
INSTITUT FÜR INFORMATIK

MAMBA: A Measurement Architecture

for Model-Based Analysis

Sören Frey, André van Hoorn, Reiner Jung,
Wilhelm Hasselbring, and Benjamin Kiel

Bericht Nr. 1112

Dezember 2011

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

ZU KIEL

MAMBA: A Measurement Architecture
for Model-Based Analysis

Sören Frey, André van Hoorn, Reiner Jung, Wilhelm Hasselbring, and Benjamin Kiel

Software Engineering Group, University of Kiel, D-24098 Kiel, Germany
{sfr, avh, rju, wha, bes}@informatik.uni-kiel.de

Abstract—Model-based measurement techniques are relevant
in the field of software analysis. Several meta models for the spec-
ification of quantitative measures have been proposed. However,
they often focus either on static or dynamic aspects of a software
system. Nevertheless, considering reengineering activities often
both dimensions reveal valuable complementary insights. Existing
meta models are also frequently bound to specific modeling lan-
guages, redefine underlying concepts for any new meta model, or
provide only limited tool support for the automated computation
of measurements from modeled measures.

We present MAMBA, an integrated measurement architecture
for model-based analysis—both static and dynamic—of software
systems, that can be specified by arbitrary Ecore-based model-
ing languages. MAMBA extends the Structured Metrics Meta-
Model (SMM) by additional modeling features, such as arbitrary
statistical aggregate functions and periodic aggregate functions,
e.g., for dynamic analysis at runtime. To consider measurements
for querying system models, we outline the MAMBA Query
Language (MQL) that employs SMM measures. Furthermore,
we provide tool support that applies the measures specified in an
(extended) SMM model and can integrate raw measurements
provided by arbitrary static and dynamic analysis tools to
produce the desired measurement model.

We demonstrate the applicability of the approach based on
three evaluation scenarios from different contexts: migration
of software systems into the cloud, model-based engineering of
railway control systems, and dynamic analysis for model-driven
software modernization.

I. INTRODUCTION

Software analysis spans a wide range of methodologies, do-
mains, and techniques, such as model checking, code analysis,
and dependency extraction [1]. For example, a system’s behav-
ior can be observed at runtime to collect information needed
for program comprehension [2] or architecture measures can
be computed to reason about a software product’s quality [3].
The empirical analysis of software models that comply with
well-defined meta models can be seen as a sub-discipline of
software analysis. Here, as in any empirical field of research,
being able to measure properties that are related to the subjects
of interest is vital. Several approaches for carrying out model-
based measurement have been proposed (e.g., [4–6]). How-
ever, the corresponding meta models often include domain-
specific elements, focus on either dynamic or static aspects
of software systems, or underlying concepts are redefined
for each new meta model. Furthermore, the tool support is
frequently limited and the measures can often only be used
in conceptual models but cannot be computed automatically.

Using measures in model queries is also often cumbersome as
those require customized full-fledged measure models. More-
over, it is often not feasible to reuse already measured values
that are provided by arbitrary static and dynamic analysis tools.
Those externally computed raw measurement data usually
cannot be smoothly integrated in new measurement models.

In this paper, we describe our measurement architecture for
model-based analysis (MAMBA) that facilitates the specifi-
cation and automated application of measure models upon
arbitrary Ecore-based modeling languages. It utilizes OMG’s
Structured Metrics Meta-Model (SMM) [7] and builds upon
the Metrics Execution Engine (MEE) that we briefly in-
troduced in our previous work [8]. MAMBA constitutes a
substantial reworking of MEE and forms a reusable and exten-
sible measurement framework.1 It addresses the shortcomings
of the current approaches that are sketched above through
contributing significant extensions:

(1) We add modeling features that are missing in the
current V. 1.0 Beta 3 of SMM. Here, we include features
such as arbitrary statistical aggregate functions and periodic
aggregate functions that can also be used for dynamic analysis
at runtime. (2) We outline the MAMBA Query Language
(MQL) that enables the utilization of SMM measures for
querying software models. MAMBA transparently transforms
MQL statements and the therein referenced measures to SMM
instances that are computed implicitly. (3) The MAMBA
framework provides means to smoothly integrate externally
computed raw measurement results. Corresponding hooks en-
able to plug in appropriate model to model transformations.

We report on three evaluation scenarios that are used to
evaluate our approach. Here, we demonstrate the applicability
of MAMBA in the context of the following different domains:
migration of software systems into the cloud, model-based
engineering of railway control systems, as well as dynamic
analysis for model-driven software modernization.

The remainder of this paper is structured as follows. We give
an overview of SMM in Section II to outline the foundations
of our work. The MAMBA approach including MQL is then
described in Section III. The three evaluation scenarios that
demonstrate the applicability of MAMBA are presented in
Section IV. Section V discusses the related work, before
Section VI concludes the paper and outlines future work.

1http://mamba-framework.sf.net/, visited December 20, 2011

http://mamba-framework.sf.net/

Core classes of SMM meta-model

SmmModel

MeasureLibrary

Operation Scope Measure

DimensionalMeasure Ranking

Observation

ObservationScope SmmElementObservedMeasure

Measurement

-value : Number

DimensionalMeasurement

-value : String

Grade

EObject

AbstractMeasureElement

*-libraries

1*
-measurand

* -observedMeasures

1

*

-measure

1 *-scope

*-scopes

* -observations

* -requestedMeasures

0..1
*

-recognizer

* -measurements

* -measureElements

Visual Paradigm for UML Standard Edition(University of Kiel)

Fig. 1. Core classes of the SMM meta model (using the EObject class for measurands instead of a MofElement)

II. STRUCTURED METRICS META-MODEL (SMM)

The Structured Metrics Meta-Model (SMM) [7] is one of
the meta model specifications developed by the Architecture-
Driven Modernization (ADM) Task Force,2 a sub-commitee
of the Object Management Group (OMG). SMM provides
generic means to specify elements relevant for the domain of
model-based measurement. In the remainder of this section,
we give an overview on SMM and elaborate on several of its
shortcomings we addressed in the course of our work building
MAMBA.

