
Towards Adaptive Monitoring
of Java EE Applications

Dušan Okanović#1, André van Hoorn∗2, Zora Konjović#3, and Milan Vidaković#4

#Faculty of Technical Sciences, University of Novi Sad
Fruškogorska 11, 21000 Novi Sad, Serbia
{1oki,3ftn_zora,4minja}@uns.ac.rs

∗Software Engineering Group, University of Kiel
Christian-Albrechts-Platz 4, 24098 Kiel, Germany

2avh@informatik.uni-kiel.de

Abstract—Continuous monitoring of software systems under
production workload provides valuable data about application
runtime behavior and usage. An adaptive monitoring infrastruc-
ture allows to control, for instance, the overhead as well as the
granularity and quality of collected data at runtime. Focusing
on application-level monitoring, this paper presents how we
extended the monitoring framework Kieker by reconfiguration
capabilities based on JMX technology. The extension allows to
change the instrumentation of software operations in monitored
distributed Java EE applications. As a proof-of-concept, we
demonstrate the adaptive monitoring of a distributed sample
Java EE application deployed to a JBoss application server.

Keywords-Continuous monitoring, adaptive monitoring, aspect-
oriented programming, Java EE, JMX

I. INTRODUCTION

Software testing, debugging, and profiling in development
environments hardly allow to detect errors and unpredicted
events that can occur after the software is deployed and used in
its production environment. While new, previously unknown,
errors can show up, it is a common phenomenon for software
performance and quality of service to degrade over time [1],
too. To determine whether the quality of service and service
level agreements are on a satisfactory level, it is necessary to
monitor software in its operational stage and environment.

In the development phase, software developers usually
utilize tools such as debuggers and profilers. Although they
provide a picture of the software behavior, they typically
induce a significant performance overhead—something which
is unacceptable for production use. Dynamic behavior of the
software can, for instance, be analyzed by reading source code
or UML diagrams [2] that are produced in the design phase.
The reading of source code is inconvenient because of its
complexity. Also, architectural diagrams are often incomplete
or missing.

To determine how software behaves under production work-
load, continuous monitoring of that software is a valuable
option. Continuous monitoring of software is a technique
that provides a picture of the dynamic behavior of software
under real usage, but often results in a large amount of
data. In the process of the analysis, the obtained data can

be used to reconstruct architectural models and perform their
visualization (e.g., employing UML).

One important issue regarding monitoring is the induced
performance overhead. During monitoring, resources in the
system are shared among the components of the monitored
systems as well as those of the monitoring system. Thus, the
monitored system has to fulfill its functionality with fewer
resources. This resource contention eventually affects the per-
formance of the monitored system, e.g., in terms of increased
response times. Monitoring overhead can be controlled using
adaptive techniques. These techniques allow a reduction of
overhead by shutting down monitoring in parts of the system,
if those parts are not of particular interest at the moment.

The main contribution of this paper is that it presents how
the open-source monitoring and analysis framework Kieker [1]
can be used for continuous and adaptive monitoring of en-
terprise Java EE (JEE) applications. In order to achieve this,
we created additional JMX [3] components that allow to re-
configure monitoring parameters, e.g., the set of instrumented
software operations, during the monitoring process. This com-
bination of Kieker and JMX enables adaptive monitoring. Dur-
ing operation, we can disable and enable monitoring of parts
of the application, particularly the instrumentation of software
operations, to reduce overhead or to obtain more information,
respectively. In this paper, we present the integration of the
Kieker framework into the JBoss application server [4] and
our implementation of additional JMX components required
to achieve reconfigurable and adaptive monitoring. We discuss
the instrumentation of a sample JEE application using AspectJ-
based [5] probes from the Kieker framework. Also, results of
monitoring this JEE application are shown.

