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Abstract 24 

 25 

The Trans Polar Drift is strongly enriched in 228Ra accumulated on the wide Arctic shelves 26 

with subsequent rapid off-shore transport. We present new data of Polarstern expeditions to 27 

the central Arctic and to the Kara and Laptev Seas. Because 226Ra activities in Pacific waters 28 

are 30% higher than in Atlantic waters, we correct 226Ra for the Pacific admixture when 29 

normalizing 228Ra with 226Ra. The use of 228Ra decay as age marker critically depends on the 30 

constancy in space and time of the source activity, a condition that has not yet adequately 31 

been tested. While 228Ra decays during transit over the central Basin, ingrowth of 228Th could 32 

provide an alternative age marker. The high 228Th/228Ra activity ratio (AR=0.8 – 1.0) in the 33 

central basins is incompatible with a mixing model based on horizontal eddy diffusion. An 34 

advective model predicts that 228Th grows to an equilibrium AR, the value of which depends 35 

on the scavenging regime. The low AR over the Lomonosov Ridge (AR=0.5) can be due to 36 

either rapid transport (minimum age without scavenging 1.1 year) or enhanced scavenging. 37 

Suspended particulate matter (SPM) load (derived from beam transmission and particulate 38 

234Th) and total 234Th depletion data show that scavenging, although extremely low in the 39 

central Arctic, is enhanced over the Lomonosov Ridge, making an age of 3 yr more likely. 40 

The combined data of 228Ra decay and 228Th ingrowth confirm the existence of a 41 

recirculating gyre in the surface water of the eastern Eurasian Basin with a river water 42 

residence time of at least 3 years. 43 

 44 

45 



19 January 2012 3

1. INTRODUCTION 46 

The Arctic Ocean comprises just 1% of World Ocean volume but receives 10% of World 47 

river discharge. Surface water with a large river water component and imprints from the wide 48 

shelf areas are carried across the central Arctic in the Trans Polar Drift (TPD). With the rapid 49 

reduction of summer ice cover in the deep central Arctic major changes can be expected in 50 

primary production and biogeochemical cycles. How the central Arctic ecosystem will 51 

develop will strongly depend on the composition and circulation of the surface water. It is 52 

therefore important to quantify the rate and mode of surface water exchange between shelves 53 

and central basins. The circulation of surface waters in the central Arctic is not known as 54 

accurately as we know the ice drift. It took the ice 2.9 y to carry Nansen’s Fram from the 55 

Laptev Sea before leaving the Arctic at 80°N, but with 1979-2006 climatology this drift 56 

would on average have taken 3.7y (PFIRMAN et al., 2009). The rapid drift of Tara in the years 57 

2006-2008 (ca 1.5 years, DAMOCLES Project) shows that the ice drift has lately accelerated, 58 

as is also documented by numerous buoys deployed in the ice and tracked by satellite 59 

(International Arctic Buoy Programme). The surface water residence time, which needs not 60 

be the same as that of the ice, was estimated by Schlosser et al. (1999) to be 2-5 yr, but these 61 

authors mention that their method (tritium/3He ages) gives a minimum estimate because of 62 

possible losses of 3He to the atmosphere through leads in the ice. The residence time of 63 

freshwater in the Arctic is approximately 10 years (SERREZE et al., 2006). 64 

 65 

The natural radionuclide 228Ra is a powerful tracer for shelf inputs to the open ocean (MOORE 66 

et al., 1986) and is particularly well suited for such studies in the Arctic Ocean, which 67 

comprises 25% of the World shelf areas. Earlier 228Ra measurements from 1991 (RUTGERS 68 
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VAN DER LOEFF et al., 1995) and 1994 (SMITH et al., 2003) showed high surface water 228Ra 69 

activities in the TPD. Kadko and Muench (2005) confirmed low 228Ra/226Ra in the Beaufort 70 

Gyre due to decay during the long residence time in this basin. Hansell et al. (2004) and  71 

Letscher et al. (2011) used this decay to derive decomposition rates of dissolved organic 72 

carbon. Kadko and Aagaard (2009) derived water mass ages of halocline waters using 73 

submarine-collected samples. This use of the decay of 228Ra to derive the time since a water 74 

parcel left the shelf is critically dependent on the assumption that the 228Ra activity of waters, 75 

when they leave contact with the shelf, is known and constant over time and space. This has 76 

not been tested yet. In fact, there are indications that there are differences between individual 77 

shelf areas (RUTGERS VAN DER LOEFF et al., 2003). Indications of a systematic difference 78 

between Eurasian and American shelf concentrations (SMITH et al., 2003) were not supported 79 

by Kadko and Muench (2005) who argue that their data from the Chukchi are in accord with 80 

published distributions in the Eurasian Arctic.  81 

 82 

The general circulation of surface waters in the Arctic Ocean is characterized by an 83 

anticyclonic (clockwise) circulation in the Beaufort Gyre and a cyclonic circulation in the 84 

Eurasian Basin. The two systems meet in the TPD (PFIRMAN et al., 1997; RUDELS, 2009) 85 

which forms the transition between waters of Pacific and Atlantic origin. Depending on the 86 

Arctic Oscillation the general circulation changes between periods with stronger cyclonic or 87 

anticyclonic character (PROSHUTINSKY and JOHNSON, 1997). In the 1990s, a strong change 88 

towards cyclonic circulation weakened the Beaufort Gyre and the Atlantic/Pacific front 89 

shifted from approximately the Lomonosov to the Alpha/Mendeleev Ridges (MCLAUGHLIN 90 

et al., 1996; EKWURZEL et al., 2001), which resulted in a shift in the geographic positions of 91 
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maximum 228Ra concentrations (SMITH et al., 2003). Such changes in surface circulation 92 

likely change the residence time of water over the shelves and may therefore also have 93 

changed the accumulated 228Ra activities. While 228Ra may thus be a useful tracer for the 94 

variability in the outflow of shelf water from the Laptev Sea (SMITH et al., 2003), the 95 

calculation of surface water age from 228Ra activities becomes questionable. It is therefore 96 

desirable to have additional tracers of the transit time of water in the TPD. 97 

 98 

The ingrowth of 228Th into its parent 228Ra could serve that purpose. We know from studies 99 

of 234Th that thorium is effectively removed on the shelves (Barents Sea: (COPPOLA et al., 100 

2002; RUTGERS VAN DER LOEFF et al., 2002); Chukchi Sea: (MORAN et al., 1997; MORAN et 101 

al., 2005; LALANDE et al., 2007; LEPORE et al., 2007); Beaufort Sea (MORAN and SMITH, 102 

2000), Laptev Sea (CAI et al., 2010)). These high thorium scavenging rates also cause 228Th 103 

to be depleted with respect to 228Ra (TRIMBLE et al., 2004; LEPORE and MORAN, 2007). In the 104 

Canada Basin thorium scavenging rates decrease northward (MORAN et al., 1997; TRIMBLE et 105 

al., 2004; TRIMBLE and BASKARAN, 2005)  and reach very low values on the Alpha Ridge in 106 

the central Arctic (BACON et al., 1989).  Indeed, in large areas of the central Arctic, 107 

scavenging rates are extremely low (CAI et al., 2010). Thus, when 228Th-depleted shelf 108 

waters are carried along in the Trans Polar Drift and flow into the low-scavenging regime of 109 

the central Arctic, it can be expected that 228Th grows into equilibrium with its parent 228Ra. 110 

Here we investigate to what extent the 228Th/228Ra ratio in Arctic surface waters can be used 111 

to derive the age of a surface water parcel since it left the high-scavenging regime on the 112 

shelf. 113 

 114 
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 115 

2. METHODS 116 

 117 

2.1. ARK XI/1 (1995) 118 

During the German-Russian expedition with RV Polarstern to the Laptev Sea, 7 July to 20 119 

Sept. 1995 (RACHOR, 1997), seawater samples of about 40 L were collected at 37 stations 120 

(Table 1) with the 24 x 12 L Rosette sampler. After filtration, a solution of barium chloride 121 

was added to the samples to coprecipitate radium with BaSO4. At 16 of these stations the 122 

samples had previously been acidified, spiked with Fe and 230Th and neutralized with 123 

ammonia to isolate Th isotopes on a Fe(OH)3 precipitate. This coprecipitation does not 124 

remove Ra (LI et al., 1980). The BaSO4 precipitates were dried and put in small tubes. 125 

Radium activities were determined by gamma spectrometry at the home laboratory. 126 

The freshwater components were calculated using the δ18O data of Frank (1996) and the 127 

three-component (Atlantic water, meteoric water and ice melt) mixing model of Östlund and 128 

Hut (1984) with endmember compositions according to Ekwurzel et al. (2001). 129 

 130 

2.2. ARK XXII/2 (2007)  131 

Surface water samples (150-300L) were collected during Polarstern Expedition ARK XXII/2, 132 

29 July – 7 Oct 2007 (SCHAUER, 2008) (Fig. 1). Samples from the seawater intake at 7m 133 

depth were filtered over 1-μm polypropylene cartridges, passed over MnO2 fibre at a flow 134 

rate of at most 1 L/min to obtain a Ra extraction efficiency of at least 97% (MOORE, 2008) 135 

and counted for 224Ra with delayed coincidence scintillation counting (MOORE and ARNOLD, 136 

1996). For the calculation of counts due to 224Ra we used the chance coincidence correction, 137 
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not the alternative procedure based on total counts (MOORE, 2008). The expected error is 8-138 

14% (GARCIA-SOLSONA et al., 2008). The same procedure can in principle be used to 139 

determine 227Ac through 223Ra (GEIBERT et al., 2008) but count rates were influenced by the 140 

high count rates of 224Ra and buildup of 222Rn and activities were low and are not reported 141 

here. In the home laboratory, Ra was leached from the fibre (ELSINGER et al., 1982), 142 

coprecipitated as BaSO4 (CUTTER et al., 2010) and counted with gamma spectroscopy for 143 

226Ra and 228Ra (MOORE, 1984).  144 

Beyond the reach of the unsupported 224Ra from its shelf source (cf. KADKO et al., 2008), 145 

224Ra must be in equilibrium with its parent 228Th. That means that in offshore regions, the 146 

delayed coincidence technique provides an indirect technique to monitor 228Th. In studies 147 

where excess 224Ra is measured, the 224Ra is recounted after the decay of the first generation 148 

224Ra in order to determine 228Th-supported 224Ra. We have recounted the samples after two 149 

half lives and found generally a 20% reduction in count rate. Because we observed this 150 

difference even in the central Arctic where an excess activity is not possible at large distance 151 

to any potential source, we interpret this not as indication of real in-situ  224Ra excess, but 152 

rather as an apparent excess due to insufficient collection of 228Th. This could be due either 153 

to filtration, which removes the particulate 228Th, or to non-quantitative adsorption of Th to 154 

the Mn fibres. We have also considered the possibility that the seawater inlet of Polarstern 155 

had accumulated 228Th during previous expeditions, which would then serve as a continuous 156 

source of 224Ra as has been observed on other ships. The fact that we were able to measure 157 

low 224Ra in the Atlantic inflow makes it unlikely that such a contamination was a significant 158 

contribution to the observed excess 224Ra. We therefore consider the 224Ra activities derived 159 

from the initial count rates to represent the total 228Th activity and in this paper will report 160 
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them as 228Th. In shelf regions this procedure might overestimate 228Th if a significant 161 

contribution of unsupported 224Ra were present. On stations 407 and 411 on the Laptev shelf 162 

we deployed in situ pumps and measured 228Th with the double-MnO2 cartridge technique 163 