A. Overview

In the context of model-based reconstruction and evolution of
software systems, the ADM Task Force develops MOF-based
meta models which allow to represent software systems and
related artifacts on different layers of abstraction regardless of
concrete technologies, e.g., programming languages or plat-
forms used. Complementing ADM specifications in addition
to SMM, so-called standards packages, are the Knowledge Dis-
covery Metamodel (KDM)3—OMG’s foundation for software
modernization, recently adopted as an ISO standard—and the
Abstract Syntax Tree Metamodel (ASTM).4

The SMM standard employs the central notion of measures
to describe methods for computing values upon MOF-based
models. The term is used as a synonym for metric that is
widespread as well. Hence, a measure describes an algorithm
for calculating specific properties of a software system’s
elements. A software function’s cyclomatic complexity, the
contained lines of code, or its average response time constitute
classic examples of such measures. The meta model defined by
SMM enables to specify those measures—along with the com-
puted results and further concepts specific for the measurement
domain—following an abstract representation that facilitates
its utilization as a common interchange format that can be used
by different tool vendors. Now, we will describe the basic ideas
and elements of SMM through referring to Fig. 1 that shows
the meta model’s core classes, as, for example, the central
class Measure.

2http://adm.omg.org/, visited December 20, 2011
3http://www.omg.org/spec/KDM/, visited December 20, 2011
4http://www.omg.org/spec/ASTM/, visited December 20, 2011

A Measure can be applied to a specific set of model ele-
ments that is defined through the Scope class. For example, a
Scope may limit the computation of the cyclomatic complexity
to source code snippets and therefore exclude BLOB files that
can be present in extracted system models. In addition, to
consider only a subset of the source files (e.g., those containing
C source code) an Operation could be formulated that specifies
this restriction using OCL or XQuery. The classes of SMM
mentioned so far inherit from the AbstractMeasureElement
class. Corresponding child classes can get registered and be
supplied via a MeasureLibrary. Furthermore, Fig. 1 illustrates
the two concrete measures Ranking and DimensionalMeasure.
The first may, for example, classify a method as low prio
or high prio depending on its cyclomatic complexity residing
in [0, 40) or [40,∞), respectively. The DimensionalMeasure
describes a measure that assigns a numeric value. The counter-
part of a Measure is a corresponding Measurement that holds
the result which is produced through executing the Measure.
The counterparts of the previously mentioned classes Ranking
and DimensionalMeasure are the Measurements Grade and Di-
mensionalMeasurement. A model element that was measured
is referenced via the measurand relationship of the respective
Measurement. This could be a specific method model element,
for instance. As we want to measure Ecore-based models,
measurand points to an EObject in the context of MAMBA. A
concrete measurement process is encapsulated via an instance
of Observation and can therefore be distinguished from other
measurement runs. The Observation contains information such
as the time of the measurement and it describes the actually
used Measures and the measured elements through referencing
ObservedMeasure and ObservationScope, respectively.

Further measures that are relevant for describing our SMM
extensions and evaluation scenarios in the subsequent sections
are presented in Fig. 2. A DirectMeasure can measure a
model element through applying an Operation. Counting is a
specific DirectMeasure. It is used to restrict its Scope to a
relevant subset of model elements as the referenced Operation
returns 0 or 1 for a given measurand. A NamedMeasure
denotes a familiar measure that can be described unam-
biguously by solely stating its name. BinaryMeasures apply
two measures—referenced via Base1MeasureRelationship and

http://adm.omg.org/
http://www.omg.org/spec/KDM/
http://www.omg.org/spec/ASTM/

Measure
-interval : RankingInterval [1..*]

Ranking

-unit : String

DimensionalMeasure

RankingMeasureRelationship

-accumulator : Accumulator

CollectiveMeasure

BaseMeasureRelationship

DirectMeasure

Operation Counting NamedMeasure

-functor : String

BinaryMeasure

Base1MeasureRelationship

Base2MeasureRelationship

1

1

-baseMeasure1To

-from

1

1

-from

-baseMeasureTo

0..1

*

-operation

1

0..1

-from

-rankingTo

1

*

-to

-baseMeasureFrom1

1

-baseMeasure2To

-from
1

*

-to

-baseMeasure2From

1

*

-to

-baseMeasure1From

1

1

-to

-rankingFrom

Visual Paradigm for UML Standard Edition(University of Kiel)

Fig. 2. SMM’s Measure classes

TABLE I
COMPARISON OF PURE SMM AND MAMBA

Issue Pure SMM MAMBA

Meta models MOF Ecore

Model execution Limited tool support MEE

Raw measurement
data integration

No tool support Via measurement providers

Model
querying using
measurements

No native support MQL: implicit calculation
and integration of measure-
ments in queries

Periodic measures No native support Periodic collective MAMBA
measures

SMM as runtime
model

No native support Continuous execution with
MEE

Aggregate
functions

Limited set: sum,
maximum, minimum,
average, standard
deviation

Extensible set: sum, max-
imum, minimum, average,
standard deviation, median,
percentile etc.

Base2MeasureRelationship—to a model element and then
evaluate a binary function upon the corresponding measure-
ments, for example, to calculate their difference. A Collective-
Measure enables to apply an accumulator to any number of
collected base measurements, e.g., to compute the standard
deviation.

B. Shortcomings

The SMM specification contains the CollectiveMeasure class
modeling the accumulation of measurements for an associated
base measure (DimensionalMeasure) into a single value. How-
ever, using the Accumulator enumeration, the SMM specifica-
tion limits the set of supported aggregate functions to sum,
maximum, minimum, average, and standard deviation. This
way, common aggregate functions, such as median or other
percentile functions, cannot be used with SMM so far.

Moreover, especially in service-level management, collec-
tive measures are applied to bounded sets of contiguous base
measurements. For example, in SLA documents the definition
of QoS measures, e.g., addressing availability and perfor-
mance, is based on time periods. The main reason is that short-
term QoS degradations are hidden by aggregations over long-
term periods. The corresponding aggregate function is then
applied in periodic time steps, considering base measurements

SMM extensions for collective measures

CollectiveMambaMeasure

AggregateFunction

MinFunction SumFunction MedianFunction

MeanFunctionMaxFunction -p : Double

PercentileFunction

-accumulator : Accumulator

CollectiveMeasure
(from smm)

AbstractMeasureElement
(from smm)

*
1 - function

Visual Paradigm for UML Standard Edition(University of Kiel)

Fig. 3. MAMBA extension mechanism for collective measures

observed during the elapsed time period of specified length.
Currently, the SMM specification has no support for modeling
periodic measures of any kind. A further challenge when
adopting SMM’s current V. 1.0 Beta 3 can be seen in the lack
of the specification’s maturity. Although the basic structure
and ideas of SMM are encouraging, there still exist some
inconsistencies that currently impede its interoperability and
that should be addressed.

