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Abstract

The residual effect of surface gravity waves on mean flows in the upper ocean is investigated using thickness-

weighted mean (TWM) theory applied in a vertically Lagrangian and horizontally Eulerian coordinate

system. Depth-dependent equations for the conservation of volume, momentum, and energy are derived.

These equations allow for (i) finite amplitude fluid motions, (ii) the horizontal divergence of currents

and (iii) a concise treatment of both the kinematic and viscous boundary conditions at the sea surface.

Under the assumptions of steady and monochromatic waves and a uniform turbulent viscosity, the TWM

momentum equations are used to illustrate the pressure- and viscosity-induced momentum fluxes through

the surface that are implicit in previous studies of the wave-induced modification of the classical Ekman

spiral problem. The TWM approach clarifies, in particular, the surface momentum flux associated with

the so-called virtual wave stress of Longuet-Higgins. Overall the TWM framework can be regarded as

an alternative to the three-dimensional Lagrangian mean framework of Pierson. Moreover the TWM

framework can be used to include the residual effect of surface waves in large-scale circulation models. In

specific models that carry the TWM velocity appropriate for advecting tracers as their velocity variable,

the turbulent viscosity term should be modified so that the viscosity acts only on the Eulerian mean

velocity.
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1. Introduction 1

In the theory for surface gravity waves, the Lagrangian mean transport by the Stokes-drift has been 2

known for more than 150 years (Stokes, 1847) whereas it is only in relatively recent times that the 3

importance of Lagrangian transport by ocean mesoscale eddies has been appreciated. In both cases, the 4

Stokes or eddy-induced velocities are corrections to an Eulerian mean (EM) velocity to account for the 5

difference between Eulerian and Lagrangian mean motions. In the theory of oceanic mesoscale eddies, it 6

has become common to introduce a vertically Lagrangian (VL) coordinate system, using density or neutral 7

density for the vertical coordinate (e.g. isopycnal or isoneutral coordinates), following the example from 8

the atmospheric literature where potential temperature is typically used (Andrews et al., 1987). In the 9

horizontal the standard Eulerian coordinates are retained. Equations averaged in isopycnal coordinates 10

have been widely used to develop parameterizations of the effect of mesoscale eddies in global ocean models 11

designed for climate studies (Gent et al., 1995; Greatbatch, 1998; Griffies, 2004; Gent, 2011). In the surface 12

gravity wave literature, a VL coordinate system, analogous to isopycnal coordinates, has been introduced 13

by Mellor (2003, 2008) and by Broström et al. (2008) to derive depth-dependent equations for the effect 14

of surface gravity waves on the larger scale flow, in an attempt to present a simpler formulation than 15

provided by the (traditional) three-dimensional Lagrangian mean equations (e.g. Lamb, 1932; Pierson, 16

1962; Andrews and McIntyre, 1978; Jenkins and Ardhuin, 2004). Both Mellor (2003, 2008) and Broström 17

et al. (2008) rely on small amplitude theory to develop their equations, using a perturbation expansion 18

approach. As we show in the present paper, an alternative is to use Favre-filtering (Hesselberg, 1926; 19

Favre, 1965, 1983), following the example from the large-scale oceanographic and atmospheric literature 20

and corresponding to what in this literature is known as thickness-weighted isopycnal or mass-weighted 21

averaging, respectively. The (time-)averaged equations of motion can then be written for finite-amplitude 22

surface waves and allow for exact conservation of volume, momentum, energy, and, if required, passive 23

tracers. 24

The reason Favre-filtering is common in the studies dealing with eddies in the ocean and atmosphere 25

(e.g. Gallimore and Johnson, 1981; de Szoeke and Bennett, 1993; Iwasaki, 2001; Greatbatch and Mc- 26

Dougall, 2003; Aiki and Richards, 2008)1 is because when written in the VL coordinate system, the 27

nonlinear terms in the equations of motion typically involve three independent variables and not two as 28

1Greatbatch and McDougall (2003) show that the Temporal Residual Mean equations of McDougall and McIntosh (2001)

are essentially the Favre-filtered equations in isopycnal coordinates. Thus no expansion method, as used in the latter paper,

is necessary.
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when the equations are written in terms of standard Eulerian coordinates (often called height coordinates 29

in oceanic studies). The conventional Reynolds averaging decomposition applied to the product of two 30

variables, A,B, takes the form: AB
c
= A

c
B

c
+A′B′c, where ()

c
is an Eulerian low-pass temporal filter and 31

the single-prime symbol represents the deviation from the Eulerian mean (EM). This form of averaging 32

becomes complicated when it is applied to the product of three variables. The Favre decomposition, on 33

the other hand, has been developed to handle terms that are the product of three variables. For example, 34

the nonlinear terms written in flux-divergence-form in isopycnal coordinates appear as the divergence of 35

terms of the form hAB where h is the thickness (or mathematically the Jacobian determinant of the 36

coordinate transformation between the isopycnal and height coordinates). The Favre decomposition takes 37

the form hAB = hÂB̂ + hA′′B′′ where () is a low-pass temporal filter in isopycnal coordinates. The hat 38

symbol is the Favre-filter Â ≡ hA/h and the double-prime symbol is the Favre deviation A′′ ≡ A − Â, 39

the latter of which is slightly different from the conventional definition of the deviation A′′′ ≡ A−A. An 40

important biproduct of the Favre-filtering is a concise treatment of the boundary condition at the top 41

and bottom of the ocean (Aiki and Yamagata, 2006). As we shall see, the free sea surface can itself be 42

a coordinate surface in the VL coordinate system and this avoids the complications inherent when using 43

vertically Eulerian averaging. In particular, the problem of extrapolating variables to a location above 44

surface troughs is avoided (a common feature of papers dealing with surface gravity waves). 45

To illustrate the power of the Favre-filtered equations in the VL coordinate system, we revisit the 46

issue of how the classical Ekman spiral solution (which is for the EM flow) is modified in the presence of 47

surface waves. Polton et al. (2005) point out that the Coriolis-Stokes force of Hasselmann (1970) drives 48

an EM flow which, even though it is confined near the surface, impacts the whole depth of the Ekman 49

layer because the additional mean flow modifies the surface boundary condition from that in the classical 50

Ekman problem. Their solution nevertheless differs from that of some previous authors, notably Madsen 51

(1978) and Xu and Bowen (1994), who include an additional surface stress that they associate with the 52

so-called virtual wave stress (VWS) of Longuet-Higgins (1953, 1960). So far, the most rigorous framework 53

for explaining the VWS is the three-dimensional Lagrangian approach of Pierson (1962).2 We show here 54

that the VWS is contained in the Favre-filtered momentum equations. Indeed, we are able to reproduce 55

the equations used by all these previous authors and are able to point out the different surface fluxes of 56

momentum that are implicit in these papers and that account for the differences between the different 57

2To our knowledge no previous studies, except for an attempt by Ardhuin et al. (2008), have used the Generalized

Lagrangian Mean equations of Andrews and McIntyre (1978) to explain the VWS.
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solutions. For this analysis, we restrict to the case of a steady monochromatic wave train and a spatially 58

uniform turbulent viscosity. More general situations, such as non-steady waves and a spatially variable 59

turbulent viscosity (e.g. Jenkins 1986, 1987a,b; Gnanadesikan and Weller, 1995; Song and Huang, 2011 60

), will be discussed in a later paper in the context of the Favre-filtered equations in the VL coordinate 61

system. 62

The manuscript is organized as follows. Section 2 presents the fundamental equations for surface 63

waves in deep water using the VL coordinates. The basic theory derived in this section is quite general 64

and applies to both unsteady situations and a general wave spectrum. In particular we show that (i) the 65

Favre decomposition allows depth-dependent equations for finite-amplitude waves to be derived without 66

resorting to perturbation or Taylor expansions and (ii) the surface boundary condition of the Favre-filtered 67

equations is concise and straightforward in the VL coordinate system. We take advantage of the treatment 68

of the surface boundary conditions in Section 3 as part of an analytical investigation of the residual effect 69

of linear surface waves on the momentum flux through the thin viscous boundary layer associated with the 70

waves, and where the link to the previous work on the modification of the classical Ekman spiral problem 71

is made. Section 4 presents a summary and discussion. 72

2. Formulation using vertically Lagrangian coordinates 73

We derive depth-dependent equations for finite-amplitude surface waves in incompressible deep water 74

of constant, uniform density ρ. The equations are written in the vertically Lagrangian and horizontally 75

Eulerian coordinate system introduced by Mellor (2003, 2008), Jacobson and Aiki (2006), and Broström 76

et al. (2008). oAs a check on the formulation of the kinematic boundary condition, we take into account 77

the presence of a background vertical flow which might be caused by the horizontal divergence of the 78

larger-scale flow. For convenience, Table 1 presents a list of the symbols used in the text. 79

2.1. Cartesian coordinates 80

Let Cartesian coordinates be labelled by the set of independent variables (xc, yc, zc, tc), where xc, yc 81

are horizontal coordinates and zc (the geopotential height) increases vertically upwards and (u, v, w) 82

are the corresponding three-dimensional components of velocity. The continuity, horizontal and vertical 83

momentum equations then take the form 84

∇c ·V+ wzc = 0, (1a) 85

ρ(Vtc +V · ∇cV + wVzc + fz×V) = −∇c[ρg(η − zc)]︸ ︷︷ ︸
−ρg∇cη

−∇cp+ FV, (1b) 86

ρ(wtc +V · ∇cw +wwzc) = −pzc + Fw, (1c) 87
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where V ≡ (u, v) is the horizontal velocity, ∇c = (∂xc , ∂yc) is the horizontal gradient operator, f is the 88

Coriolis parameter, z is the unit vector in the vertical direction and ρg(η − zc) is hydrostatic pressure 89

which vanishes at the sea surface where zc = η with g being the acceleration due to gravity. Use of the 90

hydrostatic pressure has led to no gravitational acceleration term appearing in (1c). The quantity p is 91

the sum of oceanic nonhydrostatic pressure and atmospheric sea surface pressure. The terms FV and Fw
92

represent the effect of turbulent mixing on V and w, respectively. 93

The kinematic boundary condition at the sea surface, zc = η, is 94

ηtc +V · ∇cη = w. (2) 95

Using (2) we take the depth-integral of (1a) to give 96

ηtc +∇c ·
∫ η
−∞Vdzc = 0, (3) 97

which expresses the conservation of volume in each water column. 98

2.2. Vertically Lagrangian (VL) coordinates 99

The idea is to choose a coordinate system that follows the high-frequency fluid motion (i.e. waves), as 100

in Lagrangian coordinates, but is such that the equations for the low-frequency fluid motion (i.e. currents) 101

appear as in Eulerian coordinates. High-frequency fluid motion is distinguished from low-frequency fluid 102

motion by using either a low-pass temporal filter with a given time scale or an ensemble average (cf. 103

Andrews and McIntyre, 1978). In what follows, we shall refer to the averaging operator as a low-pass 104

filter. It should also be noted that the theory is quite general, applying to both finite amplitude waves 105

and a general wave spectrum. 106

In this study we use the vertically Lagrangian (VL) coordinates of Jacobson and Aiki (2006) which we 107

label by the set of independent variables (x, y, z, t). The transformation between the Cartesian coordinates 108

and the VL coordinates may be written 109

xc = x, yc = y, zc = zc(x, y, z, t), tc = t, (4) 110

with the inverse transformation given by 111

x = xc, y = yc, z = z(xc, yc, zc, tc), t = tc. (5) 112

Care is required to define the value of the vertical coordinate, z, attached to a particular fluid particle at 113

the horizontal location, (xc, yc) at time tc. First, we let zL be the (Lagrangian) low-pass filtered height 114

of that same fluid particle centred around time tc. Then we form the material surface that consists of all 115
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fluid particles with this same low-pass filtered height, zL, centred around time tc. We then define z to be 116

the (Eulerian) low-pass filtered height of this material surface at the location (xc, yc) and again centred 117

around the time tc. It follows immediately that 118

z ≡ zc, (6) 119

where the overbar indicates a temporal low-pass filter carried out in the VL coordinates. It should be 120

noted that this particular transformation is rather special since it requires that if one fluid particle is 121

instantaneously situated above another fluid particle at (xc, yc) at time tc then the value of z assigned 122

to the first fluid particle is also higher than that assigned to the second. While this property can be 123

expected to be satisfied for surface gravity waves in the vertical plane (or indeed the heaving of isopycnals 124

by the mesoscale eddy field), it is not likely to be satisfied, for example, by turbulent motions in the 125

vertical plane. The expression zc(x, y, z, t) may be interpreted as a surface fluctuating in (x, y, t)-space. 126

