 area of the Lomonosov Ridge. Apparently, the shelf input in this region is so large that even 591 this far offshore it enhances productivity and export above the neighboring regions. It is also 592 likely that the increased particle load and scavenging rate is related to the release of ice-593 rafted particles upon ice melt (BASKARAN et al., 2003; TRIMBLE and BASKARAN, 2005). 594

19 January 2012 26

595

4.5 Synthesis/comparison of the models

In Fig. 18 we compare our and selected literature data of 228 Th and 228 Ra in surface waters of the offshore Arctic Ocean with the predictions of the various models discussed. All stations are sufficiently far offshore that excess 224 Ra must have decayed and the measured 224 Ra is a good proxy for 228 Th. The observations in the TPD, especially all samples with 228 Ra>75 dpm m⁻³ (stations 322-352 or all stations on the Canadian side of the Lomonosov Ridge, Cesar station) are incompatible with the mixing model at any value of λ_s and best explained by the advective model. The values over the Lomonosov Ridge are also incompatible with the mixing model if we realize that scavenging cannot be disregarded here. Based on the 228 Th/ 228 Ra ingrowth in the advective model (Fig. 13), the minimum shelf water age of surface waters (disregarding scavenging) in the TPD ranges from 1.2 yr near the Lomonosov Ridge (AR=0.49) to 2.7 y in the Makarov Basin/Alpha Ridge (AR=0.79). With the evidence of enhanced scavenging rates over the Lomonosov Ridge it is more likely that the age of water over that Ridge is rather ≥ 3 yr.

The interpretation of the data in the Eurasian basin is more difficult because the ²²⁸Ra activities are much lower and for these activities the model results tend to approach each other. Nevertheless, the high AR for the samples over the northern part of the Gakkel Ridge require time to accumulate. In the advective model, the AR of 0.9 and above would not be reached before 3.4 years, even disregarding scavenging. The ²²⁸Th accumulation over the Gakkel Ridge shows that the surface water cannot flow here in parallel to the TPD with the rate experienced for the ice by the Tara drift. It is more likely that a recirculating gyre exists, increasing the residence time of the surface water in the Eurasian Basin.

5. CONCLUSIONS

Similar to Ba, Ra is clearly affected by biological uptake in surface waters of the Arctic shelves and release in their bottom waters. The biological effect on ²²⁸Ra distribution can be corrected for by normalizing with ²²⁶Ra. But ²²⁶Ra also resembles Ba in enhanced concentrations in waters of Pacific origin compared to waters of Atlantic origin. This difference has to be accounted for when ²²⁸Ra/²²⁶Ra ratios are used in pan Arctic studies.

In the central Arctic, ²²⁸Ra is at its maximum over the Lomonosov Ridge and Makarov Basin. If the maximum has moved towards the Canada Basin in the early nineties (SMITH et al., 2003), it has moved back with the change to more anticyclonic surface water circulation (MORISON et al., 2006).

The half life of ²²⁸Ra (5.8 y) is appropriate for the study of shelf water transport in the TPD. But the use of ²²⁸Ra as age marker for shelf waters requires that the shelf source of ²²⁸Ra is constant in space and time. Judged from the transit times of ice (1.5-4y) and surface water (minimum estimate 2-5y, SCHLOSSER et al., 1999) the initial ²²⁸Ra must be known to clearly better than 50%. We cannot judge whether this condition is met to a sufficient extent to allow the calculation of ages with acceptable error limits for the relatively rapid transport in the TPD.

Seasonal removal of Th and Ra produces a wide range of ²²⁸Ra activities and ²²⁸Th/²²⁸Ra ratios on the shelves. The high ²²⁸Ra activities in the central Arctic Ocean imply that these Ra-depleted shelf waters cannot be the source for the TPD. Shelf waters with sufficiently high ²²⁸Ra activity (>100 dpm m⁻³) usually have low ²²⁸Th/²²⁸Ra (AR<0.2), and we assume that these waters leave the shelf with a 228 Th/ 228 Ra activity ratio (F₀) of 0.15 ± 0.10. ²²⁸Th/²²⁸Ra ratios in surface waters increase through 0.4-0.6 in the TPD over the Lomonosov Ridge to 0.8-1.0 over the deep basins. The ingrowth of ²²⁸Th into its ²²⁸Ra parent thus provides independent age information of surface waters. However, the interpretation of this information with an ingrowth-scavenging model is complicated by clear geographical differences in scavenging rates. Transmission, particulate ²³⁴Th, and ²³⁴Th/²³⁸U data consistently show enhanced suspended particulate matter concentrations and correspondingly high scavenging rates over the Lomonosov Ridge compared to the adjacent deep basins. The minimum shelf water age of surface water over the Lomonosov Ridge, estimated with neglect of scavenging, is 1.1 yr. With the evidence of enhanced scavenging rates over the Lomonosov Ridge it is more likely that the age of water over that Ridge is rather ≥ 3 yr. The surface water on the Canadian side of the TPD is older as has been shown in previous studies (RUTGERS VAN DER LOEFF et al., 1995; HANSELL et al., 2004; LETSCHER et al., 2011). Similarly, the minimum age of fresh water over the Gakkel Ridge is 3.4 yr, but with realistic scavenging rates this must be appreciably longer. ²²⁸Ra distribution and ²²⁸Th/²²⁸Ra ingrowth give independent proof of the high age of the water in the eastern Eurasian basin over the Gakkel Ridge. We conclude that there must be a recirculation of shelf water in this basin (Fig. 19), as this has been suggested in earlier studies of surface circulation (GORDIENKO and

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

LAKTIONOV, 1969). This situation is very similar to the inferred recirculation of shelf water in the Canada Basin near the ICEX station (KADKO and MUENCH, 2005).

ACKNOWLEDGMENTS

We wish to thank the captain and crew of RV Polarstern during the expeditions ARK XI/1 (1995) and ARK XXII/2 (2007). Sampling and analysis in 1995 was done by Françoise Legeleux. We thank the chief scientists Eike Rachor and Ursula Schauer for their part in organizing the expeditions, the oceanography teams of both expeditions for their help in collecting samples and providing data for T,S and light transmission, and Karel Bakker for nutrient analyses during ARK XXII/2. We are grateful for help in mathematics from Dieter Wolf Gladrow, for discussions with Bert Rudels, Michael Karcher and Jean Louis Reyss and for constructive reviews by Mark Baskaran, David Kadko and an anonymous reviewer. TR was funded by the EU Sixth Framework Programme DAMOCLES (Developing Arctic Modelling and Observing Capabilities for Long-term Environment Studies), contract number 018509GOCE. SBM acknowledges support from NSF award OPP-0124917.

REFERENCES

685 686

694

695

696

697

698

699 700

701

702

705

706

707

708

709

710

711

- Abrahamsen, E. P., Meredith, M. P., Falkner, K. K., Torres-Valdes, S., Leng, M. J., Alkire, M. B., Bacon, S., Laxon, S., Polyakov, I., and Ivanov, V., 2009. Tracer-derived freshwater composition of the Siberian continental shelf and slope following the extreme Arctic summer of 2007. *Journal of Geophysical Research* 36, L07602, doi:10.1029/2009GL037341.
- Bacon, M. P., Huh, C.-A., and Moore, R. M., 1989. Vertical profiles of some natural radionuclides over the Alpha Ridge, Arctic Ocean. *Earth Planet. Sci. Lett.* **95**, 15-22.
 - Baskaran, M., Murphy, D. J., Santschi, P. H., Orr, J. C., and Schink, D. R., 1993. A method for rapid in situ extraction and laboratory determination of Th, Pb, Ra isotopes from large volumes of seawater. *Deep-Sea Res.* **40**, 849-865.
 - Baskaran, M., Swarzenski, P. W., and Porcelli, D., 2003. Role of colloidal material in the removal of ²³⁴Th in the Canada basin of the Arctic Ocean. *Deep Sea Research Part I: Oceanographic Research Papers* **50**, 1353-1373.
 - Bauch, D., Rutgers van der Loeff, M., Andersen, N., Bakker, K., Torres-Valdes, S., and Abrahamsen, P., 2011. Origin of freshwater and polynya water in the Arctic Ocean halocline in 2007. *Prog. Oceanogr.* **91**, 482-495.
- Broecker, W. S., Goddard, J., and Sarmiento, J. L., 1976. The distribution of ²²⁶Ra in the Atlantic Ocean. *Earth Planet. Sci. Lett.* **32**, 220-235.
 - Broecker, W. S., Kaufman, A., and Trier, R. M., 1973. The residence time of Thorium in surface seawater and its implications regarding the fate of reactive pollutants. *Earth Planet. Sci. Lett.* **20**, 35-44.
 - Cai, P., Rutgers v.d. Loeff, M. M., Stimac, I., Nöthig, E.-M., Lepore, K., and Moran, S. B., 2010. Low export flux of particulate organic carbon in the central Arctic Ocean as revealed by ²³⁴Th: ²³⁸U disequilibrium. *Journal of Geophysical Research Oceans* **115**, C10037, doi:10.1029/2009JC005595.
- 712 Chung, Y. and Craig, H., 1980. ²²⁶Ra in the Pacific Ocean. *Earth and Planetary Science* 713 *Letters* **49**, 267-292.
- Cochran, J. K., Hirschberg, D. J., Livingston, H. D., Buesseler, K. O., and Key, R. M., 1995.
 Natural and anthropogenic radionuclide distributions in the Nansen Basin, Arctic
 Ocean: Scavenging rates and circulation time scales. *Deep-Sea Res. II* 42, 1495-1517.
- Coppola, L., Roy-Barman, M., Wassmann, P., Mulsow, S., and Jeandel, C., 2002. Calibration of sediment traps and particulate organic carbon using ²³⁴Th in the Barents Sea. *Mar. Chem.* **80**, 11-26.
- Cutter, G., Andersson, P., Codispoti, L., Croot, P., Francois, R., Lohan, M., Obata, H., and
 Loeff, M. R. v. d., 2010. Sampling and Sample-handling Protocols for GEOTRACES
 Cruises. In: www.geotraces.org (Ed.).
- Ekwurzel, B., Schlosser, P., Mortlock, R. A., Fairbanks, R. G., and Swift, J. H., 2001. River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean. *J. Geophys. Res.* **106**, 9075-9092.
- Elsinger, R. J., King, P. T., and Moore, W. S., 1982. Radium-224 in natural waters measured by g ray spectrometry. *Anal. Chim. Acta* **144**, 277-281.
- Frank, M., 1996. Spurenstoffuntersuchungen zur Zirkulation im eurasischen Becken des Nordpolarmeeres. Ph.D., Ruprecht Karls Univ.