The remainder of this paper is structured as follows. Sec-
tion II provides an overview of related work in the field
of performance monitoring. Section III introduces the basic
concepts of the Kieker framework. Our extension enabling
adaptive monitoring is described in Section IV. Monitoring of
a sample application deployed to a JBoss application server
using the Kieker framework and the developed extensions is
shown in Section V. Section VI draws the conclusions and
outlines future work.

ICIT 2011 The 5th International Conference on Information Technology

Analysis Plug-In

Monitoring log

e.g., file system, database,
message-oriented middleware

e.g., trace information, workload, response
times, resource utilization, loop counts

Monitoring
Record

M

M

M

M

M

M

e.g., AOP-based
method call interception

M

e.g., architecture reconstruction,
performance evaluation, online
adaptation control, failure diagnosis

Kieker.Monitoring

Monitoring
Probe

Monitoring
Controller

Monitoring
Log Writer

Kieker.Analysis

Monitoring
Record

Consumer

Analysis
Controller

Monitoring
Log Reader

Fig. 1. Kieker framework architecture

II. RELATED WORK

A recent study presented by Snatzke [6] indicates that
performance is considered critical in practice, but developers
rarely use monitoring tools. In general, application-level mon-
itoring tools, and especially open-source tools, are rarely used.
Typical reasons for this are time pressure (during development)
and resource constraints during application use.

Apart from Kieker, which is used in this paper and described
in Section III, there are several other systems that allow to
profile and monitor JEE applications. For example, JBossPro-
filer [7] is a tool based on the JVMTI [8]/JVMPI [9] API.
It can be used to monitor applications deployed to the JBoss
application server. The use of this API provides precise results
but induces significant overhead. COMPAS JEEM [10] inserts
software probes during the application startup. The probes can
be inserted into any layer of JEE applications (EJB, Servlet
etc.). The advantage of this approach is that there is no need
for application source code changes. However, a drawback
of this approach is the fact that different probes must be
defined for each application layer. The HotWave tool [11]
allows runtime re-weaving, similar to AspectJ [5]. It can be
used for the implementation of different profiling tools. The
downside is that, due to some restrictions, it does not support
around advices. The advice, however, can be replaced by
combining before and after advices and the use of inter-advice
communication. The tool is still in development. The approach
introduced by Briand et al. [12] is used for reconstructing
UML sequence diagrams from JEE applications. The instru-
mentation is performed employing AspectJ, as is the case for
Kieker. The system is limited to diagram generation. It is
not suitable for continuous monitoring and it is not able to
monitor web services, only RMI. SAMEtech [13] conducts
monitoring in a similar way to Kieker. It uses numeration
of executions within a trace, but cannot monitor concurrent
executions within an application. Similar to the work presented
in this paper, Ehlers and Hasselbring [14] present an approach
for Kieker allowing to activate and deactivate monitoring
probes at runtime.

DynaTrace [15] and JXInsight [16] are examples of com-
mercially available application monitoring tools. One of the
open-source tools in use is Nagios [17] which is not intended
for application level monitoring, but to monitor system infras-
tructure.

This overview shows the lack of tools (especially non-
commercial open-source tools) that allow continuous and
reconfigurable monitoring of JEE applications with low over-
head. The Kieker framework [1] in combination with JMX [3]
can be used for adaptive and reconfigurable continuous moni-
toring of JEE applications, as presented in this paper. Among
other technologies, Kieker uses AspectJ for instrumentation
which provides a separation of monitoring code from the
application code. JMX, which is in the core of the JEE
application server infrastructure, can be used for controlling
the monitoring process at runtime. Changing of monitoring
parameters during the monitoring process allows to implement
an infrastructure for adaptive and reconfigurable monitoring,
as presented in this paper.

III. KIEKER FRAMEWORK

Kieker [1] is a framework for continuous monitoring and
analysis of software systems, currently focusing on Java-
based applications. It consists of the Kieker.Monitoring and the
Kieker.Analysis components. The Kieker.Monitoring component
collects and stores monitoring data. The Kieker.Analysis com-
ponent performs analysis and visualization of this monitoring
data. The architecture of the Kieker framework is depicted in
Fig. 1.