With our MAMBA approach presented in this paper, we
aim to address some of the SMM’s current shortcomings,
as detailed in the following Section III. Table I provides a
compact comparison of pure SMM and MAMBA.

III. MAMBA APPROACH

The following sections describe (III-A) our meta model exten-
sions for arbitrary aggregate functions and (periodic) collective
measures; (III-B) the MAMBA Execution Engine (MEE); and
(III-C) the MAMBA Query Language (MQL). Note that in
our previous work [8], MEE was used as an abbreviation for
Metrics Execution Engine. The work presented in this paper
builds upon our previous work and we decided to revise the
meaning of the abbreviation.

A. Meta Model Extensions to SMM

a) Arbitrary Aggregate Functions: In order to make the
set of supported aggregate functions extensible, we added a
new meta model class AggregateFunction (abstract) into our
SMM extension, as shown in Fig. 3. Also included are six ex-
ample aggregate functions. The parameterized PercentileFunc-

SMM extensions for periodic measures

DimensionalMeasure
(from smm)

Measure
(from smm)

-unit : String

PeriodicCollectiveMambaMeasure

-intervalLength : Integer
-outputPeriod : Integer

PeriodicCount

-intervalDuration : Double
-outputPeriod : Double

PeriodicTime

AggregateFunction

1

*

-function

*

1 -baseMeasure

Visual Paradigm for UML Standard Edition(University of Kiel)

Fig. 4. MAMBA extension mechanism for periodic measures

tion class demonstrates the limitation of using enumerations or
strings to select aggregate functions.

MAMBA users can now use these or custom aggregate
functions in (periodic) collective measures, as detailed in the
following paragraphs. Custom functions can be defined by
using meta model classes that extend AggregateFunction.

b) Extended Collective Measures: Since SMM’s Col-
lectiveMeasures cannot use the newly introduced Aggregate-
Functions, we added another meta model class Collective-
MambaMeasure. CollectiveMambaMeasure extends the SMM
class CollectiveMeasure and references an AggregateFunction,
introduced above. Fig. 3 shows the meta model extensions
regarding the newly introduced collective measure and asso-
ciated aggregate function.

c) Periodic Collective Measures: We included support
for modeling periodic measures in our SMM extension by
introducing the abstract meta model class PeriodicCollective-
MambaMeasure. Just like the CollectiveMambaMeasure class
described above, it references a MAMBA aggregate function
(AggregateFunction). This meta model extension is depicted
in Fig. 4. PeriodicCollectiveMambaMeasure extends Measure
rather than DimensionalMeasure (or CollectiveMambaMea-
sure) in order to preclude semantic ambiguity, for instance be-
cause the latter would allow PeriodicCollectiveMambaMeasure
to be used as base measure of collective measures. Currently,
two concrete classes for periodic collective measures are
included in our SMM meta model extension (see also Fig. 4):
PeriodicTime and PeriodicCount. PeriodicTime can be used to
model measures where the referenced aggregate function is
repetitively applied with a time period (outputPeriod) incor-
porating the measurements observed within the elapsed time
period of length intervalDuration. PeriodicCount triggers the
aggregate function to be computed for every outputPeriod-th
new measurements, incorporating the past intervalLength mea-
surements.

B. MAMBA Execution Engine (MEE)

This section provides a description of the MAMBA Execution
Engine (MEE) with respect to its architecture (III-B1), its
execution of open SMM models, as defined below (III-B2),
and its extension mechanism for aggregate functions (III-B3).

1) Framework Architecture: The core components in the
MEE architecture are a MeasurementController, the actual
MambaExecutionEngine, as well as a (potentially empty) set

MEEArch

-smmModel : SmmModel [1..*]
-observationScopes : EObject [1..*]

MeasurementController

-smmModel : SmmModel [1..*]
-observationScopes : EObject [1..*]

+execute()
+registerAggregateFunction(...)
+addMeasurementResult(measurement : MeasurementResult)

MambaExecutionEngine

-measures : NamedMeasure [1..*]
-providerNamePrefix : String

MambaMeasurementProvider
-measure : NamedMeasure
-scopeChanges : EObject [0..*]
-measurement : DimensionalMeasurement

MeasurementResult

1

* -measurementProviders

-engine

<<use>><<use>>

<<use>>

Visual Paradigm for UML Standard Edition(University of Kiel)

Fig. 5. Core MEE components and their relationships

of MambaMeasurementProviders. The UML class diagram in
Fig. 5 depicts these components and their relationships.

From given resource URIs, the MeasurementController
loads SMM instances along with the Ecore models which
constitute the Oberservation’s ObservationScope (see Sec-
tion II-A)—e.g., KDM models to be analyzed—, and inspects
the given set of requested Measures. For each measure-
ment run, the MeasurementController creates an Oberservation
which is passed to an instance of the MambaExecutionEngine
responsible for the execution of the SMM model, i.e., com-
puting the Measurements for the Observation with respect to
the requested Measures.

We distinguish between the execution of closed and open
SMM models. A closed SMM model contains no NamedMea-
sures and MEE can execute these models directly, without
requiring any additional input. Details on the execution of
closed models with MEE have been presented earlier [8].

For open SMM models, the Measurements correspond-
ing to NamedMeasures are provided by so-called Mam-
baMeasurementProviders. On instantiation—given an open
SMM model—the MeasurementController looks up appropri-
ate MambaMeasurementProviders by name prefixes matching
among NamedMeasures (fully qualified name attribute) and
the MambaMeasurementProvider’s providerNamePrefix.

2) Execution of Open SMM Models: MambaMeasurement-
Providers integrate with external tools for static and/or dy-
namic analysis by importing raw measurement data for the
supported NamedMeasurements from the tools’ output, and
transforming this raw data into MeasurementResult objects
which are delivered to the MeasurementController. Each of
these MeasurementResult objects (see Fig. 5) contains infor-
mation on the observed NamedMeasure and a Dimension-
alMeasurement. The MeasurementController delegates these
MeasurementResult objects to the MambaExecutionEngine
which appropriately incorporates the measurement into the
SMM model.

