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Abstract

The modernisation of existing software systems is an important topic in software engineering research
and practice. A part of the modernisation of software systems is the restructuring of their architecture.
This has to be done in numerous contexts, including the evolution to service-oriented architectures, the
re-establishment of the maintainability of a system or the smooth migration of a system to a new devel-
opment environment. Architecture restructurings are coarse-grained changes to the internal structure of
the system that are performed in temporally limited projects. The planning of the transfer of a existing
implementation to the target architecture of a system is currently a mostly manual task. While the analysis
of the existing system is supported by e.g. architecture reconstruction approaches, the actual restructuring
process is not supported by current approaches.

The MARE approach, which is introduced in this thesis, was developed to provide support for the
stepwise restructuring of the implementation towards a target architecture. MARE supports architecture
restructurings by semi-automatically creating a complete mapping of elements of the existing implemen-
tation to components of the target architecture. The creation of the mapping bases on explicit knowledge
about the target architecture and its decomposition criteria. MARE employs graph clustering to imple-
ment the creation of the complete mapping.

The MARE Method describes an iterative process model for the overall architecture restructuring pro-
cess. It emphasises the target architecture as the basis for the architecture restructuring. The iterations of
the process model allow for a stepwise restructuring of the system and the integration of human influence
on the result of MARE.

The clustering algorithm employed by MARE to create the complete mapping bases on agglomerative
hierarchical clustering. It is adjusted to incorporate knowledge about the target architecture. The decom-
position criteria are considered by the definition of weights for the different types of dependencies that
relate the elements of the existing implementation.

The MARE approach was evaluated in three case studies. These examined the application of MARE
in small and middle-sized open source projects as well as for an industrial system with 3.5 million lines
of code. The main goal of the evaluation is to show the quality and stability of the clustering algorithm.
It furthermore shows the influence factors for the creation of the complete mapping.
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1 Introduction

This chapter presents the motivation for the support of software architecture restructuring (Section 1.1)
that is researched in this thesis and introduces the proposed solution approach (Section 1.2). The conse-
quent scientific contributions of the thesis are summarised in Section 1.3. Finally, Section 1.4 gives an
overview of the remainder of the thesis.

1.1 Motivation

Architecture restructurings become necessary in a number of software evolution projects. The reasons
for architecture restructuring are manifold and include changing requirements regarding different quality
attributes as e.g. maintainability and performance as well as extensive changes to functional requirements.
Further reasons include the accommodation to new technical platforms, frameworks, or development
paradigms. These are often linked with the improvement of quality attributes or with organisational
necessities as e.g. the ceasing of vendor support of used hard- and software.

Architecture restructuring is defined as a coarse-grained change in the component structure of a system
or the change of its architectural style in the context of this thesis. Such restructurings are planned on the
architectural level, but also have to be transferred to the implementation of the system to make it fit to
the new target architecture. In object-oriented systems this e.g. necessitates the reassignment of classes
to packages.

Section 6.2 describes typical application scenarios for architecture restructuring. The evolution to
service-oriented architectures is a frequently performed paradigm shift that often also requires the re-
structuring of single applications to target architectures that support service-orientation. Since existing
systems are often not designed based on services, an overall restructuring of the systems or the extrac-
tion of implementation of single services become necessary in order to fulfil current requirements. Both
restructuring tasks require a mapping of source elements to the services they implement.

The second application scenario targets the improvement of the quality of a system by re-establishing
its maintainability. The goal of the restructuring in this case is the decomposition of the system into
maintainable modules. These can differ from the grown structure of the system and hence necessitate the
relocation of fine-grained modules as e.g. functions or classes into more coarse grained modules.

Another scenario in which restructuring becomes necessary, is the migration of a system to a new
development environment. To execute such a migration in a feasible way, it is often done in small steps.
Hence, it is necessary to partition the system into suitable migration increments. These constitute the
target components of the architecture restructuring. The goal of a restructuring project is to separate these
increments in the implementation in order to transform them independently into the new development
environment. This also makes it necessary to map source elements to target components.