(BASKARAN et al., 1993) at four horizons. Dissolved 228Th was 13±8 dpm/m3, particulate 164 

228Th was 1-2 dpm/m3 compared with a 224Ra activity of 21±15 dpm/m3 measured with 165 

RaDeCC in discrete water samples collected at these stations (Table 2), resulting in an 166 

average 224Ra/228Th ratio of  1.45. In five cases where we measured 224Ra (RaDeCC) and 167 

228Th (in situ pumps) at the same station and depth, 224Ra/228Th AR ranged from 0.3-2.1 168 

(Table 2). As values of this AR below 1 are unlikely, we explain the wide range by 169 

inhomogeneity while the two isotopes were sampled three hours apart with different gear. 170 

We conclude that in individual shelf water samples the measured 224Ra/228Ra may 171 

overestimate in situ 228Th/228Ra by up to a factor of 2 (Table 2). 172 

 173 

The freshwater and Pacific components for ARK XXII/2 (2007) were calculated using δ18O 174 

and nutrient data following (BAUCH et al., 2011) using the N/P characteristics of Atlantic and 175 

Pacific waters following Jones et al. (1998) and Yamamoto-Kawai et al. (2008). further 176 

details on calculations and errors refer to Bauch et al. (2011).  For stations where the 177 

calculated Pacific component fP was negative and for stations on the Laptev shelf (Sta 385 178 

and beyond) fP was set to zero.  179 

Some depth profiles were obtained on the Laptev shelf with in situ pumps equipped with 180 

size-fractionated filters and twin MnO2-coated cartridges. Cartridges were leached with a 181 

Soxhlet system and Ra was precipitated as BaSO4 and gamma counted as the other samples. 182 
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The Th fractions of the Soxhlet leaches and of the filter digest solutions (CAI et al., 2010) 183 

were analysed for 228Th with alpha spectrometry. 184 

 185 

Particulate 234Th was monitored with a semi-automated filtration apparatus (RUTGERS VAN  186 

DER  LOEFF et al., 2011; RUTGERS VAN DER LOEFF et al., 2006) set to filter approximately 187 

every 4 hours 4.9 L of surface water from the ship’s seawater intake over 25mm QMA filters 188 

that were subsequently dried and counted for beta activity. Graphics were produced with the 189 

ODV software package (SCHLITZER, 2010). All data of 228Th and Ra isotopes are presented in 190 

Tables 3 and 4 and are available in the database PANGAEA 191 

(doi:10.1594/PANGAEA.772682). On this GEOTRACES expedition a wide spectrum of 192 

other trace elements and isotopes was measured (see 193 

http://www.bodc.ac.uk/geotraces/data/inventories/arkxxii_2/). 194 

 195 

3. RESULTS 196 

 197 

3.1 226Ra 198 

 199 

In many studies on 228Ra in the open ocean the long-lived isotope 226Ra has been used as a 200 

yield tracer determined either in discrete samples (SMITH et al., 2003; RUTGERS VAN DER 201 

LOEFF et al., 2003) or derived from published relationships between 226Ra, salinity and 202 

silicate (BROECKER et al., 1976; MOORE and SMITH, 1986; RUTGERS VAN DER LOEFF et al., 203 

1995).  204 

 205 
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A plot of 226Ra activity against fr (Fig. 2a) shows the major features of 226Ra in surface waters 206 

in the Arctic Ocean: First, 226Ra activities in all samples with a significant component of 207 

Pacific water are approx 30% higher than in the Eurasian Basin (Fig. 2a and map in Fig. 3). 208 

Moore and Smith (1986) had already observed that the surface water concentration of 226Ra 209 

at the Cesar Ice camp station (85°50'N, 108°50'W: 107 dpm/m3) was somewhat higher than 210 

reported North Atlantic and Greenland Sea surface values corrected to 35 ‰ salinity and zero 211 

dissolved silicate (68-73 dpm/m3, BROECKER et al., 1976); (70±2 to 77±2 for TTO samples 212 

N of 70°N KEY et al., 1992). Moore and Smith (1986) argued that the Cesar values were 213 

closer to North Pacific surface values from the GEOSECS program (96 dpm/m3 at 32 µM Si, 214 

CHUNG and CRAIG, 1980). Similarly high 226Ra activities (113.8, 113.8, 109.7 dpm/m3) were 215 

observed in surface waters of the deep (>1000m) Canada Basin by Smith et al. (2003) but 216 

data published for the Chukchi and Beaufort shelf areas (SMITH et al., 2003; KADKO and 217 

MUENCH, 2005; LEPORE et al., 2009) are more variable and appear to be strongly affected by 218 

biological uptake and release in these productive shelf regions.  219 

 220 

Second, offshore surface values in the Eurasian Basin, excluding samples with Pacific 221 

influence and samples with significant Ba uptake on the Laptev (Sta 400-411) and Barents 222 

(Sta 239) shelves (blue symbols without annotation in figure 2a) have a slight tendency to 223 

lower values at higher fr  224 

226Ra  = 71.5 -56 fr ; R2 = 0.33, n=26      (1) 225 

This trend can be compared with data from the Kara Sea (RUTGERS VAN DER LOEFF et al., 226 

2003) that follow the regression 226Ra  = 75.2 -48 fr ;R
2 = 0.91, n=14, excluding a pure fresh 227 

water sample from the Ob river.  228 
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 229 

And third, on the Laptev shelf, a prominent effect of biological cycling is observed with 230 

226Ra values in surface waters being reduced by up to 48% relative to eq. 1 (Fig. 2a), while 231 

they are enhanced in subsurface waters. A reduction is also observed in the surface water at 232 

station 239 (cf. Fe data in Klunder et al., submitted). This biological cycling is closely linked 233 

to the cycling of Ba (cf. GUAY and FALKNER, 1997; ABRAHAMSEN et al., 2009; ROESKE et al., 234 

submitted) (Fig. 2b). Both Ba and 226Ra are depleted in the Laptev and Barents (Sta 239) 235 

surface waters, while they show enhanced values in Laptev bottom waters. Moreover, both 236 

Ba and 226Ra show an offset between Eurasian and Pacific surface waters in the central 237 

Basins (cf. ROESKE et al., submitted). 238 

 239 

3.2 228Ra 240 

 241 

3.2.1 Distribution of 228Ra in summer 2007 242 

 243 

The distribution of 228Ra in 2007 (Fig. 4a) shows high values in the TPD. The surface water 244 

in the Atlantic inflow and over the Barents shelf has low 228Ra activities. The maximum 245 

activities were found over the Makarov Basin while activities decreased towards the 246 

Canadian and Amundsen Basins. For comparison with literature observations we also present 247 

the 228Ra data normalized to 226Ra (Fig. 4b). As a result of the Atlantic-Pacific gradient in 248 

226Ra (Fig. 3), the maximum in the 228Ra/226Ra ratio is somewhat shifted towards the 249 

Lomonosov Ridge in comparison with the distribution of 228Ra, although this is not easily 250 

distinguished in the graphs (Fig. 4b compared to a). Anyhow, the maximum signal in 251 

228Ra/226Ra ratio in the TPD has moved from the Alpha Ridge (SMITH et al., 2003) back 252 
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towards the Lomonosov Ridge (Fig. 4b), in agreement with hydrographic observations of this 253 

relaxation to anticyclonic, pre-1990s Arctic circulation (MORISON et al., 2006). It should be 254 

noted that all samples on the section over the Gakkel Ridge towards the Laptev shelf (section 255 

5) have high 228Ra activities well in excess of the Atlantic inflow, showing the influence of 256 

shelf waters. Surface waters on this section have a substantial river water fraction (about 257 

10%), much larger than further west toward Fram Strait at the longitude of the Voronin 258 

Trough (on section 3) where 228Ra activities were also much lower. 259 

 260 

Bottom waters on the shelf are strongly enriched in 226Ra (Fig. 2b) but also in 228Ra (Fig. 2c). 261 

Even higher enrichment of 228Ra in bottom waters of the Chukchi shelf has been observed by 262 

Lepore and Moran (2007). Diffusive input of the long-lived 226Ra usually does not cause as 263 

prominent an accumulation of 226Ra in shelf waters as is seen for the shorter lived 228Ra. The 264 

enrichment of both isotopes in shelf bottom waters therefore implies that the 228Ra 265 

accumulation in bottom waters results not only from a release from shelf sediments but also 266 

from biological cycling on the shelf. It is not known whether Submarine Groundwater 267 

Discharge contributes to this enrichment. 268 

 269 

3.2.2 ARK XI/1: defining the freshwater endmember in the Laptev Sea 270 

 271 

Intensive sampling in 1995 (ARK XI/1) provides detailed data to define the 228Ra source in 272 

the Laptev Sea in that year. 226Ra and 228Ra activities in the Laptev Sea in 1995 are listed in 273 

Table 3. Offshore stations have lower 228Ra activities than most shelf stations when plotted 274 

against salinity (Fig. 5a). Even if we correct for the dilution by ice melt water by plotting 275 
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228Ra against the fraction of river water using δ18O (Fig. 5b), the offshore waters still stand 276 

out by their low 228Ra activities. Essentially the same results are obtained when plotting the 277 

228Ra/226Ra activity ratio (AR) (Fig. 5c), implying that the pattern is not a consequence of 278 

biological uptake/release. This normalization with 226Ra is justified in the Laptev Sea where 279 

the fraction of Pacific water can be neglected. The shelf waters correspond well with earlier 280 

data from the Laptev shelf (RUTGERS VAN DER LOEFF et al., 2003). The low offshore 228Ra 281 

activities imply either a freshwater source with lower 228Ra activity from the Kara Sea, or the 282 

existence of old recirculated water where 228Ra has decayed. 283 

 284 

3.3 228Th/228Ra 285 

 286 

228Ra decays to 228Th (1.9 y half life), which in coastal waters is effectively scavenged giving 287 

a typical 228Th/228Ra ratio <0.05 in coastal waters (KAUFMAN et al., 1981). Indeed, such low 288 

values were also observed in coastal waters of the Canada Basin (TRIMBLE et al., 2004; 289 

LEPORE and MORAN, 2007). Further offshore in the Arctic, we know that Th scavenging rates 290 

are very low (CAI et al., 2010) which means that 228Th/228Ra ratios must increase by 291 

ingrowth.  292 

 293 

The ratio of 228Th to its parent 228Ra (Fig. 6) in surface waters over section 3 and section 4+5 294 

across the central Arctic Ocean shows how over the deep basins, the absence of strong 295 

scavenging allows 228Th to grow into equilibrium with its parent. The ingrowth of 228Th over 296 

the deep basins in contrast to the 228Th-depleted shelf waters is clearly seen in a map of 297 

228Th/228Ra in surface water where the present data are compared with literature values (Fig. 298 
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7). Lowest ratios (<0.3) are observed on the Barents, Kara and Laptev shelf and in the 299 

Beaufort Sea. Highest ratios (>0.8) are found in the eastern Eurasian Basin including the 300 

section over the Gakkel Ridge and on Ice Island T3 in the central Canada Basin. The 301 

relatively high AR observed in the low-salinity Polar Surface Layer (PSL) at the ICEX 302 

station, only 200km offshore in the Canada Basin, may be explained if this water represents 303 

old recirculated water from the Canada Basin (KADKO and MUENCH, 2005). These authors 304 

also observed high 228Th/228Ra AR on the northern, deep side of their three sections across 305 

the Chukchi shelf (their stations 8-18 and 34: depth>500m, AR=0.45±0.08, n=9). All other 306 

stations from that study from the shallower waters in Bering Sea and Chukchi shelf had 307 