- Garcia-Solsona, E., Garcia-Orellana, J., Masqué, P., and Dulaiova, H., 2008. Uncertainties
 associated with 223Ra and 224Ra measurements in water via a Delayed Coincidence
 Counter (RaDeCC). *Marine Chemistry* 109, 198.
- Geibert, W., Charette, M., Kim, G., Moore, W. S., Street, J., Young, M., and Paytan, A., 2008. The release of dissolved actinium to the ocean: A global comparison of different end-members. *Marine Chemistry* **109**, 409.
- Gordienko, P. A. and Laktionov, A. F., 1969. Circulation and physics of the Arctic Basin
 Waters. In: Gordon, A. and Baker, F. W. G. (Eds.), *Annals of the the International Geophysical Year, Oceanography*. Pergamon, New York.
- Guay, C. K. and Falkner, K. K., 1997. Barium as a tracer of Arctic halocline and river waters.
 Deep-Sea Res. II 44, 1543-1569.
- Hansell, D. A., Kadko, D., and Bates, N. R., 2004. Degradation of Terrigenous Dissolved Organic Carbon in the Western Arctic Ocean. *Science* **304**, 858-861.

744

745

748

749

750

760

761 762

763

764

765

766

- Jones, E. P., Anderson, L. G., and Swift, J. H., 1998. Distribution of Atlantic and Pacific waters in the upper Arctic Ocean: Implications for curculation. *Geophys. Res. Lett.* **25**, 765-768.
- Kadko, D. and Aagaard, K., 2009. Glimpses of Arctic Ocean shelf–basin interaction from submarine-borne radium sampling. *Deep-Sea Research I* **56**, 32-40.
 - Kadko, D. and Muench, R., 2005. Evaluation of shelf-basin interaction in the western Arctic by use of short-lived radium isotopes: The importance of mesoscale processes. *Deep Sea Research Part II: Topical Studies in Oceanography* **52**, 3227.
- Kadko, D., Pickart, R. S., and Mathis, J., 2008. Age characteristics of a shelf-break eddy in the western Arctic and implications for shelf-basin exchange. *Journal of Geophysical Research* **113**, doi:10.1029/2007JC004429.
- Kaufman, A., Li, Y.-H., and Turekian, K. K., 1981. The removal rates of ²³⁴Th and ²²⁸Th from waters of the New York Bight. *Earth and Planetary Science Letters* **54**, 385-392.
- Key, R. M., Moore, W. S., and Sarmiento, J. L., 1992. *Transient Tracers in the Ocean North Atlantic Study. Final Data Report for* ²²⁸Ra and ²²⁶Ra. Ocean Tracer Laboratory, Princeton, NJ, USA, 193 pp.
 - Klunder, M. B., Bauch, D., Laan, P., Baar, H. J. W. D., Heuven, S. v., and Ober, S., submitted. Dissolved iron in the Arctic shelf seas and surface waters of the Central 1 Arctic Ocean: Impact of Arctic river water and ice-melt. *Journal of Geophysical Research Oceans*.
 - Lalande, C., Lepore, K., Cooper, L. W., Grebmeier, J. M., and Moran, S. B., 2007. Export fluxes of particulate organic carbon in the Chukchi Sea: A comparative study using ²³⁴Th/²³⁸U disequilibria and drifting sediment traps *Mar. Chem.* **103**, 185–196.
- Lalande, C., Moran, S. B., Wassmann, P., Grebmeier, J. M., and Cooper, L. W., 2008. ²³⁴Th-derived particulate organic carbon fluxes in the northern Barents Sea with comparison to drifting sediment trap fluxes. *Journal of Marine Systems* **73**, 103.
- Lepore, K. and Moran, B., 2007. Seasonal changes in thorium scavenging and particle aggregation in the western Arctic Ocean. *Deep-Sea Research I* **54**, 919-938.
- Lepore, K., Moran, S. B., Grebmeier, J. M., Cooper, L. W., Lalande, C., Maslowski, W.,
 Hill, V., Bates, N. R., Hansell, D. A., Mathis, J. T., and Kelly, R. P., 2007. Seasonal
 and interannual changes in particulate organic carbon export and deposition in the
 Chukchi Sea. *J. Geophys. Res.* 112.

- Lepore, K., Moran, S. B., and Smith, J. N., 2009. 210Pb as a tracer of shelf-basin transport
 and sediment focusing in the Chukchi Sea. *Deep Sea Research Part II: Topical* Studies in Oceanography 56, 1305-1315.
- Letscher, R. T., Hansell, D. A., and Kadko, D., 2011. Rapid removal of terrigenous dissolved organic carbon over the Eurasian shelves of the Arctic Ocean. *Marine Chemistry* **123**, 78-87.
- Li, Y.-H., Feely, H. W., and Toggweiler, J. R., 1980. ²²⁸Ra and ²²⁸Th concentrations in GEOSECS Atlantic surface waters. *Deep-Sea Res.* **27A**, 545-555.
- McLaughlin, F. A., Carmack, E. C., Macdonald, R. W., and Bishop, J. K. B., 1996. Physical and geochemical properties across the Atlantic/Pacific water mass front in the southern Canadian Basin. *Journal of Geophysical Research* **101**, 1183-1197.
- Middag, R., de Baar, H. J. W., Laan, P., and Klunder, M. B., 2011. Fluvial and hydrothermal input of manganese into the Arctic Ocean. *Geochimica et Cosmochimica Acta* **75**, 2393-2408.
- Moore, R. M. and Smith, J. N., 1986. Disequilibria between ²²⁶Ra, ²¹⁰Pb and ²¹⁰Po in the Arctic Ocean and the implications for the chemical modification of the Pacific water inflow. *Earth Planet. Sci. Lett.* **77**, 285-292.
- Moore, W. S., 1984. Radium isotope measurements using germanium detectors. *Nuclear Instruments and Methods in Physics Research* **223**, 407-411.
- 795 Moore, W. S., 2008. Fifteen years experience in measuring ²²⁴Ra and ²²³Ra by delayed coincidence counting. *Mar. Chem.* **109**, 188.