Since restructuring projects often are of an individual nature, there are many more contexts besides
these three examples. One of these individual contexts is the restructuring of the openArchitectureWare
framework in the course of its integration into the Eclipse Modeling Project as described in the case study
in Section 10.2. Hence, the proposed solution approach has to be generic regarding the target architecture
and its decomposition criteria as wells as the programming paradigms and languages of the existing
systems.
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The aforementioned application scenarios represent different contexts for architecture restructurings. A
common task of all scenarios is the mapping of source elements to target components in order to transfer
the structure given by the target architecture to the implementation of the system. Hence, this has to be
supported by the solution approach.

The support for the planning of architecture restructurings, both on the architectural level as well as for
the transfer to the implementation, is limited. Garlan et al. (2009) introduce support for the former. They
provide methods for modelling and analysing different restructuring alternatives on the architectural level
to enable more sound decisions on coarse-grained evolution paths.

Current support for the transfer of a new architecture to the implementation of a system mainly focuses
on the analysis of the existing implementation and on the reconstruction of the implemented architecture.
This field is well-researched (cf. Koschke (2005)), but does not involve the target architecture. Thus,
such approaches improve the foundation for architectural decisions, but do not support the restructuring
directly.

Such support can be found for fine-grained restructurings as e.g. the merging and separation of classes
to improve the modularisation of a system. However, this support is missing for more coarse-grained
restructurings, e.g. on the level of packages and components. This lack of support is the main motivation
for the introduction of MARE, as described in the following section.

1.2 Solution Approach

To support the transformation of an existing implementation of a software system so that it conforms
to a target architecture in the course of an architecture restructuring project, this thesis introduces the
MARE approach. The goal of MARE is to propose a complete mapping of the structural implementation
artefacts (called source elements in the remainder of the thesis) of the existing system to the components
of the target architecture (called target components in the remainder of the thesis; a definition is given in
Section 6.5 on page 58). Thus, it actively supports the restructuring process. Thereby, MARE is a generic
method that is applicable for systems following different programming paradigms and for different types
of target architectures.

The creation of the complete mapping bases on the decomposition criteria of the target architecture. In
this way, human methods and criteria are adopted by MARE. This is done to produce results that are sim-
ilar to an according human mapping. Thus, the complete mapping created by MARE is comprehensible
for the user and the user has the possibility to provide feedback and change the configuration of MARE
in order to improve the result.

MARE provides an iterative process model for the whole architecture restructuring process with a focus
on the creation of the complete mapping. Further preliminary and follow-up activities like the creation
of the target architecture and the actual restructuring of the implementation are considered in the process
model and discussed in this thesis, but are not part of the contribution.

MARE is a semi-automated approach. The creation of the complete mapping bases on a configuration
provided by the user. This configuration consists of the target architecture and a model of the source
system as well as a partial initial mapping and weights for certain dependencies types that connect source
elements in the source system model. This mapping and the dependency type weights represent the
decomposition criteria of the target architecture in the models employed by MARE.

Another human task is the validation of the complete mapping. Since restructuring projects are highly
individual and there are no extensive experiences with the configuration of MARE yet, it is intended to
adjust the configuration in an iterative process.

MARE employs graph clustering to create the complete mapping. The goal of the MARE clustering
algorithm is to create cohesive clusters that are as close as possible to a mapping a human expert would
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create. Therefore, existing hierarchical clustering techniques are extended by the consideration of the
target architecture in the clustering algorithm. Furthermore, the dependency weights are the main factor
for the composition of clusters.

1.3 Scientific Contribution

The contribution of this thesis has three major parts.

• The MARE Method to support architecture restructuring which incorporates the target architecture
as an essential constituent of the restructuring approach

• The MARE Clustering algorithm that provides a complete mapping of source elements to target
components

• The evaluation of the use of MARE in three case studies

Thus, the thesis makes contributions to the scientific knowledge in the methodical support of archi-
tecture restructuring projects and the evaluation of these methods. The contributions are outlined in the
following subsections.

1.3.1 MARE Method

The MARE approach contributes to the scientific knowledge by providing support for the task of archi-
tecture restructuring. Its objective is to reduce the human effort for creating a complete mapping of source
elements to target components. MARE supports the user by semi-automating this task.