Each surface is formed by the group of fluid particles whose (Lagrangian) low-pass filtered height zL is a 127

given value.3 The members of the group are successively updated with progressing time using a sliding 128

time-window. In the analogy to isopycnal coordinates, the coordinate z corresponds to the density and 129

the z-surfaces to isopycnals.4 130

Time series of surfaces of constant z at a fixed horizontal position (xc, yc) are illustrated in Figure 131

1 by blue lines. Two cases are compared, in Figure 1a without and in Figure 1b with a background 132

vertical flow (the latter may be caused by a large-scale horizontal convergence/divergence of currents). 133

With a background vertical flow, the blue lines get left behind by the rising sea surface and are eventually 134

below the layer of active wave motion. In this case water clearly passes through the z-surfaces (using the 135

notation introduced below, w∗ > 0 in this case). Without the background flow, no water passes through 136

the z-surfaces (corresponding to w∗ = 0). In this case, the sea surface is also a z-surface. 137

3Each surface is labelled by the value of the (Eulerian) low-pass filtered height of this material surface, written by (6).
4It should be noted that in the case of mesoscale eddies, there is no guarantee that the z-surfaces defined here are the

same as isopycnal surfaces.
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2.3. Mathematical development 138

To proceed with the mathematical development5, we note that spatial derivatives in the VL coordinates 139

are given by 140


∂x

∂y

∂z

∂t




=




1 0 zcx 0

0 1 zcy 0

0 0 zcz 0

0 0 zct 1







∂xc

∂yc

∂zc

∂tc




. (7) 141

We also note that z ≡ zc leads to 142

(zcx, z
c
y, z

c
z, z

c
t ) = (0, 0, 1, 0), (8) 143

identities that are useful later when we average the governing equations. It should also be noted that zcz 144

corresponds to the thickness (and is analogous to the thickness in isopycnal coordinates). 145

We now use (7) to write the governing equations (1a)-(1c) in terms of the VL coordinates: 146

(zcz)t +∇ · (zczV) + (zczw
∗)z = 0, (9a) 147

zczw
∗ ≡ w − zct −V · ∇zc, (9b) 148

ρ(Vt +V · ∇V+ w∗Vz + fz×V) = −∇(ρgη + p) + pzc∇zc + FV, (9c) 149

ρ(wt +V · ∇w +w∗wz) = −pzc + Fw, (9d) 150

where ∇ ≡ (∂x, ∂y) = ∇c + (∇zc)∂zc is the lateral gradient operator in the VL coordinates. Except that 151

(i) p is the nonhydrostatic pressure and (ii) η is a free sea surface height, (9a)-(9d) are the same as (9)-(14) 152

of Jacobson and Aiki (2006). 153

The quantity w∗ measures the flow that passes through the surfaces z = constant and is caused by 154

the horizontal divergence/convergence of the large-scale flow (Figure 1b). In fact, using the coordinate 155

transformation (7) it is easy to show that w∗ = (∂tc +V · ∇c + w∂zc)z, from which it follows that w∗ is 156

the rate of change of the coordinate z following a fluid particle: w∗ = Dz
Dtc , analogous to w = Dzc

Dtc where 157

D
Dtc ≡ (∂tc +V ·∇c+w∂zc). When no water passes through a z-surface, as in Figure 1a, w∗ = 0. It follows 158

that for the situation shown in Figure 1a, w∗ = 0 at the sea surface. 159

5Readers may find it helpful to refer to the corresponding analysis in de Szoeke and Bennett (1993).
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2.4. The thickness-weighted mean (TWM) governing equations 160

Momentum equations in a flux-divergence form can be obtained by multiplying each of (9c) and (9d) 161

by the thickness zcz and then using (9a) to give 162

ρ[(zczV)t +∇ · (zczVV) + (zczw
∗V)z + fz× zczV] = −zcz∇(ρgη + p) + pz∇zc + zczF

V, (10a) 163

ρ[(zczw)t +∇ · (zczVw) + (zczw
∗w)z ] = −pz + zczF

w, (10b) 164

where zczpzc = pz has been used. 165

Hereafter the term ‘thickness-weighted-mean (TWM)’ refers to the Favre-filter associated with the 166

thickness zcz. Application of a low-pass temporal filter to each of (9a), (10a), and (10b) yields TWM 167

equations for the incompressibility condition and the horizontal and vertical components of momentum: 168

∇ · V̂ + ŵ∗
z = 0, (11a) 169

ρ[V̂t +∇ · (V̂V̂) + (ŵ∗V̂)z + fz× V̂] + RS
V = −∇(ρgη + p) + FS

V + F̂V, (11b) 170

ρ[ŵt +∇ · (V̂ŵ) + (ŵ∗ŵ)z ] + RS
w = −pz + F̂w, (11c) 171

where we have used zcz ≡ 1 (since zc ≡ z - equation (6)), and 172

z′′′ ≡ zc − z, (12) 173

and hence ∇zc = ∇z′′′. The hat symbol is the TWM operator (Â ≡ zczA for an arbitrary quantity A), 174

the double-prime symbol is the deviation from the TWM (A′′ ≡ A − Â, compared at fixed z), and the 175

triple-prime symbol is the deviation from the unweighted mean (A′′′ ≡ A−A, compared at fixed z). 176

The quantity RS
A in (11b)-(11c) with A = u, v, and w is the divergence of the Reynolds stress (or 177

more correctly here, the Favre stress), 178

RS
A ≡ ρ[∇ · (zczV′′A′′) + (zczw

∗′′A′′)z]. (13) 179

The Reynolds stress represents the effect of wave motions, while the turbulent mixing is represented by 180

FA in (11b, 11c). Equation (13) shows that the vertical component of the Reynolds stress is based on w∗′′
181

(not w′′) and thus is nearly zero. Indeed, for the situation shown in Figure 1a, w∗ = 0 everywhere at all 182

times showing that the second term on the right hand side of (13) is zero in this case, an issue we return 183

to in Section 3 (it means, in particular, that in the VL coordinate system, the Coriolis-Stokes force of 184

Hasselmann (1970) does not arise from a Reynolds stress, unlike the situation in Cartesian coordinates). 185

This is attributed to the way the VL coordinates have been designed so that w∗ represents fluid motions 186

9



associated with low-frequency fluid motions and not with the waves themselves. The quantity FS
V in 187

(11b) is the divergence of the layer-thickness form stress, 188

FS
V ≡ −z′′′z ∇(ρgη′′′ + p′′′) + p′′′z ∇z′′′ 189

= [∇z′′′(ρgη′′′ + p′′′)]z −∇[z′′′z (ρgη′′′ + p′′′)]. (14) 190

The TWMmomentum equations (11b)-(11c) contain two types of three-dimensional velocity, the TWM 191

velocity (V̂, ŵ) and the total transport velocity (V̂, ŵ∗). ŵ and ŵ∗ are not the same mathematically but 192

the difference is negligible as far as the present study is concerned. The total transport velocity is three- 193

dimensionally nondivergent, as shown by (11a), and can be written as the sum of the unweighted mean 194

velocity (V, w) (averaged in VL-coordinates) and a velocity (VB , wB) that is analogous to the bolus 195

velocity (Rhines, 1982) in the mesoscale eddy literature. In particular 196

V̂ ≡ (1 + z′′′z )︸ ︷︷ ︸
zcz

(V +V′′′) = V+ z′′′z V′′′
︸ ︷︷ ︸

VB

, (15a) 197

ŵ∗ ≡ zczw
∗ = w−zct −V · ∇zc︸ ︷︷ ︸

0

−V′′′ · ∇z′′′︸ ︷︷ ︸
wB

, (15b) 198

where (9b) and (6) have been used. The explicit form of the vertical component of the bolus velocity as 199

in (15b) has been little mentioned in previous studies because the bolus velocity was originally defined for 200

large-scale horizontal flows in layered, hydrostatic ocean models (Rhines, 1982). The bolus velocity can 201

be compared with the quasi-Stokes velocity.6 The bolus velocity is referenced to the unweighted mean 202

velocity in the VL coordinates while the quasi-Stokes velocity is referenced to the EM velocity, (V
c
, wc), 203

averaged in Cartesian coordinates. In particular 204

(Vqs, wqs) ≡ (V̂ −V
c
, ŵ∗ − wc) 205

= (V̂ −V, ŵ∗ − w) + (V −V
c
, w − wc) 206

= (VB , wB) + (z′′′V′′′
z + z′′′2V′′′

zz/2 + ..., z′′′w′′′
z + z′′′2w′′′

zz/2 + ...), (16) 207

6The concept of the quasi-Stokes velocity was introduced in the studies of mesoscale eddies to develop an eddy-induced

velocity which satisfies both an incompressible condition and a no-normal-flow boundary condition at the top and bottom of

the ocean, as does the EM velocity (McDougall and McIntosh, 2001; Aiki and Yamagata, 2006). The sea surface is assumed

to be rigid in the theoretical studies of mesoscale eddies. For surface gravity waves, the sea surface is not rigid and this

means that the EM velocity, (V
c
, wc), is not strictly defined at depths that spend part of the averaging time above the sea

surface. However, in such cases, it is sometimes possible to use the Taylor expansion on the right hand side of (16) to define

the quasi-Stokes velocity at such depths. The bolus velocity, by contrast, is always defined, even at finite amplitude.
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where the last term represents a Taylor expansion in the vertical direction (cf. McDougall and McIntosh, 208

2001). Combining with (15a) gives the following expression for the horizontal component of the quasi- 209

Stokes velocity, an expression that will prove useful later (Smith, 2006; Mellor, 2008), 210

Vqs = (z′′′V′′′)z + z′′′2V′′′
zz/2 + ... (17) 211

It should be noted that, while the definitions of the quasi-Stokes velocity and traditional Stokes-drift 212

are different, they are closely related. The conventional definition of the Stokes-drift velocity based on 213

a Taylor expansion in Cartesian coordinates is VStokes ≡ (
∫ tc

Vdtc) · ∇cV
c
+ (

∫ tc
wdtc)Vzc

c
which can 214

be transformed to ∇c · [(
∫ tc

Vdtc)V
c

] + [(
∫ tc

wdtc)V
c

]zc where the first term vanishes for horizontally 215

homogeneous waves and the second term is analogous to the first term on the right hand side of (17) 216

within an approximation
∫ tc

wdtc ≃ z′′′. 217

2.5. The free surface 218

A nice feature of the VL coordinates used here is the handling of the free surface. Indeed, as can be 219

seen from Figure 1a, since the free surface is itself a surface of constant z in that case, it follows that 220

when averaging in the VL coordinate system, there is no need to deal with regions beyond the sea surface, 221

i.e. above troughs when the surface is below its mean height, as happens when averaging in Eulerian 222

coordinates. Mathematically, the ease with which averaging can be carried out in the VL coordinates 223

arises because the kinematic boundary condition is not only preserved in VL coordinates but also avoids 224

products of quantities varying at high frequency, making averaging straightforward. 225