The Kieker.Monitoring component is executed on the same
computer where the monitored application is being run. This
component collects data during the execution of the monitored
applications. A Monitoring Probe is a software sensor that is
inserted into the observed application and takes various mea-
surements. For example, Kieker includes probes to monitor
control-flow and timing information of method executions.
Monitoring Log Writers store the collected data, in the form
of Monitoring Records, in a Monitoring Log. The framework is
distributed with Monitoring Log Writers that can store Mon-
itoring Records in file systems, databases, or JMS queues.
Additionally, users can implement and use their own writers.
A Monitoring Controller controls the work of this part of the
framework.

ICIT 2011 The 5th International Conference on Information Technology

The data in the Monitoring Log is analyzed by the
Kieker.Analysis component. A Monitoring Log Reader reads
records from the Monitoring Log and forwards them to Analysis
Plugins. Analysis Plugins may, for example, analyze and visu-
alize gathered data. Control of all components in this part of
the Kieker framework is performed by the Analysis Controller
component.

Both components of the Kieker framework work completely
independently. This approach allows a cluster of servers to
run the monitored software, to store monitoring data in a file
system or database on another server, and to perform data
visualization and analysis—possibly on yet another server.

Program instrumentation in the Kieker framework is usually
performed using aspect-oriented programming (AOP) [18].
This way, developers can separate program logic from moni-
toring logic (separation of concerns). Instrumentation consists
of writing aspect classes and weaving them with application
classes. These aspects intercept the execution of program logic
at defined points (so-called join points) and add additional
behavior (defined in advices).

Kieker can monitor each method in every class or only
designated ones. Developers can use aspects that monitor all
methods or only methods annotated with annotations. The
@OperationExecutionMonitoringProbe annotation and
several different aspects are distributed with the framework
which allows for the creation of different monitoring scenarios.
Users can also use their own aspects and annotations.

Probes distributed with the framework, intended for mon-
itoring executions of methods, generate Monitoring Records
that are instances of the OperationExecutionRecord class.
Every instance contains the name of a component for which
it is generated, as well as method name, session id, trace id,
execution start and end time.

Regardless of the chosen scenario, the aspect intercepts
the executed method, takes necessary measurements, lets the
method execute, creates a Monitoring Record and stores data
into the Monitoring Log using the Monitoring Controller. Within
one application there can be multiple annotations and aspects,
so that they can perform complementary measurements.

IV. KIEKER EXTENSION FOR ADAPTIVE MONITORING

The framework extension for adaptive monitoring and its
configuration for use with the JBoss server was done by
implementing a new Monitoring Log Writer and by adding new
JMX components. A deployment diagram for this system is
depicted in Fig. 2.

DProfWriter is a new writer which stores all records into
a special buffer—the ResultBuffer. Kieker’s Monitoring Con-
troller is configured to use the DProfWriter. The ResultBuffer
is implemented as a JMX MBean and relies on the JBoss
microkernel infrastructure. The DProfWriter sends records to
the ResultBuffer through the MBeanServer. The buffer sends
data to a Record Receiver service running on a remote server.
Data can be sent periodically (in bulks) or as soon as they
arrive into the buffer. This remote service stores records into a
relational database for further analysis. Essentially, in this case,

Server or cluster of servers

JBoss AS (in cluster configuration)

Database and analysis server

Database

Record Receiver Record Analyzer

Kieker+JMX extensions

Monitored application

Fig. 2. Deployment diagram of the system. DProfWriter, ResultBuffer,
AspectController and DProfManager are omitted; they are parts of the
Kieker+JMX extensions component

the combination of the buffer, the service and the database
constitutes Kieker’s Monitoring Log.

