
Self-Adaptive Software System Monitoring
for Performance Anomaly Localization

Jens Ehlers, André van Hoorn, Jan Waller, Wilhelm Hasselbring
Software Engineering Group

Christian-Albrechts-University Kiel
24098 Kiel, Germany

{jeh, avh, jwa, wha}@informatik.uni-kiel.de

ABSTRACT
Autonomic computing components and services require
continuous monitoring capabilities for collecting and
analyzing data of runtime behavior. Particularly for
software systems, a trade-off between monitoring coverage
and performance overhead is necessary.

In this paper, we propose an approach for localizing
performance anomalies in software systems employing
self-adaptive monitoring. Time series analysis of operation
response times, incorporating architectural information
about the diagnosed software system, is employed for
anomaly localization. Comprising quality of service data,
such as response times, resource utilization, and anomaly
scores, OCL-based monitoring rules specify the adaptive
monitoring coverage. This enables to zoom into a system’s
or component’s internal realization in order to locate root
causes of software failures and to prevent failures by early
fault determination and correction.

The approach has been implemented as part of the
Kieker monitoring and analysis framework. The evaluation
presented in this paper focuses on monitoring overhead,
response time forecasts, and the anomaly detection process.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Monitors, Tracing; D.2.7 [Software Engineering]:
Distribution, Maintenance, and Enhancement—
Restructuring, Reverse Engineering, and Reengineering

General Terms
Measurement, Performance

1. INTRODUCTION
Though runtime performance is a critical characteristic

of software systems, monitoring their operation is often
neglected in practice. Typically, monitoring probes are only

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAC’11, June 14–18, 2011, Karlsruhe, Germany.
Copyright 2011 ACM 978-1-4503-0607-2/11/06 ...$10.00.

instrumented in reaction to prior performance degradations
or even system failures.

In contrast to profiling at construction time, continuous
monitoring of operational systems has to consider keeping
the monitoring overhead deliberately small. A trade-off
between information quality and monitoring overhead has
to be accepted. The overhead is not caused by the injection
of probes at numerous join points in the control flow, but
by the complexity of the probe implementations. A finding
of our evaluation is that it is feasible to instrument probes
at a variety of possibly relevant join points, as long as not
all of them are active at the same time during operation.
Hence, it is desirable to introduce an adaptable setting that
prescribes which probes and join points are activated at a
distinct point in time.

It is well-known that a major part of the failure recovery
time is required to locate the root cause of a failure [6]. In
this paper, we present a self-adaptive, rule-based monitoring
approach that will reduce the potentially business-critical
wait time that delays a failure or anomaly diagnosis, as
it allows autonomic on-demand changes of the monitoring
coverage at runtime. The monitoring rules should reflect
previously specified goals. For many goals, it is sufficient
to monitor performance at component level, e.g. to fulfill
evidence of SLA compliance, to support capacity planning
decisions, or to extract usage patterns for interface design.
In the following, we concentrate on the goal to localize the
causes of performance anomalies that effect a change in a
system’s normal behavior as perceived by its users. The
proposed monitoring adaptation feature is implemented as
an extension plugin of our Kieker framework1 [8], which
facilitates to monitor and to analyze the runtime behavior
of software systems. We employ the Object Constraint
Language (OCL)2 to specify the monitoring rules. The rules
refer to performance attributes, particularly responsiveness
anomaly scores, that change their values during runtime.
Self-adaptation is based on the continuous evaluation of the
monitoring rules. For that purpose, we propose and evaluate
an online anomaly rating procedure for the timing behavior
of system-inherent operations. Our implementation is based
on EMF (Eclipse Modeling Framework)3 meta-models which
allow to evaluate OCL query expressions on object-oriented
instance models at runtime.

The remainder of this paper presents our approach for
self-adaptive performance monitoring and the underlying

1http://kieker.sourceforge.net/
2http://www.omg.org/spec/OCL/2.2/
3http://www.eclipse.org/modeling/emf/

anomaly rating procedure in Section 2, its evaluation in
Section 3, and a conclusion and future work in Section 4.