We begin by noting that ηt = ηtc and ∇η = ∇cη. We then note that the sea surface is given by 226

zc(x, y, z, t) = η(x, y, t) and since at the sea surface7 z = η this means that 227

zc(x, y, η, t) = η(x, y, t). (18) 228

It then follows that 229

zct = ηt − zczηt, (19a) 230

∇zc = ∇η − zcz∇η. (19b) 231

7Strictly, for the situation shown in Figure 1b, it is not correct to say that z = η. This is because in that situation, the sea

surface is no longer coincident with the material surface used to define z (see how z is defined just before (6)). The analysis,

nevertheless, remains the same and, for convenience, we continue to label the value of z at the sea surface by η.
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One immediate consequence is that (zct )|zc=η 6= ηt and (∇zc)|zc=η 6= ∇η in general. We now substitute 232

the set of (19a)-(19b) to (9b) and obtain 233

zczw
∗ = w − (ηt − zczηt)︸ ︷︷ ︸

zct |z=η

−V · (∇η − zcz∇η)︸ ︷︷ ︸
∇zc|z=η

234

= zcz(ηt +V · ∇η), (20) 235

where the kinematic boundary condition (2) at the sea surface has been used. Equivalently, dividing by 236

the thickness, zcz , 237

w∗ = ηt +V · ∇η, (21) 238

showing that the form of the kinematic boundary condition is preserved in the VL coordinates and that, 239

further, only one high frequency variable, V = V̂ + V′′, appears in the expression for the kinematic 240

boundary condition in our VL coordinates. The advantage of the form taken by the kinematic boundary 241

condition in the VL coordinates can be seen when applying a low-pass temporal filter to (20) to yield 242

ŵ∗ ≡ zczw
∗ = ηt + V̂ · ∇η, (22a) 243

w∗′′ ≡ w∗ − ŵ∗ = V′′ · ∇η, (22b) 244

at the sea surface (where it is assumed that ηt and ∇η are effectively constant during the filtering). 245

Equations (19a)-(22b) have not, to our knowledge, been shown before the present study. These equations 246

are cornerstones for (i) treating the slow variations of the sea surface in both time and horizontal space, 247

and (ii) taking the depth integral of various quantities. 248

To illustrate (ii), we note that an equation for volume conservation can be derived by taking the depth 249

integral of (9a), 250

0 = (zct + zczw
∗)|z=η +

∫ η
−∞∇ · (zczV)dz 251

= (zct + zczw
∗ − zczV · ∇η)|z=η +∇ ·

∫ η
−∞zczVdz 252

= (zct + zczηt + zczV · ∇η − zczV · ∇η)|z=η +∇ ·
∫ η
−∞zczVdz 253

= ηt +∇ ·
∫ η
−∞zczVdz, (23) 254

where (20) has been used to derive the third line, and (19a) has been used to derive the last line. Equation 255

(23) is consistent with (3), resulting in validating (19a) and (19b). Equation (22a) allows the depth integral 256

of (11a) to be written as, 257

0 = ŵ∗|z=η +
∫ η
−∞∇ · V̂dz 258

= (ŵ∗ − V̂ · ∇η)|z=η +∇ ·
∫ η
−∞V̂dz 259

= ηt +∇ ·
∫ η
−∞V̂dz, (24) 260
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which is consistent with both (3) and (23). Exact equations for depth-integrated momentum can also be 261

derived easily (not shown). 262

The kinematic boundary conditions (19a)-(22b) also allow exact energy equations for finite-amplitude 263

waves and currents to be derived (Appendix A). An associated four-box energy diagram is illustrated in 264

Figure 2. The boxes of mean kinetic energy and wave potential energy are connected by a conversion path 265

by the form stress FS
V. The mean kinetic energy is defined by the TWM velocity ρ

2 (|V̂|2 + ŵ2) which 266

includes the horizontal component of the quasi-Stokes velocity (i.e., V̂ = V
c
+Vqs). These characteristics 267

are the same as that of an energy diagram based on hydrostatic equations (Bleck, 1985; Røed, 1997; 268

Iwasaki, 2001; Aiki and Yamagata, 2006; Aiki and Richards, 2008). Since the present study includes a 269

free surface, the work of air pressure disturbances −η′′′t p
′′′|z=η is included in Figure 2. 270

3. Linear waves with a viscous boundary layer 271

We now consider viscid surface waves in the presence of wind forcing, and show how waves can modify 272

the classical Ekman spiral velocity near the sea surface, a problem that has been investigated previously 273

using a number of different approaches. As noted in the introduction, the solution of Polton et al. (2005) 274

(and also Huang (1979)) differs from that of Madsen (1978) and Xu and Bowen (1994) in that the former 275

do not include an additional surface stress at the surface associated with the so-called VWS of Longuet- 276

Higgins (1953, 1960). So far, the most rigorous framework for explaining the VWS is the three-dimensional 277

Lagrangian approach of Pierson (1962), Piedra-Cueva (1995), and Ng (2004). The use of the VL coordinate 278

system and the TWM approach allows for a careful re-examination of the surface boundary conditions 279

used in these studies as well as the budget of momentum in each vertical column. As in the previous 280

studies, we use a perturbation expansion approach appropriate for small amplitude waves. 8
281

3.1. Perturbation expansion 282

We work with the situation as in Figure 1a in which there is no horizontal convergence/divergence 283

of the large scale flow and w∗ = 0 everywhere (including at the sea surface). In addition we assume for 284

simplicity that wave statistics are equilibriated in both time and horizontal space, so that ∂tA = 0 and 285

∇A = 0 for an arbitrary quantity A. An immediate consequence is that η = 0 (strictly η = constant but 286

8We restrict here to the case of a spatially uniform viscosity with steady waves and steady wind forcing in order to illustrate

the power of the TWM approach. Readers are referred to Jenkins (1986, 1987a,b) for discussion of non-steady waves and

spatially varying viscosity using a Lagrangian coordinate system.
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we can put the constant to zero). Below we use z = η = 0 as the label for the sea surface in the VL 287

coordinates. 288

We work with small amplitude waves, with smallness measured by the parameter α. In particular, we 289

let the slope of sea surface be scaled by α ≪ 1 and use it to make a perturbation expansion 290

zc = z + αz′′′1 + α2z′′′2 +O(α3), (25a) 291

η = αη′′′1 + α2η′′′2 +O(α3), (25b) 292

p = αp′′′1 + αp2 +O(α3), (25c) 293

V = αV′′′
1 + α2V2 +O(α3), (25d) 294

w = αw′′′
1 + α2w2 +O(α3), (25e) 295

w∗ = 0, (25f) 296

where p2 = p2 + p′′′2 , V2 = V2 +V′′′
2 , and w2 = w2 + w′′′

2 . For simplicity we have assumed no mean flow 297

at O(α). The thickness-weighted governing equations (9a)-(9b) and (10a)-(10b) become 298

z′′′1zt︸︷︷︸
w′′′

1z

+∇ ·V′′′
1 = 0, (26a) 299

ρ(V′′′
1t + fz×V′′′

1 ) = −ρg∇η′′′1 −∇p′′′1 + (zczF
V)1, (26b) 300

ρw′′′
1t = −p′′′1z + (zzF

w)1, (26c) 301

at O(α) and 302

z′′′2zt +∇ · (V2 + z′′′1zV
′′′
1 ) = 0, (27a) 303

w2 = z′′′2t +V′′′
1 · ∇z′′′1 , (27b) 304

ρ[(V2 + z′′′1 V′′′
1 )t +∇ · (V′′′

1 V
′′′
1 ) + fz× (V2 + z′′′1zV

′′′
1 )] = 305

−∇(ρgη′′′2 + p2)− z′′′1z∇(ρgη′′′1 + p′′′1 ) + p′′′1z∇z′′′1 + (zczF
V)2, (27c) 306

ρ[(w2 + z′′′1 w′′′
1 )t +∇ · (V′′′

1 w
′′′
1 )] = −p2z + (zczF

w)2, (27d) 307

at O(α2). 308

3.2. Turbulent mixing term 309

In the following, ν is a real, uniform constant representing turbulent viscosity and the momentum 310

mixing is represented using a conventional symmetric tensor in Cartesian coordinates. The turbulent 311
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mixing term may, therefore, be expressed in the VL coordinates as 312

zczF
u ≡ ρνzcz [(2uxc)xc + (uyc + vxc)yc + (uzc + wxc)zc ] 313

= ρνzcz
[
(2uxc)x + (uyc + vxc)y + (uzc + wxc)zc − zcx(2uxc)zc − zcy(uyc + vxc)zc

]
314

= ρν
[
zcz(2uxc)x + zcz(uyc + vxc)y + (uzc + wxc)z − zcx(2uxc)z − zcy(uyc + vxc)z

]
315

= ρν
[
(zcz2uxc)x + (zcz(uyc + vxc))y + (uzc + wxc − zcx2uxc − zcy(uyc + vxc))z

]
, (28a) 316

zczF
v ≡ ρνzcz [(vxc + uyc)xc + (2vyc)yc + (vzc + wyc)zc ] 317

= ρν
[
(zcz(vxc + uyc))x + (zcz2vyc)y + (vzc + wyc − zcx(vxc + uyc)− zcy2vyc)z

]
, (28b) 318

zczF
w ≡ ρνzcz [(wxc + uzc)xc + (wyc + vzc)yc + (2wzc)zc ] 319

= ρν
[
(zcz(wxc + uzc))x + (zcz(wyc + vzc))y + (2wzc − zcx(wxc + uzc)− zcy(wyc + vzc))z

]
, (28c) 320

where zcz∂zc = ∂z has been used. Perturbation expansion of (28a)-(28c) yields 321

(zczF
u)1 = ρν

[
(2u′′′1x)x + (u′′′1y + v′′′1x)y + (u′′′1z +w′′′

1x)z
]
= ρν(∇2 + ∂2

z )u
′′′
1 , (29a) 322

(zczF
v)1 = ρν

[
(v′′′1x + u′′′1y)x + (2v′′′1y)y + (v′′′1z + w′′′

1y)z
]
= ρν(∇2 + ∂2

z )v
′′′
1 , (29b) 323

(zczF
w)1 = ρν

[
(w′′′

1x + u′′′1z)x + (w′′′
1y + v′′′1z)y + (2w′′′

1z)z
]
= ρν(∇2 + ∂2

z )w
′′′
1 , (29c) 324

at O(α) where (26a) has been used and 325

(zczF
u)2 = ρν

[
(.....)x + (.....)y + (u2z + w2x − z′′′1zu

′′′
1z − z′′′1xw

′′′
1z − z′′′1x2u

′′′
1x − z′′′1y(u

′′′
1y + v′′′1x))z

]
,(30a) 326

(zczF
v)2 = ρν

[
(.....)x + (.....)y + (v2z + w2y − z′′′1zv

′′′
1z − z′′′1yw

′′′
1z − z′′′1x(v

′′′
1x + u′′′1y)− z′′′1y2v

′′′
1y)z

]
, (30b) 327

(zczF
w)2 = ρν

[
(.....)x + (.....)y + (2w2z − 2z′′′1zw

′′′
1z − z′′′1x(w

′′′
1x + u′′′1z)− z′′′1y(w

′′′
1y + v′′′1z))z

]
, (30c) 328

at O(α2) where ∂zc = (1/zcz)∂z = [1/(1 + z′′′z )]∂z ≃ (1− z′′′z )∂z has been used. 329

Substitution of (30a)-(30c) to (27c) and time-averaging yields the TWM momentum balance at O(α2), 330

−ρf(v2 + z′′′1zv
′′′
1︸ ︷︷ ︸

v̂2

) = [z′′′1x(ρgη
′′′
1 + p′′′1 )]z + ρν[u2z − (z′′′1zu

′′′
1z + z′′′1x(u

′′′
1x − v′′′1y) + z′′′1y(u

′′′
1y + v′′′1x))]z ,(31a) 331

ρf(u2 + z′′′1zu
′′′
1︸ ︷︷ ︸

û2

) = [z′′′1y(ρgη
′′′
1 + p′′′1 )]z + ρν[v2z − (z′′′1zv

′′′
1z + z′′′1x(v

′′′
1x + u′′′1y) + z′′′1y(v

′′′
1y − u′′′1x))]z ,(31b) 332

where (26a) has been used. The above equations can be rewritten using the TWM velocity at O(α2), 333