804

805

806

807

808

809

- Moore, W. S. and Arnold, R., 1996. Measurement of ²²³Ra and ²²⁴Ra in coastal waters using a delayed coincidence counter. *J. Geophys. Res.* **101**, 1321-1329.
- Moore, W. S., Sarmiento, J. L., and Key, R. M., 1986. Tracing the Amazon component of surface Atlantic water using ²²⁸Ra, salinity and silica. *J. Geophys. Res.* **91**, 2574-2580.
 - Moran, S. B., Ellis, K. M., and Smith, J. N., 1997. ²³⁴Th/²³⁸U disequilibrium in the central Arctic Ocean: implications for particulate organic carbon export. *Deep-Sea Res. II* **44**, 1593-1606.
 - Moran, S. B., Kelly, R. P., Hagstrom, K., Smith, J. N., Grebmeier, J. M., Cooper, L. W., Cota, G. F., Walsh, J. J., Bates, N. R., Hansell, D. A., Maslowski, W., Nelson, R. P., and Mulsow, S., 2005. Seasonal changes in POC export flux in the Chukchi Sea and implications for water column-benthic coupling in Arctic shelves. *Deep-Sea Research II* 52, 3427–3451.
- Moran, S. B. and Smith, J. N., 2000. ²³⁴Th as a tracer of scavenging and particle export in the Beaufort Sea. *Cont. Shelf Res.* **20**, 153-167.
- Morison, J., Steele, M., Kikuchi, T., Falkner, K., and Smethie, W., 2006. Relaxation of central Arctic Ocean hydrography to pre-1990s. *Geophys. Res. Letters* **33**.
- Östlund, G. and Hut, G., 1984. Arctic Ocean water mass balance from isotope data. *J. Geophys. Res.* **89**, 6373-6381.
- Pfirman, S., Tremblay, B., and Fowler, C., 2009. Going with the Floe? *American Scientist* **97**, 484-493.
- Pfirman, S. L., Colony, R., Nürnberg, D., Eicken, H., and Rigor, I., 1997. Reconstructing the origin and trajectory of drifting Arctic sea ice. *Journal of Geophysical Research* **102**, 12575-12586.

- Proshutinsky, A. Y. and Johnson, M. A., 1997. Two circulation regimes of the wind-driven Arctic Ocean. *Journal of Geophysical Research* **102**, 12,493-12,514, doi:10.1029/97JC00738.
- Rachor, E., 1997. Scientific Cruise Report of the Arctic Expedition ARK-XI/1 of RV
 "Polarstern" in 1995. Reports on Polar and Marine Research 226, 156pp, 6 annexes.
- Roeske, T., Bauch, D., and Rutgers v. d. Loeff, M., submitted. Utility of dissolved Barium in
 distinguishing North American from Eurasian runoff in the Arctic Ocean. *Marine Chemistry*.
- Rudels, B., 2009. Ocean Current: Arctic Basin Circulation. In: Steele, J., Thorpe, S., and Turekian, K. (Eds.), *Encyclopedia of Ocean Sciences*. Academic Press.
- Rutgers van der Loeff, M. M., Cai, P., Stimac, I., Bracher, A., Middag, R., Klunder, M., and Van Heuven, S., 2011. ²³⁴Th in surface waters: distribution of particle export flux across the Antarctic Circumpolar Current and in the Weddell Sea during the GEOTRACES expedition ZERO and DRAKE, . *Deep Sea Research II.* **58**, 2749-2766, doi:10.1016/j.dsr2.2011.02.004.
 - Rutgers van der Loeff, M., Kuhne, S., Wahsner, M., Holtzen, H., Frank, M., Ekwurzel, B., Mensch, M., and Rachold, V., 2003. ²²⁸Ra and ²²⁶Ra in the Kara and Laptev seas. *Cont. Shelf Res.* **23**, 113-124.
- Rutgers van der Loeff, M., Sarin, M. M., Baskaran, M., Benitez-Nelson, C., Buesseler, K. O.,
 Charette, M., Dai, M., Gustafsson, Ö., Masque, P., Morris, P. J., Orlandini, K., Baena,
 A. R. y., Savoye, N., Schmidt, S., Turnewitsch, R., Vöge, I., and Waples, J. T., 2006.
 A review of present techniques and methodological advances in analyzing ²³⁴Th in aquatic systems. *Marine Chemistry* **100**, 190-212.
 - Rutgers van der Loeff, M. M., Key, R. M., Scholten, J. C., Bauch, D., and Michel, A., 1995.

 ²²⁸Ra as a tracer for shelf water in the Arctic Ocean. *Deep-Sea Res. II* **42**, 1533-1553.
 - Rutgers van der Loeff, M. M., Meyer, R., Rudels, B., and Rachor, E., 2002. Resuspension and particle transport in the benthic nepheloid layer in and near Fram Strait in relation to faunal abundances and ²³⁴Th depletion. *Deep Sea Research Part I: Oceanographic Research Papers* **49**, 1941-1958.
 - Schauer, U., 2008. The expedition ARKTIS-XXII/2 of the research vessel "Polarstern" in 2007 / ed. by Ursula Schauer with contributions of the participants. *Reports on polar and marine research* **579**, 271 pp.
- Schlitzer, R., 2010. Ocean Data View. http://odv.awi.de.

837

838

844

845846

847

848849

850

851

852

856

857

858

859

- Schlosser, P., Bauch, D., Fairbanks, R., and Bönisch, G., 1994. Arctic river run-off: mean residence time on the shelves and in the halocline. *Deep-Sea Res. I* **41**, 1053-1068.
 - Schlosser, P., Bayer, R., Bo?nisch, G., Cooper, L. W., Ekwurzel, B., Jenkins, W. J., Khatiwala, S., Pfirman, S., and Smethie, W. M., 1999. Pathways and mean residence times of dissolved pollutants in the ocean derived from transient tracers and stable isotopes. *Science of the Total Environment* **237-238**, 15-30.
- Serreze, M. C., A.Barrett, A.J.Slater, Steele, M., Zhang, J., and Trenberth, K. E., 2006. The large-scale freshwater cycle in the Arctic. *Journal of Geophysical Research* **111**, doi:10.1029/2005JC003424.
- Smith, J. N., Moran, S. B., and Macdonald, R. W., 2003. Shelf-basin interactions in the Arctic Ocean based on ²¹⁰Pb and Ra isotope tracer distributions. *Deep-Sea Research Part I: Oceanographic Research Papers* **50**, 397.

- Trimble, S. M. and Baskaran, M., 2005. The role of suspended particulate matter in ²³⁴Th scavenging and ²³⁴Th-derived export fluxes of POC in the Canada Basin of the Arctic Ocean *Marine Chemistry* **96**, 1–19.
- Trimble, S. M., Baskaran, M., and Porcelli, D., 2004. Scavenging of thorium isotopes in the Canada Basin of the Arctic Ocean. *Earth and Planetary Science Letters* **222**, 915-932.
- Walker, S. A., Amon, R. M. W., Stedmon, C., Duan, S., and Louchouarn, P., 2009. The use of PARAFAC modeling to trace terrestrial dissolved organic matter and fingerprint water masses in coastal Canadian Arctic surface waters. *Journal of Geophysical Research* **114**, G00F06, doi:10.1029/2009JG000990.

877

878

879

880

881

882

886 887

- Wassmann, P., Bauerfeind, E., Fortier, M., Fuckuchi, M., Hargrave, B., Moran, B., Noji, T., Nöthig, E.-M., Olli, K., Peinert, R., Sasaki, H., and Shevchenko, V., 2004. Particulate organic carbon flux to the arctic ocean sea floor. In: Stein, R. and MacDonald, R. W. (Eds.), *The Organic Carbon Cycle in the Arctic Ocean*. Springer-Verlag, Berlin.
- Wassmann, P., Ratkova, T., Andreassen, I., Vernet, M., Pedersen, G., and Rey, F., 1999. Spring bloom development in the Marginal Ice Zone and the central Barents Sea. . *Marine Ecololy* **20**, 321-346.
- Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., Nishino, S., and Shimada, K.,
 2008. Freshwater budget of the Canada Basin, Arctic Ocean, from salinity, δ¹⁸O, and
 nutrients. *Journal of Geophysical Research* 113.

888 FIGURE CAPTIONS 889 890 Fig 1. Cruise track (red lines) with sections (S1-5) and stations sampled during Polarstern 891 ARK XXII/2 with Atlantic inflow in the Fram Strait and Barents Sea branches (black lines) 892 and approximate pathway of the TPD (arrows). 893 Fig. 2. a) 226 Ra as function of the f_r (fraction of river water); b) 226 Ra and c) 228 Ra as a 894 895 function of Ba of all samples shallower than 100m of ARK XXII/2 (2007) distinguishing 896 samples from the Laptev shelf (red squares with sampling depth and the symbols dot, triangle 897 and cross identifying stations 407, 409 and 411, respectively) and samples with significant 898 Pacific influence (open circles, as also indicated in panel a by their Pacific water fraction f_P 899 given in %). 900 Fig. 3. Distribution of ²²⁶Ra (dpm m⁻³) during ARKXXII/2 compared with literature data 901 902 (excluding data from the productive Chukchi shelf waters) from GEOSECS Atlantic 903 (Broecker et al., 1976), Cesar Ice Camp (Moore and Smith, 1986), TTO (Key et al., 1992) 904 and Smith et al. (2003). 905 Fig. 4. Distribution of a) ²²⁸Ra (dpm m⁻³) and b) ²²⁸Ra/²²⁶Ra ratios in surface waters, summer 906 907 2007. 908 Fig. 5a) ²²⁸Ra as a function of salinity and b) as a function of the meteoric fraction f_r and c) 909 228 Ra/ 226 Ra ratio as a function of the meteoric fraction f_r for all samples of the ARK XI/1 910 expedition (1995) including in c) samples from the Laptev Sea (<92°N) of the ARK XXII/2 911

expedition (triangles) distinguishing shelf (bottom depth < 260m: closed symbols) and offshore stations (open symbols) compared in c) with the mixing line based on 1991 data from the Eurasian Basin.