AR≤0.26 (AR:0.09±0.08, n=17). The inflow at the Bering Strait has very low 228Th/228Ra AR 308 

(<0.06, KADKO and MUENCH, 2005). Lepore and Moran (2007) showed that the wide 309 

variation in 228Th/228Ra ratios on the Chukchi shelf is in part a seasonal phenomenon.  310 

 311 

4. DISCUSSION 312 

 313 

4.1 228Ra 314 

 315 

4.1.1 228Ra vs 228Ra/226Ra activity ratio  316 

 317 

As mentioned above, the 228Ra/226Ra AR has often been used instead of the 228Ra activity 318 

itself as tracer. This has the advantage of somewhat better analytical precision because 319 

usually 228Ra is calculated from a 228Ra/226Ra AR multiplied by the absolute 226Ra activity 320 

determined separately. Moreover, the procedure corrects for biological uptake/release. On the 321 
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Laptev shelf, biological uptake removed 25-48% of 226Ra and 31% of Ba (ROESKE et al., 322 

submitted) in the surface water (Fig. 2). On the other hand, one should always be careful 323 

applying a mixing plot using ARs because ratios do not mix linearly (KADKO and MUENCH, 324 

2005) (cf. Fig. 8). Moreover, in the Arctic we see that there are large differences in 226Ra 325 

activity between waters from Atlantic and Pacific origin (Fig. 2). In studies like ours with 326 

large geographical coverage in the Arctic Ocean, a normalization with 226Ra then requires a 327 

correction for the Atlantic/Pacific mixing ratio. For that purpose we introduce here the 328 

parameter 226Ra*, in which the 226Ra activity of a sample is corrected for the additional 329 

activity it obtained from its Pacific water fraction according to 330 

)   (

 )   (
226226

226
226*226

AAPP

AAP

RafRaf

Raff
RaRa

+
+

=       (2) 331 

where fA and fP are the Atlantic and Pacific water fractions and 226RaA and 226RaP are the 332 

226Ra activities of pure Atlantic and Pacific waters. In equation (2) the numerator (fP + 333 

fA)226RaA gives the 226Ra if all seawater were of Atlantic origin while the denominator 334 

(fP
226RaP + fA

226RaA) gives the 226Ra expected from a conservative mixing of the two 335 

seawater endmembers. It should be noted that there are few data for the Pacific source water, 336 

and that the 226Ra activity for the northernmost Pacific GEOSECS station 219 (96 dpm/m3 at 337 

20m depth) has a Si concentration of 32µM. If we corrected this for salinity and zero silicate 338 

as this was done for Atlantic water by Cochran et al. (1995), we would find an unlikely 226Ra 339 

activity in the Pacific source water of only 44±7 dpm/m3. The value we use here for 226Rap, 340 

the average of all samples with a Pacific water component >50% (92.4±1.7 dpm/m3, n=4, cf. 341 

Fig. 2a), should therefore not be regarded as the 226Ra of pure Pacific surface water but of the 342 

water that has been preconditioned during its passage through the Bering Strait and over the 343 
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neighboring Arctic shelves. This correction procedure introduces further uncertainties. In the 344 

following we therefore prefer to discuss 228Ra activities next to ARs. 345 

 346 

4.1.2 228Ra as age marker  347 

 348 

The 228Ra distribution (Fig. 4) shows the pathway of the TPD centered over the Makarov 349 

Basin with decreasing activities towards the Canada and Amundsen/Nansen Basin. This is 350 

consistent with maximum concentrations observed for other tracers of terrigenous influences: 351 

Fe (KLUNDER et al., submitted), Mn (MIDDAG et al., 2011), CDOM (Walker and Amon 352 

personal communication and Walker 2009). The question we address here is to what extent 353 

the deviation from these correlations in the 228Ra data can be interpreted as decay and thus be 354 

used as age marker, or rather are due to variability in endmember concentrations. To that 355 

effect, we plot the 228Ra activity against the river water component (Fig. 8a). For comparison 356 

with literature data where 228Ra has usually been normalized with 226Ra we also show the 357 

same data after normalization with 226Ra* in Fig. 8b. 358 

 359 

4.1.3 Formation of 228Ra excess on the shelf produces a range of endmembers. 360 

  361 

There are two major sources of 228Ra to the ocean: first, by release from sediments, a source 362 

that is particularly important on the vast and shallow Siberian shelves. Some further 228Ra 363 

may be released from ice rafted sediments upon ice melt. The second major source is a phase 364 

adsorbed to riverine particles that is released in the first stages of estuarine mixing. In the 365 

Arctic, the first source is considered much more important than the second (Rutgers van der 366 
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Loeff et al. (2003) and references therein). Although this means that the major source of 367 

228Ra in the Arctic does not coincide with the rivers, it has been argued that the combined 368 

effect of the river source and the diffuse shelf source on offshore surface waters (i.e. their 369 

“far-field” effect) would be similar to the input of a river component carrying a 228Ra signal. 370 

A surface water mass in the central Arctic could then be treated as a mixture of 228Ra-poor 371 

seawater, ice-melt water and a freshwater component represented by a virtual endmember 372 

228Ra activity. The early data sets in the central Arctic could be well described by this model, 373 

although it was questioned whether the various shelf components could be treated as one 374 

single endmember composition (RUTGERS VAN DER LOEFF et al., 1995). In a subsequent 375 

paper we found much lower 228Ra activities at the same salinity or river water fraction in the 376 

Kara Sea compared to the Laptev Sea, (RUTGERS VAN DER LOEFF et al., 2003). In the Kara 377 

Sea the greater depth counteracts the rapid buildup of 228Ra. Schlosser (1994) gives an 378 

estimate of 3.5 ± 2 y for residence time of fresh water on Siberian shelves. During this time 379 

there is an eastward circulation and shallowing depths from the Kara to the Laptev to the East 380 

Siberian Sea before the waters turn northward and leave the shelf in the TPD. It is thus likely 381 

that 228Ra continues to accumulate eastward and there is no reason why this further 382 

accumulation should be correlated with continued freshwater inputs. This is why we 383 

concluded that water may thus reach the shelf edge with variable shelf signatures (RUTGERS 384 

VAN DER LOEFF et al., 2003).  385 

 386 

The low 228Ra activities observed offshore in the Laptev Sea during 1995 (Fig. 5) could 387 

indeed be interpreted to result from a low-228Ra freshwater source, e.g. from the Barents or 388 

Kara Sea. This distribution is confirmed by the data of the 2007 expedition. Surface samples 389 

(with fr > 2.5%) from the Laptev shelf of both expeditions have high 228Ra activities in 390 
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agreement with the mixing line based on 1991 data from the Eurasian Basin (RUTGERS VAN 391 

DER LOEFF et al., 1995). Surface samples of stations with >260m bottom depth of both 392 

expeditions have 228Ra activities that are only about half those predicted by the conservative, 393 

non-decayed mixing line (Fig. 5c). 394 

 395 

At this point it cannot be decided whether the low offshore 228Ra activities are due to a lower 396 

freshwater endmember activity advected from the Kara Sea, or result from decay which 397 

would imply that the offshore surface waters contain a river water fraction with a long 398 

residence time in the deep Eurasian Basin.  399 

 400 

This situation is very similar to the distribution observed by Kadko and Muench (2005) in the 401 

Beaufort Sea. These authors observed much lower 228Ra activities in offshore low salinity 402 

Polar Surface Water (Polar Surface Layer, PSL) and concluded that these were waters that 403 

had been recirculating in the Canada Basin. They used the 228Ra activities to estimate the age 404 

of the PSL water to be up to 14 years.  But also in the Canada Basin the actual freshwater 405 

228Ra endmember is not well constrained, and a rigorous distinction between variability in 406 

source concentration and radioactive decay cannot be made. In the following we will use the 407 

additional tracer 228Th/228Ra to distinguish between these alternative explanations. 408 

 409 

4.2 228Th/228Ra ratios 410 

 411 

Here we will investigate to what extent the ingrowth of 228Th into the shelf-induced 228Ra can 412 

itself serve as a time marker. For this discussion it is essential to know the isotope 413 

composition of the water that constitutes the source of the Ra in the central Arctic ocean. In 414 
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Fig. 7 we have seen the gradual increase of 228Th/228Ra AR from shelf to central ocean, but 415 

the differences are even more apparent in a plot of 228Th versus 228Ra (Fig. 9).  There is a 416 

large variation in concentrations on the shelves and part of the variation in 228Th/228Ra AR is 417 

seasonal (LEPORE and MORAN, 2007). While plankton growth and export leads to the 418 

removal of thorium, there is also a significant uptake of radium (Fig. 2), which might even 419 

contribute to the sometimes relatively high AR values in shelf waters with low 228Ra (Fig. 9). 420 

However, these 228Ra-depleted shelf waters clearly cannot be the source of the high 228Ra 421 

activities in the TPD (51-92 dpm m-3 and one exceptionally high value of 123 dpm m-3, Sta 422 

349). Instead we must look for source waters with at least a similarly high 228Ra activity. At 423 

high 228Ra activities (>80 dpm m-3) the 228Th/228Ra AR is only 0.1-0.2 (Fig. 9) and in the 424 

following we will assume that the 228Ra-enriched shelf water leaves the shelf with an AR  425 

F0=0.15±0.05. As we will show later, the age estimates are not very sensitive to errors in F0.  426 

 427 

4.3 Models for the distribution of 228Ra and 228Th.  428 

 429 

4.3.1 constant 228Ra: concordia with 234Th/238U.   430 

 431 

In a system with a constant 228Ra (and 238U) activity and a constant scavenging rate of Th, the 432 

steady state 228Th/228Ra values should be concordant with 234Th/238U ratios (KAUFMAN et al., 433 

1981). Indeed, the range of values we observed on the shelf is concordant with observed 434 

234Th/238U ratios of 0.8-0.9 (CAI et al., 2010) (Fig. 10a).  435 

 436 

A similar calculation can be made for the deep basins. Here, the very low thorium 437 

scavenging rates found by Cai et al. (2010) must allow 228Th activities to increase. Outside 438 
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the more productive shelf regions the depletion of 234Th with respect to 238U was largely 439 

limited to the upper mixed layer which was usually only approx 20m deep. In 30 stations 440 

over the slope and the central basin 234Th/238U in the surface layer (5m depth) was 0.89 ± 441 

0.11. But the depletion follows a distinct geographical trend (Fig. 11, data from CAI et al., 442 

2010). The five stations on the Barents slope (depth range 1533-3115m) stand out by strong 443 

depletion (234Th/238U <0.8) (Fig. 11b) which we attribute to export related with production 444 

influenced by the Barents shelf (WASSMANN et al., 1999; WASSMANN et al., 2004; LALANDE 445 

et al., 2008), as was also observed in Ba (ROESKE et al., submitted) and Fe (KLUNDER et al., 446 

submitted) data. Excluding the Barents slope, the average 234Th/238U in the surface layer of 447 

all stations with depth >1500m was 0.942 ± 0.060 (n=18) in good agreement with the data 448 

from three permanently ice-covered stations in the Canada Basin sampled by Trimble and 449 

Baskaran (2005) (0.946 ± 0.057). If we restrict the region further to the central Arctic N of 450 