−ρf v̂2 = [z′′′1x(ρgη
′′′
1 + p′′′1 )]z + ρν[û2z − (z′′′1zzu

′′′
1 + 2z′′′1zu

′′′
1z + z′′′1x(u

′′′
1x − v′′′1y) + z′′′1y(u

′′′
1y + v′′′1x))]z ,(32a) 334

ρfû2 = [z′′′1y(ρgη
′′′
1 + p′′′1 )]z + ρν[v̂2z − (z′′′1zzv

′′′
1 + 2z′′′1zv

′′′
1z + z′′′1x(v

′′′
1x + u′′′1y) + z′′′1y(v

′′′
1y − u′′′1x))]z ,(32b) 335

where (15a) has been used. 336
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3.3. Monochromatic wave 337

We consider a monochromatic wave propagating in the x-direction: η′′′1 = aeiθ where θ = kx − σt 338

is wave phase (complex constant), k is wavenumber (positive real constant), and σ is wave frequency 339

(positive real constant). Because η′′′1 is O(α), wave amplitude becomes αa, so that a ≡ 1/k. See Table 2 340

for the value of physical parameters assumed in this section. The governing equations (26a)-(26c) can be 341

rewritten in wave space 342

−iσz′′′1z︸ ︷︷ ︸
w′′′

1z

+iku′′′1 = 0, (33a) 343

−fv′′′1 = −ik(gaeiθ + p′′′1 /ρ) + (iσ − νk2 + ν∂2
z )u

′′′
1 , (33b) 344

fu′′′1 = (iσ − νk2 + ν∂2
z )v

′′′
1 , (33c) 345

0 = −p′′′1z/ρ+ (iσ − νk2 + ν∂2
z )w

′′′
1 , (33d) 346

where (29a)-(29c) have been used. 347

We consider a Poisson equation for p′′′1 which is derived from the three-dimensional divergence of (26b) 348

and (26c), 349

−ρf∇×V′′′
1 = −∇2(gρη′′′1 + p′′′1 )− p′′′1zz + ρν(∇2 + ∂2

z )(∇ ·V′′′
1 + w′′′

1z︸ ︷︷ ︸
0

), (34) 350

where (29a)-(29c) have been used. The viscosity term vanishes because O(α) velocity satisfies an incom- 351

pressible condition (26a). A wave-space expression of (34) is 352

ikfv′′′1 = −k2(gaeiθ + p′′′1 /ρ) + p′′′1zz. (35) 353

Substitution of (33a) and (35) to the left and right hand sides of (33c), respectively, yields, 354

−ρf2w′′′
1z = (iσ − νk2 + ν∂2

z )[−k2(gρaeiθ + p′′′1 ) + p′′′1zz]. (36) 355

Substitution of (33d) to the vertical derivative of (36) yields a characteristic equation for the vertical 356

profile of w′′′
1 , 357

−f2w′′′
1zz = (iσ − νk2 + ν∂2

z )
2(−k2w′′′

1 +w′′′
1zz), (37) 358

which can be approximated by two separate equations, 359

−f2w′′′
1zz ≃ −σ2(−k2w′′′

1 + w′′′
1zz), (38a) 360

−f2w′′′
1zz ≃ (iσ − νk2 + ν∂2

z )
2w′′′

1zz. (38b) 361
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The first equation can be reduced further to 0 ≃ (−k2w′′′
1 + w′′′

1zz) because f/σ ≡ γ ≪ 1 (nondimensional 362

positive real constant, Table 2). Thus w′′′
1 is written by the composite of ekz and en

±z where 363

n± ≡
√

−iσ+νk2±if
ν = m

√
1 + iβ ∓ γ, (39) 364

where β ≡ νk2/σ ≪ 1 (nondimensional positive real constant, Table 2) and m ≡
√

−iσ/ν =
√

−i/βk 365

(complex constant). Using both (iσ − νk2 + ν∂2
z )e

kz+iθ = iσekz+iθ and (iσ − νk2 + ν∂2
z )e

n±z+iθ = 366

±ifen
±z+iθ, we solve (33a)-(33d) and obtain both a general solution 367

p′′′1 = Re{eiθ[ekz(a+ b+ + b−) + ( b
+

n+ e
n+z − b−

n− e
n−z)γk − a]}ρg, (40a) 368

z′′′1 = Re{eiθ[ekz(a+ b+ + b−)− b+en
+z − b−en

−z]}, (40b) 369

u′′′1 = Re{eiθ[ekz(a+ b+ + b−)− (b+n+en
+z + b−n−en

−z) 1k ]}σ, (40c) 370

v′′′1 = Im{eiθ[ekz(a+ b+ + b−)− (b+n+en
+z − b−n−en

−z) 1
γk ]}f, (40d) 371

w′′′
1 = Im{eiθ[ekz(a+ b+ + b−)− b+en

+z − b−en
−z]}σ, (40e) 372

and a dispersion relation σ2 = gk. Each of b+ and b− is a complex constant to be determined in the next 373

subsection. The above solution is given in the VL coordinates so that there is no need to extrapolate the 374

solution using the Taylor expansion to include regions above the free surface, e.g. where there are surface 375

troughs, as in previous studies. 376

3.4. Case of no air pressure disturbance 377

One way to determine b+ and b− is to assume at the sea surface that (i) there is no air pressure 378

disturbance: p′′′1 |z=0 = 0, (ii) there is no stress in the direction of wave crests: v′′′1z|z=0 = 0. With a 379

straightforward manipulation (appendix B), the general solution (40a)-(40e) is reduced to 380

p′′′1 = Re{eiθ(ekz − 1)}aρg, (41a) 381

z′′′1 = Re{eiθ+kz}a, (41b) 382

u′′′1 = Re{eiθ+kz}aσ, (41c) 383

v′′′1 = Im{eiθ[ekz − emz(1− iβ2 + iβ2mz)
√

iβ]}af, (41d) 384

w′′′
1 = Im{eiθ+kz}aσ. (41e) 385

Substitution of (41a)-(41d) to (32a)-(32b) yields the TWM momentum balance at O(α2), 386

−ρf v̂2 = ρν(û2z − 2σk2a2e2kz︸ ︷︷ ︸
z′′′
1zzu

′′′
1
+2z′′′

1zu
′′′
1z+z′′′

1xu
′′′
1x

)z, (42a) 387

ρfû2 = ρν(v̂2z − fk2a2Re{e(k+m)z}︸ ︷︷ ︸
z′′′
1zzv

′′′
1
+2z′′′

1zv
′′′
1z+z′′′

1xv
′′′
1x

)z, (42b) 388
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where the pressure term has vanished owing to the phase relationship of O(α) waves. Substitution of 389

(41b)-(41d) to (16) yields the expression of the quasi-Stokes velocity 390

uqs2 ≡ (z′′′1 u′′′1 )z = σka2e2kz, (43a) 391

vqs2 ≡ (z′′′1 v′′′1 )z =
fka2

2 Re{ie(k+m)z}, (43b) 392

where uqs2 , at this order in α, is identical to the Stokes-drift velocity in the inviscid theory (hereafter the 393

inviscid Stokes velocity refers to σka2e2kz).9 The viscous stress in (42a) can be rewritten as ρν(û2z − 394

2σk2a2e2kz) = ρν(û2z − uqs2z) = ρνuc2z. The stress acts on the Eulerian mean component of velocity and 395

not the TWM velocity. This result holds for irrotational waves in general, as shown using u′′′1z −w′′′
1x = 0, 396

u′′′1x + w′′′
1z = 0 and (43a) to obtain 397

û2z − (z′′′1zzu
′′′
1 + 2z′′′1zu

′′′
1z + z′′′1xu

′′′
1x) = uc2z + z′′′1 u

′′′
1zz − z′′′1xu

′′′
1x 398

= uc2z + z′′′1 w
′′′
1xz − z′′′1xu

′′′
1x 399

= uc2z − z′′′1xw
′′′
1z − z′′′1xu

′′′
1x 400

= uc2z + z′′′1xu
′′′
1x − z′′′1xu

′′′
1x 401

= uc2z. (44) 402

Indeed (41c) and (41e) satisfy both the irrotational and incompressibility conditions. 403

The boundary condition for (û2z , v̂2z) is set by the rate of momentum input at the sea surface, 404

ρν(û2z|z=0 − 2σk2a2) = τ2, (45a) 405

ρν(v̂2z|z=0 − fk2a2) = 0, (45b) 406

which represents the wind blowing in the direction of wave propagation, with τ2 being the wind stress (here 407

introduced at order α2). The fk2a2 term in (45b) may be omitted because of f/σ = γ ≪ 1. Equations 408

(43b) and (42b) contain terms proportional to emz = e
√

−i/βkz that are effective only within the thin 409

viscous boundary layer associated with the waves (hereafter referred to simply as the viscous boundary 410

layer, not to be confused with the Ekman layer of depth
√

ν/f). At depths below this layer, (42a)-(42b) 411

can be rendered into, 412

−f v̂2 = ν(û2z − 2σk2a2e2kz)z, (46a) 413

fû2 = νv̂2zz, (46b) 414

9It should be noted that the expression of (uqs
2 , vqs2 ) is not guaranteed to be the same as the Stokes-drift for inviscid waves,

a case in point being the solution in the next subsection.
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which may be solved by using the boundary condition (û2z, v̂2z)|z=0 = (τ2/(ρν) + 2σk2a2, 0) to yield 415

û2 + iv̂2 =
(2k/ǫ)eǫz + (4ik2ν/f)e2kz

1 + 4ik2ν/f
σka2 +

τ2
ρνǫ

eǫz, (47) 416

where the second term is the classical Ekman spiral velocity with ǫ =
√

if/ν being a complex constant. 417

By subtracting uqs2 + ivqs2 ≃ σka2e2kz from (47), we obtain the Eulerian mean velocity 418

uc2 + ivc2 =
(2k/ǫ)eǫz − e2kz

1 + 4ik2ν/f
σka2 +

τ2
ρνǫ

eǫz, (48) 419

which corresponds to the solution of Huang (1979) and Polton et al. (2005). The latter point out that the 420

classical Ekman spiral solution is modified by the presence of surface waves because the waves drive flow 421

near the surface through the Coriolis-Stokes force. Even though the flow that is directly driven by the 422

Coriolis-Stokes force is surface-confined, its effect is felt throughout the whole depth of the surface Ekman 423

layer, as shown by the first term of (48) and illustrated in Figure 3. This is because the presence of the 424

surface-confined flow modifies the surface boundary condition from that in the classical Ekman problem. 425

Putting the turbulent viscosity ν = 0 in (46a)-(46b), it follows immediately that in the inviscid case 426

(no turbulent mixing and no surface wind stress) V̂2 = 0. Since V1 = V̂1 = 0, as follows from (25a) 427

and (25d), it follows that there no net horizontal transport by the waves up to O(α2), corresponding to 428

the result of Ursell (1950), Pollard (1970) and Hasselmann (1970) that surface waves propagating without 429

change of form in a rotating system have no net mass transport associated with them. 430

In order to understand the budget of mean kinetic energy, ρ
2 (û

2
2+ v̂22), in each vertical column, we take 431

the depth integral of the inner product of (û2, v̂2) and (46a)-(46b), 432

0 = û2ρν(û2z − 2σk2a2)|z=0 − ρν
∫ 0
−∞[û2z(û2z − 2σk2a2e2kz) + v̂2z(v̂2z − fk2a2Re{e(k+m)z})]dz 433