The DProfManager component, implemented as a JMX
MBean, is used to control the monitoring process. It con-
trols the ResultBuffer and an AspectController component.
The AspectController component is used to change weaving
parameters defined in the AspectJ configuration file (aop.xml).
It is implemented as a JMX MBean, too. The AspectController
can access the monitored application’s aop.xml file, parse it,
change parameters and save changes in the application archive
(jar/war/ear) file. This will change the timestamp of the archive
file, which will cause the application server to redeploy the
application, causing the re-weaving of the application with
the Kieker aspects. Loss of session and breaking of running
transactions can occur, but these are not within the scope
of this paper. Also, if there is no aop.xml file inside the
application archive, the AspectController can create a new one.

The communication through the MBeanServer may seem
to cause increased performance lag and overhead. But since
all these actions are performed within a single Java virtual
machine [19], this overhead is lower than the overhead caused
by, for example, storing records into the database.

On the receiving side, the Record Analyzer component
analyzes the records contained in the database. Depending
on its configuration, it chooses new monitoring parameters.
These parameters are then sent to the DProfManager for a
reconfiguration of monitoring. It is important to state that,
additionally, users can manually change monitoring parameters
using any JMX console application.

V. EVALUATION

The use of the Kieker framework for monitoring of JEE
applications will be demonstrated using the software configu-
ration management (SCM) application described in [20]. SCM
is a JEE application responsible for tracking applications and
application versions. We deployed SCM on a JBoss 5.1.0
server. As described in Section IV, the Kieker framework has
been extended with a new Monitoring Log Writer and additional
functionality enabling reconfigurable monitoring scenarios.

ICIT 2011 The 5th International Conference on Information Technology

A. SCM Application

The application is implemented using Enterprise
JavaBean (EJB) [21] technology. Entity EJBs are used
in the O/R mapping layer. They are accessed through
stateless session EJBs (SLSB), modeled according to
the façade design pattern [22]. SLSBs are annotated
to work as JAX-WS [23] web services as well. The
application client is a Java Swing [24] application which
uses web services to access the application. Listing 1
shows an excerpt of the OrganizationFacade class.
The createOrganization(...) method invokes the
checkOrgName(...) method and creates a new entity
EJB for the organization in the defined city. This method is
annotated with @OperationExecutionMonitoringProbe.
Other method definitions from this class are omitted
from this listing, but are also annotated with
@OperationExecutionMonitoringProbe. The
OrganizationFacadeService remote interface is omitted
since it contains only method declarations. Listing 2 shows
an excerpt of the Organization entity EJB class. Other
entity EJBs in this system are similar.

1 @Stateless
2 public class OrganizationFacade
3 implements OrganizationFacadeService {
4
5 ...
6
7 @OperationExecutionMonitoringProbe
8 public Organization createOrganization(String orgName,
9 String address, String eMail, long cityId) {

10 checkOrgName(orgName);
11 City c = em.find(City .class, cityId) ;
12 Organization org =
13 new Organization(orgName, address, eMail, c);
14 em.persist(org);
15 return org;
16 }
17 }

Listing 1. Instrumented OrganizationFacade SLSB class (excerpt)

1 @Entity
2 public class Organization {
3 long id;
4
5 ...
6
7 @Id
8 @OperationExecutionMonitoringProbe
9 public long getId() { return id ; }

10 }

Listing 2. Instrumented Organization entity EJB class (excerpt)

The testing will be conducted by repeatedly invoking
the OrganizationFacade.createOrganization(...)

method. These invocations are supposed to generate data
which will be used for diagram creation and program
performance analysis. In a second scenario, using the JBoss
JMX console, we will change weaving parameters so that
executions of methods in entity EJBs are excluded from
monitoring. This causes a redeployment of the application.
The testing process is then repeated with the changed
monitoring configuration.

B. Monitoring Configuration

In order to use the Kieker framework under JBoss AS,
the Kieker libraries must be in the classpath, i.e., in the lib/

directory of the server. Application monitoring is, in this case,
conducted through the use of annotations and aspects already
present in the framework. Listing 3 shows a part of the AspectJ
configuration file (aop.xml) for this test case.