84°35’N the average becomes 0.958 ± 0.058 (n=11). These 234Th/238U ratios correspond in 451 

steady state to a thorium scavenging rate of 0.46 (0-1.16) y-1.  Again in steady state, this 452 

would cause a 228Th/228Ra ratio of 0.24-1.0. Indeed, in the central Eurasian and Canada 453 

basins 228Th/228Ra ratios (our own and literature values) are far above the ratio of shelf waters 454 

(Figs 6, 7, 9). But apart from the crude comparison in Fig. 10, the concordia concept is not a 455 

satisfactory description of the data. The isotope distribution cannot be described as steady 456 

state because, as we shall see, ingrowth of 228Th causes gradual changes in the 228Th/228Ra 457 

ratio. Seasonal variations are a further cause of large deviations from concordia, especially in 458 

shelf areas (LEPORE and MORAN, 2007). 459 

 460 

4.3.2 open system approach: eddy diffusion.   461 
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 462 

In ocean margins where 228Ra is released from coastal sediments and where coastal waters 463 

exchange with offshore waters by horizontal mixing (eddy diffusion), 228Ra decreases 464 

exponentially with distance offshore by horizontal mixing and decay.  In these systems the 465 

distribution of 228Th (activity AT) is governed by decay of 228Ra (activity AR), ingrowth and 466 

scavenging of 228Th (scavenging rate λs) and mixing, as discussed by Broecker et al. (1973): 467 
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where k is the horizontal eddy diffusion coefficient, x is distance offshore and λR and λT
 are 470 

the decay constants of 228Ra and 228Th, respectively. The offshore distribution of 228Ra 471 

follows a simple exponential decay (BROECKER et al., 1973): 472 
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where the superscript ° denotes the situation when the water leaves the shelf. For the 474 

boundary condition of a constant 228Th/228Ra AR on the shelf (F0) we find the solution: 475 
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which for the condition of 100% scavenging on the shelf (F0=0) simplifies to (BROECKER et 477 

al., 1973) 478 
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Equations (5) and (6) define a relationship between 228Th and 228Ra,  480 
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which is displayed in Fig. 12 for several values of the Th scavenging rate and a shelf source 482 

with a 228Th/228Ra AR F0=0.15. We have already seen that the 228Ra activity of this source is 483 

not well constrained. Based on the distribution of concentrations in shelf waters we use here 484 

110 dpm m-3 although locally activities up to 180 dpm m-3 are found (Table 3), and even 485 

higher in bottom waters on the shelves. With these assumptions, the mixing model cannot 486 

explain our data. This conclusion is not affected by possible changes in F0 (broken lines in 487 

Fig. 12) as might e.g result from our overestimate of 228Th on the shelf due to excess 224Ra. 488 

Especially for the high 228Ra activities we observed in the TPD, the high 228Th data are 489 

incompatible with the mixing model, even in the absence of scavenging (λs=0). The 490 

continued exchange in this model with the Th-depleted shelf water does not allow Th to grow 491 

to the high values observed offshore. 492 

 493 

4.3.3 closed system approach: advection  494 

 495 

Neither the steady state model with constant 228Ra and 238U activities leading to a concordia 496 

with 234Th/238U, nor a mixing model based on eddy diffusion gives an appropriate 497 

representation of the situation in the central Arctic. Here the surface circulation is 498 

characterized by the TPD. When the shelf waters turn offshore, lose contact with the shelf 499 

and flow as a thin lens over deep water, 228Ra is no longer supplied by the sediments and will 500 

decay. At the same time, the reduction in scavenging rate will allow the gradual ingrowth of 501 

228Th. In this advective system it is more appropriate to calculate the time development of 502 
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parent and daughter as the net result of decay of 228Ra, ingrowth of 228Th and removal of 503 

228Th by scavenging, but without horizontal mixing. If we assume that the scavenging is 504 

reduced to a low open ocean value as soon as the water mass leaves contact with the shelf, 505 

the ingrowth of 228Th will follow the two-decay curve:  506 
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where the superscript ° again denotes the situation a t=0 when the water leaves the shelf. This 508 

model does not include mixing. There is a strong vertical gradient in 228Ra activity in the 509 

halocline (RUTGERS VAN DER LOEFF et al., 1995). Although stratification is strong, mixing 510 

will cause some loss of 228Ra to deeper waters. As the 228Th gradient is in the same direction, 511 

the ratio should not be strongly affected by this loss by mixing. 512 

  513 

In Fig. 13 the evolution of 228Th and of the 228Th/228Ra AR has been modeled for several 514 

values of λs. Note that the evolution of the AR in this model is independent on the actual 515 

value of 228Ra in the shelf source. An error in the value used for F0 causes a relatively small 516 

error in the predicted ages. If for example a water parcel leaves the shelf with an F0 of 0.1, it 517 

would take just 2-3 months for the ingrowth to reach the value of 0.15, the starting point of 518 

our model calculations.  519 

The model results show that many observed 228Th/228Ra ratios in the central Arctic Ocean 520 

(Fig. 7) can never be reached with the 234Th-based average scavenging rate of 0.46 y-1. The 521 

observed 228Th/228Ra ratio of 0.8 sets an upper limit to λs of 0.21 y-1. This can be explained 522 

when the scavenging rate over the longer time horizon recorded by 228Th is lower than the 523 

recent summer value recorded by the short lived 234Th.  Based on the ingrowth model, we can 524 

now derive an age since the water mass detached from the shelf area. In a first 525 
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approximation, we assume that λs = 0.21 y-1 throughout the deep Arctic Ocean and determine 526 

the age based on the 228Th/228Ra ingrowth using equation 9. The results (Fig. 14) confirm the 527 

high age of the fresh water component observed in the central Eurasian Basin over the 528 

Gakkel Ridge. Even in the absence of scavenging, ingrowth to the AR values observed at 529 

stations 371-382 (0.90 ± 0.10 to 1.24 ± 0.13) requires 2.7-4.1 to >5.2y, respectively.  This is 530 

a strong argument that the low 228Ra values observed offshore in the Laptev Sea in 1995 and 531 

2007 (Fig. 5c) are due to decay during recirculation of these waters and not to an input of 532 

low-radium water from the Kara Sea.  533 

 534 

In the age calculation above we have assumed that once the water has left the shelves, the 535 

scavenging rate is everywhere the same. The high 228Th/228Ra ratios in the Nansen Basin of 536 

0.8 require an ingrowth period of at least 3 years even if no scavenging had occurred. But the 537 

reduced 228Th/228Ra ratios over the Lomonosov Ridge and over the southern part of the 538 

Gakkel Ridge could be explained either by a rapid transport from the shelf or by a somewhat 539 

higher scavenging rate. We have therefore looked for indications of spatial differences in 540 

suspended particulate material and scavenging rates. 541 

 542 

4.4 Evidence for regional differences in scavenging rates 543 

 544 

4.4.1 Transmissometry 545 

 546 

The clearest waters, as deduced from transmissometer readings (Fig. 15) were found over the 547 

Nansen Basin and in the Makarov/Alpha Ridge region. Light transmission was reduced over 548 
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the Amundsen Basin and Lomonosov Ridge and over most of section 5 over the Gakkel 549 

Ridge towards the Laptev shelf.  550 

 551 

4.4.2 Particulate 234Th 552 

 553 

Particulate 234Th in surface water can be considered as a proxy for the suspended matter load 554 

(RUTGERS VAN  DER  LOEFF et al., 2011). Indeed, the distribution of particulate 234Th (Fig. 16) 555 

resembles well the distribution of light transmission, with the same features: relatively high 556 

values during passing of the Lomonosov Ridge, especially during the first section (3). On the 557 

second section (4) we observed again enhanced values, then especially on the Amundsen side 558 

of the Lomonosov Ridge. We found enhanced values also over most of section 5 over the 559 

Gakkel Ridge towards the Laptev Sea and slightly enhanced values over the Alpha Ridge. 560 

The lowest values, corresponding to the clearest water, were found in the Nansen Basin, the 561 

Siberian side of the Amundsen Basin and the southern part of the Makarov Basin. The large 562 

differences between the two sections over the Makarov Basin point at temporal changes in 563 

the composition of the TPD. Bauch et al. (BAUCH et al., 2011) came to a similar conclusion 564 

based on δ18O data from these sections. 565 

 566 

4.4.3 Total 234Th/238U: export from surface layer 567 

 568 

In the far offshore region with latitude >84°35’ we had found from the data of Cai et al. 569 

(2010) an average 234Th/238U ratio of 0.958 ± 0.058 (n=11). The nine stations with depth 570 

>1500m (depth >1500m, lat>84°35’) have 234Th/238U = 0.975 ± 0.047 (n=9). The two 571 

stations close the Lomonosov Ridge stand out with 234Th/238U values of 0.90 ± 0.04 (Sta 316, 572 
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1298m bottom depth) and 0.86 ± 0.04 (Sta 358, 1424m). The 234Th/238U ratio of 0.90 573 

observed over the Lomonosov Ridge (station 316, August 30: 0.90 ± 0.04; station 358, Sept 574 

11: 0.86 ± 0.04.) corresponds in steady state with a scavenging rate of 1.17 y-1.  575 

 576 

With this scavenging rate, the 228Th/228Ra AR could not have increased above 0.26 (Fig. 577 

13b). As we observed a ratio of 0.5, we again conclude that the scavenging must have been 578 

seasonally increased. The Th scavenging rate observed from 234Th/238U disequilibrium in 579 

summer 2007 may thus represent a maximum over a year as primary productivity is typical at 580 

its highest in this season. Also, particle export studies using sediment traps indicate that POC 581 

export is at its highest in summer (CAI et al., 2010) (and references therein). Therefore, there 582 

is a good reason to use for λs a lower year-round average value than the one calculated using 583 

summer 234Th data. A short summer increase in λs would also affect 228Th activities, but the 584 

relative effect would be smaller for the longer lived 228Th, which would already be depleted 585 

by about 50% before the summer, than for the short-lived 234Th, with a depletion of only 586 

10%. 587 

 588 

The combined evidence (Fig. 17) infers an enhanced particle load and scavenging rate in the 589 

area of the Lomonosov Ridge. Apparently, the shelf input in this region is so large that even 590 

this far offshore it enhances productivity and export above the neighboring regions. It is also 591 

likely that the increased particle load and scavenging rate is related to the release of ice-592 

rafted particles upon ice melt (BASKARAN et al., 2003; TRIMBLE and BASKARAN, 2005).  593 

 594 

4.5 Synthesis/comparison of the models 595 
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 596 

In Fig. 18 we compare our and selected literature data of 228Th and 228Ra in surface waters of 597 

the offshore Arctic Ocean with the predictions of the various models discussed. All stations 598 

are sufficiently far offshore that excess 224Ra must have decayed and the measured 224Ra is a 599 

good proxy for 228Th. The observations in the TPD, especially all samples with 228Ra>75 600 

dpm m-3 (stations 322-352 or all stations on the Canadian side of the Lomonosov Ridge, 601 

Cesar station) are incompatible with the mixing model at any value of λs and best explained 602 

by the advective model. The values over the Lomonosov Ridge are also incompatible with 603 

the mixing model if we realize that scavenging cannot be disregarded here. Based on the 604 

228Th/228Ra ingrowth in the advective model (Fig. 13), the minimum shelf water age of 605 

surface waters (disregarding scavenging) in the TPD ranges from 1.2 yr near the Lomonosov 606 