≃ û2|z=0τ2 − ρν
∫ −δ
−∞[û2z(û2z − 2σk2a2ekz) + v̂2z v̂2z]dz 434

= û2|z=0τ2︸ ︷︷ ︸
surface viscous stress

− ρν
∫ −δ
−∞(uc2zu

c
2z + vc2zv

c
2z)dz︸ ︷︷ ︸

viscous stress on EM velocity

− ρν
∫ −δ
−∞2σk2a2e2kzuc2zdz︸ ︷︷ ︸

viscous stress on Stokes velocity

, (49) 435

where integration by parts has been used, and we have assumed that the depth integral is not sensitive to 436

complicated terms in the viscous boundary layer of thin thickness δ ∼
√
β/k. The first term on the last 437

line of (49) represents the work of wind stress on the TWM velocity at surface. The second term represents 438

the dissipation of mean kinetic energy (i.e. production of turbulent kinetic energy) based on the vertical 439

shear of the Eulerian mean velocity. The third term is given by the vertical shear of the inviscid Stokes 440

velocity 2σk2a2e2kz = (σka2e2kz)z and might be related to the Stokes production of turbulent kinetic 441

energy that has been considered in Teixeira and Belcher (2002) and Kantha and Clayson (2004). However 442

when wave amplitude is large, the x-component of the Eulerian mean velocity, uc2, tends to be against the 443
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direction of the wave propagation and the wind (Figure 3) with the result that the Stokes shear term of 444

(49) is actually sign indefinite (and therefore, not necessarily a production term). It should be noted that 445

although the Eulerian mean velocity is against the wind stress for the red curve in Figure 3, the wind 446

stress, nevertheless, inputs energy through the work that is done by the wind stress on the quasi-Stokes 447

(i.e. Stokes drift) component of the TWM velocity. 448

3.5. Case of no variation in tangential stress arising from the presence of the waves 449

Another way to determine b+ and b− in (40a)-(40e) is to assume that (i) there is no variation in 450

the tangential component of surface stress arising from the presence of the waves: (u′′′1z + w′′′
1x)|z=0 = 0 451

(Longuet-Higgins, 1953, 1960), and (ii) there is no surface stress in the direction of wave crests: v′′′z |z=0 = 0 452

(this is as in the previous subsection). With a straightforward manipulation (Appendix B), the general 453

solution (40a)-(40e) is reduced to 454

p′′′1 = Re{eiθ[ekz(1 + 2βi) − 1]}aρg, (50a) 455

z′′′1 = Re{eiθ[ekz(1 + 2βi) + emz(−2i+ βmz)β]}a, (50b) 456

u′′′1 = Re{eiθ[ekz(1 + 2βi) + emz(−2i+ β + βmz)
√

−iβ]}aσ, (50c) 457

v′′′1 = Im{eiθ[ekz(1 + 2βi) + emz(−2i+ 1
2β + imz + 3

2βmz)
√

−iβ]}af, (50d) 458

w′′′
1 = Im{eiθ[ekz(1 + 2βi) + emz(−2i+ βmz)β]}aσ. (50e) 459

Substitution of (50a)-(50e) to (32a)-(32b) yields the TWM momentum balance at O(α2), 460

−ρf v̂2 = [ρνσk2a2Re{e(k+m)z}︸ ︷︷ ︸
z′′′x (ρgη′′′+p′′′)

]z + ρν[û2z − σk2a2(2e2kz − 3Re{e(k+m)z})︸ ︷︷ ︸
z′′′
1zzu

′′′
1
+2z′′′

1zu
′′′
1z+z′′′

1xu
′′′
1x

]z, (51a) 461

ρfû2 = ρν[v̂2z − fk2a2Re{ imz−3i
2 e(k+m)z}︸ ︷︷ ︸

z′′′
1zzv

′′′
1
+2z′′′

1zv
′′′
1z+z′′′

1xv
′′′
1x

]z. (51b) 462

Equation (51a) is the cornerstone for explaining the so-called VWS of Longuet-Higgins (1953) concerning 463

the vertical transfer of the x-component of momentum. Our explanation follows the following steps (as 464

explained in the text that follows), 465

(i) û2z = τ2/(ρν) at the sea surface (where the wind stress τ2 is introduced at second order in α, as 466

before). 467

(ii) The momentum flux through sea surface is τ2+2ρνσk2a2, of which the wave-induced flux 2ρνσk2a2 468

is attributed in equal measure to form stress and viscous stress. 469
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(iii) The momentum flux through the base of the thin viscous boundary layer is τ2 + 2ρνσk2a2, all of 470

which is maintained by viscous stress. 471

(iv) û2z = τ2/(ρν) + 4σk2a2 at the base of the thin viscous boundary layer. 472

The condition of no variation in the tangential stress gives a constraint for the vertical gradient of the 473

TWM velocity. This constraint is written by (80) to which we substitute an identity (σ/k)z′′′1zz = u′′′1z = 474

−w′′′
1x = −(σk)η′′′1 which has been derived from (33a) and (u′′′1z + w′′′

1x)|z=0 = 0. It follows that 475

û2z|z=0 = τ2/(ρν) + z′′′1zzu
′′′
1 + 2z′′′1zu

′′′
1z + 3η′′′1xu

′′′
1x 476

= τ2/(ρν)− k2η′′′1 u
′′′
1 − 2k2u′′′1 η

′′′
1 + 3k2η′′′1 u

′′′
1 , 477

= τ2/(ρν). (52) 478

This is (i). The right hand side of (51a) has been written as the vertical divergence of a pressure-induced 479

momentum flux (i.e. form stress) and a viscosity-induced momentum flux (i.e. viscous stress). At the 480

sea surface where z = 0, the form stress becomes η′′′1xp
′′′
1 = ρνσk2a2 and the viscous stress becomes 481

τ2 − ρν(z′′′1zzu
′′′
1 + 2z′′′1zu

′′′
1z + z′′′1xu

′′′
1x) = τ2 + ρνσk2a2, yielding a total momentum flux of τ2 + 2ρνσk2a2 482

where the last term represents the effect of waves. This is (ii). The viscous boundary layer is so thin 483

(thickness is scaled by
√

ν/σ =
√
β/k), that the Coriolis term on the left hand side of (51a) would 484

have little contribution to the momentum balance within the layer. Thus the vertical profile of the total 485

momentum flux is nearly constant, τ2+2ρνσk2a2, within the boundary layer. This is (iii). The 2ρνσk2a2 486

part is what has been called the VWS in previous studies. Below the viscous boundary layer, terms 487

proportional to emz = e
√

−i/βkz in (51a) vanish, so that the vertical transfer of momentum is done by 488

only the viscous stress, ρν(û2z − 2σk2a2). This stress should match τ2+2ρνσk2a2 which comes from (iii). 489

The result is that, at the base of the viscous boundary layer, û2z = τ2/(ρν) + 4σk2a2 whose last term is 490

twice the vertical gradient of the inviscid Stokes velocity (Longuet-Higgins, 1953). This is (iv). It should 491

be noted that in the above analysis, the TWM momentum equation has been written in a flux-divergence 492

form which is suitable for identifying the route of the momentum transfer. 493
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In order to understand the budget of mean kinetic energy, ρ
2 (û

2
2+ v̂22), in each vertical column, we take 494

the depth integral of the inner product of (û2, v̂2) and (51a)-(51b), 495

0 = û2|z=0(τ2 + 2ρνσk2a2)− ρν
∫ 0
−∞û2z(û2z − σk2a2(2e2kz − 3Re{e(k+m)z})dz 496

−ρν
∫ 0
−∞v̂2z(v̂2z − fk2a2Re{ imz−3i

2 e(k+m)z})dz 497

≃ û2|z=0(τ2 + 2ρνσk2a2)− ρν
∫ −δ
−∞[û2z(û2z − 2σk2a2ekz) + v̂2z v̂2z]dz 498

= û2|z=0(τ2 + ρνσk2a2)︸ ︷︷ ︸
surface viscous stress

+ û2|z=0ρνσk
2a2︸ ︷︷ ︸

surface form stress

− ρν
∫ −δ
−∞(uc2zu

c
2z + vc2zv

c
2z)dz︸ ︷︷ ︸

viscous stress on EM velocity

499

− ρν
∫ −δ
−∞2σk2a2e2kzuc2zdz︸ ︷︷ ︸

viscous stress on Stokes velocity

, (53) 500

where integration by parts has been used. In addition to wind stress τ2, wave viscous stress ρνσk2a and 501

form stress ρνσk2a at surface feed the mean kinetic energy, as illustrated in Figure 4. 502

Below the viscous boundary layer, (51a)-(51b) are reduced to (46a)-(46b), which can be solved using 503

an adjusted boundary condition ρν(û2z, v̂2z)|z=−δ = (τ2/(ρν) + 4σk2a2, 0) to yield 504

û2 + iv̂2 =
(2k/ǫ)eǫ(z+δ) + (4ik2ν/f)e2k(z+δ)

1 + 4ik2ν/f
σka2 +

τ2 + 2ρνk2a2

ρνǫ
eǫ(z+δ), (54) 505

which corresponds to equation (16) of Madsen (1978) who considered the same problem using the three- 506

dimensional Lagrangian mean equations of Pierson (1962). Indeed, equations (46a)-(46b) are identical 507

to (5)-(6) of Madsen (1978) with our TWM velocity corresponding to their Lagrangian mean velocity. 508

Substitution of (50b)-(50d) to (16) yields the expression of the quasi-Stokes velocity 509

uqs2 ≡ (z′′′1 u′′′1 )z = σka2(e2kz +Re{e(k+m)z}), (55a) 510

vqs2 ≡ (z′′′1 v′′′1 )z =
fka2

2 Re{(i − imz)e(k+m)z}, (55b) 511

which is slightly different from (43a)-(43b), but both reduce to (uqs2 , vqs2 ) = (σka2e2kz, 0) – the inviscid 512

Stokes velocity – below the thin viscous boundary layer. By subtracting uqs2 + ivqs2 ≃ σka2e2kz from (54), 513

we obtain the EM velocity 514

uc2 + ivc2 =
(2k/ǫ)eǫz − e2kz

1 + 4ik2ν/f
σka2 +

τ2 + 2ρνk2a2

ρνǫ
eǫz, (56) 515

which corresponds to the solution of Xu and Bowen (1994, their equation (87)). The first term of (56) is 516

almost identical to that of (48). The characteristics of this term have already been explained in the previous 517

subsection concerning Figure 3. The second term of (56) can be regarded as the classical Ekman velocity 518

caused by the combined wind stress and VWS: τ2 + 2ρνσk2a2. We estimate the strength of the VWS, 519
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2ρνσk2(αa)2, based on the values of physical parameters used to plot in Figure 3. When wave amplitude 520

is small (αa = 1.0 [m]), the VWS becomes 0.02 [N/m2]. When wave amplitude is large (αa = 2.0 [m]), 521

the VWS becomes 0.08 [N/m2] which is close to the strength of wind stress α2τ2 = 0.1 [N/m2]. See, for 522

example, Weber et al. (2006) for detailed comparisons of the strengths of wind stress and VWS from a 523

model simulation. 524

3.6. Discussion of non-Lagrangian approaches 525

Below the thin surface viscous layer associated with the waves, the TWM velocity satisfies the equation 526

system (46a)-(46b) in both cases considered above (i.e. surface boundary conditions of both no pressure 527

disturbance and no variation of the tangential stress). Transforming to the EM system, the resulting 528

equation system is identical to the EM momentum equations that have been used by Huang (1979), Xu 529

and Bowen (1994), and Polton et al. (2005): 530

−fvc2 = νuc2zz, (57a) 531

fuc2 = −fσka2e2kz︸ ︷︷ ︸
(w′v′

c
)z

+νvc2zz. (57b) 532

The term looking like the Coriolis force induced by the inviscid Stokes velocity is the Coriolis-Stokes force 533

and can be derived by substituting an inviscid wave solution for w′ and v′ to the Reynolds stress term (Has- 534

selmann, 1970), where A′ indicates deviation from the Eulerian time mean A
c
for an arbitrary quantity A. 535