The MARE Method provides an iterative process model that guides the entire restructuring process.
The focus of the method is on the central role of the target architecture for the restructuring process
and the possibility to formalise the its decomposition criteria for the semi-automation of this otherwise
manual task.

MARE proposes the representation of the decomposition criteria by weights of the types of depen-
dencies between source elements that exist in the implementation. An important task for the user is the
selection of the types of dependencies and source elements for the representation of the source system
as well as the weights of the dependency types, which are decisive for the quality of the clustering. For
the selection of the dependency types and their weights, it is important to consider which properties the
target components should have and which dependencies are allowed between them.

1.3.2 MARE Clustering Algorithm

There are several use cases for clustering in software reengineering, mainly in program understanding
and architecture reconstruction. This thesis shows that clustering can also be applied for architecture
restructuring. It is shown how hierarchical clustering can be adjusted in order to better suite the require-
ments of architecture restructuring. Furthermore, the impact of inputs to the clustering algorithm, namely
dependency type weights and information about the target architecture, is discussed.

A clustering algorithm is defined that incorporates this information to create cohesive clusters of source
elements. These clusters are directly mapped to target components and thus do not require further human
interpretation.
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1.3.3 Evaluation of MARE
This thesis provides an extensive evaluation of MARE. The evaluation comprises three case studies. In
these, the approach is evaluated with software systems between 1400 and 3.5 million lines of code, which
are written in Java and C/C++. The systems are from an open source as well as from an industrial context.

The contribution of the evaluation is to show the applicability of MARE for these different types of
systems. Thereby, it mainly targets the quality and the stability of the MARE clustering algorithm. The
evaluation results also show the influence of different types of source elements as well as the dependency
type weights. Thus, it allows the conclusion of early strategies for the configuration of the semi-automatic
approach that has to be provided by the user.

1.4 Overview
This thesis consists of four parts. The first part introduces the underlying foundations of the MARE
approach. Chapter 2 introduces the necessary basics of software architecture. Based on this, Chapter 3
discusses the state of the art of software evolution and modernisation. The foundations and applications
of graph clustering are described in Chapter 4, while Chapter 5 completes the foundations presenting the
concepts of model-driven software development.

The second part presents the MARE approach, which is the core of this thesis. Chapter 6 states the
goals of MARE and the underlying research questions. It also defines central terms and deepens the
motivating application scenarios. The underlying process of MARE as well as its particular activities are
presented in Chapter 7. The essential clustering algorithm that creates the resulting complete mapping is
introduced in Chapter 8.

The evaluation of the MARE approach is the topic of the third part. The methods that were used to
structure the evaluation are described in Chapter 9. The actual case studies and their results are presented
in Chapter 10. Chapter 11 discusses related work of MARE .

The fourth part concludes this thesis with a summary of the results (Chapter 12), a discussion of future
work (Chapter 13), and final conclusions (Chapter 14).



Part I

Foundations





2 Software Architecture

Software architecture is a subdiscipline of software engineering that deals with high-level views on soft-
ware systems. Its goal is to make the development and evolution of complex systems manageable. The
following sections introduce aspects of software architecture that are needed for the understanding of
this thesis. Its fundamental basics (Section 2.1) are described as well as the distinction to the detailed
design of a software system (Section 2.2). In addition architectural styles (Section 2.3), which form the
basis of the target architecture considered in MARE and the relevant architecture metrics (Section 2.4) in
the context of MAREare examined. Furthermore, the phenomenon of architecture erosion (Section 2.5),
which is one reason for architecture restructurings, is introduced.

2.1 Software Architecture Basics
Software architectures are essential to develop and maintain large-scale software systems. Garlan (2000)
introduces six main goals of software architecture:

• Understanding Architecture improves the understanding by a high-level abstract view on a system.

• Reuse Architecture supports the reuse of components and frameworks.

• Construction Architecture defines the abstract structure and major interfaces and constraints, that
guide the construction of a system.

• Evolution Architecture makes expected evolution explicit and separates functionality and connec-
tion mechanisms of components, so that they can evolve separately.

• Analysis Architectures allow for several analyses of the system under study.