In continuous scenarios, an ObservationScope may evolve
during the measurement process, e.g., adding components
when discovering software architectures from incoming
monitoring data. MambaMeasurementProviders indicate such
changes by setting the scopeChanges in a MeasurementRe-

sult object. In this case, the MambaExecutionEngine needs
to reprocess the SMM model before incorporating the new
measurement.

3) Extension Mechanism for Aggregate Functions: As de-
scribed in Section III-A, our SMM meta model extension
allows the use of custom aggregate functions in SMM in-
stances using meta model classes extending MAMBA’s Ag-
gregateFunction. For being able to compute the respective
measurements for (periodic) collective measures using custom
aggregate functions, MEE requires the registration of appro-
priate functionality.

For this reason, MEE provides the method registerAggre-
gateFunction, requiring a meta model class name of a custom
aggregate function (extending AggregateFunction) as well as
a class and operation name for a respective function handler.
MEE instantiates a singleton instance for each registered
handler class. When executing a (periodic) collective MAMBA
measure, the registered handler operation is called by MEE
with the referenced AggregateFunction instance and the base
measurement’s values passed as arguments. Listing 1 shows
how this mechanism is used internally by MEE to register
its own custom, but already included, aggregate function
PercentileFunction. Listing 2 shows the handler signature.

String smmPercFunctionClass = ”mamba.smm.extended.PercentileFunction”;
String mambaFunctionsClass = ”mamba.mee.handler.MambaFunctions”;

this.mee.registerAggregateFunction(smmPercFunctionClass,
mambaFunctionsClass, ”percentileFunction”);

Listing 1. Registration of handler for PercentileFunction

public double percentileFunction(PercentileFunction function, double[] values);

Listing 2. Handler signature for PercentileFunction

C. MAMBA Query Language (MQL)

The MAMBA Query Language is designed to utilize
measures modeled in SMM to query Ecore-based mod-
els. The language vocabulary follows the naming scheme
of other query languages to ease the learnability. It is
divided in clauses that describe the result set, refer-
ence the models under observation, and declare constraints
on measures (SELECT result FROM models WHERE constraint GROUP BY

identity ORDER BY value AGGREGATE OVER period OUTPUT EVERY period).
Measures in an SMM model have a name attribute. That

name is used in MQL to identify a measure and to apply
it to the observed model. As a convention, measures visible
to MQL, use “Measure” as a suffix to their name. For
example, “ResponseTimeMeasure” in an SMM model is called
“ResponseTime” in MQL. Furthermore, MQL can express
the instantiation of additional measures by specifying the
class name of SMM measure classes. Measures can appear
in SELECT, WHERE, ORDER BY, and GROUP BY clauses. Every
specified measure is applied to the observed model.

While a measure and respective measurements in SMM
belong to separate class hierarchies, in MQL all properties
of a measure and its measurements are expressed by the name
of the measure followed by a dot and the name of the property.

In a WHERE clause, measures are used in boolean expressions
to select measurements. As each Measurement uses the value
property to store their result value, the .value-part can be
omitted resulting in better readable expressions (e.g., WHERE

NrOfWebservices >= 1).
The use of measures in the SELECT clause is quite similar to

that of the WHERE clause. The specification of a measure name
represents the value of a measurement for that measure. The
measurand can be accessed through the measurand property
(e.g., NrOfWebservices.measurand). Alternatively, the class
name (e.g., KDM::CodeModel) of the measurand can be spec-
ified to instruct MEE to return the measurand and limit the
result to measurands of the specified type.

While the definition of measures can be complex and
repetitive in SMM (compare Fig. 9), MQL allows to implicitly
add measures to an SMM model based on the class name
of the respective measure. For example, the maximum of all
results of a measure named ResponseTimeMeasure in the
SMM model is computed by a CollectiveMambaMeasure with
the AggregateFunction max (CollectiveMamba.max(ResponseTime)).
The MQL resolver only requires the name of the Aggre-
gateFunction (e.g, max(ResponseTime)) to specify a Collective-
MambaMeasure or, if an AGGREGATE OVER clause is present,
a PeriodicCollectiveMambaMeasure.

Without further specification, the result is an unordered list
of records conforming to the result specified in the SELECT

clause. As known from other query languages like SQL, the
result can be sorted by specifying criteria with an ORDER BY

clause and grouped by a GROUP BY clause. Periodic measures
are supported by MQL through two language constructs: First,
AGGREGATE OVER is used to specify the sample window; and
second, the output can be triggered periodically with OUTPUT

EVERY followed by a time expression.
An MQL query can be used in annotations to a model or

multiple queries can be stored in one model. For the latter
case, it is helpful when the observed model can be specified
once and used in multiple queries. This is done with MODEL

modelURI AS modelName, where modelURI references one or more
models, and modelName is a valid identifier name.

The model of interest is often scattered across several sep-
arated artifacts. Therefore, MQL allows to reference multiple
artifacts in a comma-separated list, and to specify model URIs
which reference a folder or collection of artifacts and models.

IV. EVALUATION SCENARIOS

This section reports on the application of MAMBA to three
different evaluation scenarios from the following domains:
migrating software systems into the cloud (Section IV-A),
model-based engineering of railway control systems (Sec-
tion IV-B), as well as dynamic analysis for model-driven
software modernization (Section IV-C). For each scenario
we provide (1) a brief project description, (2) describe the
application of MAMBA in this context, including the manual
definition of SMM measures, and (3) provide example MQL
queries and its translation into SMM measures.

Scenario

<<component>>
WebserviceComponent

<<@WebService>>
ServiceClass

NonExposedClass
<<artifact>>

WebserviceArtifact.jar

<<manifest>>

Visual Paradigm for UML Standard Edition(University of Kiel)

Fig. 6. Components that expose web services may be deployed in separate
virtual machines during a migration. Following JSR 181, Java classes can be
marked as web services using the annotation “WebService.”