The boundary condition of Huang (1979) and Polton et al. (2005) is (uc2z, v
c
2z)|z=0 = (τ2/(ρν), 0), which 536

corresponds to our boundary condition for the TWM velocity, (û2z , v̂2z)|z=0 = (τ2/(ρν)+2σk2a2, 0) in the 537

case of no air pressure disturbance. The boundary condition of Xu and Bowen (1994) is (uc2z, v
c
2z)|z=−δ = 538

(τ2/(ρν)+2σk2a2, 0), which corresponds to our boundary condition for the TWM velocity, (û2z, v̂2z)|z=−δ = 539

(τ2/(ρν)+4σk2a2, 0) in the case of no variation in the tangential stress. Interestingly, although the surface 540

boundary condition used by Xu and Bowen (1994) corresponds to our case of no variation of the tangential 541

stress, corresponding to step (iv) in our derivation (see the previous subsection), these authors appear to 542

have arrived at (iv) without apparently using steps (i)-(iii) (they do not take explicit account of the thin 543

viscous boundary layer). The large difference between the different solutions is apparent from Figure 3 544

where the left panel shows the solution of Huang (1979) and Polton et al. (2005) for two different wave 545

amplitudes, while the right panel shows to the corresponding solution of Xu and Bowen (1994) for the 546

same two wave amplitudes. Clearly, the different surface boundary conditions applied to the waves can 547

have a big effect on the resulting EM velocity, not only at the surface but throughout the water column. 548

To summarise the difference between the different solutions, it is of interest to understand the budget 549

of momentum in each vertical column, starting with the horizontal momentum equations in Cartesian 550
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coordinates. For the problem being considered here, the instantaneous momentum equation in the x- 551

direction is 552

ρ[utc + (uu)xc + (wu)zc − fv] = −(ρgη + p)xc + ρν(uxcxc + uzczc). (58) 553

Vertically integrating over the depth of the ocean, we obtain equations for the vertically-integrated volume 554

transport given by 555

ρ( ∂
∂tc

∫ η
−∞udzc + ∂

∂xc

∫ η
−∞uudzc − f

∫ η
−∞vdzc) = 556

∂
∂xc

∫ η
−∞(−ρgη − p+ νuxc)dzc + [(ρgη + p)ηxc + ρν(−uxcηxc + uzc)]|zc=η. (59) 557

Time averaging the above equation, and since the problem is horizontally homogeneous, then gives 558

−ρf
∫ η
−∞vdzc = [ηxcp+ ρν(uzc − ηxcuxc)]|zc=η, (60) 559

where there is no Reynolds stress term, consistent with the absence of Reynolds stress terms in (31a)- 560

(32b). These terms drop out because there is no net convergence/divergence of momentum into the water 561

column by the waves. The pressure term of (60) corresponds to the form stress at the surface and vanishes 562

in the case of no pressure perturbations at the sea surface but is, nonetheless, non-zero in the case of no 563

variations of the tangential stress, as we saw in the previous subsection. We next note that the viscosity 564

term of (60) can be written as 565

ρν(uzc − ηxcuxc)|zc=η ≃ ρν(uz − z′′′z uz − ηxcuxc)|zc=η 566

= ρν(ûz − (z′′′z u′′′)z − z′′′z u′′′z − η′′′xcu′′′xc)|zc=η 567

= ρν(ûz − z′′′zzu′′′ − 2z′′′z u′′′z − η′′′xcu′′′xc)|zc=η, (61) 568

where uzc = uz/z
c
z = uz/(1 + z′′′z ) ≃ uz(1 − z′′′z ) has been used. In the case of no pressure disturbance at 569

the surface, the total momentum input at the surface is given by the right hand side of (61) and was set 570

equal to the surface wind stress (equation (45a)). In the case of no variation of the tangential stress, ûz is 571

set by the surface wind stress and the remaining terms on the right hand side correspond to the viscous 572

wave stress input noted in step (ii) of the previous subsection. 573

4. Summary and discussion 574

A theory is presented to investigate the effect of surface gravity waves on ocean currents in the presence 575

of a uniform turbulent viscosity. Depth-dependent equations for the conservation of volume, momentum, 576

and energy are derived using a thickness-weighted-mean (TWM) approach in a vertically Lagrangian 577
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and horizontally Eulerian coordinate system, analogous to the TWM approach in isopycnal coordinates in 578

theories describing the impact of mesoscale eddies on the large-scale ocean circulation. Some advantages of 579

the TWM approach are (i) the theory allows for both finite amplitude fluid motions and the background 580

vertical flows associated with the horizontal divergence/convergence of currents, without resorting to 581

Taylor or perturbation expansions, (ii) a concise treatment of the surface kinematic condition as well as 582

the boundary condition for the viscosity term, avoiding complexity in the boundary conditions of Eulerian 583

mean (EM) approaches. 584

In order to illustrate the advantage of the TWM approach, we have revisited the classical Ekman spiral 585

problem, including surface wave effects, using an analytic treatment. The TWM approach can reproduce 586

both the Lagrangian mean equation system of Madsen (1978) and the Eulerian mean equations of Xu and 587

Bowen (1994) and Polton et al. (2005). We have also explored the different surface boundary conditions 588

implicit in these studies. The case studied by Polton et al. (2005) and also Huang (1979) corresponds to 589

applying a boundary condition of no pressure disturbance at the free surface to the waves (implying no 590

form stress) whereas the solutions of Madsen (1978) and Xu and Bowen (1994) correspond to applying 591

a condition of no variations in the tangential component of surface stress to the waves. In this second 592

case, both the form stress and the viscous stress provide a net momentum flux through the surface to 593

the vertically-averaged momentum budget which, in turn, leads to a momentum input, corresponding to 594

the virtual wave stress of Longuet-Higgins (1953, 1960), at the base of the thin viscous boundary layer 595

associated with the waves. By writing the TWM momentum equation in a flux-divergence form, we were 596

able to easily identify the route of momentum transfer, an advantage over using the three-dimensional 597

Lagrangian equations of Pierson (1962). 598

There are many examples of attempts to couple large-scale circulation models with surface wave 599

models, such as the WAM (e.g. Komen et al., 1994; Jenkins, 1989), WAVEWATCH (e.g. Tolman, 1991; 600

Moon, 2005; Tang et al., 2007; Tamura et al., 2010; Waseda et al., 2011), and SWAN (e.g. Booij et al., 601

1999) models. Nevertheless, a motivation for using the vertically Lagrangian (VL) coordinate system and 602

the TWM approach is the ease with which this framework allows surface wave effects to be incorporated 603

into large-scale circulation models, with a concise treatment of surface boundary conditions as well as a 604

clear view of energy interactions. Indeed, there is a direct analogy between the VL coordinate system 605

and the isopycnal coordinate system that has been advocated for use when incorporating the effects of 606

mesoscale eddies in ocean circulation models (e.g. Gent et al., 1995; Greatbatch, 1998; Greatbatch and 607

McDougall, 2003; Griffies, 2004). However, since the viscosity acts only on the EM velocity (at least below 608

the thin viscous boundary layer associated with the waves and which, in any case, will not be resolved 609
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by a large-scale circulation model), this means that for models that step forward the TWM velocity, 610

such as Mellor et al. (2008), an additional term should be included to offset the effect of viscosity on the 611

Stokes-drift velocity. 612

Concerning the forcing of the momentum equations in large scale models, we speculate that a realistic 613

model for the waves might be a linear combination of the two solutions we have presented (the case of 614

no air pressure disturbance leads to no VWS, while the case of no tangential stress leads to a significant 615

VWS). The ratio of the linear combination is highly relevant to the maintenance mechanism of waves and 616

is an important issue for the parameterization of wave forcing for use in large-scale models (cf. Weber 617

et al. (2006) and also the papers by Jenkins (1986, 1989)), an issue to be addressed using the TWM 618

framework in future work. 619

Finally, we note that the VL mean equations of Mellor (2003, 2008) have sometimes been compared 620

to the quasi-EM equations, including the Generalized Lagrangian Mean equations that are expressed in 621

terms of the quasi-EM velocity (cf. McWilliams et al., 2004; Ardhuin et al., 2008). The Craik and Leivo- 622

bich (1976) vortex force, which enables simulations of Langmuir circulations, has been derived only for 623

the quasi-EM equations, a topic we shall discuss in the context of the TWM equations in a later paper. 624
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A. Derivation of TWM energy equations 629

Using (9a)-(9d), one can derive pressure and kinetic energy (KE) equations, 630

[zct (ρgη + p)]z +∇ · [zczV(ρgη + p)] + [zczw
∗(ρgη + p)]z = V · [zcz∇(ρgη + p)] + (zct + zczw

∗
︸ ︷︷ ︸
w−V·∇zc

)pz, (62a) 631

[zcz
ρ
2 (|V|2 + w2)]t +∇ · [zczV ρ

2 (|V|2 + w2)] + [zczw
∗ ρ
2 (|V|2 + w2)]z = 632

V · [−zcz∇(ρgη + p) + pz∇zc]− wpz + zcz(V · FV + wFw), (62b) 633

where the last term of (62a) can be rewritten as (w −V · ∇zc)pz using (9b). 634
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A.1. Depth-dependent equations 635

Equations for pressure and KE in the total (mean plus wave) field can be derived by low-pass temporal 636

filtering (62a)-(62b), 637

[z′′′t (ρgη′′′ + p′′′)]z +∇ · [zczV(ρgη + p)] + [zczw
∗(ρgη + p)]z = −zczV ·G+ wpz, (63a) 638

[zcz
ρ
2 (|V|2 + w2)]t +∇ · [zczV ρ

2 (|V|2 + w2)] + [zczw
∗ ρ
2 (|V|2 + w2)]z = 639

zczV ·G− wpz,+zcz(V · FV + wFw), (63b) 640

where zct = zt + z′′′t = z′′′t has been used for the first term on the left hand side of (63a) and G ≡ 641

−∇c(ρgη+p) = −∇(ρgη+p)+pzc∇zc is the negative of the horizontal gradient of the combined hydrostatic 642

and nonhydrostatic pressure for simplicity. Total KE is a third moment quantity, and can be decomposed 643

into mean KE and wave KE using the Favre-filtering, 644

ρ
2z

c
z(|V|2 + w2) = ρ

2 (|V̂|2 + ŵ2)︸ ︷︷ ︸
mean KE

+ ρ
2z

c
z(|V′′|2 + w′′2)︸ ︷︷ ︸

wave KE

, (64) 645

where each of mean KE and wave KE is clearly a positive-definite quantity. On the other hand, terms on 646

the right hand side of (63a)-(63b) can be expanded as, 647

zczV ·G = V̂ · Ĝ+ zczV
′′ ·G′′ = V̂ · [−∇(ρgη + p) + FS

V] + zczV
′′ ·G′′, (65a) 648

wpz = (ŵ + w′′)pz = ŵpz +w′′pz, (65b) 649

zc(V · FV + wFw) = V̂ · F̂V + ŵF̂w + zc(V′′ · F ′′V + w′′F ′′w), (65c) 650

where FS
V is defined at (14). 651

Equations for pressure and KE in the mean field (i.e. currents) can be derived from (11a)-(11c), 652

∇ · [V̂(ρgη + p)] + [ŵ∗(ρgη + p)]z = V̂ · ∇(ρgη + p) + ŵ∗pz, (66a) 653

[ρ
2 (|V̂|2 + ŵ2)

]
t
+∇·

[
V̂

ρ
2 (|V̂|2 + ŵ2)

]
+
[
ŵ∗ ρ

2 (|V̂|2 + ŵ2)
]
z
= 654

V̂ · [−∇(ρgη + p) + FS
V − RS

V + F̂V] + ŵ(−pz − RS
w + F̂w). (66b) 655

Equations for pressure and KE in the wave field can be derived from the difference of (66a)-(66b) and 656

(63a)-(63b), 657

[z′′′t (ρgη′′′ + p′′′)]z +N (ρgη′′′+p′′′) = −V̂ · FSV − zczV
′′ ·G′′ + w′′pz + (ŵ − ŵ∗)pz, (67a) 658