Fig. 6. ²²⁸Th, ²²⁸Ra and ²²⁸Th/²²⁸Ra ratios in surface water of section 3 (left, Kara Sea to Alpha Ridge) and section 4+5 (right, Alpha Ridge to Lomonosov Ridge, then over Gakkel Ridge towards Laptev Sea).

with literature data (with ranges where symbols overlap) from the Alaskan shelf (AWS, TRIMBLE et al., 2004), ICEX-03 (0.55-0.73, KADKO and MUENCH, 2005), Chukchi Sea (SBI spring 0.33±0.27, summer 2002 0.23±0.22, summer 2004, 0.08±0.04 Lepore and Moran, 2007), Cesar station (BACON et al., 1989), Ice Island T3 (BROECKER et al., 1973) and the

Nansen Basin (stations 287, 358, COCHRAN et al., 1995).

Fig. 7. Distribution of ²²⁸Th/²²⁸Ra ratio in surface waters of ARK XXII/2 (this study) along

Fig. 8. a) 228 Ra and b) 228 Ra/ 226 Ra* AR as a function of f_r for surface water samples from the ARK XXII/2 expedition (2007) distinguishing samples from the Laptev shelf (red squares, symbols identifying stations 407-411 as in Fig. 2), samples with significant Pacific component (open circles) from samples from the Nansen and Amundsen Basin (open triangles), close to the Lomonosov Ridge (closed squares: Stas 312, 358, 363) and other surface samples (diamonds). The mixing line drawn by eye (straight solid line) is thought to represent mixing of Atlantic inflow with a hypothetical freshwater endmember excluding the samples influenced by biological cycling on the Laptev shelf and is compared here with the

²²⁸Ra line (broken line) obtained from the Laptev Sea - Atlantic mixing line of ²²⁸Ra/²²⁶Ra 935 given in Rutgers van der Loeff et al. (1995) multiplied for panel a) by ²²⁶Ra from eq. 1 (Fig. 936 937 2a). 938 Fig. 9. ²²⁸Th vs ²²⁸Ra in surface waters of ARK XXII/2 (filled symbols distinguishing TPD. 939 940 black diamonds; Lomonosov Ridge, black squares; Kara and Laptev shelf, blue triangles; 941 Nansen basin, red circles; north Gakkel Ridge, red squares; southern Gakkel Ridge, red 942 triangles) along with literature data (open symbols) from the Alaskan shelf (AWS, squares, 943 TRIMBLE et al., 2004), ICEX-03 (large circles, KADKO and MUENCH, 2005), Chukchi Sea 944 (SBI, small circles, KADKO and MUENCH, 2005; triangles, LEPORE and MORAN, 2007), Cesar 945 station (C, BACON et al., 1989), Ice Island T3 (T3, BROECKER et al., 1973) and the Nansen 946 Basin station studied by Cochran (N, COCHRAN et al., 1995). 947 Fig. 10. Observed range of ²³⁴Th/²³⁸U vs. ²²⁸Th/²²⁸Ra compared with the theoretical steady 948 949 state "concordia" line (KAUFMAN et al., 1981; LEPORE and MORAN, 2007) in a) shelf stations 950 of Laptev Sea (boxes, this study and CAI et al., 2010) and Chukchi Sea (distinguishing 951 summer (open symbols) and spring (closed symbols), LEPORE and MORAN, 2007) and b) central Arctic for this study (Lomonosov Ridge, ²²⁸Th/²²⁸Ra AR 0.4-0.6; Beaufort Gyre and 952 953 Gakkel Ridge AR 0.8-1.0) compared with literature AR values of Cochran et al. (COCHRAN 954 et al., 1995), Trimble et al.(2004)(AWS 3: 0.30 ± 0.03 AWS 4: 0.37 ± 0.06), Bacon et al., 955 (1989) and Kaufmann et al. (1981). 956

```
Fig. 11. <sup>234</sup>Th/<sup>238</sup>U ratio in surface waters as a function of a) geographical location and b)
957
958
        bottom depth, distinguishing stations over Lomonosov Ridge (open triangles) and Barents
959
        shelf (x) from other stations (dots). Data of Cai et al. (2010).
960
        Fig. 12. a) <sup>228</sup>Th vs <sup>228</sup>Ra (dpm m<sup>-3</sup>) in surface waters of this study (TPD, filled symbols)
961
962
        compared with horizontal mixing model for \lambda_s=0 (including results for F_0=0.1 and 0.2, thin
        lines), 0.21 and 0.46 y^{-1}. In the case without scavenging (\lambda_s=0), the results approach at high
963
964
        distance offshore the limiting AR of \lambda_T / (\lambda_T - \lambda_R) = 1.49 (straight broken line).
965
        Fig. 13. Evolution of a) <sup>228</sup>Ra (parent, with arbitrary initial activity) and <sup>228</sup>Th activity and b)
966
        <sup>228</sup>Th/<sup>228</sup>Ra ratios for several values of the scavenging constant \lambda_s as function of time after
967
        contact with the shelf source. The range compatible with measured <sup>234</sup>Th/<sup>238</sup>U ratios is
968
        shaded. At a (<sup>234</sup>Th-based) scavenging rate of 0.46 y<sup>-1</sup>, an AR of 0.4 is reached after 1.6 years
969
        while an AR of 0.6 is incompatible with this scavenging rate. Using \lambda_s=0.21 \text{ y}^{-1}, the AR of
970
971
        0.4-0.6 is reached 1-2.5 y after leaving the high-scavenging shelf regime (highlighted by
972
        boxes).
973
974
        Fig. 14. Age (y) of shelf waters based on equation 9 and assuming a constant Th scavenging
        rate \lambda_s of 0.21 y<sup>-1</sup>, omitting the stations in the Atlantic inflow identified by <sup>228</sup>Ra<20 dpm/m<sup>3</sup>.
975
976
        Darkest circles have a model age > 8 year.
977
978
        Fig. 15. Light transmission (%) at 10m depth during expedition ARK XXII/2.
```

19 January 2012 39

979

Fig. 16. Particulate ²³⁴Th/²³⁸U as monitored with the automatic ²³⁴Th sampler. 980 981 Fig. 17. ²²⁸Th/²²⁸Ra ratio (a) compared with b) total ²³⁴Th/²³⁸U ratio (CAI et al., 2010), c) 982 particulate ²³⁴Th/²³⁸U ratio (automatic filtration) and d) beam transmission (CTD casts) in 983 984 surface water of section 3, showing enhanced suspended load and scavenging near 985 Lomonosov Ridge. 986 Fig. 18 ²²⁸Th vs ²²⁸Ra in surface waters over the deep basins (symbols as in Fig. 9) compared 987 988 with model results for the mixing model (red lines) and the advection model (black lines) assuming a Th scavenging rate λ_s of 0 (thin lines) and 0.21 y⁻¹ (heavy lines). 989 990 Fig. 19. Conceptual graph of approximate location of TPD with highest ²²⁸Ra concentrations 991 992 during high (AO⁺, as in early 1990s) and low (AO⁻, as in 2007) Arctic Oscillation, the 993 Beaufort Gyre (BG) and the inferred recirculation in the eastern Eurasian Basin (Gakkel 994 Gyre, GG) on a map based on Rudels (2009) with Bering Strait Inflow (BSI), Fram Strait 995 (FB) and Barents Sea Branch (BB) of Atlantic inflow, Siberian Coastal Current (SCC) and 996 East Greenland Current (EGC). 997

998 Table 1. Station date, depth and position during Polarstern expedition ARK XI/1

Station ARK-XI/1-	Date	Depth	Latitude °N	Longitude °E
2	19-07-1995	151	77.523	97.065
3	22-07-1995	1982	77.704	125.910
4	24-07-1995	54	78.010	144.889
6	25-07-1995	96	78.978	147.346
7	26-07-1995	210	79.455	148.108
9	29-07-1995	75	78.655	144.122
10	30-07-1995	50	78.002	140.003
12	31-07-1995	45	77.252	135.002
16	31-07-1995	51	76.002	130.012
18	01-08-1995	95	77.597	130.008
19	01-08-1995	264	77.622	130.047
21	02-08-1995	1180	77.857	130.030
23	03-08-1995	2354	78.158	129.973
24A	05-08-1995	3263	79.314	131.518
25	07-08-1995	2670	81.135	105.559
29	10-08-1995	2222	80.900	104.742
31	11-08-1995	1588	80.780	103.440
33	12-08-1995	253	80.427	102.017
40	15-08-1995	1780	78.531	133.979
42	16-08-1995	2176	78.698	134.608
44	17-08-1995	2679	79.137	135.007
45	18-08-1995	3424	79.999	134.961
47	20-08-1995	3909	80.915	131.155
49	22-08-1995	2650	81.053	136.565
51	23-08-1995	1742	81.071	138.928
52	24-08-1995	1215	81.160	140.155
56	26-08-1995	2428	81.177	147.399
60	28-08-1995	1778	80.341	149.975
62	29-08-1995	1063	80.081	149.842
65	30-08-1995	234	79.515	148.239
71	01-09-1995	604	78.341	135.075
73	02-09-1995	107	78.247	135.392
80	06-09-1995	1244	78.768	112.732
84	07-09-1995	95	77.895	113.718
89	09-09-1995	2721	82.343	92.848
91	10-09-1995	1079	82.072	91.038
94	10-09-1995	93	81.820	90.768