A. Migration to the Cloud

1) Context: Cloud computing has recently gained consider-
able attention as a promising paradigm for delivering software,
platforms, and infrastructures as services over a network
connection [9]. In the cloud computing context, these service
models are abbreviated SaaS, PaaS, and IaaS, respectively.
Following the SaaS model, users can consume applications
from remote servers. These applications most often can merely
be configured to a limited extent. In contrast, PaaS and IaaS
cloud environments allow to deploy custom-made software
systems. Here, PaaS-based cloud environments provide pre-
defined software stacks whereas IaaS providers rather deliver
fundamental IT services such as virtual machines. In [10], we
introduced our approach CloudMIG that supports reengineers
in migrating existing enterprise software systems to PaaS
and IaaS-based clouds. CloudMIG incorporates the reverse
engineering of existing systems and for that purpose utilizes
extracted KDM models. These models are employed to detect
violations of so-called cloud environment constrains (CECs)
which can be automatically checked with CloudMIG. For
example, those CECs may limit the access to the file system.
In [8], we already utilized SMM to detect CEC violations.
Furthermore, CloudMIG follows a rule-based approach to
facilitate reasoning about cloud deployment options. For ex-
ample, a rule can describe a strategy to distribute components
that expose web services to own virtual machines.

2) Application of MAMBA: Considering such components
that expose web services, Fig. 6 shows a component named
WebserviceComponent that contains two classes. As indicated
by the according stereotype, the class ServiceClass is aug-
mented using a WebService annotation. We use Java in our ex-
ample and consider the Java Specification Request (JSR) 181.
Here, the aforementioned annotation marks a Java class as
a web service and by default exposes all public methods.
The WebserviceComponent is implemented in the library
WebserviceArtifact.jar. Fig. 7 presents the KDM representation
of the example scenario. The shown objects are instances
of KDM elements. We extract KDM models by producing
a CodeModel element for any present Java library. Classes
and interfaces are modeled using ClassUnit and InterfaceUnit
elements, respectively. Therefore, ServiceClass is represented
as a ClassUnit code element that is referenced from a Code-
Model named “WebserviceArtifact.jar”. The Java general pur-
pose annotation facility uses a notation that is similar to a
standard Java interface declaration to construct an annotation
type. Thus, the Java annotation type javax.jws.WebService is
translated to a KDM InterfaceUnit instance that is declared in

Scenario

name = "WebserviceArtifact.jar"

: CodeModel

name = "ServiceClass"
isAbstract = false

: ClassUnit

: HasValue

text = "annotation"

: Annotation

name = "externals"

: CodeModel

name = "WebService"

: InterfaceUnit

+to

+codeElement

+annotation

+from
+codeRelation

+codeElement

Visual Paradigm for UML Standard Edition(University of Kiel)

Fig. 7. KDM model of the web service example in the CloudMIG context

an external CodeModel. This InterfaceUnit is connected to the
web service’s ClassUnit via a HasValue relationship class that
is interlinked with an instance of the class Annotation. To mark
the KDM annotation as an annotation of the target language
—Java in our example—the instance of the class Annotation
has “annotation” as the value of its text attribute.

In this example, we want to count the number of JSR 181
web services that are exposed by WebserviceArtifact.jar and
therefore analyze the KDM model with MAMBA using the
SMM instance presented in Fig. 8a). The measure we are
interested in is termed “NrOfWebServicesMeasure”, counting
the web services that are contained in a KDM CodeModel.
Hence, it is modeled using a CollectiveMeasure that sums
up every single web service that is found by the Counting
measure named “CountWebserviceMeasure.” The main part
of this measure’s logic is implemented in the referenced
Operation instance that contains an OCL expression in its body
attribute. The OCL expression checks if a ClassUnit contains a
HasValue relationship via its codeRelation role that is specific
for the JSR 181 web service annotation. This means that an
appropriate Annotation instance exists and that an InterfaceUnit
termed “WebService” is referenced via the to relationship.

3) MQL in the Cloud Migration Scenario: Applying the
previously introduced measure “NrOfWebServicesMeasure” to
a KDM model that was extracted from a software system
yields the number of exposed JSR 181 web services for every
single Java library. To conveniently isolate the names of the
libraries that expose at least one JSR 181 web service, we
employ this measure in the MQL query that is presented
in Fig. 8b). According to its defined scope, the measure
“NumberOfWebServices” is executed by MAMBA for any
KDM CodeModel that can be found in the folder that is stated
in the FROM clause. Then, the measurement result is used to
evaluate the predicate that is specified in the WHERE clause. As
stated before, every Java library is described in an own KDM
CodeModel in the context of CloudMIG. Therefore, we can
distill the name of a matched library by querying the name
attribute of the corresponding CodeModel element.

B. Model-Based Analysis of Railway Control Centers

1) Context: The development of electronic railway control
centers (RCC) is a costly endeavor, often proven unviable
for light railways. To divert more traffic to railways and to

 SELECT CodeModel.name FROM
 '/home/userx/kdmModelFolder' WHERE NrOfWebServices >= 1;

(a)

(b)

Fig. 8. (a) An SMM instance for counting web services in KDM-based models. (b) An MQL query that uses this SMM instance to select the names of
KDM CodeModel elements that include at least one web service. These names represent the names of file system artifacts.

reduce cost for the operation of the infrastructure, the control
systems have to be modernized to meet these requirements.
Therefore, the hardware components have to become cheaper
and the development of the software components has to be
more productive without compromising the safety.

Today, process computers are used for electronic RCC,
which have to be tailored for each RCC; also the software has
to be developed for the respective facility. In our MENGES
research project5 we aim to improve productivity utilizing
standard hardware components for industry automation, in
this case programmable logic controllers (PLC), and applying
model-driven software development methods. To ensure the
safety of the developed software, it has to be statically and dy-
namically evaluated. In MENGES we developed four domain-
specific languages (DSLs) which address different aspects of
the problem domain. The central DSL, called types, is used
to declare data types, classes, interfaces, and connectors. The
behavior of those types is defined in the logic DSL which
provides structures to define DFA, actions, conditional actions,
and workflows. The instantiation in safety critical systems
has to be static and is defined in the instantiation DSL.
A model defined in these languages is transformed into an
execution model which can be executed on a PLC-simulator
like CoDeSys6 or on real hardware.

The evaluation of the software’s runtime properties is per-
formed with MAMBA. It is used to define measures, apply
corresponding instrumentation to the execution model, and
analyze the collected measurements to determine properties
like the component response time or to detect unused or
seldom used code to guide optimization efforts.