2. SELF-ADAPTIVE MONITORING FOR
ANOMALY LOCALIZATION

The monitoring adaptation feature is integrated as
a plugin into our Kieker monitoring framework being
explicated in detail in [8]. Figure 1 illustrates the major
components of the Kieker framework. As presented in
our previous work [5], the underlying monitoring process
is structured into the following activities: probe injection,
probe activation, data collection, data provision, data
processing, visualization, and (self-)adaption. The proposed
Monitoring Adaptation Plugin is implemented as one of several
plugins for the Kieker Analysis component.

����������	

���
�����������

����������	

���
�������	�����

����������	

������

����	�	����
��	������

��������

����	�����

���

���	���������

����	��������	��������	��

���	�����	�	���

Figure 1: Kieker monitoring architecture, cf. [5]

Probes are spread across various join points in the control
flow of a monitored system so that all operation executions
can be monitored. For a system in productive operation,
it is not possible to record monitoring data each time
a probe is actuated as one of its join points is reached.
The restriction not to activate all measuring points at the
same time is caused not only by broad instrumentation,
but particularly by extensive system workload (number
of requests/s). Considering component-based systems, an
appropriate initial coverage is to activate join points at
operations that are part of a component’s provided interface.

2.1 Rule-based Monitoring Adaptation
The Monitoring Adaptation Plugin allows the specification

of monitoring rules which are evaluated continuously and
may effect changes of the current monitoring coverage. The
adaptation process works like a simple rule-based expert
system. The performance engineer acts as the expert who
defines the rules of inference. The premise of a rule specifies
an expression that is evaluated for all measuring points. We
employ the OCL to specify the rule premises:
P1: context CallingContextTree: self.callingContexts→select(
(parent.op.monitoringActivated and parent.anomalyScore > t)

or level = 1)→collect(op)

The example rule premise P1 is based on a calling
context tree (CCT) model, as defined in [1]. P1 selects
all operations that are called from a caller operation
that is already monitored (parent.op.monitoringActivated) and
behaves anomalous in a particular calling context, i.e. the
context’s anomaly score exceeds a specified threshold t
(parent.anomalyScore > t). Additionally, all operations are

added to the result set that are at the topmost level of the
CCT (level = 1), i.e. system-level interface operations for
incoming client requests.

The set of measuring points for which the premise
evaluates to true is handled by the rule’s conclusion. The
conclusion is either to activate or to deactivate probes at
the previously selected set of measuring points. As all Kieker
Analysis plugins are based on EMF meta-models, we are
able to utilize the EMF Model Query sub-project, which
allows constructing and running queries on EMF models by
means of OCL. Goal-oriented self-adaptation is based on
the possibility to refer to attributes in the OCL expressions
that change their values during runtime, e.g. performance
metrics and derived anomaly scores. The rule specified
above increases the monitoring coverage of a component’s
interior control flow if it does not behave as expected. In this
way, our approach affords automatic on-demand adaptation
of the effective software system monitoring.

2.2 Rating of Anomalous Responsiveness
Anomalies are patterns in the monitored data that do

not conform to the expected behavior. Finding these
nonconforming patterns, also called outliers, is referred to
as anomaly detection [4]. We consider an anomaly to arise
as a significant deviation between a measured observation
and a previously expected forecast value, whereas forecasts
are based on historic time series.

Factors impacting the timing behavior of a software
service are particularly the usage profile of its provided
interface, its deployment environment, its internal
implementation, and the behavior of external services
it depends on [2]. The concrete values of these factors
determine the context in which a service is called. We try
to capture and to separate different contextual values from
each other as far as possible, as it mainly depends on the
context if an observation has to be considered anomalous or
not [4]. Given a specific implementation (including external
services) and a deployment environment, a service has an
expected response time distribution that usually depends on
the input parametrization and the current system workload.
Both are characteristics of the usage profile. Considering
software services, the actual distribution model of response
times is a priori unknown. Though we collect response
times at a fine-grained contextual level at which distinct
operations and their stack contexts are distinguished, this
is not necessarily sufficient to expect deterministic response
times as long as variations in parametrization and workload
are not distinguished as well.