Ridge (AR=0.49)  to 2.7 y in the Makarov Basin/Alpha Ridge (AR=0.79). With the evidence 607 

of enhanced scavenging rates over the Lomonosov Ridge it is more likely that the age of 608 

water over that Ridge is rather ≥ 3 yr.  609 

 610 

The interpretation of the data in the Eurasian basin is more difficult because the 228Ra 611 

activities are much lower and for these activities the model results tend to approach each 612 

other. Nevertheless, the high AR for the samples over the northern part of the Gakkel Ridge 613 

require time to accumulate. In the advective model, the AR of 0.9 and above would not be 614 

reached before 3.4 years, even disregarding scavenging. The 228Th accumulation over the 615 

Gakkel Ridge shows that the surface water cannot flow here in parallel to the TPD with the 616 

rate experienced for the ice by the Tara drift. It is more likely that a recirculating gyre exists, 617 

increasing the residence time of the surface water in the Eurasian Basin.  618 
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 619 

 620 

5. CONCLUSIONS 621 

 622 

Similar to Ba, Ra is clearly affected by biological uptake in surface waters of the Arctic 623 

shelves and release in their bottom waters. The biological effect on 228Ra distribution can be 624 

corrected for by normalizing with 226Ra. But 226Ra also resembles Ba in enhanced 625 

concentrations in waters of Pacific origin compared to waters of Atlantic origin. This 626 

difference has to be accounted for when 228Ra/226Ra ratios are used in pan Arctic studies. 627 

 628 

In the central Arctic, 228Ra is at its maximum over the Lomonosov Ridge and Makarov 629 

Basin. If the maximum has moved towards the Canada Basin in the early nineties (SMITH et 630 

al., 2003), it has moved back with the change to more anticyclonic surface water circulation 631 

(MORISON et al., 2006).  632 

 633 

The half life of 228Ra (5.8 y) is appropriate for the study of shelf water transport in the TPD. 634 

But the use of 228Ra as age marker for shelf waters requires that the shelf source of 228Ra is 635 

constant in space and time. Judged from the transit times of ice (1.5-4y) and surface water 636 

(minimum estimate 2-5y, SCHLOSSER et al., 1999) the initial 228Ra must be known to clearly 637 

better than 50%. We cannot judge whether this condition is met to a sufficient extent to allow 638 

the calculation of ages with acceptable error limits for the relatively rapid transport in the 639 

TPD. 640 

 641 
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Seasonal removal of Th and Ra produces a wide range of 228Ra activities and 228Th/228Ra 642 

ratios on the shelves.  The high 228Ra activities in the central Arctic Ocean imply that these 643 

Ra-depleted shelf waters cannot be the source for the TPD.  Shelf waters with sufficiently 644 

high 228Ra activity (>100 dpm m-3) usually have low 228Th/228Ra (AR<0.2), and we assume 645 

that these waters leave the shelf with a 228Th/228Ra activity ratio (F0) of 0.15 ± 0.10. 646 

228Th/228Ra ratios in surface waters increase through 0.4-0.6 in the TPD over the Lomonosov 647 

Ridge to 0.8-1.0 over the deep basins. The ingrowth of 228Th into its 228Ra parent thus 648 

provides independent age information of surface waters. However, the interpretation of this 649 

information with an ingrowth-scavenging model is complicated by clear geographical 650 

differences in scavenging rates. Transmission, particulate 234Th, and 234Th/238U data 651 

consistently show enhanced suspended particulate matter concentrations and correspondingly 652 

high scavenging rates over the Lomonosov Ridge compared to the adjacent deep basins.  653 

 654 

The minimum shelf water age of surface water over the Lomonosov Ridge, estimated with 655 

neglect of scavenging, is 1.1 yr. With the evidence of enhanced scavenging rates over the 656 

Lomonosov Ridge it is more likely that the age of water over that Ridge is rather ≥3 yr. The 657 

surface water on the Canadian side of the TPD is older as has been shown in previous studies 658 

(RUTGERS VAN DER LOEFF et al., 1995; HANSELL et al., 2004; LETSCHER et al., 2011). 659 

Similarly, the minimum age of fresh water over the Gakkel Ridge is 3.4 yr, but with realistic 660 

scavenging rates this must be appreciably longer. 228Ra distribution and 228Th/228Ra ingrowth 661 

give independent proof of the high age of the water in the eastern Eurasian basin over the 662 

Gakkel Ridge. We conclude that there must be a recirculation of shelf water in this basin 663 

(Fig. 19), as this has been suggested in earlier studies of surface circulation (GORDIENKO and 664 
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LAKTIONOV, 1969). This situation is very similar to the inferred recirculation of shelf water 665 

in the Canada Basin near the ICEX station (KADKO and MUENCH, 2005).  666 
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FIGURE CAPTIONS 888 
 889 

Fig 1. Cruise track (red lines) with sections (S1-5) and stations sampled during Polarstern 890 

ARK XXII/2 with Atlantic inflow in the Fram Strait and Barents Sea branches (black lines) 891 

and approximate pathway of the TPD (arrows). 892 

 893 

Fig. 2. a) 226Ra as function of the fr (fraction of river water); b) 226Ra and c) 228Ra as a 894 

function of Ba of all samples shallower than 100m of ARK XXII/2 (2007) distinguishing 895 

samples from the Laptev shelf (red squares with sampling depth and the symbols dot, triangle 896 

and cross identifying stations 407, 409 and 411, respectively) and samples with significant 897 

Pacific influence (open circles, as also indicated in panel a by their Pacific water fraction fP 898 

given in %). 899 

 900 

Fig. 3.  Distribution of 226Ra (dpm m-3) during ARKXXII/2 compared with literature data 901 

(excluding data from the productive Chukchi shelf waters) from GEOSECS Atlantic 902 

(BROECKER et al., 1976), Cesar Ice Camp (MOORE and SMITH, 1986), TTO (KEY et al., 1992) 903 

and Smith et al. (2003). 904 

 905 

Fig. 4.  Distribution of a) 228Ra (dpm m-3) and b) 228Ra/226Ra ratios in surface waters, summer 906 

2007.  907 

 908 

Fig. 5a) 228Ra as a function of salinity and b) as a function of the meteoric fraction fr and c) 909 

228Ra/226Ra ratio as a function of the meteoric fraction fr for all samples of the ARK XI/1 910 

expedition (1995) including in c) samples from the Laptev Sea (<92°N) of the ARK XXII/2 911 
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expedition (triangles) distinguishing shelf (bottom depth < 260m: closed symbols) and 912 

offshore stations (open symbols) compared in c) with the mixing line based on 1991 data 913 

from the Eurasian Basin. 914 

 915 

Fig. 6. 228Th, 228Ra and 228Th/228Ra ratios in surface water of section 3 (left, Kara Sea to 916 

Alpha Ridge) and section 4+5 (right, Alpha Ridge to Lomonosov Ridge, then over Gakkel 917 

Ridge towards Laptev Sea). 918 

 919 

Fig. 7. Distribution of 228Th/228Ra ratio in surface waters of ARK XXII/2 (this study) along 920 

with literature data (with ranges where symbols overlap) from the Alaskan shelf (AWS, 921 

TRIMBLE et al., 2004), ICEX-03 (0.55-0.73, KADKO and MUENCH, 2005), Chukchi Sea (SBI 922 

spring 0.33±0.27, summer 2002 0.23±0.22, summer 2004, 0.08±0.04 LEPORE and MORAN, 923 

2007), Cesar station (BACON et al., 1989), Ice Island T3 (BROECKER et al., 1973) and the 924 

Nansen Basin (stations 287, 358, COCHRAN et al., 1995).  925 

 926 

Fig. 8. a) 228Ra and b) 228Ra/226Ra* AR as a function of fr for surface water samples from the 927 

ARK XXII/2 expedition (2007) distinguishing samples from the Laptev shelf (red squares, 928 

symbols identifying stations 407-411 as in Fig. 2), samples with significant Pacific 929 

component (open circles) from samples from the Nansen and Amundsen Basin (open 930 

triangles), close to the Lomonosov Ridge (closed squares: Stas 312, 358, 363) and other 931 

surface samples (diamonds). The mixing line drawn by eye (straight solid line) is thought to 932 

represent mixing of Atlantic inflow with a hypothetical freshwater endmember excluding the 933 

samples influenced by biological cycling on the Laptev shelf and is compared here with the 934 
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228Ra line (broken line) obtained from the Laptev Sea - Atlantic mixing line of 228Ra/226Ra 935 

given in Rutgers van der Loeff et al. (1995) multiplied for panel a) by 226Ra from eq. 1 (Fig. 936 

2a).  937 

 938 

Fig. 9. 228Th vs 228Ra in surface waters of ARK XXII/2 (filled symbols distinguishing TPD, 939 

black diamonds; Lomonosov Ridge, black squares; Kara and Laptev shelf, blue triangles; 940 

Nansen basin, red circles; north Gakkel Ridge, red squares; southern Gakkel Ridge, red 941 

triangles) along with literature data (open symbols) from the Alaskan shelf (AWS, squares, 942 

TRIMBLE et al., 2004), ICEX-03 (large circles, KADKO and MUENCH, 2005), Chukchi Sea 943 

(SBI, small circles, KADKO and MUENCH, 2005; triangles, LEPORE and MORAN, 2007), Cesar 944 

station (C, BACON et al., 1989), Ice Island T3 (T3, BROECKER et al., 1973) and the Nansen 945 

Basin station studied by Cochran (N, COCHRAN et al., 1995).  946 

 947 

Fig. 10. Observed range of 234Th/238U vs. 228Th/228Ra compared with the theoretical steady 948 

state “concordia” line (KAUFMAN et al., 1981; LEPORE and MORAN, 2007) in a) shelf stations 949 

of Laptev Sea (boxes, this study and CAI et al., 2010) and Chukchi Sea (distinguishing 950 

summer (open symbols) and spring (closed symbols), LEPORE and MORAN, 2007) and b) 951 

central Arctic for this study (Lomonosov Ridge, 228Th/228Ra AR 0.4-0.6; Beaufort Gyre and 952 

Gakkel Ridge AR 0.8-1.0) compared with literature AR values of Cochran et al. (COCHRAN 953 

et al., 1995), Trimble et al.(2004)(AWS 3: 0.30 ± 0.03 AWS 4: 0.37 ± 0.06), Bacon et al., 954 

(1989) and Kaufmann et al. (1981).  955 

 956 
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Fig. 11. 234Th/238U ratio in surface waters as a function of a) geographical location and b) 957 

bottom depth, distinguishing stations over Lomonosov Ridge (open triangles) and Barents 958 

shelf (x) from other stations (dots). Data of Cai et al. (2010). 959 

 960 

Fig. 12. a) 228Th vs 228Ra (dpm m-3) in surface waters of this study (TPD, filled symbols) 961 

compared with horizontal mixing model for λs=0 (including results for F0 = 0.1 and 0.2, thin 962 

lines), 0.21 and 0.46 y-1. In the case without scavenging (λs=0), the results approach at high 963 

distance offshore the limiting AR of λT /(λT -λR) = 1.49 (straight broken line).  964 

 965 

Fig. 13. Evolution of a) 228Ra (parent, with arbitrary initial activity) and 228Th activity and b) 966 

228Th/228Ra ratios for several values of the scavenging constant λs as function of time after 967 

contact with the shelf source. The range compatible with measured 234Th/238U ratios is 968 

shaded. At a (234Th-based) scavenging rate of 0.46 y-1, an AR of 0.4 is reached after 1.6 years 969 

while an AR of 0.6 is incompatible with this scavenging rate. Using λs=0.21 y-1, the AR of 970 