• Management Architecture can guide the development process and support the understanding of
aspects of the process.

Various definitions for software architecture exist. The most agreed on definitions are given by the
IEEE Recommended Practice for Architectural Description of Software-Intensive Systems-Description
and the Carnegie Mellon Software Engineering Institute (SEI)1:

Definition: Software Architecture (IEEE Architecture Working Group (2000)) The fundamental
organization of a system embodied in its components, their relationships to each other, and to the en-
vironment, and the principles guiding its design and evolution.

Definition: Software Architecture (Bass et al. (2003)) The software architecture of a program or com-
puting system is the structure or structures of the system, which comprise software elements, the externally
visible properties of those elements, and the relationships among them.

The definition of Bass et al. (2003) emphasises the structure of the system and its externally visible

1http://www.sei.cmu.edu/architecture/start/definitions.cfm
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properties, which are both important aspects of architecture restructuring (cf. Section 3.5). The IEEE
definition is broader and adds a focus on the process of architecting, which is not in the scope of MARE.
Thus, the latter definition will be the reference for the remainder of this thesis.

The documentation of software architecture is manifested in views that concentrate on different con-
cerns of the architecture. The IEEE Architecture Working Group (2000) defines a view as follows:

Definition: View (IEEE Architecture Working Group (2000)) A representation of a whole system
from the perspective of a related set of concerns.

There are several publications that define sets of views for the description of a software system. The
4+1 view model of software architecture by Kruchten (1995) describes five views and their dependen-
cies. The central view is called scenarios and describes the functionality of a software system as use
cases. Based on this view four further views show different aspects of the system, namely the logical
view, the process view, the physical view and the development view.

Hofmeister et al. (2000) describes four architecture views. The conceptual architecture view describes
the components of a system on a level that is close to the application domain. The module architecture
view describes the decomposition of the software into implementation units. These units are mapped to
hardware and software platforms in the execution architecture view. The code architecture view describes
the organisation of the system in terms of source code units, release management, and testing.

Matevska-Meyer et al. (2004) describe views for component-based software systems (cf.Szyperski
et al. (2002)), which are also used by Reussner and Hasselbring (2008). They distinguish a structural,
a dynamic and a resource mapping view. The structural view describes the components and connectors
that make up the system. The dynamic view models the runtime behaviour of the system. The resource
mapping view contains the mapping of components to deployment units or organisational entities.

Based on the views introduced before, Clements et al. (2003, p. 18) define three abstract viewtypes:
the module viewtype, the component-and-connector viewtype and the allocation viewtype. The view-
types focus on structural aspects of a software system and are therefore well-suited as a basis for the
considerations taken in this thesis on architecture restructuring. Furthermore, the module viewtype and
the component-and-connector viewtype can be directly mapped to the different application scenarios of
the MARE method (cf. Section7.3.3). Thus, the following subsections describe these viewtypes and the
modelling of according views in more detail.

The allocation viewtype subsumes views that map the elements of the other two viewtypes to non-
software structures. This corresponds to the resource mapping view of Matevska-Meyer et al. (2004) and
the physical view of Kruchten (1995). The allocation view is not employed in MARE since restructuring
in the meaning of change of the deployment unit allocation of components or change of the allocation of
modules to development teams is not in the scope of MARE.

2.1.1 Module Viewtype

The module viewtype is concerned with the structure of implementation units and their relationships. The
units are called modules and are defined as follows:

Definition: Module (Clements et al. (2003, p. 43)) A module is an implementation unit of software
that provides a coherent unit of functionality.

A module encapsulates design decisions and has clearly defined interfaces. Parnas (1972) provides early
work about the criteria on how to design modules and define the information encapsulated in a module.
Further information on this topic is provided in Section 2.3.2. Modules are units of the design time and
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thus also the units of maintenance (cf. Clements et al. (2003, p. 22)). For this thesis the term module is
further restricted to implementation units that are subject of a systems architecture.