Table 2. In-situ pump (ISP) and RaDeCC (Rosette sampling) data of ²²⁸Th, ²²⁸Ra and ²²⁴Ra from the Laptev Shelf

station	depth m	²²⁸ / ²²⁶ Ra	²²⁶ Ra dpm/m ³ 20-L	²²⁸ Ra dpm/m ³ ISP	dpr diss ISP	²²⁸ Th m/m ³ part ISP	total ISP	²²⁸ Th/ ²²⁸ Ra ISP	depth m RADECC	²²⁸ / ²²⁶ Ra RADECC	dp	²⁴ Ra om/m ³ DECC	dp	⁸ Ra m/m ⁹ DEC			a/²²⁸ DEC		²²⁴ Ra/ ²²⁸ Th
	151	151	20-L	15P	15P	151	15P	151	RADECC	RADECC	KA	DECC	KAI	DEC	C	KA	DEC		
385	7	0.50 ± 0.02	81.1 ± 4.8	41 ± 3					7	0.46 ± 0.0	2 18.0	± 1.8	31.1	±	1.4	0.58	±	0.06	
407	7	1.27 ± 0.05	71.8 ± 4.1	91 ± 6	7	1.4 ^b	8	0.09	7	1.16 ± 0.0	3 16.7	± 1.7	56.2	±	1.5	0.30	±	0.03	2.0
407	15	3.91 ± 0.18	75° ± 5	293 ± 24	5	0.75	6	0.02											
407	30	1.29 ± 0.05	75 ^a ± 5	97 ± 8	29	1.75	31	0.32	30	0.85 ± 0.0	2 10.9	± 1.1	75.7	±	2.3	0.14	±	0.02	0.4
407	50	0.44 ± 0.02	75 ^a ± 5	33 ± 3	7	2.38	9	0.29	65	0.85 ± 0.0	2 21.7	± 2.2	81.5	±	2.3	0.27	±	0.03	2.3
411	7	1.35 ± 0.13	79.6 ± 4.2	107 ± 12	10	1.4 ^b	11	0.11	7	1.02 ± 0.0	4 9.7	± 1.0	34.1	±	1.5	0.28	±	0.03	0.9
411	15	1.51 ± 0.15	75 ^a ± 5	113 ± 14	9	0.33	9	80.0											
411	25	1.86 ± 0.19	75 ^a ± 5	140 ± 17	20	1.65	22	0.15	25	1.91 ± 0.0	3 47.0	± 4.7	247.1	±	3.2	0.19	±	0.02	2.2
411	35	1.83 ± 0.19	75 ^a ± 5	137 ± 17	19	1.4 ^b	20	0.15											
shelf aver	rage (Sta	407-411)			13.3		14.6	0.15			21.2					0.24			1.5
SD					8.5		8.7	0.10			15.2					0.07			0.9

a) not measured, average of shelf samples in Fig. 2a

b) not measured, average of other particulate samples

Table 3. sampling depth, potential temperature, salinity, fraction of river water, and 226 Ra and 228 Ra activity with propagated 1- σ counting errors during ARK XI/1 (data available on www.pangaea.de)