0.4-0.6 is reached 1-2.5 y after leaving the high-scavenging shelf regime (highlighted by 971 

boxes). 972 

 973 

Fig. 14.  Age (y) of shelf waters based on equation 9 and assuming a constant Th scavenging 974 

rate λs of 0.21 y-1, omitting the stations in the Atlantic inflow identified by 228Ra<20 dpm/m3. 975 

Darkest circles have a model age > 8 year.  976 

 977 

Fig. 15. Light transmission (%) at 10m depth during expedition ARK XXII/2. 978 

 979 
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Fig. 16. Particulate 234Th/238U as monitored with the automatic 234Th sampler.   980 
 981 

Fig. 17. 228Th/228Ra ratio (a) compared with b) total 234Th/238U ratio (CAI et al., 2010), c) 982 

particulate 234Th/238U ratio (automatic filtration) and d) beam transmission (CTD casts) in 983 

surface water of section 3, showing enhanced suspended load and scavenging near 984 

Lomonosov Ridge. 985 

 986 

Fig. 18 228Th vs 228Ra in surface waters over the deep basins (symbols as in Fig. 9) compared 987 

with model results for the mixing model (red lines) and the advection model (black lines) 988 

assuming a Th scavenging rate λs of 0 (thin lines) and 0.21 y-1 (heavy lines).  989 

 990 

Fig. 19. Conceptual graph of approximate location of TPD with highest 228Ra concentrations 991 

during high (AO+, as in early 1990s) and low (AO-, as in 2007) Arctic Oscillation, the 992 

Beaufort Gyre (BG) and the inferred recirculation in the eastern Eurasian Basin (Gakkel 993 

Gyre, GG) on a map based on Rudels (2009) with Bering Strait Inflow (BSI), Fram Strait 994 

(FB) and Barents Sea Branch (BB) of Atlantic inflow, Siberian Coastal Current (SCC) and 995 

East Greenland Current (EGC). 996 

997 



19 January 2012 41

Table 1. Station date, depth and position during Polarstern expedition ARK XI/1 998 

Station 
ARK-XI/1- 

Date Depth  Latitude °N Longitude °E 

2 19-07-1995 151 77.523 97.065 

3 22-07-1995 1982 77.704 125.910 

4 24-07-1995 54 78.010 144.889 

6 25-07-1995 96 78.978 147.346 

7 26-07-1995 210 79.455 148.108 

9 29-07-1995 75 78.655 144.122 

10 30-07-1995 50 78.002 140.003 

12 31-07-1995 45 77.252 135.002 

16 31-07-1995 51 76.002 130.012 

18 01-08-1995 95 77.597 130.008 

19 01-08-1995 264 77.622 130.047 

21 02-08-1995 1180 77.857 130.030 

23 03-08-1995 2354 78.158 129.973 

24A 05-08-1995 3263 79.314 131.518 

25 07-08-1995 2670 81.135 105.559 

29 10-08-1995 2222 80.900 104.742 

31 11-08-1995 1588 80.780 103.440 

33 12-08-1995 253 80.427 102.017 

40 15-08-1995 1780 78.531 133.979 

42 16-08-1995 2176 78.698 134.608 

44 17-08-1995 2679 79.137 135.007 

45 18-08-1995 3424 79.999 134.961 

47 20-08-1995 3909 80.915 131.155 

49 22-08-1995 2650 81.053 136.565 

51 23-08-1995 1742 81.071 138.928 

52 24-08-1995 1215 81.160 140.155 

56 26-08-1995 2428 81.177 147.399 

60 28-08-1995 1778 80.341 149.975 

62 29-08-1995 1063 80.081 149.842 

65 30-08-1995 234 79.515 148.239 

71 01-09-1995 604 78.341 135.075 

73 02-09-1995 107 78.247 135.392 

80 06-09-1995 1244 78.768 112.732 

84 07-09-1995 95 77.895 113.718 

89 09-09-1995 2721 82.343 92.848 

91 10-09-1995 1079 82.072 91.038 

94 10-09-1995 93 81.820 90.768 

 999 
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 000 

Table 2. In-situ pump (ISP) and RaDeCC (Rosette sampling) data of 228Th, 228Ra and 224Ra from the Laptev Shelf  001 
 002 
 003 
station depth 228/226Ra 226Ra 228Ra 228Th 228Th/228Ra depth 228/226Ra 224Ra 228Ra 224Ra/228Ra 224Ra/228Th 

 m    dpm/m3  dpm/m3  dpm/m3   m  dpm/m3 dpm/m3   

           diss part total        

 ISP ISP   20-L   ISP   ISP ISP ISP ISP RADECC RADECC RADECC RADECC RADECC  

                             

385 7 0.50 ± 0.02 81.1 ± 4.8 41 ± 3     7 0.46 ± 0.02 18.0 ± 1.8 31.1 ± 1.4 0.58 ± 0.06  

407 7 1.27 ± 0.05 71.8 ± 4.1 91 ± 6 7 1.4b 8 0.09 7 1.16 ± 0.03 16.7 ± 1.7 56.2 ± 1.5 0.30 ± 0.03 2.0 

407 15 3.91 ± 0.18 75a ± 5 293 ± 24 5 0.75 6 0.02               

407 30 1.29 ± 0.05 75a ± 5 97 ± 8 29 1.75 31 0.32 30 0.85 ± 0.02 10.9 ± 1.1 75.7 ± 2.3 0.14 ± 0.02 0.4 

407 50 0.44 ± 0.02 75a ± 5 33 ± 3 7 2.38 9 0.29 65 0.85 ± 0.02 21.7 ± 2.2 81.5 ± 2.3 0.27 ± 0.03 2.3 

411 7 1.35 ± 0.13 79.6 ± 4.2 107 ± 12 10 1.4b 11 0.11 7 1.02 ± 0.04 9.7 ± 1.0 34.1 ± 1.5 0.28 ± 0.03 0.9 

411 15 1.51 ± 0.15 75a ± 5 113 ± 14 9 0.33 9 0.08               

411 25 1.86 ± 0.19 75a ± 5 140 ± 17 20 1.65 22 0.15 25 1.91 ± 0.03 47.0 ± 4.7 247.1 ± 3.2 0.19 ± 0.02 2.2 

411 35 1.83 ± 0.19 75a ± 5 137 ± 17 19 1.4b 20 0.15               

                             

shelf average (Sta 407-411)       13.3  14.6 0.15     21.2      0.24   1.5 

SD           8.5  8.7 0.10     15.2      0.07   0.9 

 004 
a) not measured, average of shelf samples in Fig. 2a 005 

b) not measured, average of other particulate samples 006 

  007 
 008 
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Table 3. sampling depth, potential temperature, salinity, fraction of river water, and 226Ra and 1009 

228Ra activity with propagated 1- σ counting errors during ARK XI/1   (data available 1010 

on www.pangaea.de) 1011 

Station depth Pot Temp Salinity fr 
226Ra 228Ra 

ARK-XI/1- m °C  % dpm/m3 dpm/m3 

2 5 -1.19 31.38 11.24 80.0 ± 6.2 -7.9 ± 11.5 

2 51 -1.64 33.88 4.74 91.8 ± 3.0 58.2 ± 5.4 

2 126 -1.29 34.26 2.72 105.2 ± 2.9 45.7 ± 4.9 

3 5    88.7 ± 2.3 58.8 ± 4.1 

3 30    93.9 ± 2.5 53.8 ± 4.4 

3 50    93.2 ± 2.8 44.5 ± 4.7 

3 251    100.2 ± 2.4 8.9 ± 3.5 

3 1500    113.6 ± 1.6 8.6 ± 2.2 

4 5 0.13 30.88 15.53 105.3 ± 6.0 180.0 ± 13.3 

4 30 -1.75 33.07 13.29 111.0 ± 4.7 167.8 ± 9.9 

6 5 -1.77 33.39 8.44 93.3 ± 6.0 84.7 ± 11.5 

7 17 -1.76 33.23 7.58 100.9 ± 4.9 55.1 ± 8.3 

7 50   3.46 102.1 ± 3.7 54.1 ± 6.3 

7 100 -0.8 34.33 2.16 100.2 ± 5.1 44.7 ± 8.5 

7 150 -0.8 34.33 2.16 109.5 ± 3.9 31.8 ± 5.9 

7 205 0.83 34.75 0.59 107.7 ± 3.8 22.3 ± 5.9 

9 5 -1.71 32.87 12.13 96.5 ± 5.1 151.5 ± 10.7 

9 50 -1.8 33.44 9.30 101.2 ± 6.1 102.3 ± 11.7 

10 5 0.59 32.39 11.27 92.6 ± 5.6 89.4 ± 10.3 

10 40 -1.67 33.08 11.09 98.0 ± 5.1 110.8 ± 9.8 

12 5 4.12 29.91 13.92 66.6 ± 5.9 87.7 ± 12.0 

12 31 -1.69 32.75 10.66 83.8 ± 6.3 78.5 ± 12.0 

16 5 2.36 28.78 18.11 77.0 ± 3.9 72.8 ± 7.4 

16 40 -1.37 33.66 4.92 103.3 ± 5.6 88.0 ± 10.5 

18 5 2.46 28.67 16.38 75.4 ± 7.4 112.0 ± 15.2 

19 4 -1.42 30.95 12.42 84.7 ± 4.4 58.1 ± 7.4 

19 39 -0.98 34.21 2.80 95.1 ± 4.8 52.6 ± 8.3 

19 99 -0.97 34.31 2.29 108.3 ± 5.3 51.1 ± 8.7 

19 200 -0.83 34.35 2.24 99.9 ± 5.7 37.7 ± 9.4 

19 250 -0.82 34.35 2.14 95.9 ± 4.8 44.7 ± 8.1 

21 5 -0.98 29.81 14.31 70.4 ± 4.7 56.9 ± 8.7 

21 51 -1.68 33.6 4.66 73.1 ± 4.4 43.0 ± 8.1 

21 250 1.55 34.83 0.29 83.7 ± 3.4 14.3 ± 5.2 

21 1048 -0.01 34.88 0.29 94.5 ± 3.5 25.0 ± 5.5 

23 5 -1.14 30.31 14.12 67.6 ± 3.7 52.4 ± 6.7 

23 51 -1.84 33.73 4.67 76.7 ± 4.2 43.8 ± 7.1 

23 250 1.97 34.89 0.19 75.5 ± 1.7 8.6 ± 2.6 

23 1198 -0.31 34.9 0.35 82.9 ± 2.5 24.4 ± 3.9 

23 2198 -0.78 34.92 0.09 96.5 ± 3.1 15.1 ± 4.6 

23 2329 -0.79 34.93 0.15 93.3 ± 3.4 12.5 ± 4.8 

24A 10    72.7 ± 5.7 51.7 ± 11.0 

24A 50 -1.8 33.24 5.95 79.9 ± 3.7 30.9 ± 6.3 

24A 250 1.88 34.88 0.29 91.7 ± 2.8 10.6 ± 4.2 
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24A 1151    97.3 ± 3.5 12.5 ± 5.5 