2.1.2 Component-and-Connector Viewtype

The component-and-connector viewtype is concerned with runtime units and their relationships. These
runtime units are called components. The relationships between components are modelled by connectors.
Connectors can e.g. be remote procedure calls or database accesses. Components are runtime entities and
units of deployment. Thereby, there is not mandatorily a unique mapping of components and modules.
Components can contain code from several modules and modules can be used in several components.
Nevertheless, atomic components are often referred to as modules (cf. Szyperski et al. (2002, p. 420) or
Siedersleben (2004, p. 43).

Component-based architectures describe software systems in terms of components. In the thesis the
component definition of Szyperski et al. (2002) is used.

Definition: Software Component (Szyperski et al. (2002)) A software component is a unit of composi-
tion with contractually specified interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third parties.

Siedersleben (2004, p. 42) defines six features of components:

1. A component provides one or more interfaces, that are contractually guaranteed and include a
semantic description.

2. A component requires interfaces of other components.

3. A component hides its implementation.

4. A component is a unit of reuse.

5. Components can contain other components.

6. A component is an essential unit of design, implementation and planning.

Feature 1 to 5 are based on Szyperski et al. (2002), D’Souza and Wills (1999), and the Object Management
Group (OMG) (2007). The last feature is derived from these features and describes the central role of a
component from the viewpoint of Siedersleben (2004).

In the context of architecture restructuring the runtime aspect of the component-and-connector view-
type is of secondary interest. In the terms of Matevska-Meyer et al. (2004) only the structural view of
this viewpoint is considered in the remainder of this thesis. The main difference to the structural view of
the module viewtype is, that the module viewtype represents the implementation, while the component-
and-connector viewtype represents an abstract functional decomposition of the system, which is the way
many users think of software systems in early design phases. Another difference is, that the module de-
composition is strictly hierarchical. A component on the other hand can be contained in more than one
other component, which leads to further challenges in the configuration of a restructuring method and the
interpretation of the results.
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2.1.3 Allocation Viewtype
To complete the overview of the viewtypes described by Clements et al. (2003), this section describes the
allocation viewtype. The views of the allocation viewtype define the mapping of the software artefacts
introduced in the other viewtypes to their environment. Clements et al. (2003) present three different
mappings for this purpose:

• The mapping of components and connectors to the hardware, they are executed on (Deployment).

• The mapping of modules to the file system in order to manage the development.

• The mapping of modules to developers or development teams in order to support project manage-
ment.

2.1.4 Viewtype Modelling
Clements et al. (2003) describe typical modelling notations for the different architecture viewpoints.
Besides other modelling languages, the UML (Rumbaugh et al. (2005)) is described as a commonly
used formal notation for software architectures. More detailed, UML class diagrams are introduced to
create models of the module viewtype, while UML component diagrams are used for the component-
and-connector viewtype. For the latter also architecture description languages (ADL)2 are frequently
used.

In the remainder of this thesis UML component diagrams are used to represent structural models of
component-and-connector views as well as module views. This simplification is made due to the fact that
MARE is designed to be able to work on structural models of both viewtypes without a difference in the
method itself. The specifics and delimitations of this decision are discussed in Section 7.3.3.

2.2 Detailed Design
As stated by Clements et al. (2003, p. 5ff.) the difference between architecture and detailed design is
not strict and depends on context and purpose. Based on this differentiation, the term detailed design is
introduced here. A definition is provided, that aims at the context of architecture restructuring and has
the purpose to differentiate the inputs and results of the MARE approach.

In addition to the differentiation of detailed design and architecture by Clements et al. (2003) a differen-
tiation between modules in architectural and detailed design descriptions is introduced for the remainder
of this thesis. To avoid misunderstandings, fine-grained modules that are subject to the detailed design,
but not to the architecture of a system, are called structural elements.

2.2.1 Definition
According to Abran et al. (2004) the detailed design of a software system describes the specific behaviour
of the components of a software system. In this thesis the detailed design describes the specific structure
of components in the component-and-connector viewtype or of modules in the module viewtype, respec-
tively.

Definition: Detailed Design Detailed design is the representation of the structural elements of a software
system and their dependencies.