[
zcz

ρ
2 (|V′′|+ w′′2)

]
t
+N

ρ
2 (|V

′′|2+w′′2) + ρ∇·
(
zczV

′′V′′ · V̂ + zczV
′′w′′ŵ

)
+ρ

(
zczw

∗′′V′′ · V̂ + zczw
∗′′w′′ŵ

)
z

659

= zczV
′′ ·G′′ − w′′pz + (V̂ · RSV + ŵRSw) + (zczV

′′ · F ′′V + zcsw
′′F ′′w), (67b) 660

where (65a)-(65c) have been used and NA ≡ ∇·(zczVA)+(zczw
∗A)z is the divergence of the total advective 661

flux of an arbitrary quantity A. 662
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A.2. Depth-integrated equations 663

The depth integral of (63a)-(63b) yields explicit equations for total PE and total KE, respectively, 10
664

11
665

[ρ2g(η
2 + η′′′2)]t +∇·

〈〈
V(ρgη + p)

〉〉
=
〈〈

− zczV ·G+ wpz
〉〉
−ηtp|z=η − η′′′t p

′′′|z=η, (68a) 666

〈〈
zcz

ρ
2 (|V|2 + w2)

〉〉
t
+∇·

〈〈
zcz

ρ
2 (|V|2 + w2)

〉〉
=
〈〈
zczV ·G− wpz

〉〉
+
〈〈
zczV · FV + zczwF

w
〉〉
, (68b) 667

where
〈〈〉〉

≡
∫ η
−∞dz and p|z=η is air pressure at the sea surface. The depth integral of (66a)-(66b) yields 668

explicit equations for mean PE and mean KE, respectively, 12 13
669

(ρ2gη
2)t +∇·

〈〈
V̂(ρgη + p)

〉〉
=
〈〈
V̂ · ∇(ρgη + p) + ŵ∗pz

〉〉
−ηtp|z=η, (69a) 670

〈〈ρ
2 (|V̂|2 + ŵ2)

〉〉
t
+∇·

〈〈
V̂

ρ
2 (|V̂|2 + ŵ2)

〉〉
= −

〈〈
V̂ · ∇(ρgη + p) + ŵ∗pz

〉〉
671

+
〈〈
V̂ · FSV + (ŵ∗ − ŵ)pz

〉〉
−
〈〈
V̂ · RSV + ŵRSw

〉〉
+
〈〈
V̂ · F̂V + ŵF̂w

〉〉
. (69b) 672

Explicit equations for wave PE and wave KE can be derived from the difference of (68a)-(68b) and (69a)- 673

(69b), 674

(ρ2gη
′′′2)t +∇ ·

〈〈
zczV(ρgη′′′ + p′′′)

〉〉
= −

〈〈
V̂ · FSV + (ŵ∗ − ŵ)pz

〉〉
+
〈〈
−zczV

′′ ·G′′ + w′′pz
〉〉
−η′′′t p

′′′|z=η, 675

(70a) 676

〈〈
zcz

ρ
2 (|V′′|2 + w′′2)

〉〉
t
+∇ ·

〈〈
zczV

ρ
2 (|V′′|2 +w′′2) + ρzczV

′′V′′ · V̂ + ρzczV
′′w′′ŵ

〉〉
= 677

〈〈
zczV

′′ ·G′′ − w′′pz
〉〉
+
〈〈
V̂ · RSV + ŵRSw

〉〉
+
〈〈
zczV

′′ · F ′′V + zczw
′′F ′′w〉〉. (70b) 678

The set of (69a)-(70b) yields an energy diagram as in Figure 2. 679

10Equation (68a) is derived using (19a)-(19b) and (21). First
∫ η

−∞
[z′′′t A′′′ + zczw

∗A]zdz = [z′′′t A′′′ + zczw
∗A]z=η = [(η′′′

t −
zczηt)A

′′′ + zcz(ηt + V · ∇η)A]z=η = [η′′′
t A′′′ + zczηtA + zczVA · ∇η]z=η where A = ρgη + p. Second

∫ η

−∞
∇ · (zczVA) dz =

∇ ·
∫ η

−∞
zczVA dz − (zczVA · ∇η)|z=η based on the Leibniz rule.

11Equation (68b) is derived using (21). First
∫ η

−∞
[w∗A]zdz = [w∗A]z=η = [(ηt +V · η)A]z=η where A = zcz

ρ

2
(|V|2 + w2).

Second
∫ η

−∞
At +∇ · (VA) dz = (

∫ η

−∞
Adz)t +∇ ·

∫ η

−∞
VAdz − [(ηt +V · η)A]z=η based on the Leibniz rule.

12Equation (69a) is derived using (22a). First
∫ η

−∞
[ŵ∗A]zdz = [ŵ∗A]z=η = [(ηt + V̂ ·∇η)A]z=η where A = ρgη+ p. Second

∫ η

−∞
∇ · (V̂A) dz = ∇ ·

∫ η

−∞
V̂A dz − (V̂A · ∇η)|z=η based on the Leibniz rule.

13Equation (69b) is derived using (22a). First
∫ η

−∞
[ŵ∗A]zdz = [ŵ∗A]z=η = [(ηt + V̂ · η)A]z=η where A = ρ

2
(|V̂|2 + ŵ2).

Second
∫ η

−∞
At +∇ · (V̂A) dz = (

∫ η

−∞
Adz)t +∇ ·

∫ η

−∞
V̂Adz − [(ηt + V̂ · η)A]z=η based on the Leibniz rule.
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B. First order waves 680

The general solution (40a)-(40e) has a component whose vertical profile is characterized by en
±z. This 681

function can be approximated as follows, 682

en
±z = emz

√
1+iβ∓γ

683

≃ emz(1+i
β
2∓γ

2 ) 684

= emzemz(i
β
2∓

γ
2 ) 685

≃ emz [1 + (iβ2 ∓ γ
2 )mz], (71) 686

where β ≪ 1 and γ ≪ 1 have been used. Using (71) we derive utility equations, 687

n±en
±z = m

√
1 + iβ ∓ γ[1 + (iβ2 ∓ γ

2 )mz]emz
688

≃ m[1 + (iβ2 ∓ γ
2 )(1 +mz)]emz , (72a) 689

en
±z

n± ≃ 1
m

√
1− (iβ ∓m)[1 + (iβ2 ∓ γ

2 )mz]emz
690

≃ 1
m [1 + (iβ2 ∓ γ

2 )(−1 +mz)]emz . (72b) 691

Substitution of (71)-(72b) to (40a)-(40e) yields 692

p′′′1 = Re{eiθ[ekz(a+ b+ + b−) + emz[(b+ − b−)(1 + iβ2 (−1 +mz))− (b+ + b−)γ2 (−1 +mz)]γ k
m − a]}ρg, 693

(73a) 694

z′′′1 = Re{eiθ[ekz(a+ b+ + b−)− emz[(b+ + b−)(1 + iβ2mz)− (b+ − b−)γ2mz]]}, (73b) 695

u′′′1 = Re{eiθ[ekz(a+ b+ + b−)− emz[(b+ + b−)(1 + iβ2 (1 +mz))− (b+ − b−)γ2 (1 +mz)]mk ]}σ, (73c) 696

v′′′1 = Im{eiθ[ekz(a+ b+ + b−)− emz [(b+ − b−)(1 + iβ2 (1 +mz))− (b+ + b−)γ2 (1 +mz)] mγk ]}f, (73d) 697

w′′′
1 = Im{eiθ[ekz(a+ b+ + b−)− emz [(b+ + b−)(1 + iβ2mz)− (b+ − b−)γ2mz]]}σ. (73e) 698

The approximated solution (73a)-(73e) still has four free parameters: the real and imaginary parts of 699

each of b+ and b−. These parameters can be determined by assuming either (i) no air pressure disturbance 700

or (ii) no variation in the tangential stress at sea surface. In both (i) and (ii), we also assume no surface 701

stress in the direction of wave crests, which may be written by 702

0 = ρνv′′′1z|z=0 703

= Im{eiθ[(a+ b+ + b−)γk − [(b+ − b−)(1 + iβ)− (b+ + b−)γ]m
2

k ]}ρνσ 704

= Im{eiθ[(a+ b+ + b−)γβ + [(b+ − b−)(1 + iβ)− (b+ + b−)γ]i]}ρνσk/β 705

= Im{eiθ[aγβ + (b+ + b−)γ(β − i) + (b+ − b−)(i− β)]}ρνσk/β. (74) 706
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The result is (b+ − b−) = [b+ + b− + aβ(i + β)]γ = [b + aβ(i + β)]γ where b ≡ b+ + b−. Substitution of 707

this to (73a)-(73e) yields 708

p′′′1 = Re{eiθ[ekz(a+ b)− a]}ρg, (75a) 709

z′′′1 = Re{eiθ[ekz(a+ b)− emzb(1 + iβ2mz)]}, (75b) 710

u′′′1 = Re{eiθ[ekz(a+ b)− emzb[1 + iβ2 (1 +mz)]mk ]}σ, (75c) 711

v′′′1 = Im{eiθ[ekz(a+ b)− emz [(b+ aβi+ aβ2)(1 + iβ2 (1 +mz))− b12(1 +mz)]mk ]}f, (75d) 712

w′′′
1 = Im{eiθ[ekz(a+ b)− emzb(1 + iβ2mz)]}σ, (75e) 713

where terms proportional to γ2 have been omitted. The number of free parameters has reduced to two: 714

the real and imaginary parts of b. 715

B.1. Case of no air pressure disturbance 716

One way to determine b is to assume no air pressure disturbance at sea surface. Equation (75a) yields 717

0 = p′′′1 |z=0 = Re{eiθb}ρg so that b = 0. Substitution of this to (75a)-(75e) yields (41a)-(41e). 718

B.2. Case with no variation in tangential stress 719

Another way to determine b is to assume no tangential component of surface stress except for a constant 720

wind stress α2τ2. Namely there is no variability in the tangential component of surface stress (Longuet- 721

Higgins, 1953, 1960). Let (s, n) denote the tangential and outward normal directions at a horizontally 722

fixed point on the free surface, zc = η (Figure 5). Following Longuet-Higgins (1969), 14 we transform the 723

stress tensor in Cartesian coordinates to P ss and P sn acting on the s-component of velocity, and Pns and 724

Pnn acting on the n-component of velocity, 725


 P ss P sn

Pns Pnn


 =


 1 ηx

−ηx 1





 −p+ 2ρνuxc ρν(uzc + wxc)

ρν(uzc + wxc) −p+ 2ρνwzc





 1 −ηx

ηx 1


 , (76) 726

14In previous literature concerning the VWS, the stress tensor has been transformed into the tangential and normal

components using two different formulas: one based on Longuet-Higgins (1969, LH69) and one based on Chang (1969, C69).