2) Application of MAMBA: In this paper we illustrate the
use of MAMBA in MENGES with the analysis of the response
time of a switch control component (SCC) to the turn-over
command for a railway switch. The response time is an
important property of an RCC’s components, as they add up to

5http://kosse-sh.de/projekte/menges/, visited December 20, 2011
6http://www.3s-software.com/, visited December 20, 2011

the total response time of the system, which must not exceed
a certain duration to meet the safety constraints.

The command and its possible responses are declared in a
construct called CommunicationDescription which declares two
roles for a communication, a set of messages, and protocols
based on these messages. In Listing 3 these roles are Com-
mandInterpreter and SwitchControl, where the first is normally
assigned to a command interpreter component and the second
is assigned to an SCC. The protocols are declared after a rules

keyword. The rule in Listing 3 describes the protocol for
a turn-over command, where a command interpreter sends a
turnOver message to an SCC. That SCC then answers either
with accept or reject.
communication description SwitchControlCom : CommandInterpreter,

SwitchControl {
messages

turnOver();
accept();
reject(Cause cause);

rules
CommandInterpreter turnOver −>
SwitchControl accept|reject −> CommandInterpreter ;

}

Listing 3. Declaration of a communication protocol

For the evaluation of the SCC response time to the turn-over
command, the maximum and the distribution of response times
in relation to the answers (accept and reject) are of interest.
The maximum is important to calculate the overall response
time of the RCC for worst case scenarios. The other two values
are helpful to support optimization efforts. The response time
is modeled with a BinaryMeasure and two NamedMeasure
instances which collect the time of sending the turnOver
command and receiving the accept or reject answers.

The SMM model in Fig. 9 shows the SwitchControlRespon-
seTimeMeasure and three CollectiveMambaMeasure instances
to declare the measuring of the maximum response time, as
well as the lower and the upper quartile of the response times.
The CollectiveMambaMeasures and required other instances
(shown in gray) are automatically added to the SMM model
through the MQL queries.

http://kosse-sh.de/projekte/menges/
http://www.3s-software.com/

Maximal Response Time of a SwitchControl

class = "dsl:CommunicationDescription"

: Scope

body = "{'accept','reject'}->exists(name String | CommunicationDescription.receive.message.name = name)"
language = "OCL"

: Operation

class = "dsl:CommunicationDescription"

: Scope

body = "CommunicationDescription.send.message-name = 'turnOver'"
language = "OCL"

: Operation

body = "CommunicationDescription.name = 'SwitchControlCom'"
language = "OCL"

: Operation

: CollectiveMambaMeasure: CollectiveMambaMeasure : CollectiveMambaMeasure

functor = "subtraction"
unit = "ms"
name = "SwitchControlResponseTimeMeasure"

: BinaryMeasure

: Base2MeasureRelationship

class = "dsl:CommunicationDescription"

: Scope

: Base1MeasureRelationship
name = "TimestampMeasure"

: NamedMeasure

name = "TimestampMeasure"

: NamedMeasure

: BaseMeasureRelationship: BaseMeasureRelationship : BaseMeasureRelationship

: MaxFunction

p = 0.75

: PercentileFunction

p = 0.25

: PercentileFunction

-to

-from
-recognizer

-function

-from

-function

-from

-recognizer

-scope -to

-recognizer

-scope

-from

-scope

-scope

-scope

-function

-from

-to

-scope -to

-to

Visual Paradigm for UML Standard Edition(University of Kiel)

Fig. 9. Measuring response time of a SCC to a turnOver command

3) MQL use in a Multi-DSL Scenario: In MENGES, the
code generator for the DSL uses an SMM model to generate
an instrumented execution model. In this model only the
BinaryMeasure and NamedMeasures from the SMM model are
used to drive the instrumentation. After the code generation,
the execution model is executed on/processed by a simulator
and the results are collected and stored in the SMM model.

During or after the simulation run, the SMM model is
evaluated with the MQL queries to return the lower and upper
quartile as well as maximal response time (see Listing 4).
SELECT percentile(SwitchControlResponseTime,0.25) FROM model ;
SELECT percentile(SwitchControlResponseTime,0.75) FROM model ;
SELECT max(SwitchControlResponseTime) FROM model ;

Listing 4. Excerpt of the response time MQL model

As only the SwitchControlResponseTimeMeasure is used dur-
ing the instrumentation of the execution model, the query
model can be extended with additional queries as long as these
new queries do not introduce new base measures. For example,
the average response time can be determined from the same
measurements.

C. Dynamic Analysis for Model-Driven Modernization

1) Context: In the DynaMod consortial research project7

we investigate techniques for model-driven modernization
(MDM) of software systems. Similar to the ADM approach,
we focus on sustained modernization by incorporating archi-
tectural and domain-level concerns rather than restricting us to
implementation-level transformations of legacy systems. Key
characteristics of the DynaMod approach are: (1) combining

7http://kosse-sh.de/dynamod/, visited December 20, 2011

static and dynamic analysis for extracting models of a legacy
system’s architecture and usage profile; (2) augmenting these
models with information relevant to subsequent architecture-
based modernization steps; and (3) employing model-driven
techniques for generating implementation artifacts and test
cases based on the information captured in the models.

The DynaMod ADL (DADL) is the core structure of the
DynaMod meta model catalog for representing architectural
views on both legacy and modernized systems. Relevant to
the application of MAMBA in DynaMod, described in the fol-
lowing section, is the DADL meta model partition allowing to
represent type-level information about an application. A type
model contains a number of component types, implementing
a set of software operations (meta model class Operation).

For different programming platforms, DADL instances can
be extracted by static and dynamic techniques—including
the combination of both. For example for Visual Basic 6
(VB6) applications, a source code parser extracts abstract
syntax trees (ASTs); these ASTs are transformed into a VB6
language model for which another transformation into a DADL
instance exists. For the extraction of a DADL instance based
on dynamic analysis, we employ our Kieker framework for
continuous monitoring and analysis of software systems8 [11].
In the DynaMod context, we added support for monitoring the
runtime behavior of VB6 and .NET applications, in addition to
the already existing support for Java-based systems. A Kieker
plugin allows to extract a DADL instance from the appli-
cation’s observed runtime data and usage profile—including
the refinement of a DADL instance extracted by the above-
mentioned static technique.

2) Application of MAMBA: This section demonstrates the
application of MAMBA for performance analysis of software
operations. In this example, we want to study the following
performance characteristics for each software operation con-
tained in a DADL instance: (C1) the number of executions of
each operation; (C2) whether 95% of the observed executions
satisfy an operation response time objective of 500 millisec-
onds; and (C3) time series with 0.95 response time percentiles
for time windows of 20 minutes, computed every 15 minutes
for each operation.