2For a comparison of ADLs cf. e.g. Giesecke (2008, p. 57ff.)
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Figure 2.1: Mapping Example

According to the context, the elements of detailed design can be manifold. In the context of architec-
ture restructuring the level of detail depends on the level on which entities of the source system shall not
be divided in order to perform the restructuring. For the different case studies presented in Chapter 10 the
elements of detailed design are e.g. classes or files.

2.2.2 Modelling

As described in 2.1.4, coarse-grained architectural elements like modules, subsystems or runtime com-
ponents are modelled using UML component diagrams. The mapping of structural elements, which are
considered to be the entities of detailed design, to these coarse-grained elements is depicted by compo-
nents containing classes, which represent the fine-grained modules. Figure 2.1 gives an example of the
component Component 1 containing the structural elements A, B and C.

2.3 Architectural Styles

Only the coarse-grained architectural styles, which contribute to the understanding of the thesis are in-
troduced in this section. These coarse-grained styles are the basis for the target architecture and thus
influence the architecture restructuring process. Further detail on architectural styles is presented by
Clements et al. (2003) and Giesecke (2008). Early work on architectural styles was published by Abowd
et al. (1993) and Perry and Wolf (1992). Clements et al. (2003) define architectural style as follows:

Definition: Architectural Style (Clements et al. (2003)) An architectural style is a specialisation of
element and relation types, together with a set of constraints on how they can be used.

In the following Layered Architecture and Decomposition are introduced as styles of the module view
as well as Service-Oriented Architecture as a style of the component-and-connector view. These coarse-
grained architectural styles were chosen since they are frequently used in current architectures that serve
as target architectures for MARE. The decomposition style is furthermore an important basis for the
processing of the target architecture in MARE.
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2.3.1 Layered Architecture

The layered architecture style is a style of large software systems (according to Lilienthal (2009) begin-
ning from 100,000 LOC). A layered architecture defines layers of modules with strict rules between the
layers. According to Clements et al. (2003) each layer represents a virtual machine, where a virtual ma-
chine is defined as follows: A virtual machine is an abstract computing device; typically, it is a program,
that acts as an interface between other software and actual hardware (or another virtual machine). Such
a layer should provide an interface offering cohesive services. Layers have a strict ordering, such that a
higher layer is only allowed to use the next lower layer, but no higher layers. Many layered architectures
in practice are non-strict layered architectures, i.e. layers are allowed to use the next lower layer or layers
below it.

2.3.2 Decomposition

Clements et al. (2003) describe decomposition as an architectural style of the module viewpoint. The style
represents the partitioning of a system in modules and their submodules. The decomposition style serves
several purposes: the allocation of responsibilities, the communication of a broad picture of the architec-
ture, and the predefinition of the modifiability of the system. Typically two dimensions of decomposition
are relevant in practice: technological and functional decomposition (cf. Heckel et al. (2008)).

The technological decomposition of a system represents a mapping of source elements to the chosen
technological implementation and their relations to technological frameworks and libraries. The func-
tional decomposition of a system represents a mapping of source elements to the functional requirements
of the system. In service-oriented architectures, services provide functional interfaces to the system, that
conform to business functions. Services are typically implemented by components; these encapsulate the
implementation of a services from a particular domain.

Siedersleben (2004) views decomposition on the level of single systems. He introduces software cate-
gories and states that atomic components should belong to exactly one category. Composite components
may contain components of several categories. The categories defined for information systems are A for
application-specific software and T for technology specific software. The idea behind this distinction
is that A- and T-software have different change cycles and hence the separation of these categories im-
proves maintainability. Arsanjani et al. (2008) also distinguish Functional Components and Technical
components in the context of service-oriented architectures.

Typically the technological decomposition in form of a layered architecture (cf. Section 2.3.1) is the
dominant decomposition in the development of single software systems or system families. For system
landscapes paradigms as SOA (cf. Section 2.3.3) a functional decomposition for the definition of domains
and services is proposed.