1 <aspectj>
2 <weaver><include within=”gint.scm..∗”/></weaver>
3 <aspects>
4 <aspect name=”kieker.monitoring.probe.aspectJ.executions.

OperationExecutionAspectAnnotationServlet”/>
5 </aspects>
6 </aspectj>

Listing 3. AspectJ configuration file

In the aop.xml we defined the monitoring aspects and the
application packages to be monitored. We used the as-
pect that intercepts executions of methods annotated with
@OperationExecutionMonitoringProbe. Upon applica-
tion server startup, the selected aspects are woven into the
monitored application, according to the aop.xml, and the
application is deployed. Listing 4 shows the line added in order
to exclude entity executions from monitoring in scenario 2.

1 <exclude within=”gint.scm.ws.entity..∗” />

Listing 4. AspectJ directive for the changed monitoring configuration

C. Data Analysis

Several diagrams are generated based on the data recorded
and stored in the database during application execution. Di-
agrams, execution trace listings, and message trace listings
which can be used in the analysis can be generated using the
Kieker.TraceAnalysis tool.

Fig. 3 shows one of the generated sequence diagrams and an
aggregated dependency diagram for the first test case, where
entity EJBs are monitored. After we excluded monitoring of
entity EJBs, we obtained a new set of monitoring data, which
was used for the generation of the diagrams in Fig. 4.

createOrganisation(..)

checkOrgName(..)

getId()

oki::
@1:OrganisationFacade

oki::
@2:City

(a) Sequence diagram

<<execution container>>
oki

<<deployment component>>
@1:gint.scm.ws.OrganisationFacade

<<deployment component>>
@2:gint.scm.ws.entity.City

<<deployment component>>
@3:gint.scm.ws.entity.Organisation

createOrganisation(..) checkOrgName(..)10

getId()

10

getId()$

10

10

10

(b) calling dependency graph

Fig. 3. Diagrams reconstructed from the monitoring data of scenario 1

ICIT 2011 The 5th International Conference on Information Technology

createOrganisation(..)

checkOrgName(..)

oki::
@1:..OrganisationFacade

(a)

<<execution container>>
oki

<<deployment component>>
@1:..OrganisationFacade

createOrganisation(..) checkOrgName(..)10$ 10

(b)

Fig. 4. Diagrams reconstructed from scenario 2

VI. CONCLUSION

This paper presented the use of the Kieker framework for
continuous and adaptive monitoring of distributed Java EE
applications. Based on a description of the Kieker framework,
we presented our extension allowing to change monitoring
parameters at runtime, particularly the instrumentation of
software operations. For this purpose, we implemented a new
Monitoring Log Writer as well as additional components. The
use of JMX technology allows for remote monitoring and
adaptation setups.

As a proof-of-concept, Kieker and the extension enabling
adaptability, were used for monitoring a software management
application (SCM) based on EJB and web service technolo-
gies. Proper configuration, running of the framework, and
monitoring the application, deployed to a JBoss application
server, were shown.

The first part of our future work will focus on designing
and implementing a control component for adaptive moni-
toring. This component analyzes recorded runtime data and
determines a new monitoring configuration. Moreover, the
component will send these parameters to the DProfController
component. Also, there is a possibility of framework exten-
sion by adding new aspects which allow for more complex
measurements, e.g. memory, network traffic etc.

ACKNOWLEDGMENT

The research presented in this paper was supported by the
Ministry of Science and Technological Development of the
Republic of Serbia, grant III-44010, Title: Intelligent Systems
for Software Product Development and Business Support
based on Models.

REFERENCES

[1] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller, J. Ehlers, S. Frey, and
D. Kieselhorst, “Continuous monitoring of software services: Design
and application of the Kieker framework,” Department of Computer
Science, University of Kiel, Germany, Tech. Rep. TR-0921, Nov.
2009. [Online]. Available: http://www.informatik.uni-kiel.de/uploads/
tx publication/vanhoorn tr0921.pdf

[2] Object Management Group, Inc., “UML 2.3 Superstructure Specifi-
cation. OMG document formal/2010-05-05,” http://www.omg.org/spec/
UML/2.3/Superstructure/PDF/, May 2010.