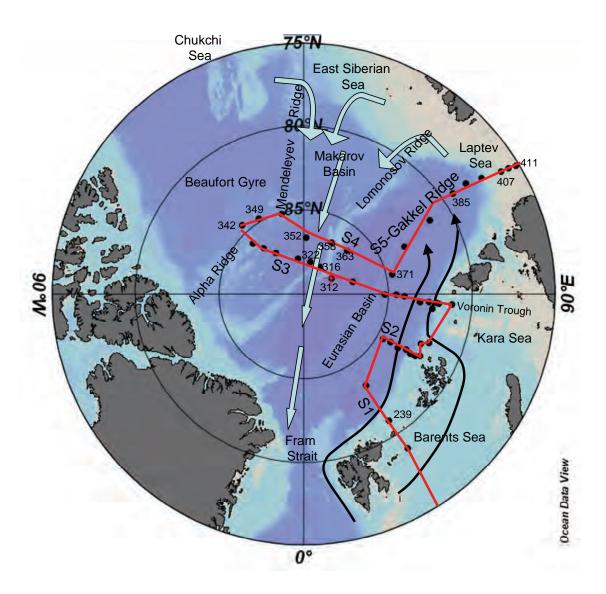
1010

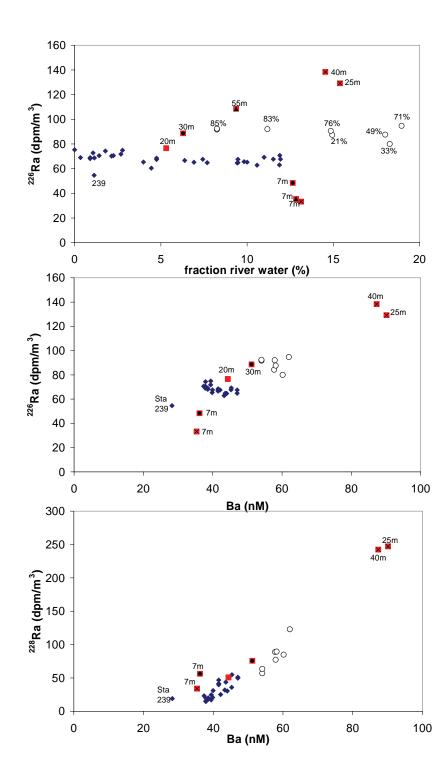
1011

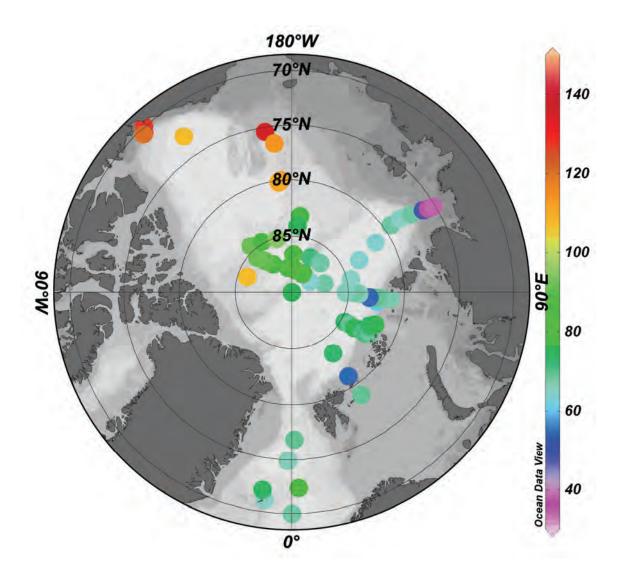
Station	depth	Pot Temp	Salinity	$\mathbf{f_r}$	22	⁶ Ra		²²⁸ Ra				
ARK-XI/1-	m	$^{\circ}\mathbf{C}$		%	dp	m/m³		dpn	/m³			
2	5	-1.19	31.38	11.24	80.0	±	6.2	-7.9	±	11.5		
2	51	-1.64	33.88	4.74	91.8	±	3.0	58.2	±	5.4		
2	126	-1.29	34.26	2.72	105.2	±	2.9	45.7	±	4.9		
3	5				88.7	±	2.3	58.8	±	4.1		
3	30				93.9	±	2.5	53.8	±	4.4		
3	50				93.2	±	2.8	44.5	±	4.7		
3	251				100.2	±	2.4	8.9	±	3.5		
3	1500				113.6	±	1.6	8.6	±	2.2		
4	5	0.13	30.88	15.53	105.3	±	6.0	180.0	±	13.3		
4	30	-1.75	33.07	13.29	111.0	±	4.7	167.8	±	9.9		
6	5	-1.77	33.39	8.44	93.3	±	6.0	84.7	±	11.5		
7	17	-1.76	33.23	7.58	100.9	±	4.9	55.1	±	8.3		
7	50			3.46	102.1	±	3.7	54.1	±	6.3		
7	100	-0.8	34.33	2.16	100.2	±	5.1	44.7	±	8.5		
7	150	-0.8	34.33	2.16	109.5	±	3.9	31.8	±	5.9		
7	205	0.83	34.75	0.59	107.7	±	3.8	22.3	±	5.9		
9	5	-1.71	32.87	12.13	96.5	±	5.1	151.5	±	10.7		
9	50	-1.8	33.44	9.30	101.2	±	6.1	102.3	±	11.7		
10	5	0.59	32.39	11.27	92.6	±	5.6	89.4	±	10.3		
10	40	-1.67	33.08	11.09	98.0	±	5.1	110.8	±	9.8		
12	5	4.12	29.91	13.92	66.6	±	5.9	87.7	±	12.0		
12	31	-1.69	32.75	10.66	83.8	±	6.3	78.5	±	12.0		
16	5	2.36	28.78	18.11	77.0	±	3.9	72.8	±	7.4		
16	40	-1.37	33.66	4.92	103.3	±	5.6	88.0	±	10.5		
18	5	2.46	28.67	16.38	75.4	±	7.4	112.0	±	15.2		
19	4	-1.42	30.95	12.42	84.7	±	4.4	58.1	±	7.4		
19	39	-0.98	34.21	2.80	95.1	±	4.8	52.6	±	8.3		
19	99	-0.97	34.31	2.29	108.3	±	5.3	51.1	±	8.7		
19	200	-0.83	34.35	2.24	99.9	\pm	5.7	37.7	\pm	9.4		
19	250	-0.82	34.35	2.14	95.9	±	4.8	44.7	±	8.1		
21	5	-0.98	29.81	14.31	70.4	\pm	4.7	56.9	\pm	8.7		
21	51	-1.68	33.6	4.66	73.1	±	4.4	43.0	±	8.1		
21	250	1.55	34.83	0.29	83.7	\pm	3.4	14.3	\pm	5.2		
21	1048	-0.01	34.88	0.29	94.5	±	3.5	25.0	±	5.5		
23	5	-1.14	30.31	14.12	67.6	±	3.7	52.4	±	6.7		
23	51	-1.84	33.73	4.67	76.7	±	4.2	43.8	±	7.1		
23	250	1.97	34.89	0.19	75.5	±	1.7	8.6	±	2.6		
23	1198	-0.31	34.9	0.35	82.9	±	2.5	24.4	±	3.9		
23	2198	-0.78	34.92	0.09	96.5	±	3.1	15.1	±	4.6		
23	2329	-0.79	34.93	0.15	93.3	±	3.4	12.5	±	4.8		
24A	10				72.7	±	5.7	51.7	±	11.0		
24A	50	-1.8	33.24	5.95	79.9	±	3.7	30.9	±	6.3		
24A	250	1.88	34.88	0.29	91.7	±	2.8	10.6	±	4.2		

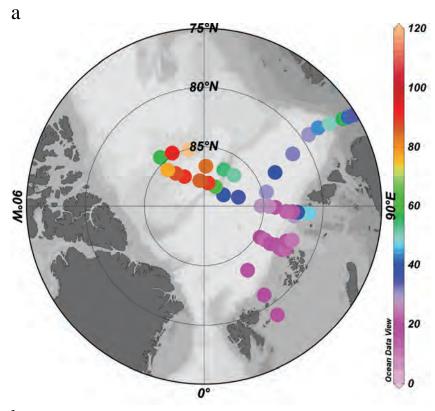
24A	1151				97.3	±	3.5	12.5	±	5.5
24A	3250	-0.74	34.94	-0.06	113.1	±	3.6	8.3	±	4.9
25	10				98.3	±	3.2	34.8	±	5.2
25	51				91.2	±	2.4	24.6	\pm	3.8
25	250				97.3	±	2.5	5.9	±	3.6
25	547	0.77	34.87	0.24	85.1	±	1.9	9.1	±	2.9
25	800	0.22	34.91	0.30	91.7	±	2.8	6.5	±	4.2
25	2650	-0.78	34.94	0.20	108.5	±	2.9	8.3	±	4.3
29	615	0.33	34.87	0.45	91.7	±	2.2	14.2	±	3.2
31	11	-1.28	32.53	3.62	84.0	±	3.7	35.7	±	6.0
31	50	-1.7	34.24	1.99	97.0	±	2.4	29.9	±	3.8
31	228	1.35	34.8	0.27	97.2	±	3.1	17.0	±	4.4
31	800	-0.6	34.75	0.55	98.4	±	2.9	30.6	±	4.6
31	1400	-0.49	34.8	0.54	98.8	±	2.2	20.0	±	3.4
31	1567	-0.53	34.81	0.45	102.0	±	2.6	21.0	±	3.9
33	11	-1.52	33.53	2.52	83.2	±	3.1	32.1	±	5.0
33	43	-1.59	34.39	1.64	100.0	±	3.9	26.8	±	6.1
33	111	0.39	34.74	0.74	97.9	±	3.4	25.0	±	5.2
33	203	-0.55	34.72	0.88	97.2	±	2.4	23.8	±	3.8
33	238	-0.33	34.75	0.96	91.5	±	2.9	20.2	±	4.3
40	5	0.00	5	0.70	79.0	±	3.3	52.3	±	5.5
40	50	-1.81	33.62	4.57	85.6	±	3.5	30.7	±	5.3
40	282	1.93	34.87	0.35	90.5	±	2.1	7.6	±	3.1
40	588	0.56	34.86	0.48	96.6	±	2.8	12.8	±	4.1
40	1759	-0.63	34.91	0.16	101.9	±	3.1	10.6	±	4.7
42	5	-0.03	34.71	0.10	70.5	±	2.7	48.0		4.8
42	52				92.9	±	3.7	38.9	±	5.9
42	268				90.4	±	1.8	2.6	±	2.6
42	1529	-0.57	34.9	0.25	96.3	±	3.0	11.5	± ±	4.6
42	2138	-0.57	34.9	0.23	94.7	±	2.5	9.6	±	3.6
44	11	-1.62	30.76	13.08	78.7	±	3.0	53.2		5.3
44	51	-1.02	33.28	5.94	83.6	±	3.0	34.9	± ±	4.9
44	256	1.85	34.87	0.34	96.4	±	2.2	7.5		
44	569	0.75	34.87	0.34	88.8		2.7	7.3 9.4	±	3.0 4.2
44						±		5.1	±	
	2864	-0.77	34.93	0.20	108.7	±	3.2		±	4.6
45 45	5	-1.6	30.42	13.62	73.6	±	3.5	62.5	±	6.6
45	254	1.79	34.87	0.45	81.2	±	2.2	11.9	±	3.3
45 45	1100	-0.38	34.89	0.35	85.9	±	2.3	9.7	±	3.3
45	3407	-0.72	34.94	0.25	92.8	±	1.6	6.4	±	2.3
47	9	-1.61	31.2	11.44	69.6	±	4.4	34.0	±	7.9
47	700	0.07	34.88	0.39	92.6	±	2.7	18.5	±	4.1
47	1999	-0.75	34.92	0.15	104.2	±	3.0	6.5	±	4.2
47	3914	-0.69	34.94	0.05	106.1	±	1.9	10.5	±	2.6
49	9	-1.6	30.43	12.45	75.6	±	3.6	59.9	±	6.3
49	261				79.9	±	2.4	15.3	±	3.6
49	751	-0.08	34.86	0.09	81.7	±	2.6	24.9	±	4.0
49	2381				99.7	±	2.8	9.2	±	4.0
51	5	-1.66	31.12	11.23	75.1	±	4.4	48.8	±	7.5
51	249	1.43	34.86	0.49	79.0	±	1.8	12.7	±	2.8
51	745	0.11	34.85	0.34	76.1	±	2.6	21.8	±	4.1
51	1667				103.1	±	2.6	10.1	±	3.7
51	1725	-0.57	34.92	0.10	103.5	±	2.9	9.7	±	4.2