The formula of LH69 has been adopted in Xu and Bowen (1994), Piedra-Cueva (1995), Ng (2004), and the present study (see

our Eq. 76). The formula of C69 has been adopted in Ünlüata and Mei (1970), Weber (1983), and Jenkins (1986). Obviously

Eq. (5.4a) of Piedra-Cueva (1995) is different from Eq. (99b) of C69, despite the fact that both equations are presented

as expressions for the tangential stress at second order using the framework of Pierson (1969). The two equations become

identical if the normal stress at the sea surface is zero, an assumption which allowed C69 and Ünlüata and Mei (1970) to

derive the VWS (this is for waves in a water tank). Weber (1983) made one of the first attempts to relax the condition of no

normal stress while retaining the condition of no tangential stress, in order to consider steady and horizontally homogeneous

waves in an open ocean. However Weber (1983) used Eq. (99b) of C69, which is why he could not obtain the VWS.
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where P sn = Pns is the instantaneous tangential stress, and |ηx| ≪ 1 is assumed. The condition of 727

P sn = α2τ2 becomes 728

α2τ2 = ρν(uzc + wxc) + 2ρνηx(wzc − uxc)− ρν(ηx)
2(uzc + wxc) 729

= ρν[(uzc + wx − ηxwzc) + 2ηx(wzc − ux + ηxuzc)− (ηx)
2(uzc + wx − ηxwzc)]. (77) 730

Multiplying the above equation with zcz/(ρν) = (1+z′′′z )/(ρν) and application of the perturbation expansion 731

yields 732

α2τ2(1 + z′′′z )/(ρν) = (uz + wx + z′′′z wx − ηxwz) + 2ηx(wz − ux − z′′′z ux + ηxuz)− (ηx)
2(.....) 733

= α(u′′′1z +w′′′
1x) + α2[u2z + w2x + z′′′1zw

′′′
1x − η′′′1xw

′′′
1z + 2η′′′1x(w

′′′
1z − u′′′1x)] +O(α3) 734

= α(u′′′1z +w′′′
1x) + α2(u2z + w2x + z′′′1zw

′′′
1x − 3η′′′1xu

′′′
1x) +O(α3), (78) 735

where u′′′1x + w′′′
1z = 0 has been used. We substitute the approximated solution of the first order waves, 736

(75c) and (75e), to the O(α) component of (78), 737

0 = (u′′′1z + w′′′
1x)|z=0 738

= Re{eiθ[(a+ b)− b(1 + iβ)−i
β + (a+ b)− b]}σk 739

= Re{eiθ[2a+ ib/β]}σk. (79) 740

The result is b = 2aβi. Substitution of this to (75a)-(75e) yields (50a)-(50e). 741

Time-average of (78) yields a boundary condition for the unweighted mean velocity u2z = τ2/(ρν) − 742

z′′′1zw
′′′
1x + 3η′′′x u′′′1x, which can be rewritten for the TWM velocity, 743

û2z = τ2/(ρν) + (z′′′1zu
′′′
1 )z − z′′′1zw

′′′
1x + 3η′′′x u

′′′
1x 744

= τ2/(ρν) + z′′′1zzu
′′′
1 + 2z′′′1zu

′′′
1z + 3η′′′x u′′′1x, (80) 745

where û2 = u2 + z′′′1zu
′′′
1 and u′′′1z + w′′′

1x = 0 have been used. Equation (80) corresponds to equation (36) 746

of Ünlüata and Mei (1970) for the three-dimensionally Lagrangian mean velocity. We substitute (80) to 747

the combined form and viscous stress on the right hand side of the momentum equation (51a) in the 748

x-direction 749

η′′′1xp
′′′
1 + ρν[û2z − (z′′′1zzu

′′′
1 + 2z′′′1zu

′′′
1z + η′′′1xu

′′′
1x)] = τ2 + η′′′1x(p

′′′
1 + 2ρνu′′′1x) 750

= τ2 − η′′′1x(−p′′′1 + 2ρνw′′′
1z), (81) 751

where u′′′1x + w′′′
1z = 0 has been used. The factor of −η′′′x on the last line looks like the projection of a 752

vector in the n-direction to the x-direction. Indeed −p′′′1 + 2ρνw′′′
1z is identical to the O(α) component of 753
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Pnn in (76). This interpretation of the wave stress – the projection in the direction of wave propagation 754

of the normal component of the stress – has been developed by Weber et al. (2006) based on a different 755

approach.15 756

In the main text, we have estimated the rate of momentum input at sea surface to be τ2 + 2ρνσk2a2, 757

by substituting the analytical solution of viscid waves to the left hand side of (81). Interestingly the 758

wave-induced part, 2ρνσk2a2 , is available more easily by considering the budget of wave energy (Phillips, 759

1977; Xu and Bowen, 1994; Weber et al., 2006). Equations for the depth-integrated budget of wave energy 760

have been given by (70a)-(70a). We specialize to the energy budget of horizontally homogeneous waves, 761

and for simplicity v′′′1 = 0 and ∂y = 0. To the leading order of α the sum of (70a)-(70b) becomes, 762

0 = (ρ2gη
′′′2
1 )t +

〈〈ρ
2 (|u′′1 |2 + |w′′

1 |2)
〉〉

t
763

= −η′′′1tp
′′′
1 |z=0 +

〈〈
u′′1 · (F ′′u)1 + w′′

1(F
′′w)1

〉〉
764

= −η′′′1tp
′′′
1 |z=0 + ρνu′′′1 (u

′′′
1z + w′′′

1x) + 2w′′′
1 w

′′′
1z|z=0 765

−ρν
〈〈
2(u′′′1x)

2 + 2(w′′′
1z)

2 + (w′′′
1x + u′′′1z)

2
〉〉

766

= η′′′1t(−p′′′1 + 2ρνw′′′
1z)|z=0 − ρν

〈〈
2(u′′′1x)

2 + 2(w′′′
1z)

2 + (w′′′
1x + u′′′1z)

2
〉〉
, (82) 767

where u′′1 = u′′′1 and w′′
1 = w′′′

1 are understood, and (u′′′1z + w′′′
1x)|z=0 = 0 and η′′′1t = w′′′

1 |z=0 have been used. 768

According to Phillips (1977), the dissipation rate can be estimated using the analytical solution of inviscid 769

waves, because the viscous boundary layer associated with the waves is so thin that the detailed profile of 770

viscid waves in the boundary layer does not affect the depth integrated rate of dissipation. Substitution 771

of u′′′1 = aσeiθ+kz and w′′′
1 = −iaσeiθ+kz to the dissipation term of (82) yields 2ρνσ2ka2. Thus the rate 772

of wave energy input through sea surface is η′′′1t(−p′′′1 + 2ρνw′′′
1z)|z=0 = 2ρνσ2ka2. Use of η′′′t = −(σ/k)η′′′x 773

yields −η′′′1x(−p′′′1 + 2ρνw′′′
1z)|z=0 = 2ρνσk2a2 for the rate of wave-induced momentum input on the right 774

hand side of (81). 775

15The interpretation can be traced back to Weber (2003) and Phillips (1977).
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Table 1: List of symbols, where A is an arbitrary quantity.

A
c

time-mean in Eulerian coordinates

Â ≡ zczA Thickness-weighted time-mean in the VL coordinates

A Unweighted time-mean in the VL coordinates

(mean-height is zc ≡ z and mean-thickness is zcz = 1)

A′ ≡ A−A
c

Deviation from the Eulerian mean, compared at fixed zc (A′
c
= 0)

A′′ ≡ A− Â Deviation from the thickness-weighted mean, compared at fixed z (zczA′′ = 0)

A′′′ ≡ A− A Deviation from the unweighted mean, compared at fixed z (A′′′ = 0)

z′′′ ≡ zc − zc = zc − z Vertical displacement (zcz = 1 + z′′′z , zcz = 1, z′′′z = 0)

∇ ≡ (∂x, ∂y) Lateral gradient in the VL coordinates (∇z = 0, ∇zc = ∇z′′′)

∇c ≡ (∂xc , ∂yc) Horizontal gradient in Eulerian coordinates (∇c = ∇− (∇zc)∂zc)

V ≡ (u, v) Horizontal component of velocity

w Vertical component of velocity

w∗ ≡ (w − zct −V · ∇zc)/zcz Vertical velocity associated with volume flux through surface of fixed z

(V̂, ŵ) Thickness weighted mean (TWM) velocity

(V̂, ŵ∗) Total transport velocity: ∇ · V̂ + ŵ∗
z = 0

V
B ≡ V̂ −V = z′′′z V′′′ Horizontal component of bolus velocity

wB ≡ ŵ∗ − w = −V′′′ · ∇z′′′ Vertical component of bolus velocity

V
qs ≡ V̂ −V

c
= (z′′′V′′′)z + ... Horizontal component of quasi-Stokes velocity

wqs ≡ ŵ∗ −wc Vertical component of quasi-Stokes velocity

ρ Reference density of seawater (positive real constant)

g Gravity acceleration (positive real constant)

η Sea surface height

p Sum of oceanic nonhydrostatic pressure and atmospheric sea surface pressure

FS
V Divergence of the form stress ≡ [∇z′′′(ρgη′′′ + p′′′)]z −∇[z′′′z (ρgη′′′ + p′′′)]

RS
A Divergence of the Reynolds stress ≡ ρ[∇ · (zczV′′A′′) + (zczw∗′′A′′)z] for A = u, v and w.

FA Turbulent mixing term, parameterized by (28a)-(28c)

(τx, τy) Viscous stress at the sea surface by wind

ν Turbulent viscosity coefficient (positive real constant)

f Coriolis parameter (positive real constant)

ǫ =
√

if/ν Vertical wavenumber / decay rate of the Ekman spiral velocity (complex constant)

k Wavenumber in the direction of x-axis (positive real constant)

σ Wave frequency (positive real constant)

θ ≡ kx− σt Wave phase (sign-indefinite real constant)

αa = α/k Wave amplitude (a ≡ 1/k)

α Nondimensional scale for surface slope (positive real constant)

β ≡ νk2/σ Nondimensional scale for turbulent viscosity (positive real constant)

γ ≡ f/σ Nondimensional scale for the rotation of the Earth (positive real constant)

m ≡
√

−iσ/ν =
√

−i/βk Vertical wavenumber / decay rate of viscid waves (complex constant)

n± ≡
√

(−iσ + νk2 ± if)/ν Vertical wavenumber / decay rate of rotating viscid waves (complex constant)
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Table 2: The value of physical parameters assumed in Section 3.

main text Figure 3

α 10−1 0.1 or 0.2

β ≡ νk2/σ between 10−6 and 10−4 10−5

γ ≡ f/σ 10−4 10−4

ρ [ kg/m3] 103 103

σ [1/ s] 1 1

f [1/ s] 10−4 10−4

k [1/m] 10−1 10−1

αa = α/k [ m] 1 1.0 or 2.0

ν [ m2/ s] between 10−4 and 10−2 10−3

√
ν/σ =

√
β/k [ m] between 10−2 and 10−1 3.2× 10−2

√
ν/f [ m] between 1 and 10 3.2

2ρνσk2(αa)2 [N/m2] between 10−3 and 10−1 0.02 or 0.08

α2τ2 [N/m2] arbitrary 0.1

σk(αa)2 [ m/ s] 10−1 0.1 or 0.4

α2τ2/(ρ
√
2νf) [m/ s] arbitrary 0.22
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Figure 1: Illustration of surfaces of fixed z (blue line) and the sea surface (black line) in (tc, zc)-space (a) without a background

vertical flow and (b) with a background flow.
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Figure 2: Energy diagram based on (69a)-(70b) where
〈〈〉〉

≡
∫ η
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dz. The sign of energy conversion terms is referenced

to the budget of (mean) kinetic energy. The symbol G ≡ −∇c(ρgη + p) is the negative of the horizontal gradient of the

combined hydrostatic and nonhydrostatic pressure.
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Figure 3: Hodograph of the EM velocity for the case of no surface pressure disturbances (left panel) and no variations in

tangential stress (right panel). The blue line is the case with dimensional wave amplitude αa = 1.0[m], and for the red line

αa = 2.0[m]. The black line is the classical Ekman spiral velocity: α2τ 2/(ρνǫ)e
ǫz = α2τ2/(ρ

√
iνf)eǫz. The wind stress is

α2τ2 = 0.1[N/m2]. The values of the other parameters are listed in Table 2. Both axes are scaled by the magnitude of the

x-component of the classical Ekman spiral velocity at sea surface: α2τ2/(ρ
√
2νf) = 0.22 [m/ s]. The Ekman layer depth is

√
ν/f = 3.2 [m]. Note that the velocity at the surface is different in each case, with the velocity spiralling to zero at depth.
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Figure 4: Illustration of the budget of the mean kinetic energy in the case of no variation in the tangential component of

surface stress (Section 3.5).
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Figure 5: Illustration of tangential vector s and normal vector n at the free surface η. The dashed line shows the base of the

viscous boundary layer of thickness δ.
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