For single systems, the technological decomposition eases the separation of concerns in the devel-
opment and is assumed to improve the maintainability of the system and support the reusability of its
implementation. Parnas (1972) proposes a decomposition based on design decisions and their foreseen
frequency of change in favour of a decomposition based on functional requirements. The functional de-
composition on the other side allows a more direct mapping of requirements to the implementation and
eases the communication with users and domain experts. E.g., Stahl et al. (2007) propose to concentrate
on technological aspects (architecture-centric model-driven software development) for the introduction of
model-driven software development, since it supports the maintainability of a system and the development
efficiency. But they also propose to put domain-specific abstractions on top of mature technology-centric
methods to improve the communication with other stakeholders (cf. Stahl et al. (2007, p. 336)). Similar
methods are developed in the context of Domain-Specific Modelling (cf. Tolvanen and Rossi (2003)).

Evans (2004) introduces Domain-Driven Design (DDD). The core of DDD are methods to build a do-
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main model and to map this model to the implementation of the system. As such DDD provides methods
for the functional decomposition of the domain. It also describes how to fit this into the technological
decomposition of a corresponding software system.

Clements et al. (2003) describe the following three purposes of the decomposition:

• The achievement of quality attributes as e.g. modifiability and performance

• The decision whether modules from other systems or commercial modules are (re-)used

• The implementation of a product line

The decomposition criteria for a concrete architecture base on the decisions that are associated with this
purposes and have to be customised for the given context. In MARE, the concrete decomposition criteria
are the basis for the mapping of source elements to target components.

2.3.3 Service-Oriented Architectures

Service-oriented architecture (SOA) is an architecture paradigm for distributed systems, that is espe-
cially promoted in the domain of business information systems. It can also be seen as an architectural
style (Baresi et al. (2006)). There is no common definition of SOA. Nevertheless, the literature (e.g. Erl
(2005), Krafzig et al. (2004), and Josuttis (2007)) exposes common features of a SOA as e.g. separation
of concerns, loose coupling, interoperability, and heterogeneity. Methods for the introduction of a SOA
are provided by Quasar Enterprise (Engels et al. (2008)) and the Service-Oriented Modeling and Archi-
tecture (SOMA) method (Arsanjani et al. (2008)). Channabasavaiah et al. (2004) examine the industrial
motivation for the introduction of a SOA, while Gimnich (2007) concentrates on abstract technological
tasks for the introduction.

The definition of the term service as the central concept of a SOA is also controversial in literature and
practice. The OASIS Reference Model for Service Oriented Architecture abstractly defines a service as
follows.

Definition: Service (Organization for the Advancement of Structured Information Standards (OA-
SIS) (2006)) The performance of work (a function) by one for another.

The term is concretised by the following properties (Organization for the Advancement of Structured
Information Standards (OASIS) (2006)):

• A service is a mechanism to enable access to one or more capabilities.

• A service is provided by an entity (the service provider).

• A service is accessed by means of a service interface.

• A service is opaque in that its implementation is typically hidden from the service consumer.

In SOA the functional decomposition of a domain becomes the guiding aspect of development (Engels
et al. (2008)). Functional decomposition is the basis for the definition of services and applications that
provide these services. From the viewpoint of component-based systems, a service can also be seen as
a deployed component. The concentration on the functional decomposition does not contradict the best
practice of technological decomposition and layered architectures for single software systems, since the
focus of SOA is on application landscapes or large software systems.
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Services can be combined to business processes in order to fulfil more coarse-grained functionalities.
This combination of services in an enterprise is called orchestration. In contrast to orchestration, chore-
ography of services describes the service-oriented collaboration of different enterprises. An example for
the application of orchestration in the context of grid computing was introduced by the BIS-Grid project
as described by Hasselbring (2010).

2.4 Architecture Metrics

To measure the quality of an architecture, appropriate metrics are needed. Since this thesis focuses
on the structural aspects of architectures coupling and cohesion were chosen as main quality metrics.
They are commonly referred to as major design principles of software architectures. Existing metrics for
coupling and cohesion are described in the following subsections. There are further metrics for special
paradigms, as e.g. the depth of the class hierarchy for object-oriented systems, which are not considered
here. For further details see Harrison et al. (1997) which give an overview of object-oriented metrics.
Bengtsson (1998) adapts chosen object-oriented metrics to the architecture level to support the prediction
of maintainability.

2.4.1 Coupling

The IEEE (1990) defines coupling as follows:

Definition: Coupling (IEEE (1990)) The manner and degree of interdependence between software mod-
ules.