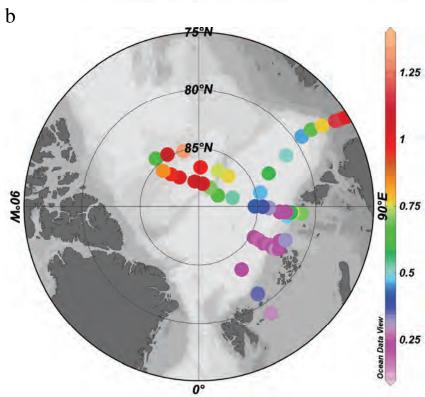
52	5	-1.66	31.21	11.64	68.2	±	3.9	39.8	±	6.9
52	502	0.6	34.86	0.44	79.5	±	2.0	17.4	\pm	3.0
52	1182	-0.38	34.89	0.30	89.0	±	2.2	19.8	±	3.3
56	13	-1.71	31.97	9.50	76.0	±	4.1	41.8	±	7.2
56	257	1.41	34.84	0.49	87.7	±	2.8	12.6	±	4.3
56	637	0.29	34.86	0.25	79.3	±	2.3	8.3	±	3.5
56	1500	-0.44	34.91	0.25	97.9	\pm	2.2	-2.2	\pm	3.1
56	2413	-0.38	34.95	0.10	128.1	\pm	2.8	3.4	\pm	3.6
60	5	-1.76	33.01	8.46	79.4	±	3.1	25.3	\pm	5.0
60	50	-1.73	33.25	6.81	74.0	\pm	7.8	19.5	\pm	14.8
60	750	0.07	34.86	0.44	95.7	\pm	2.3	14.5	\pm	3.2
60	1676	-0.54	34.92	0.25	113.8	±	2.2	7.0	\pm	3.0
60	1745	-0.43	34.94	0.24	149.2	±	2.2	9.8	±	2.8
62	10	-1.69	32.19	8.17	87.7	\pm	2.7	35.6	\pm	4.5
62	51	-1.74	33.24	5.51	90.7	±	3.3	27.0	±	5.2
62	251	1.54	34.85	0.15	94.0	±	2.7	9.6	\pm	3.9
62	500	0.43	34.84	0.44	84.2	±	2.4	12.0	\pm	3.6
62	1049	-0.18	34.88	0.15	75.1	±	1.8	16.1	\pm	2.8
65	9	-1.71	32.28	8.22	85.1	\pm	2.8	41.4	\pm	4.7
65	50	-1.79	33.44	7.32	97.5	\pm	2.8	53.5	\pm	4.5
65	100	-1	34.2	2.22	88.7	\pm	3.1	35.8	\pm	5.0
65	179	0.78	34.66	0.46	92.3	\pm	2.9	15.2	\pm	4.4
65	217	1.08	34.72	0.55	97.1	\pm	2.2	21.6	\pm	3.4
71	10	0.58	28.9	15.04	65.4	±	2.3	44.7	±	4.1
71	272	1.77	34.85	0.24	79.2	±	2.6	5.7	±	3.9
71	585	0.6	34.86	0.29	81.3	±	2.4	11.0	±	3.7
73	10	0.16	28.83	15.18	56.7	±	3.5	37.7	\pm	6.4
73	30	-1.49	33.51	5.80	74.0	±	2.8	33.9	±	4.7
73	92	-1.3	34.09	3.45	85.6	±	3.3	24.6	±	5.1
80	10	1.3	32.42	7.23	47.6	±	3.0	32.5	±	5.5
80	250	1.17	34.85	0.55	81.2	±	2.1	13.4	±	3.2
80	318	0.92	34.84	0.60	88.6	±	2.8	14.5	±	4.1
80	920	-0.52	34.84	0.44	82.1	±	2.6	20.8	±	4.0
80	1212	-0.43	34.88	0.40	88.7	±	2.8	21.9	±	4.4
84	9	-0.13	30.16	11.06	54.5	±	3.2	37.9	±	6.1
84	76	-1.38	34.02	3.70	86.4	\pm	3.5	43.6	\pm	5.8
89	5				44.9	±	3.7	10.6	\pm	6.4
89	230				75.0	\pm	2.5	7.7	\pm	3.8
89	902	-0.43	34.87	0.25	86.9	±	2.6	15.3	\pm	4.0
89	2694	-0.78	34.93	0.00	109.8	\pm	2.5	9.2	\pm	3.3
91	5				48.4	±	2.7	23.8	±	4.8
91	268	0.77	34.82	0.64	82.7	±	2.4	17.9	±	3.7
91	500	-0.33	34.85	0.64	85.3	±	2.8	22.8	±	4.6
91	1110	-0.55	34.86	0.44	91.8	±	2.9	32.0	±	4.7
94	11	-1.67	32.19	3.69	79.6	±	4.8	35.1	±	8.4
94	76	-1.36	34.52	1.24	82.1	±	1.6	36.8	±	2.7


Table 4. Station number, date of sampling, bottom depth, position, sampling depth, temperature, salinity, light transmission, fraction
of Pacific and of river water, sample volume, ²²⁴Ra (RaDeCC), ²²⁶Ra and ²²⁸Ra activity, ²²⁸Ra/²²⁶Ra ratio and ²²⁸Ra/²²⁶Ra* ratio
(corrected for Pacific ²²⁶Ra component) and the ²²⁸Th/²²⁸Ra ratio (from ²²⁴Ra/²²⁸Ra) with propagated 1-σ counting errors
during ARK XXII/2 (data available on www.pangaea.de).


Station	date	Bot. Depth	Latitude	Longitude	Depth	temperature	salinity	transmission	$\mathbf{f_P}$	$\mathbf{f_r}$	Volume	2	²²⁴ Ra		²²⁶ Ra ²²⁸ F		²⁸ Ra	Ra ²²⁸ Ra/ ²²⁶ Ra		ta	²²⁸ Ra/ ²²⁶ Ra*	228	Γh/ ²²⁸ Ι	ła			
		m	°N	°E	m	°C		%	%	%	L	dp	om m	-3	dpm m ⁻³			dpm m ⁻³									
237	2007-07-31	276	78.997	33.995	7	-1.52	34.231		4.3	0.9	295	5.6	±	0.6	68.9	±	0.7	20.1	±	1.1	0.29	\pm	0.01	0.29	0.28	±	0.03
239	2007-08-01	222	80.995	33.996	7	-0.97	32.664		0.0	1.1	295	2.7	±	0.3	54.6	±	0.6	19.1	±	1.0	0.35	\pm	0.01	0.35	0.14	±	0.02
257	2007-08-05	3958	83.497	34.047	7	-1.57	33.385	91.46	0.0	0.0	292	12.8	±	1.3	71.9	±	0.8	16.1	±	1.1	0.22	±	0.01	0.22	0.79	±	0.10
261	2007-08-11	3854	84.645	60.934	7	-1.59	33.382		0.5	2.7	293	17.2	±	1.7	71.8	±	1.1	17.2	±	1.5	0.24	±	0.02	0.24	1.00	±	0.13
263	2007-08-11	3702	84.173	60.999	7	-1.62	33.780	91.46	2.2	1.1	295	11.0	±	1.1	68.7	±	0.6	13.0	±	0.9	0.19	±	0.01	0.19	0.85	±	0.10
264	2007-08-12	3512	83.654	60.425	7	-1.65	33.555	91.33	4.8	0.0	292	10.2	±	1.0	75.3	±	0.6	15.9	±	0.8	0.21	±	0.01	0.21	0.64	±	0.07
266	2007-08-13	3040	83.138	61.741	7	-1.64	33.314		0.0	1.8	295	8.1	±	0.8	74.3	±	0.9	19.2	±	1.3	0.26	±	0.01	0.26	0.42	±	0.05
268	2007-08-14	1575	82.806	60.797	7	-1.61	32.856		0.0	2.1	295	6.6	±	0.7	70.2	±	0.6	16.1	±	0.9	0.23	±	0.01	0.23	0.41	±	0.05
271	2007-08-15	327	82.501	60.783	7	-1.53	32.945		0.0	2.3	295	8.0	±	0.8	70.6	±	0.6	15.6	±	0.9	0.22	±	0.01	0.22	0.51	±	0.06
272	2007-08-15	231	82.252	61.996	7	-1.53	32.945				295	8.2	±	0.8	69.0	±	0.6	14.7	±	0.8	0.21	±	0.01	0.21	0.56	±	0.06
274	2007-08-16	1174	82.521	67.110	7	-1.37	33.745	88.37	0.3	1.1	295	8.5	±	0.9	72.7	±	0.7	16.2	±	0.9	0.22	±	0.01	0.22	0.53	±	0.06
276	2007-08-17	680	82.083	68.960	7	-1.69	32.904		0.0	2.8	295	9.8	±	1.0	74.9	±	0.6	24.7	±	0.8	0.33	±	0.01	0.33	0.39	±	0.04
277	2007-08-18	1526	82.392	83.832	7	-1.66	32.640	84.88	0.0	4.4	295	3.6	±	0.4	60.4	±	0.8	29.0	±	1.5	0.48	±	0.02	0.48	0.12	±	0.01
279	2007-08-19	325	81.230	86.182	7	-1.54	31.166	88.04	0.0	6.4	295	12.4	±	1.2	66.6	±	1.0	46.9	±	1.8	0.70	±	0.02	0.70	0.26	±	0.03
284	2007-08-20	488	82.021	86.202	7	-1.55	30.910	88.67	0.0	6.9	295	10.6	±	1.1	65.2	±	0.7	48.9	±	1.3	0.75	±	0.02	0.75	0.22	±	0.02
285	2007-08-20	726	82.143	86.318	7	-1.62	32.517		5.7	4.8	295	6.3	±	0.6	68.5	±	0.8	39.8	±	1.5	0.58	±	0.02	0.58	0.16	±	0.02
285 ^a	2007-08-20	726	82.143	86.318	7	-1.62	32.517		5.7	4.8	590	10.5	±	1.1	67.4	±	0.6	41.5	±	1.1	0.61	±	0.01	0.61	0.25	±	0.03
290	2007-08-21	2078	82.580	86.423	7	-1.63	33.016	88.31	2.7	0.3	590	11.2	±	1.1	69.0	±	0.5	15.1	±	0.7	0.22	±	0.01	0.22	0.75	±	0.08
294	2007-08-22	3148	83.115	86.245	7	-1.67	33.257	83.02			590	11.7	±	1.2	54.4	±	0.4	12.6	±	0.6	0.23	±	0.01	0.23	0.93	±	0.10
299	2007-08-23	3693	84.051	89.042	7	-1.69	32.730		5.7	4.0	590	20.9	±	2.1	65.3	±	0.6	20.7	±	0.9	0.32	±	0.01	0.32	1.01	±	0.11
301	2007-08-24	3751	84.583	89.820	7	-1.69	32.730				590	21.9	±	2.2	67.5	±	0.6	25.3	±	0.9	0.37	±	0.01		0.87	±	0.09
303	2007-08-25	3967	85.243	90.162	7	-1.69	33.602		0.0	10.0	590	26.3	±	2.6	65.2	±	0.7	27.3	±	1.2	0.42	±	0.01	0.42	0.96	±	0.11
309	2007-08-27	4447	87.046	104.714	7	-1.69	31.758		6.3	11.9	590	25.6	±	2.6	67.7	±	0.7	36.0	±	1.3	0.53	±	0.02	0.54	0.71	±	0.08
312	2007-08-29	3046	88.119	120.209	7	-1.68	31.310	89.26	8.5	11.9	590	26.8	±	2.7	63.0	±	0.7	39.3	±	1.3	0.62	±	0.02	0.64	0.68	±	0.07