[3] M. Flury, J. Lindfors, and the JBoss Group, JMX: Managing J2EE with
Java Management Extensions. Sams, 2002.

[4] JBoss Community team, “JBoss Application Server,” http://www.jboss.
org/jbossas.

[5] The Eclipse Foundation, “The AspectJ Project,” http://www.eclipse.org/
aspectj/.

[6] R. G. Snatzke, “Performance survey 2008,” http://www.codecentric.de/
export/sites/www/ resources/pdf/performance-survey-2008-web.pdf, 3
2009.

[7] JBoss Community team, “JBoss Profiler,” www.jboss.org/jbossprofiler.
[8] Oracle, “Java Virtual Machine Tool Interface (JVMTI),” http://download.

oracle.com/javase/6/docs/technotes/guides/jvmti/.
[9] ——, “Java Virtual Machine Profiler Interface (JVMPI),” http://

download.oracle.com/javase/1.4.2/docs/guide/jvmpi/jvmpi.html.
[10] T. Parsons, A. Mos, and J. Murphy, “Non-intrusive end-to-end runtime

path tracing for J2EE systems,” IEE Proceedings – Software, vol. 153,
no. 4, pp. 149–161, Aug. 2006.

[11] A. Villazón, W. Binder, D. Ansaloni, and P. Moret, “HotWave: Creating
adaptive tools with dynamic aspect-oriented programming in Java,”
in Proceedings of the 8th International Conference on Generative
Programming and Component Engineering (GPCE ’09). ACM, 2009,
pp. 95–98.

[12] L. C. Briand, Y. Labiche, and J. Leduc, “Toward the reverse engineering
of UML sequence diagrams for distributed Java software,” IEEE Trans-
actions on Software Engineering, vol. 32, no. 9, pp. 642–663, Sep. 2006.

[13] A. Sahai, V. Machiraju, J. Ouyang, and K. Wurster, “Message tracking
in SOAP-based web services,” in Proceedings of the 2002 IEEE/IFIP
Network Operations and Management Symposium (NOMS 2002), 2002,
pp. 33–47.

[14] J. Ehlers and W. Hasselbring, “Self-adaptive software performance
monitoring,” in Proceedings of the Software Engineering 2011, ser. GI-
Edition – Lecture Notes in Informatics (LNI). Bonner Köllen Verlag,
Mar. 2011, to appear.

[15] dynaTrace software Inc., “dynaTrace – Continuous application perfor-
mance management,” http://www.dynatrace.com/.

[16] JInspired, “JXInsight,” http://www.jinspired.com/products/jxinsight/.
[17] Nagios Enterprises, “Nagios,” http://www.nagios.org/.
[18] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-

M. Loingtier, and J. Irwin, “Aspect-oriented programming,” in Pro-
ceedings of the European Conference on Object-Oriented Programming
(ECOOP ’97), ser. LNCS. Springer, 1997, vol. 1241, pp. 220–242.

[19] JBoss Community team, “The JBoss JMX Microkernel,” http://docs.
jboss.org/jbossas/jboss4guide/r2/html/ch2.chapter.html.

[20] D. Okanović and M. Vidaković, “One implementation of the system for
application version tracking and automatic updating,” in Proceedings
of the IASTED International Conference on Software Engineering 2008
(SE 2008). ACTA Press, 2008, pp. 62–67.

[21] Oracle, “Enterprise JavaBeans Technology,” http://www.oracle.com/
technetwork/java/javaee/ejb/index.html.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns
– Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[23] M. Kalin, Java Web Services: Up and Running. O’Reilly Media, 2009.
[24] Oracle, “Swing (Java Foundation Classes),” http://download.oracle.com/

javase/6/docs/technotes/guides/swing/.

ICIT 2011 The 5th International Conference on Information Technology

