
André van Hoorn, Holger Knoche, Wolfgang Goerigk, and Wilhelm Hasselbring. Model-
Driven Instrumentation for Dynamic Analysis of Legacy Software Systems. In Proceedings
of the 13. Workshop Software-Reengineering (WSR ’11), pages 26–27. May 2011.

1

Model-Driven Instrumentation for Dynamic Analysis
of Legacy Software Systems∗

André van Hoorn1, Holger Knoche2, Wolfgang Goerigk2, and Wilhelm Hasselbring1

1 Software Engineering Group, University of Kiel, 24098 Kiel
2 b+m Informatik AG, 24109 Melsdorf

Abstract

Dynamic analysis requires the instrumentation of ap-
plication code with monitoring probes. This paper
presents an approach to generate instrumentation ar-
tifacts from models augmented with analysis direc-
tives. Special emphasis is put on how to add mon-
itoring instrumentation by means of aspect-oriented
programming (AOP) to programs written in legacy
languages.

1 Introduction

Dynamic analysis is a valuable tool for re-engineering,
as it provides information about the runtime behav-
ior of software systems [1] vital to tasks such as ar-
chitecure reconstruction. However, it requires the in-
strumentation of the application code with monitor-
ing probes. Moreover, the collected monitoring data
needs to be parsed, transformed, and aggregated with
respect to the desired architecture-level analysis goals.

This paper describes our approach for automating
these steps based on analysis directives specified in ar-
chitectural or other domain-specific models. We em-
ploy aspect-oriented programming [2] to add monitor-
ing probes to programs written in current or legacy
languages. The approach uses our Kieker framework
for continuous monitoring and analysis of software
systems [5]. The examples in this paper focus on
the Visual Basic 6 (VB6) programming language, as
this language is used in one of the case studies of our
DynaMod project for model-driven modernization of
software systems [4].

The remainder of this paper is structured as fol-
lows: Sect. 2 describes our approach for model-driven
instrumentation of software systems. Sect. 3 focuses
on the AOP framework for legacy languages which
is used to add monitoring instrumentation (Sect. 4).
Conclusions are drawn in Sect. 5.

2 Model-Driven Instrumentation

Software systems can be represented on different
layers of abstraction from code-centric representa-
tions like source code and abstract syntax trees
(ASTs) over architectural models employing architec-
ture description languages (ADLs) to models writ-

∗This work is supported by the German Federal Min-
istry of Education and Research (BMBF) under grant number
01IS10051.

Im
p

le
m

en
ta

ti
o

n
A

rc
h

it
e c

tu
re

D
o

m
ai

n

AST

Code

DSL

M
o

d
el

- D
ri

ve
n

 S
o

ft
w

a r
e

D
ev

el
o

p
m

e n
t

S
ta

ti
c

A
n

al
ys

i s

D
yn

am
ic

 A
n

al
ys

is

M
o

d
el

- D
ri

ve
n

 I
n

st
ru

m
en

ta
ti

o
n

Queries

Analysis
Directives

Instrumentation
Directives

Monitoring
Events

Measure-
ments

Results

ADL

Shop

search()

:AvgRT
val=730

:EvalRes
val=true

:OpExec
tin=211
tout=955<<OpExecProbe>>

<<RespTReq>>

<<AvgRespT>>

Instr.
code '@intercept#Call:CallProbe[]

Call bookstore.searchBook

Figure 1: Overview of the approach

ten in domain-specific languages (DSLs) close to
the problem domain. Model-driven software devel-
opment (MDSD) [3] provides techniques and tools
to generate implementation artifacts from higher
abstraction models employing model-to-model and
model-to-code transformations. In order to capture
legacy code, parsers and static analysis techniques ex-
tract models from source code.

To automate the instrumentation of code for dy-
namic analysis, we propose the approach depicted in
Fig. 1. An abstract model extracted by static analysis
is augmented with queries, for instance, whether the
response time of a specific method does not exceed
500 ms in 90 % of all cases. These queries are trans-
formed into analysis directives (in this case, to cal-
culate the 0.9-percentile of the operation’s response
time), which are in turn concretized by instrumen-
tation directives specifying the means necessary to
gather the data required by the analysis directives.

This approach allows not only to generate the re-
quired instrumentation from augmented models using
well-understood MDSD techniques. It also enables
the generation of the necessary infrastructure to au-
tomatically aggregate the monitoring events observed
during the program execution into the results of the
respective queries.

3 AOP for Legacy Languages

One shortcoming of manual instrumentation is that
monitoring aspects are mixed with application func-
tionality, having a negative impact on source code
understandability and maintainability. This problem

André van Hoorn, Holger Knoche, Wolfgang Goerigk, and Wilhelm Hasselbring. Model-
Driven Instrumentation for Dynamic Analysis of Legacy Software Systems. In Proceedings
of the 13. Workshop Software-Reengineering (WSR ’11), pages 26–27. May 2011.

2

can by solved by the use of aspect-oriented program-
ming (AOP), introduced by Kiczales et al. [2]: appli-
cation functionality and so-called cross-cutting con-
cerns, such as instrumentation, are kept in separate
program artifacts and combined automatically to form
the executable application code.