322	2007-08-31	2773	88.127	150.077	7	-1.65	30.635	88.89	20.6	14.9	590	32.9	±	3.3	87.3	±	0.9	61.5	±	1.6	0.70	±	0.02	0.75	0.53	±	0.06
326	2007-09-01	4022	88.029	170.087	7	-1.61	30.177				590	43.7	±	4.4	84.3	±	0.8	88.9	±	1.7	1.05	±	0.02		0.49	±	0.05
328	2007-09-02	3992	87.833	-170.741	7	-1.51	29.173	90.10	33.1	18.3	590	45.2	±	4.5	80.0	±	0.8	85.0	±	1.8	1.06	±	0.02		0.53	±	0.05
333	2007-09-04	3279	87.028	-146.400	7	-1.55	28.728		49.1	18.0	590	56.2	±	5.6	87.6	±	1.4	89.6	±	2.8	1.02	±	0.03	1.19	0.63	±	0.07
335	2007-09-05	2499	86.364	-139.359	7	-1.53	28.475	90.75	75.7	14.8	590	55.2	±	5.5	90.6	±	1.1	87.1	±	2.2	0.96	±	0.02	1.21	0.63	±	0.07
338	2007-09-05	1537	85.705	-135.041	7	-1.54	28.585		83.2	11.2	590	58.8	±	5.9	92.1	±	1.4	77.4	±	2.7	0.84	±	0.03	1.08	0.76	±	0.08
342	2007-09-07	2302	84.500	-138.419	7	-1.47	29.290		85.1	8.3	590	46.3	±	4.6	91.7	±	0.9	57.0	±	1.5	0.62	±	0.01	0.80	0.81	±	0.08
346	2007-09-08	2355	84.794	-149.120	7	-1.48	28.212	90.66			585	61.0	±	6.1	85.8	±	0.5	91.7	±	1.1	1.07	±	0.01		0.67	±	0.07
349	2007-09-09	2020	85.065	-164.497	7	-1.41	26.911	90.87	70.7	19.0	590	61.6	±	6.2	94.7	±	1.5	123.0	±	3.5	1.30	±	0.03	1.63	0.50	±	0.05
352	2007-09-10	4002	86.632	177.590	7	-1.59	29.524				295	47.7	±	4.8	85.2	±	1.5	83.7	±	3.2	0.98	±	0.03		0.57	±	0.06
358	2007-09-11	1459	86.506	151.963	7	-1.66	30.892	90.55	9.8	11.9	295	31.8	±	3.2	70.7	±	1.1	53.3	±	2.2	0.75	±	0.03	0.78	0.60	±	0.06
363	2007-09-12	3800	86.392	135.847	7	-1.68	31.302		10.7	11.5	295	32.1	±	3.2	67.7	±	1.1	51.5	±	2.1	0.76	±	0.02	0.79	0.62	±	0.07
371	2007-09-16	4266	84.661	102.737	7	-1.69	33.157		8.9	9.4	295	38.0	±	3.8	64.6	±	0.9	30.5	±	1.6	0.47	±	0.02	0.47	1.24	±	0.14
377	2007-09-18	4347	83.410	115.600	7	-1.57	31.193	89.62			295	35.3	±	3.5	63.7	±	0.6	37.4	±	1.2	0.59	±	0.01	0.59	0.94	±	0.10
382	2007-09-19	5345	81.358	120.719	7	-1.65	31.271		0.1	10.6	295	28.6	±	2.9	62.8	±	0.9	31.9	±	1.6	0.51	±	0.02	0.51	0.90	±	0.10
385	2007-09-20	3525	79.346	124.347	7	-0.97	31.206		0.0	7.4	285	18.0	±	1.8	67.6	±	0.8	31.1	±	1.4	0.46	±	0.02	0.46	0.58	±	0.06
389	2007-09-21	2600	78.355	124.522	7	-0.09	31.466		0.0	7.7	290	19.0	±	1.9	64.8	±	0.9	43.8	±	1.6	0.68	±	0.02	0.68	0.43	±	0.05
400	2007-09-22	1041	77.366	123.428	7	-1.60	30.723	89.47	0.0	9.5	295	19.6	±	2.0	64.8	±	0.9	49.8	±	1.7	0.77	±	0.02	0.77	0.39	±	0.04
400 ^b	2007-09-22	1041	77.366	123.428	7	-1.60	30.723	89.47	0.0	9.5	295	19.1	±	1.9	67.5	±	0.9	51.2	±	1.8	0.76	±	0.02	0.76	0.37	±	0.04
400	2007-09-22	1041	77.366	123.428	20	-1.46	33.057	90.59	0.0	5.3	157	14.6	±	1.5	76.6	±	1.1	50.9	±	2.1	0.66	±	0.02	0.66	0.29	±	0.03
407	2007-09-23	75	76.181	122.139	7	-0.44	29.531	89.02	0.0	12.7	295	16.7	±	1.7	48.4	±	0.7	56.2	±	1.5	1.16	±	0.03	1.16	0.30	±	0.03
407	2007-09-23	75	76.181	122.139	65	-1.63	33.812	64.77			132	21.7	±	2.2	95.5	±	1.2	81.5	±	2.3	0.85	±	0.02	0.85	0.27	±	0.03
407	2007-09-23	75	76.181	122.139	30	-1.58	33.433	86.73	0.0	6.3	129	10.9	±	1.1	88.6	±	1.1	75.7	±	2.3	0.85	±	0.02	0.85	0.14	±	0.02
409	2007-09-23	65	75.706	121.770	7	0.78	30.073	89.07	0.0	12.8	295	10.0	±	1.0	35.4	\pm	0.7	41.2	±	1.4	1.16	±	0.04	1.16	0.24	±	0.03
409	2007-09-23	65	75.706	121.770	55	-1.65	33.403	77.36	0.0	9.4	146	6.8	±	0.7	108.5	±	2.0	117.1	±	4.5	1.08	±	0.04	1.08	0.06	±	0.01
411	2007-09-24	49	75.201	121.365	7	0.43	29.089	89.32	0.0	13.1	295	9.7	±	1.0	33.3	\pm	0.7	34.1	±	1.5	1.02	±	0.04	1.02	0.28	±	0.03
411	2007-09-24	49	75.201	121.365	40	0.01	32.655	62.43	0.0	14.5	147	13.1	±	1.3	138.3	±	1.8	242.3	±	4.9	1.75	±	0.03	1.75	0.05	±	0.01
₫Ø1	7 2007-09-24	49	75.201	121.365	25	0.46	32.499	60.90	0.0	15.4	160	47.0	±	4.7	129.2	±	1.2	247.1	±	3.2	1.91	±	0.03	1.91	0.19	±	0.02


a) duplicate sample with double sample volumeb) duplicate sample with loose uncoated acrylic fiber instead of cartridge prefilter 1020


19 January 2012 47