Figure 10 shows the SMM model elements relevant
for modeling C1–C3. The model includes two
DynaMod-specific NamedMeasures, one for operation
execution counts and a second for operation response
times. C1 is already realized by the NamedMeasure
“dynamod::OperationExecutionCountMeasure”. The
second NamedMeasure “dynamod::Operation-
ExecutionResponseTimeMeasure” serves to model C2
and C3. As both C2 and C3 rely on response time
aggregation based on a 0.95 percentile function, we employ
the parameterized aggregate function PercentileFunction
provided by MAMBA. For C2, this aggregate function is
used by the CollectiveMambaMeasure which aggregates
the entire set of response time observations, grouped by

8http://kieker.sourceforge.net/, visited December 20, 2011

http://kosse-sh.de/dynamod/
http://kieker.sourceforge.net/

Examples Dynamod context

minimumEndpoint = 0
minimumOpen = true
maximumEndpoint = 500
maximumOpen = true
symbol = "OK"

: RankingInterval

: Ranking

minimumEndpoint = 500
minimumOpen = false
maximumEndpoint = INFINITY
maximumOpen = false
symbol = "EXCEEDS"

: RankingInterval

: RankingMeasureRelationship

class = "dadl::Operation"

: Scope

unit = "ms"

: CollectiveMambaMeasure

: BaseMeasureRelationship

name = "dynamod::OperationResponseTimeMeasure"
unit = "ms"

: NamedMeasure

name = "dynamod::OperationExecutionCountMeasure"

: NamedMeasure

p = 0.95

: PercentileFunction

intervalDuration = 1200000
outputPeriod = 900000
unit = "ms"

: PeriodicTime

-baseMeasure

-function

-scope -scope -scope

scope

-scope

-function

-to

-from

-to

-from

-interval -interval

Visual Paradigm for UML Standard Edition(University of Kiel)

Fig. 10. Example measures for dynamic analysis in the DynaMod context

operations. C3 is already realized by using this function
in a MAMBA PeriodicTimeMeasure with appropriately
parameterized interval duration and output period attributes.
The classification of operations based on their characteristic
of exceeding/satisfying the mentioned response time objective
is realized employing the Ranking measure with two
RankingIntervals. Since we want to have the measurements
grouped by operation, each of the measures has the same
Scope with the DADL meta model class Operation.

The DimensionalMeasurements for the two NamedMea-
sures, processed by the MAMBA execution engine, are made
available by a custom MAMBA data provider by transforming
and pre-processing Kieker monitoring records received for
each execution of instrumented operations. Note, that this set-
up can be used for offline and online analysis. We employ
model transformations to generate the monitoring instrumenta-
tion based on the modeled measures [12]. In a model discovery
mode, the data provider extends the DADL instance during the
analysis based on the incoming monitoring data.

3) MQL in the DynaMod Scenario: Listing 5 shows MQL
queries implementing the three performance measures C1–C3
from the previous paragraph.

−− C1
SELECT OperationExecutionCount

FROM Bookstore.dadl GROUP BY Operation

−− C2 (selecting only SLO violations)
SELECT percentile(OperationResponseTime, 0.95) as rtPerc

FROM Bookstore.dadl WHERE rtPerc > 500 GROUP BY Operation

−− C3
SELECT percentile(OperationResponseTime, 0.95)

FROM Bookstore.dadl GROUP BY Operation
AGGREGATE OVER 20 min OUTPUT EVERY 15 min

Listing 5. MQL queries related to C1–C3 from the DynaMod context

In each query, the SELECT clause refers to one of the two
DynaMod-specific NamedMeasures which can be found in

the manually created SMM model from Fig. 10. Also, each
of the queries uses the GROUP BY clause to group the result
set by Operations, resulting in the SMM Scope being set
appropriately. Due to the AGGREGATE OVER clause in the third
query, the percentile aggregator in the SELECT clause is mapped
to a PeriodicTimeMeasure. In addition to the parameterization
of the PeriodicTimeMeasure, the OUTPUT EVERY clause leads to
a result set being sent to the query subscriber every 15 minutes.
The gray Measures in Fig. 10 emphasize the parts of the SMM
model, that are generated from the MQL queries.

V. RELATED WORK

Related work comes from other methodologies and meta
models for model-based measurement that are not built on
SMM. Nonetheless, there exist further approaches and tools
that use SMM as well.

A. Methodologies for Model-Based Measurement

Another software measurement framework (SMF) is described
by Mora et al. [4]. SMF uses an own Software Measurement
Metamodel (SMM) that, in spite of the identical abbreviation,
is not to be confused with OMG’s SMM. To measure a MOF-
based software model using SMF, an instance of their SMM
has to be created by utilizing the graphical or textual syntax
of the Software Modeling Measurement Language (SMML),
for instance. The measurement execution is then performed
by SMF through automatically applying QVT transforma-
tions. Measurements are parameterized through modifying
OCL queries. Despite several similarities, MAMBA exhibits
a number of unique characteristics: (1) Measures can be
incorporated in MQL statements that enable to dynamically
query software models based on measurement results that are
computed implicitly. (2) MAMBA provides means to integrate
externally computed raw measurement results. (3) We consider
dynamic analyses through incorporating periodic aggregate
functions and demonstrate the applicability in this context.

Within the scope of a software measurement validation
framework, Kitchenham et al. [13] define a structural model
that describes basic entities that are involved in software
measurement. Then, five additional models are proposed that,
in contrast to OMG’s SMM, separate related concerns like
instrumentation and measurement protocols.

A model-driven measurement approach is presented
by Monperrus et al. [5]. Measures are formulated according to
the so-called metric specification meta model. This meta model
and referenced domain meta models utilize EMF. According to
the specification of a measure, an Eclipse plugin is generated
that performs the measurement process for an instance of a
domain meta model.

B. Approaches and Tooling Based on SMM

Engelhardt et al. [6] use SMM to measure arbitrary domain-
specific models. At first, the Object Constraint Language
(OCL) is used to specify measures. This representation in-
cludes generation rules that are applied to create SMM in-
stances. The generated SMM measures can be computed with

their tool Metrino. Comparing the two approaches, MAMBA
allows to build measures using directly SMM elements.