24A 3250 -0.74 34.94 -0.06 113.1 ± 3.6 8.3 ± 4.9 

25 10    98.3 ± 3.2 34.8 ± 5.2 

25 51    91.2 ± 2.4 24.6 ± 3.8 

25 250    97.3 ± 2.5 5.9 ± 3.6 

25 547 0.77 34.87 0.24 85.1 ± 1.9 9.1 ± 2.9 

25 800 0.22 34.91 0.30 91.7 ± 2.8 6.5 ± 4.2 

25 2650 -0.78 34.94 0.20 108.5 ± 2.9 8.3 ± 4.3 

29 615 0.33 34.87 0.45 91.7 ± 2.2 14.2 ± 3.2 

31 11 -1.28 32.53 3.62 84.0 ± 3.7 35.7 ± 6.0 

31 50 -1.7 34.24 1.99 97.0 ± 2.4 29.9 ± 3.8 

31 228 1.35 34.8 0.27 97.2 ± 3.1 17.0 ± 4.4 

31 800 -0.6 34.75 0.55 98.4 ± 2.9 30.6 ± 4.6 

31 1400 -0.49 34.8 0.54 98.8 ± 2.2 20.0 ± 3.4 

31 1567 -0.53 34.81 0.45 102.0 ± 2.6 21.0 ± 3.9 

33 11 -1.52 33.53 2.52 83.2 ± 3.1 32.1 ± 5.0 

33 43 -1.59 34.39 1.64 100.0 ± 3.9 26.8 ± 6.1 

33 111 0.39 34.74 0.74 97.9 ± 3.4 25.0 ± 5.2 

33 203 -0.55 34.72 0.88 97.2 ± 2.4 23.8 ± 3.8 

33 238 -0.33 34.75 0.96 91.5 ± 2.9 20.2 ± 4.3 

40 5    79.0 ± 3.3 52.3 ± 5.5 

40 50 -1.81 33.62 4.57 85.6 ± 3.5 30.7 ± 5.3 

40 282 1.93 34.87 0.35 90.5 ± 2.1 7.6 ± 3.1 

40 588 0.56 34.86 0.48 96.6 ± 2.8 12.8 ± 4.1 

40 1759 -0.63 34.91 0.16 101.9 ± 3.1 10.6 ± 4.7 

42 5    70.5 ± 2.7 48.0 ± 4.8 

42 52    92.9 ± 3.7 38.9 ± 5.9 

42 268    90.4 ± 1.8 2.6 ± 2.6 

42 1529 -0.57 34.9 0.25 96.3 ± 3.0 11.5 ± 4.6 

42 2138    94.7 ± 2.5 9.6 ± 3.6 

44 11 -1.62 30.76 13.08 78.7 ± 3.0 53.2 ± 5.3 

44 51 -1.71 33.28 5.94 83.6 ± 3.0 34.9 ± 4.9 

44 256 1.85 34.87 0.34 96.4 ± 2.2 7.5 ± 3.0 

44 569 0.75 34.87 0.24 88.8 ± 2.7 9.4 ± 4.2 

44 2864 -0.77 34.93 0.20 108.7 ± 3.2 5.1 ± 4.6 

45 5 -1.6 30.42 13.62 73.6 ± 3.5 62.5 ± 6.6 

45 254 1.79 34.87 0.45 81.2 ± 2.2 11.9 ± 3.3 

45 1100 -0.38 34.89 0.35 85.9 ± 2.3 9.7 ± 3.3 

45 3407 -0.72 34.94 0.25 92.8 ± 1.6 6.4 ± 2.3 

47 9 -1.61 31.2 11.44 69.6 ± 4.4 34.0 ± 7.9 

47 700 0.07 34.88 0.39 92.6 ± 2.7 18.5 ± 4.1 

47 1999 -0.75 34.92 0.15 104.2 ± 3.0 6.5 ± 4.2 

47 3914 -0.69 34.94 0.05 106.1 ± 1.9 10.5 ± 2.6 

49 9 -1.6 30.43 12.45 75.6 ± 3.6 59.9 ± 6.3 

49 261    79.9 ± 2.4 15.3 ± 3.6 

49 751 -0.08 34.86 0.09 81.7 ± 2.6 24.9 ± 4.0 

49 2381    99.7 ± 2.8 9.2 ± 4.0 

51 5 -1.66 31.12 11.23 75.1 ± 4.4 48.8 ± 7.5 

51 249 1.43 34.86 0.49 79.0 ± 1.8 12.7 ± 2.8 

51 745 0.11 34.85 0.34 76.1 ± 2.6 21.8 ± 4.1 

51 1667    103.1 ± 2.6 10.1 ± 3.7 

51 1725 -0.57 34.92 0.10 103.5 ± 2.9 9.7 ± 4.2 
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52 5 -1.66 31.21 11.64 68.2 ± 3.9 39.8 ± 6.9 

52 502 0.6 34.86 0.44 79.5 ± 2.0 17.4 ± 3.0 

52 1182 -0.38 34.89 0.30 89.0 ± 2.2 19.8 ± 3.3 

56 13 -1.71 31.97 9.50 76.0 ± 4.1 41.8 ± 7.2 

56 257 1.41 34.84 0.49 87.7 ± 2.8 12.6 ± 4.3 

56 637 0.29 34.86 0.25 79.3 ± 2.3 8.3 ± 3.5 

56 1500 -0.44 34.91 0.25 97.9 ± 2.2 -2.2 ± 3.1 

56 2413 -0.38 34.95 0.10 128.1 ± 2.8 3.4 ± 3.6 

60 5 -1.76 33.01 8.46 79.4 ± 3.1 25.3 ± 5.0 

60 50 -1.73 33.25 6.81 74.0 ± 7.8 19.5 ± 14.8 

60 750 0.07 34.86 0.44 95.7 ± 2.3 14.5 ± 3.2 

60 1676 -0.54 34.92 0.25 113.8 ± 2.2 7.0 ± 3.0 

60 1745 -0.43 34.94 0.24 149.2 ± 2.2 9.8 ± 2.8 

62 10 -1.69 32.19 8.17 87.7 ± 2.7 35.6 ± 4.5 

62 51 -1.74 33.24 5.51 90.7 ± 3.3 27.0 ± 5.2 

62 251 1.54 34.85 0.15 94.0 ± 2.7 9.6 ± 3.9 

62 500 0.43 34.84 0.44 84.2 ± 2.4 12.0 ± 3.6 

62 1049 -0.18 34.88 0.15 75.1 ± 1.8 16.1 ± 2.8 

65 9 -1.71 32.28 8.22 85.1 ± 2.8 41.4 ± 4.7 

65 50 -1.79 33.44 7.32 97.5 ± 2.8 53.5 ± 4.5 

65 100 -1 34.2 2.22 88.7 ± 3.1 35.8 ± 5.0 

65 179 0.78 34.66 0.46 92.3 ± 2.9 15.2 ± 4.4 

65 217 1.08 34.72 0.55 97.1 ± 2.2 21.6 ± 3.4 

71 10 0.58 28.9 15.04 65.4 ± 2.3 44.7 ± 4.1 

71 272 1.77 34.85 0.24 79.2 ± 2.6 5.7 ± 3.9 

71 585 0.6 34.86 0.29 81.3 ± 2.4 11.0 ± 3.7 

73 10 0.16 28.83 15.18 56.7 ± 3.5 37.7 ± 6.4 

73 30 -1.49 33.51 5.80 74.0 ± 2.8 33.9 ± 4.7 

73 92 -1.3 34.09 3.45 85.6 ± 3.3 24.6 ± 5.1 

80 10 1.3 32.42 7.23 47.6 ± 3.0 32.5 ± 5.5 

80 250 1.17 34.85 0.55 81.2 ± 2.1 13.4 ± 3.2 

80 318 0.92 34.84 0.60 88.6 ± 2.8 14.5 ± 4.1 

80 920 -0.52 34.84 0.44 82.1 ± 2.6 20.8 ± 4.0 

80 1212 -0.43 34.88 0.40 88.7 ± 2.8 21.9 ± 4.4 

84 9 -0.13 30.16 11.06 54.5 ± 3.2 37.9 ± 6.1 

84 76 -1.38 34.02 3.70 86.4 ± 3.5 43.6 ± 5.8 

89 5    44.9 ± 3.7 10.6 ± 6.4 

89 230    75.0 ± 2.5 7.7 ± 3.8 

89 902 -0.43 34.87 0.25 86.9 ± 2.6 15.3 ± 4.0 

89 2694 -0.78 34.93 0.00 109.8 ± 2.5 9.2 ± 3.3 

91 5    48.4 ± 2.7 23.8 ± 4.8 

91 268 0.77 34.82 0.64 82.7 ± 2.4 17.9 ± 3.7 

91 500 -0.33 34.85 0.64 85.3 ± 2.8 22.8 ± 4.6 

91 1110 -0.55 34.86 0.44 91.8 ± 2.9 32.0 ± 4.7 

94 11 -1.67 32.19 3.69 79.6 ± 4.8 35.1 ± 8.4 

94 76 -1.36 34.52 1.24 82.1 ± 1.6 36.8 ± 2.7 

 1012 
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Table 4. Station number, date of sampling, bottom depth, position, sampling depth, temperature, salinity, light transmission, fraction 1013 

of Pacific and of river water, sample volume, 224Ra (RaDeCC), 226Ra and 228Ra activity, 228Ra/226Ra ratio and 228Ra/226Ra* ratio 1014 

(corrected for Pacific 226Ra component) and the 228Th/228Ra ratio (from 224Ra/228Ra) with propagated 1-σ counting errors 1015 

during ARK XXII/2 (data available on www.pangaea.de). 1016 

Station date 
Bot. 

Depth  Latitude Longitude Depth temperature salinity transmission fP fr Volume 224Ra 226Ra 228Ra 228Ra/226Ra 228Ra/226Ra* 228Th/228Ra 

  m °N °E m °C  % % % L dpm m-3 dpm m-3 dpm m-3    

237 2007-07-31 276 78.997 33.995 7 -1.52 34.231  4.3 0.9 295 5.6 ± 0.6 68.9 ± 0.7 20.1 ± 1.1 0.29 ± 0.01 0.29 0.28 ± 0.03 

239 2007-08-01 222 80.995 33.996 7 -0.97 32.664  0.0 1.1 295 2.7 ± 0.3 54.6 ± 0.6 19.1 ± 1.0 0.35 ± 0.01 0.35 0.14 ± 0.02 

257 2007-08-05 3958 83.497 34.047 7 -1.57 33.385 91.46 0.0 0.0 292 12.8 ± 1.3 71.9 ± 0.8 16.1 ± 1.1 0.22 ± 0.01 0.22 0.79 ± 0.10 

261 2007-08-11 3854 84.645 60.934 7 -1.59 33.382  0.5 2.7 293 17.2 ± 1.7 71.8 ± 1.1 17.2 ± 1.5 0.24 ± 0.02 0.24 1.00 ± 0.13 

263 2007-08-11 3702 84.173 60.999 7 -1.62 33.780 91.46 2.2 1.1 295 11.0 ± 1.1 68.7 ± 0.6 13.0 ± 0.9 0.19 ± 0.01 0.19 0.85 ± 0.10 

264 2007-08-12 3512 83.654 60.425 7 -1.65 33.555 91.33 4.8 0.0 292 10.2 ± 1.0 75.3 ± 0.6 15.9 ± 0.8 0.21 ± 0.01 0.21 0.64 ± 0.07 

266 2007-08-13 3040 83.138 61.741 7 -1.64 33.314  0.0 1.8 295 8.1 ± 0.8 74.3 ± 0.9 19.2 ± 1.3 0.26 ± 0.01 0.26 0.42 ± 0.05 

268 2007-08-14 1575 82.806 60.797 7 -1.61 32.856  0.0 2.1 295 6.6 ± 0.7 70.2 ± 0.6 16.1 ± 0.9 0.23 ± 0.01 0.23 0.41 ± 0.05 