The number of concurrent sessions or threads and the
CPUs’ utilization can be taken as workload indicators.
However, to measure an operation’s input parametrization
completely is not feasible in practice. It may not only be
the input arguments of an operation signature that effect
its response time, but also global component-internal
parameters. The component-internal state is not
transparent for a client initiating a service request.
Nevertheless, it can have an impact on the control and
data flow, and thus on the resulting resource demand. A
compromise can be requiring a performance engineer to
mark the performance-effecting service parameters in a
design-oriented performance model as in [2]. As often the
performance-relevant parameters are unknown in advance
or a design-oriented performance model does not yet

exist, our anomaly rating procedure approaches a different
solution. We assume that it is not possible to separate
all context-determinant impact factors; thus, even from
a fine-grained contextual viewpoint, response times can
be arbitrarily distributed and do not necessarily converge
to a parametric distribution model. Our anomaly rating
procedure consists of four steps: (1) response time forecast,
(2) anomalous behavior hypothesis test, (3) anomaly
score calculation, and (4) anomaly score correlation and
aggregation.

(1) Response time forecast: Response time observations
being ordered in time form a univariate time series. A
time series is a realization of a stochastic process, which
is a sequence of time-indexed random variables. A basic
assumption in time series analysis is that some patterns
observed in the past will remain in the future. Hence,
time series analysis can be used for forecast purposes
based on historical data: x1, x2, ..., xt → x̂t+1, x̂t+2, ...
(observations → predictions). Forecasting based on a
time series abstracts from any technical or economical
interrelations. It is assumed that characteristic features of
the underlying stochastic process can be recovered from the
historic data.

We implemented and evaluated different common
forecasting models for stochastic processes with respect
to their ability to predict the response time of software
services. Each forecasting model assumes the time series to
be generated from a different underlying stochastic process.
The forecast models being evaluated in Section 3 include
single exponential smoothing (SES), double exponential
smoothing (DES) according to Holt-Winters, and first-order
autoregressive integrated moving average (ARIMA)
processes, namely ARIMA(1,0,1) and ARIMA(1,1,1),
according to Box-Jenkins. For further details concerning
the foundations of time series analysis and these forecast
models refer to [3].

(2) Anomalous behavior hypothesis test: For anomaly
testing, it is leveraged that not every individual operation
execution has to be classified and reported if it is considered
to be an outlier. Instead, it is intended that a cohesive
collection of suspicious operation executions is observed
before reporting an anomaly. Our procedure benefits from
the central limit theorem: Whenever a random experiment
is replicated many times, the new variable, which equals
the average result over the replicates, is likely to follow the
normal distribution. A random sample is taken from all
response time observations within a specified time interval.
With a sample size of 10, the average response time is fairly
normalized. In our evaluation, we used different sample
sizes to bundle operation executions and test whether they
form a collective anomaly.

To decide whether an anomaly is observed or not, a
hypothesis test is conducted. It is tested whether the
forecasted response time x̂t+1 can be accepted as the mean
of the population μ from which the sample has been taken.
The validity of the test rests on the assumption that the
sample mean x is approximately normally distributed. The
null hypothesis is H0 : μ = μ0 with μ0 being the forecasted
response time x̂t+1. So, only if H0 is rejected, the observed
collection of response times is rated as anomalous. H0 will
be rejected if μ0 lies in a critical region outside a confidence

interval. The range of the confidence interval depends on a
specified significance level α, which controls the rate of false
positives (probability of type I errors). A susceptibility to
false alarm due to a multitude of false positives reduces the
efficacy of an automated approach. Frequent false alarms
cause unnecessary effort and emotionally blunt an analyst,
who has to investigate and discard each false positive.
H0 will be rejected if the value of the test statistic t0
falls in the critical region defined by the lower and upper
α/2-percentage points of the corresponding t-distribution.
If t0 is in the confidence interval, the recent sample of
response time observations �x is associated with an anomaly
value a�x = 0. Otherwise, the sample is rated as anomalous,
i.e. a�x = 1.