For modern programming platforms such as Java or
.NET, several AOP implementations exist which are
already widely used. Many of the monitoring probes
in our Kieker framework, for instance, benefit from
AOP capabilities. As we are interested in monitor-
ing legacy systems, we decided to develop a generic
approach that introduces AOP capabilities to legacy
languages, which can then be used to weave monitor-
ing instrumentation into the source code.

Fig. 2 illustrates how aspects are applied to
a piece of VB6 code. In this case, the source
code is augmented with aspect-oriented directives
which are included as comments and have the form
@intercept#<Advice>:<Aspect>[<data>]. The ex-
ample includes two advices: Call to execute as-
pects before and after specific procedure calls, and
Execution for doing this for every execution of a pro-
cedure. Depending on the type of advice, aspects
must implement special interfaces—in this case, they
must provide before and after procedures which are
called before and after the respective call or execu-
tion. When the interface methods are called, data
corresponding to the advice and activated join point
(in this case, IcptOpCall and IcptOpExec) is passed
to the aspect. This allows, for example, to inte-
grate monitoring instrumentation for monitoring exe-
cutions, as detailed in the following Sect. 4.

Public Sub searchBook()
 ...
 '@intercept#Call:OpCallIcptr["Bookstore", "searchBook",
 "CRM", "getOffers"]
 crm.getOffers
End Sub

callerClass:String
callerMethod:String
calleeClass:String
calleeMethod:String
object:Variant

IcptOpCall
before(IcptOpCall)
after(IcptOpCall)

OpCallIcptr

'@intercept#Execution:OpExecIcptr["Bookstore",
 "Class_Initialize"]
Private Sub Class_Initialize()
 ...
End Sub

class:String
method:String
object:String

IcptOpExec

before(IcptOpExec)
after(IcptOpExec)

OpExecIcptr

Public Sub searchBook()
 …
 Dim iCall0 As IcptOpCall
 Set iCall0 = New IcptOpCall
 Call iCall0.init("Bookstore", "searchBook", "CRM", "getOffers")
 Call opCallIntcptr.before(iCall0)
 crm.getOffers
 Call opCallIntcptr.after(iCall0)
End Sub

AVB6C

Figure 2: AOP weaving example for VB6

4 Monitoring Instrumentation

To avoid a complete reimplementation of the monitor-
ing and logging functionality for each targeted legacy
language, we use the Java-based Kieker monitoring
component whenever possible. This requires the im-
plementation of language-specific probes and a way
to pass the monitoring data to the Java monitoring

Public Sub before(icptOpExec As IcptOpExec)
 Dim tin As Variant
 tin = monitoringCtrl.currentTimeNanos
 icptOpExec.object = tin
End Sub

Public Sub after(icptOpExec As IcptOpExec)
 Dim r As OperationExecutionRecord
 Dim tin, tout As Variant
 Set r = New OperationExecutionRecord
 tin = icptOpExec.object
 tout = monitoringCtrl.currentTimeNanos
 Call r.initFields(icptOpExec.class, icptOpExec.class, icptOpExec.class, tin, tout)
 Call monitoringCtrl.writeRecord(r)
End Sub

Figure 3: AOP-based Kieker monitoring probe for VB6

component. In order to add monitoring support to
native Windows applications, for instance, we devel-
oped a DLL providing access to the existing Kieker
monitoring core.

As an alternative to manual instrumentation, we
use the AOP framework described in the previous
Sect. 3 to weave Kieker monitoring probes into source
code of legacy systems. Fig. 3 shows a VB6 moni-
toring probe that monitors executions of procedures
employing the afore-mentioned Kieker DLL.

5 Conclusions

As a proof of concept, we have implemented crucial
parts of the described approach. In our future work,
we plan to extend its functionality in terms of pro-
gramming languages (e.g., Cobol, Natural, and Struc-
tured Text (ST) for SPS-based embedded systems);
abstraction layers and models for instrumentation and
analysis, particularly based on ASTs and DSLs; met-
rics, statistical functions, monitoring probes, as well
as corresponding AOP features (e.g., for supporting
loops and branches). Moreover, we will systemati-
cally study the monitoring overhead, as performed for
the Java platform in our earlier work [5].

References
[1] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen,

and R. Koschke. A systematic survey of program compre-
hension through dynamic analysis. IEEE Transactions on
Software Engineering, 35(5):684–702, 2009.

[2] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In Proc. Europ. Conf. Object-Oriented Pro-
gramming (ECOOP ’97), volume 1241 of LNCS, pages
220–242. Springer, 1997.

[3] T. Stahl and M. Völter. Model-Driven Software Develop-
ment – Technology, Engineering, Management. Wiley &
Sons, 2006.

[4] A. van Hoorn, S. Frey, W. Goerigk, W. Hasselbring,
H. Knoche, S. Köster, H. Krause, M. Porembski, T. Stahl,
M. Steinkamp, and N. Wittmüss. DynaMod project: Dy-
namic analysis for model-driven software modernization. In
Proc. 1st Int’l Workshop on Model-Driven Software Migra-
tion (MDSM ’11), volume 708 of CEUR Workshop Pro-
ceedings, pages 12–13, 2011.

[5] A. van Hoorn, M. Rohr, W. Hasselbring, J. Waller,
J. Ehlers, S. Frey, and D. Kieselhorst. Continuous mon-
itoring of software services: Design and application of the
Kieker framework. TR-0921, Dept. Comp. Sc., Univ. Kiel,
Germany, Nov. 2009.

