Reverse Engineering of Dependency Graphs
via Dynamic Analysis

[Invited talk]

Wilhelm Hasselbring
University of Kiel
Institute of Computer Science
Software Engineering Group
D-24118 Kiel, Germany
wha@informatik.uni-kiel.de

ABSTRACT

Reverse engineering of software systems often employs static
analysis of a program’s source code. In this invited talk, T
will present our approach to reverse engineering of software
systems via analyzing monitoring data of a programs opera-
tional use; thus, via dynamic analysis. Our Kieker monitor-
ing framework generates dependency graphs from observed
monitoring data. It is used in several industrial cooperations
on which I’ll report.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques— Distributed/Internet based software engineering tools
and techniques; D.2.7 [Software Engineering]: Distribu-
tion, Maintenance, and Enhancement— Restructuring, re-
verse engineering, and reengineering; D.2.8 [Software En-
gineering]: Metrics/Measurement— Performance measures;
D.3.3 [Programming Languages|: Language Constructs
and Features—Frameworks; D.4.8 [Operating Systems]:
Performance—Measurements Monitors; H.4 [Information
Systems Applications|: Miscellaneous

General Terms

Software Engineering

Keywords

Reverse engineering, Monitoring, Dynamic analysis, Depen-
dency Graphs

1. DYNAMIC ANALYSIS WITH THE
KIEKER MONITORING FRAMEWORK

The object-oriented Kieker monitoring framework has been
designed for continuous monitoring of software systems. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ECSA’11 Workshop TDSA’11, September 13, 2011, Essen, Germany
Copyright 2011 ACM ISBN 978-1-4503-0618-8/11/09 ...$10.00.

framework components for software instrumentation, log-
ging, and analysis/visualization are extensible and may eas-
ily be replaced to fulfill the requirements of specific project
contexts. For instance, as a non-intrusive instrumentation
technique, we employ aspect-oriented programming (AOP).
Kieker uses a common data structure for monitoring records
in all components that produce or consume monitoring data.
For analysis of monitoring data, Kieker provides several vi-
sualizations of a system’s runtime behavior, such as UML
sequence diagrams, and dependency graphs. These models
are extracted from recorded application-internal traces orig-
inating from system-provided services. The analysis may
be performed online or offline. Kieker supports distributed
request tracing, since the service-providing components of
large-scale software systems are usually distributed across
several execution containers on physical or virtual server
nodes.

In our research, we employ Kieker for various purposes,
e.g., fault localization based on timing behavior anomaly de-
tection [3], architecture-based runtime adaptation / recon-
figuration [8, 4], visualization of software runtime behav-
ior [7], application-level intrusion detection [2], and trace-
based performance analysis [5, 6].

Kieker is structured into the two main components Kieker.-
Monitoring and Kieker.Analysis with the Monitoring Log in be-
tween, as illustrated in Figure 1. Kieker.Monitoring provides a
reusable infrastructure for collecting application-level mon-
itoring data in Monitoring Probes and writing this monitor-
ing data to the Monitoring Log, e.g., the local file system,
a database, or a messaging queue, using a Monitoring Log
Writer. The Monitoring Controller is responsible for initializing
and controlling a Kieker.Monitoring instance. The Monitoring
Log contains Monitoring Records, each holding the monitor-
ing data of a single measurement created by the Monitoring
Probes. Kieker.Analysis provides the infrastructure for ana-
lyzing the Monitoring Log: a Monitoring Log Reader (Figure 1)
reads Monitoring Records from the Monitoring Log and delivers
these to registered Monitoring Record Consumers, according to
the observer design pattern [1]. Monitoring Record Consumers
perform the actual analysis or visualization functionality.
A Kieker.Analysis instance is initialized and controlled by an
Analysis Controller instance (Figure 1).

Figure 2 shows an example dependency graph generated
by Kieker. TraceAnalysis, visualizing calling dependencies among
classes and their operations. This figure provides an ag-

Kieker.Monitoring

Monitoring gl
Probe

Q

Monitoring gl
Controller

Q

Monitoring %I
Log Writer

Monitoring log

Kieker.Analysis

Monitoring EI
Record Consumer

\|J

Analysis gl
Controller

Q

Monitoring %I
Log Reader

Figure 1: Top-level view on Kieker’s architecture

<<execution container>>

__243
o= - T TTee-- <<deployment component>>
<<deployment component>>_|- =~ <<deployment component>> “r~._ @Il:..Catalog
@3:..Bookstore _ -~ @2:..CRM b
- 573 | __ getBook(..)
$ - 1635 searchBook() ---421635 | __ getOffers() i
= 109 —
Tel S~ <<execution container>>
- ~ 1062 SRV1

S~ <<deployment component>>
“~~Ll._ ~_@1:.Catalog

getBook(..)

J

Figure 2: Generated deployment-level operation dependency graph

gregated view of the runtime dependencies as observed in
1635 traces.

Kieker is open-source software. For more information on
Kieker, please refer to

http://kieker.sourceforge.net/

2. REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns — Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[2] I. A. Gul, N. Sommer, M. Rohr, A. van Hoorn, and
W. Hasselbring. Evaluation of control flow traces in
software applications for intrusion detection. In
Proceedings of the 12th IEEE International Multitopic
Conference (IEEE INMIC 2008), pages 373-378. IEEE,
2008.

[3] N. S. Marwede, M. Rohr, A. van Hoorn, and
W. Hasselbring. Automatic failure diagnosis support in
distributed large-scale software systems based on
timing behavior anomaly correlation. In Proceedings of
the 13th European Conference on Software Maintenance
and Reengineering (CSMR 2009), pages 47-57. IEEE
Computer Society, Mar. 2009.

[4] J. Matevska and W. Hasselbring. A scenario-based
approach to increasing service availability at runtime
reconfiguration of component-based systems. In
Proceedings of 33rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages
137-144. ITEEE Computer Society, Aug. 2007.

[5] M. Rohr, A. van Hoorn, S. Giesecke, J. Matevska,

W. Hasselbring, and S. Alekseev. Trace-context
sensitive performance profiling for enterprise software
applications. In Proceedings of the SPEC International
Performance Evaluation Workshop 2008 (SIPEW 08),
volume 5119 of Lecture Notes in Computer Science,
pages 283-302. Springer, June 2008.

[6] M. Rohr, A. van Hoorn, W. Hasselbring, M. Liibcke,
and S. Alekseev. Workload-intensity-sensitive timing
behavior analysis for distributed multi-user software
systems. In Ist Joint WOSP/SIPEW International
Conference on Performance
Engineering (WOSP/SIPEW 2010). ACM, Jan. 2010.
To appear.

[7] M. Rohr, A. van Hoorn, J. Matevska, N. Sommer,

L. Stover, S. Giesecke, and W. Hasselbring. Kieker:
Continuous monitoring and on demand visualization of
Java software behavior. In Proceedings of the IASTED
International Conference on Software Engineering 2008
(SE 2008), pages 80-85. ACTA Press, Feb. 2008.

[8] A. van Hoorn, M. Rohr, A. Gul, and W. Hasselbring.
An adaptation framework enabling resource-efficient
operation of software systems. In Proceedings of the 2nd
Warm-Up Workshop for ACM/IEEE ICSE 2010
(WUP 09), pages 41-44. ACM, Apr. 2009.