(3) Anomaly score calculation: It is not sufficient
to save the observation time of each collective anomaly.
Instead, it is desired to calculate a single numeric figure
that represents the recent degree of an operation’s timing
behavior to be anomalous. Therefore, an anomaly scoring
function a is constructed that condenses the frequency and
the trend of anomaly observations over time. For each
operation, the function maintains an anomaly score between
0 and 1 where 0 indicates that response times have been as
expected, and 1 indicates a completely anomalous timing
behavior. Each sample of response times �x that is tested for
anomaly slightly impacts the overall anomaly score of an
operation aop, which is calculated recursively by exponential
smoothing as follows: aop,t+1 = β a�x + (1 − β) aop,t. The
smoothing parameter β determines how sensible the scoring
function reacts. If anomalies are detected frequently, the
score increases. Otherwise, it will slowly decrease.

(4) Anomaly score correlation and aggregation:
The operation-level anomaly scores are aggregated to
higher levels of abstraction such as component-level
anomaly scores. Aggregation is done via weighted averages
based on operation call frequencies. Further, we provide
the option to adjust the anomaly scores by applying a
correlation algorithm. On each level of abstraction, the
system entities such as operations, classes, or components
are represented as nodes of a call graph. The graph’s
directed edges represent the calling actions or dependencies
among the system entities. It is commonly assumed that
anomalies are propagated backwards through the call
graph [7], i.e. if a node indicates anomalous behavior,
then the anomaly is partially propagated to the node’s
callers. Correlation algorithms perform a negation of the
propagation effects to identify the root cause of an anomaly.

3. EVALUATION
In our previous work, we reported on how we employed

the Kieker Monitoring component in the productive systems
of a telecommunication company and a digital photo service
provider [8]. These case studies confirmed the applicability
and the robustness of our approach. In lab experiments,
we obtained detailed evaluations concerning the monitoring
overhead, the response time forecasts, and the anomaly
detection process.

Monitoring overhead: Figure 2 presents our results
for a specific platform containing measured cost rates
caused by instrumentation (ΔI), data collection (ΔC),

and data logging (ΔL). The boxplots show that
(1) instrumentation, i.e. stepping into previously woven,
but inactive dummy probes, causes very little overhead
(ΔI is less than 1 μs) compared to (2) data collection
and (3) logging, i.e. creating and persisting the monitoring
records to a Monitoring Log (ΔC and ΔL are each about
4 μs). The overhead evaluation allows the conclusion that
instrumentation of probes at multiple measuring points is
not critical as long as data collection and logging can be
(de)activated systemically.

Figure 2: Evaluation of the monitoring cost

Response time forecast models: Besides, we evaluated
the forecast models described in Section 2.2. We set
up two experimental lab scenarios using the JPetStore4

sample application and the SPECjEnterprise20105 industry
standard benchmark as systems under test. In both
scenarios, the number of concurrent users was constructed to
provoke a close-to-reality workload with seasonal variation
and trend. We monitored response times of selected services
provided by the two test systems and applied the different
forecast models. The time series of measured response times
are forwarded to the statistic tool R, in order to utilize the
functions HoltWinters and arima in the R stats package. Given
a time series as input, these functions allow to calculate
the best-fitting parameter values for the forecast models to
be evaluated. The parameter values are used to determine
the expected response times. Periodically, the parameter
values are updated based on more recently observed time
series. Table 1 summarizes our results concerning the
forecast errors. The shown measures are mean average
percentage errors being aggregated for all monitored services
and different combinations of sample sizes and update
intervals of the forecast model parameters. Compared
to pragmatic forecast approaches xt (forecast is latest
observed value) and x̄t (forecast is average of preceding
observations), the time series-based models provide more
precise forecasts. The forecasts in scenario E1 are better
as than in scenario E2, because the scenarios differ in the
scheduling discipline of their major bottleneck (E1: CPU
with approx. processor sharing scheduling, E2: database
I/O with FIFO scheduling).