271 2007-08-15 327 82.501 60.783 7 -1.53 32.945  0.0 2.3 295 8.0 ± 0.8 70.6 ± 0.6 15.6 ± 0.9 0.22 ± 0.01 0.22 0.51 ± 0.06 

272 2007-08-15 231 82.252 61.996 7 -1.53 32.945    295 8.2 ± 0.8 69.0 ± 0.6 14.7 ± 0.8 0.21 ± 0.01 0.21 0.56 ± 0.06 

274 2007-08-16 1174 82.521 67.110 7 -1.37 33.745 88.37 0.3 1.1 295 8.5 ± 0.9 72.7 ± 0.7 16.2 ± 0.9 0.22 ± 0.01 0.22 0.53 ± 0.06 

276 2007-08-17 680 82.083 68.960 7 -1.69 32.904  0.0 2.8 295 9.8 ± 1.0 74.9 ± 0.6 24.7 ± 0.8 0.33 ± 0.01 0.33 0.39 ± 0.04 

277 2007-08-18 1526 82.392 83.832 7 -1.66 32.640 84.88 0.0 4.4 295 3.6 ± 0.4 60.4 ± 0.8 29.0 ± 1.5 0.48 ± 0.02 0.48 0.12 ± 0.01 

279 2007-08-19 325 81.230 86.182 7 -1.54 31.166 88.04 0.0 6.4 295 12.4 ± 1.2 66.6 ± 1.0 46.9 ± 1.8 0.70 ± 0.02 0.70 0.26 ± 0.03 

284 2007-08-20 488 82.021 86.202 7 -1.55 30.910 88.67 0.0 6.9 295 10.6 ± 1.1 65.2 ± 0.7 48.9 ± 1.3 0.75 ± 0.02 0.75 0.22 ± 0.02 

285 2007-08-20 726 82.143 86.318 7 -1.62 32.517  5.7 4.8 295 6.3 ± 0.6 68.5 ± 0.8 39.8 ± 1.5 0.58 ± 0.02 0.58 0.16 ± 0.02 

285
a
 2007-08-20 726 82.143 86.318 7 -1.62 32.517  5.7 4.8 590 10.5 ± 1.1 67.4 ± 0.6 41.5 ± 1.1 0.61 ± 0.01 0.61 0.25 ± 0.03 

290 2007-08-21 2078 82.580 86.423 7 -1.63 33.016 88.31 2.7 0.3 590 11.2 ± 1.1 69.0 ± 0.5 15.1 ± 0.7 0.22 ± 0.01 0.22 0.75 ± 0.08 

294 2007-08-22 3148 83.115 86.245 7 -1.67 33.257 83.02   590 11.7 ± 1.2 54.4 ± 0.4 12.6 ± 0.6 0.23 ± 0.01 0.23 0.93 ± 0.10 

299 2007-08-23 3693 84.051 89.042 7 -1.69 32.730  5.7 4.0 590 20.9 ± 2.1 65.3 ± 0.6 20.7 ± 0.9 0.32 ± 0.01 0.32 1.01 ± 0.11 

301 2007-08-24 3751 84.583 89.820 7 -1.69 32.730    590 21.9 ± 2.2 67.5 ± 0.6 25.3 ± 0.9 0.37 ± 0.01  0.87 ± 0.09 

303 2007-08-25 3967 85.243 90.162 7 -1.69 33.602  0.0 10.0 590 26.3 ± 2.6 65.2 ± 0.7 27.3 ± 1.2 0.42 ± 0.01 0.42 0.96 ± 0.11 

309 2007-08-27 4447 87.046 104.714 7 -1.69 31.758  6.3 11.9 590 25.6 ± 2.6 67.7 ± 0.7 36.0 ± 1.3 0.53 ± 0.02 0.54 0.71 ± 0.08 

312 2007-08-29 3046 88.119 120.209 7 -1.68 31.310 89.26 8.5 11.9 590 26.8 ± 2.7 63.0 ± 0.7 39.3 ± 1.3 0.62 ± 0.02 0.64 0.68 ± 0.07 
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322 2007-08-31 2773 88.127 150.077 7 -1.65 30.635 88.89 20.6 14.9 590 32.9 ± 3.3 87.3 ± 0.9 61.5 ± 1.6 0.70 ± 0.02 0.75 0.53 ± 0.06 

326 2007-09-01 4022 88.029 170.087 7 -1.61 30.177    590 43.7 ± 4.4 84.3 ± 0.8 88.9 ± 1.7 1.05 ± 0.02  0.49 ± 0.05 

328 2007-09-02 3992 87.833 -170.741 7 -1.51 29.173 90.10 33.1 18.3 590 45.2 ± 4.5 80.0 ± 0.8 85.0 ± 1.8 1.06 ± 0.02  0.53 ± 0.05 

333 2007-09-04 3279 87.028 -146.400 7 -1.55 28.728  49.1 18.0 590 56.2 ± 5.6 87.6 ± 1.4 89.6 ± 2.8 1.02 ± 0.03 1.19 0.63 ± 0.07 

335 2007-09-05 2499 86.364 -139.359 7 -1.53 28.475 90.75 75.7 14.8 590 55.2 ± 5.5 90.6 ± 1.1 87.1 ± 2.2 0.96 ± 0.02 1.21 0.63 ± 0.07 

338 2007-09-05 1537 85.705 -135.041 7 -1.54 28.585  83.2 11.2 590 58.8 ± 5.9 92.1 ± 1.4 77.4 ± 2.7 0.84 ± 0.03 1.08 0.76 ± 0.08 

342 2007-09-07 2302 84.500 -138.419 7 -1.47 29.290  85.1 8.3 590 46.3 ± 4.6 91.7 ± 0.9 57.0 ± 1.5 0.62 ± 0.01 0.80 0.81 ± 0.08 

346 2007-09-08 2355 84.794 -149.120 7 -1.48 28.212 90.66   585 61.0 ± 6.1 85.8 ± 0.5 91.7 ± 1.1 1.07 ± 0.01  0.67 ± 0.07 

349 2007-09-09 2020 85.065 -164.497 7 -1.41 26.911 90.87 70.7 19.0 590 61.6 ± 6.2 94.7 ± 1.5 123.0 ± 3.5 1.30 ± 0.03 1.63 0.50 ± 0.05 

352 2007-09-10 4002 86.632 177.590 7 -1.59 29.524    295 47.7 ± 4.8 85.2 ± 1.5 83.7 ± 3.2 0.98 ± 0.03  0.57 ± 0.06 

358 2007-09-11 1459 86.506 151.963 7 -1.66 30.892 90.55 9.8 11.9 295 31.8 ± 3.2 70.7 ± 1.1 53.3 ± 2.2 0.75 ± 0.03 0.78 0.60 ± 0.06 

363 2007-09-12 3800 86.392 135.847 7 -1.68 31.302  10.7 11.5 295 32.1 ± 3.2 67.7 ± 1.1 51.5 ± 2.1 0.76 ± 0.02 0.79 0.62 ± 0.07 

371 2007-09-16 4266 84.661 102.737 7 -1.69 33.157  8.9 9.4 295 38.0 ± 3.8 64.6 ± 0.9 30.5 ± 1.6 0.47 ± 0.02 0.47 1.24 ± 0.14 

377 2007-09-18 4347 83.410 115.600 7 -1.57 31.193 89.62   295 35.3 ± 3.5 63.7 ± 0.6 37.4 ± 1.2 0.59 ± 0.01 0.59 0.94 ± 0.10 

382 2007-09-19 5345 81.358 120.719 7 -1.65 31.271  0.1 10.6 295 28.6 ± 2.9 62.8 ± 0.9 31.9 ± 1.6 0.51 ± 0.02 0.51 0.90 ± 0.10 

385 2007-09-20 3525 79.346 124.347 7 -0.97 31.206  0.0 7.4 285 18.0 ± 1.8 67.6 ± 0.8 31.1 ± 1.4 0.46 ± 0.02 0.46 0.58 ± 0.06 

389 2007-09-21 2600 78.355 124.522 7 -0.09 31.466  0.0 7.7 290 19.0 ± 1.9 64.8 ± 0.9 43.8 ± 1.6 0.68 ± 0.02 0.68 0.43 ± 0.05 

400 2007-09-22 1041 77.366 123.428 7 -1.60 30.723 89.47 0.0 9.5 295 19.6 ± 2.0 64.8 ± 0.9 49.8 ± 1.7 0.77 ± 0.02 0.77 0.39 ± 0.04 

400
b

 2007-09-22 1041 77.366 123.428 7 -1.60 30.723 89.47 0.0 9.5 295 19.1 ± 1.9 67.5 ± 0.9 51.2 ± 1.8 0.76 ± 0.02 0.76 0.37 ± 0.04 

400 2007-09-22 1041 77.366 123.428 20 -1.46 33.057 90.59 0.0 5.3 157 14.6 ± 1.5 76.6 ± 1.1 50.9 ± 2.1 0.66 ± 0.02 0.66 0.29 ± 0.03 

407 2007-09-23 75 76.181 122.139 7 -0.44 29.531 89.02 0.0 12.7 295 16.7 ± 1.7 48.4 ± 0.7 56.2 ± 1.5 1.16 ± 0.03 1.16 0.30 ± 0.03 

407 2007-09-23 75 76.181 122.139 65 -1.63 33.812 64.77   132 21.7 ± 2.2 95.5 ± 1.2 81.5 ± 2.3 0.85 ± 0.02 0.85 0.27 ± 0.03 

407 2007-09-23 75 76.181 122.139 30 -1.58 33.433 86.73 0.0 6.3 129 10.9 ± 1.1 88.6 ± 1.1 75.7 ± 2.3 0.85 ± 0.02 0.85 0.14 ± 0.02 

409 2007-09-23 65 75.706 121.770 7 0.78 30.073 89.07 0.0 12.8 295 10.0 ± 1.0 35.4 ± 0.7 41.2 ± 1.4 1.16 ± 0.04 1.16 0.24 ± 0.03 

409 2007-09-23 65 75.706 121.770 55 -1.65 33.403 77.36 0.0 9.4 146 6.8 ± 0.7 108.5 ± 2.0 117.1 ± 4.5 1.08 ± 0.04 1.08 0.06 ± 0.01 

411 2007-09-24 49 75.201 121.365 7 0.43 29.089 89.32 0.0 13.1 295 9.7 ± 1.0 33.3 ± 0.7 34.1 ± 1.5 1.02 ± 0.04 1.02 0.28 ± 0.03 

411 2007-09-24 49 75.201 121.365 40 0.01 32.655 62.43 0.0 14.5 147 13.1 ± 1.3 138.3 ± 1.8 242.3 ± 4.9 1.75 ± 0.03 1.75 0.05 ± 0.01 

411 2007-09-24 49 75.201 121.365 25 0.46 32.499 60.90 0.0 15.4 160 47.0 ± 4.7 129.2 ± 1.2 247.1 ± 3.2 1.91 ± 0.03 1.91 0.19 ± 0.02 
 1017 
  1018 
a) duplicate sample with double sample volume 1019 
b) duplicate sample with loose uncoated acrylic fiber instead of cartridge prefilter 1020 
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At a (234Th-based) scavenging rate is 0.46 y-1, an AR of 0.4 is reached after 1.6 years while an AR 
of 0.6 is incompatible with this scavenging rate. The observed 228Th/228Ra ratio of 0.8 cannot be 
reached with ks> 0.21 y-1. With that value, AR 0.4-0.6 is reached 1-2.5 y after leaving the high-
scavenging shelf regime. 
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