SMM is considered by Larrucea and Iturbe [14] to measure
MOF-based software process models. The authors describe
integration models for combining the Software Process Engi-
neering Metamodel (SPEM) and the jBPM Process Definition
Language (JPDL) with SMM. The SMM meta model is
extended by a “variable” concept that allows to use different
types for measurement results.

VI. CONCLUSIONS

We presented the integrated measurement architecture
MAMBA for analyzing software system models. It builds
on OMG’s SMM standard that specifies a meta model for
defining a measurement process. For example, SMM describes
measures and observations. MAMBA supports the execution
of SMM measures upon Ecore-based models and can be
utilized for static as well as for dynamic software analyses.
The combination of both analysis types into a hybrid one
can often provide additional insights, e.g., the detection of
unused components that were revealed during an architecture
reconstruction step applying data from runtime analyses in the
reengineering context. Therefore, we extended SMM to enable
the integration of additional aggregate functions and periodic
measures that can be applied to runtime models. Furthermore,
the extensible MAMBA architecture allows to register data
providers for incorporating measurements that were computed
by external software tools. The integration of raw measurement
data into used measurement models has the potential to raise
the level of reuse and to improve the efficiency of projects that
apply software analyses. To ease model querying with the use
of SMM measures, we introduced our query language MQL.
We demonstrated the applicability and versatility of MAMBA,
with the help of three evaluation scenarios based on different
contexts.

Currently, we are refining MQL and are working on appro-
priate tool support for a convenient definition, registration, and
execution of MQL queries. Also, we will provide a compre-
hensive SMM library including additional measures relevant
in our project domains. Furthermore, we are investigating
methods to extend MAMBA to further simplify the integration
of additional periodic measures and aggregate functions.

ACKNOWLEDGMENT

This work is supported by the German Federal Ministry of Ed-
ucation and Research (BMBF) under grant number 01IS10051,
the Program for the Future Economy of Schleswig-Holstein,
and the European Regional Development Fund (ERDF).

REFERENCES

[1] D. Jackson and M. Rinard, “Software Analysis: A
Roadmap,” in Proceedings of the Conference on The
Future of Software Engineering, ser. ICSE ’00. ACM,
2000, pp. 133–145.

[2] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen,
and R. Koschke, “A Systematic Survey of Program Com-
prehension through Dynamic Analysis,” IEEE Transac-
tions on Software Engineering, vol. 35, no. 5, pp. 684–
702, 2009.

[3] K. M. Hansen, K. Jonasson, and H. Neukirchen, “An Em-
pirical Study of Software Architectures’ Effect on Prod-
uct Quality,” Journal of Systems and Software, vol. 84,
no. 7, pp. 1233–1243, 2011.

[4] B. Mora, F. Garcia, F. Ruiz, and M. Piattini, “Model-
Driven Software Measurement Framework: A Case
Study,” in 9th International Conference on Quality Soft-
ware (QSIC ’09), 2009, pp. 239–248.

[5] M. Monperrus, J.-M. Jézéquel, B. Baudry, J. Champeau,
and B. Hoeltzener, “Model-Driven Generative Develop-
ment of Measurement Software,” Software and Systems
Modeling, pp. 1–16, 2010.

[6] M. Engelhardt, C. Hein, T. Ritter, and M. Wagner,
“Generation of Formal Model Metrics for MOF based
Domain Specific Languages,” ECEASST, vol. 24, 2009.

[7] Object Management Group, Inc., “Architecture-Driven
Modernization (ADM): Structured Metrics Meta-Model
(SMM), V. 1.0 Beta 3,” http://www.omg.org/spec/SMM/.

[8] S. Frey, W. Hasselbring, and B. Schnoor, “Automatic
Conformance Checking for Migrating Software Sys-
tems to Cloud Infrastructures and Platforms,” Journal
of Software Maintenance and Evolution: Research and
Practice, 2011, (To appear).

[9] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica, and M. Zaharia, “Above the Clouds: A Berkeley
View of Cloud Computing,” EECS Dept., Univ. of Cali-
fornia, Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009.

[10] S. Frey and W. Hasselbring, “Model-Based Migration
of Legacy Software Systems to Scalable and Resource-
Efficient Cloud-Based Applications: The CloudMIG Ap-
proach,” in Proceedings of the 1st International Con-
ference on Cloud Computing, GRIDs, and Virtualization
(Cloud Computing 2010), 2010, pp. 155–158.

[11] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller,
J. Ehlers, S. Frey, and D. Kieselhorst, “Continuous Mon-
itoring of Software Services: Design and Application of
the Kieker Framework,” Dept. Comp. Sc., Univ. Kiel,
Germany, Tech. Rep. TR-0921, 2009.

[12] A. van Hoorn, H. Knoche, W. Goerigk, and W. Has-
selbring, “Model-Driven Instrumentation for Dynamic
Analysis of Legacy Software Systems,” in Proceedings
of the 13. Workshop Software-Reengineering (WSR ’11),
2011, pp. 26–27.

[13] B. Kitchenham, S. Pfleeger, and N. Fenton, “Towards a
Framework for Software Measurement Validation,” IEEE
Transactions on Software Engineering, vol. 21, no. 12,
pp. 929–944, 1995.

[14] X. Larrucea and E. Iturbe, “A Metamodel Integration
for Metrics and Processes Correlation,” in ICSOFT (1),
2010, pp. 63–68.

http://www.omg.org/spec/SMM/

	Introduction
	Structured Metrics Meta-Model (SMM)
	Overview
	Shortcomings

	MAMBA Approach
	Meta Model Extensions to SMM
	MAMBA Execution Engine (MEE)
	Framework Architecture
	Execution of Open SMM Models
	Extension Mechanism for Aggregate Functions

	MAMBA Query Language (MQL)

	Evaluation Scenarios
	Migration to the Cloud
	Context
	Application of MAMBA
	MQL in the Cloud Migration Scenario

	Model-Based Analysis of Railway Control Centers
	Context
	Application of MAMBA
	MQL use in a Multi-DSL Scenario

	Dynamic Analysis for Model-Driven Modernization
	Context
	Application of MAMBA
	MQL in the DynaMod Scenario

	Related Work
	Methodologies for Model-Based Measurement
	Approaches and Tooling Based on SMM

	Conclusions