Scenario SES DES ARIMA
(1,0,1)

ARIMA
(1,1,1)

�� ���

E1 JPetStore 13,3% 14,6% 13,1% 14,3% 15,9% 19,7%
E2 SPECjEnterprise2010 23,9% 22,9% 23,8% 18,0% 22,8% 50,3%

Table 1: Evaluation of forecast model errors
4http://sourceforge.net/projects/ibatisjpetstore/
5http://www.spec.org/jEnterprise2010/

Anomaly detection process: In the next evaluation step,
we demonstrate that consecutive divergences of forecasts
and observations are an indication of anomalous timing
behavior. We injected faults into the test systems and
observed how our self-adaptive monitoring approach zooms
into a component by activating monitoring for those
operations that are affected by a fault and thus are
rated as anomalous. Detailed evaluation results are left
out due to space restrictions. A manual exploration of
the cause-and-effect chains is much more time-consuming
and error-prone than an automated processing. A major
contribution of the self-adaptive monitoring approach is to
save this time and effort.

4. CONCLUSIONS AND FUTURE WORK
Responsiveness and scalability of productive software

systems have to be observed and analyzed continuously. Our
self-adaptive monitoring approach allows zooming into a
component on demand if it behaves anomalous. In this case,
zooming means to activate more (or less) measuring points
in the application-level control flow aiming at increasing
(or decreasing) insight, e.g. into the operation call stack,
effective loop iterations, or conditional branches taken. For
self-adaptive control of the monitoring coverage a set of
OCL-based monitoring rules is proposed.

Moreover, we proposed an approach for self-adaptive
software system monitoring based on the continuous
evaluation of OCL-based monitoring rules at runtime.
Further, we explicated an underlying anomaly rating
procedure for the timing behavior of software systems. In
our evaluation, we quantified the monitoring overhead and
studied the practicability of the presented forecast models.

In future work, we will evaluate the adaptive monitoring
approach in industrial case studies. Besides, we intend
to integrate and to evaluate alternative anomaly detection
procedures not being based on time series analysis.

5. REFERENCES
[1] G. Ammons, T. Ball, J. R. Larus. Exploiting hardware

performance counters with flow and context sensitive
profiling. ACM SIGPLAN Notices, 32(5):85–96, 1997.

[2] S. Becker, H. Koziolek, R. Reussner. The Palladio
component model for model-driven performance
prediction. JSS, 82(1):3–22, 2009.

[3] G. E. P. Box, G. M. Jenkins, G. C. Reinsel. Time Series
Analysis: Forecasting and Control. Wiley, 4th ed., 2008.

[4] V. Chandola, A. Banerjee, V. Kumar. Anomaly
detection: A survey. ACM Computing Surveys,
41(3):1–58, 2009.

[5] J. Ehlers W. Hasselbring. Self-adaptive software
performance monitoring. In Software Engineering 2011,
LNI, pages 51–62. GI, 2011.

[6] E. Kiciman A. Fox. Detecting application-level failures
in component-based internet services. IEEE Trans. on
Neural Networks, 16(5):1027 –1041, 2005.

[7] M. Steinder A. S. Sethi. A survey of fault localization
techniques in computer networks. Science of Computer
Programming, 53(2):165–194, 2004.

[8] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller,
J. Ehlers, S. Frey, D. Kieselhorst. Continuous
monitoring of software services: Design and application
of the Kieker framework. Technical Report TR-0921,
Dept. of Computer Science, University of Kiel, 2009.