Stevens et al. (1974) describe the reduction of coupling as the minimisation of connections between
modules. They further state, that coupling is lower for connections to the interface of a module than
for connections to internal elements of a module, which are assumed to change more frequently. Mar-
tin (1994) accordingly terms dependencies to stable targets as good dependencies. A simple example
are external accesses to attributes in contrast to external accesses to methods that use these attributes in
object-oriented systems. The latter use the stable interface of a class, while the former access internals of
a class that should be hidden.

In the context of architecture restructuring in this thesis it is not intended to measure the quality of the
target architecture in terms of the coupling induced by the intended interface uses. It is rather necessary to
measure the quality of the complete mapping which can introduce dependencies that do not conform to the
target architecture. These types of coupling, which conform to dependencies to unstable target in terms
of Martin (1994), should be minimised, since they influence the restructuring of the implementation.

2.4.2 Cohesion

Stevens et al. (1974) describe cohesion as the binding of elements inside a module. They introduce
cohesion as a counterpart to coupling and as a concept to maximise relationships among elements in
the same module and minimise relationships between elements in different modules. The IEEE (1990)
defines cohesion as the manner and degree to which the tasks performed by a single software module are
related to one another.

There are also several definitions of concrete metrics for cohesion based on different notions of the term
module. Emerson (1984) defines a cohesion metric on the procedure or function level. The definition is
based on paths through a function and defined using flow graphs. Emerson (1984) formulates conditions
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Figure 2.2: LCOM Connectivity Example

for the application of the metric, which require a single entry point for each module and special properties
for executable statements. Thus, the metric is not usable in the context of modules and components as
defined in this thesis.

Chidamber and Kemerer (1994) define the cohesion of classes in object-oriented system in terms of
lack of cohesion between methods in a class. Their LCOM (Lack of Cohesion in Methods) metric counts
the pairs of methods, that do not use the same instance variables. Hitz and Montazeri (1995) show cases in
which LCOM provides unintuitive results. They redefine LCOM in graph-theoretic terms as the number
of connected components in a graph. The basis of the definition is a graph with methods as vertices and
method calls and accesses to equal instance variables as edges.

Hitz and Montazeri (1995) provide further cases in which all methods use the same instance variables,
but that nevertheless intuitively show different cohesion. Figure 2.2 depicts an example, that shows two
graphs for which LCOM = 1. To distinguish these cases Hitz and Montazeri (1995) define a metric that
maps the connectivity of the graph to the interval [0, 1]. The metric is defined as follows:

Connectivity = 2∗ |E|− (n−1)
(n−1)∗ (n−2)

(2.1)

with n being the number of nodes (methods) and E being the set of edges (relationships between meth-
ods) in the graph. LCOM was chosen as an exemplary metric for cohesion, since it is one of the most
widespread in literature. Furthermore, LCOM and Connectivity are used as a basis for the measurement
of the cohesion of coarse-grained modules in the context of MARE.

2.5 Architectural Erosion

Perry and Wolf (1992) introduced the notions of architectural erosion and architectural drift. Both ad-
dress the phenomenon that changes to software systems become harder to realise the longer the system
is maintained. The two terms are distinguished by their cause and effect. Architectural erosion is defined
as the result of architecture violations, which lead to an increase of problems in the system. Architec-
tural drift on the other hand is described as the result of the insensitivity of the developers about the
architecture, which leads to inadaptability of the system. Another term used for the description of the
phenomenon is architectural decay (e.g. Riebisch and Bode (2009)).
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Medvidovic and Jakobac (2006) use the term architectural erosion for the discrepancy between the
documented and the implemented architecture. Frequently named reasons for these discrepancies are
cost and time pressure for maintenance projects or inadequate documentation of the architecture and the
rules it implies for the development of a system. According to Perry and Wolf (1992) architectural drift
also causes architectural erosion.

Parnas (1994) talks about software aging and states that it is not only a problem of defectively designed
software, but can occur in every software system. He describes preventive actions against software aging,
but also lists reasons why these are not used in practice. In this context, it has to be clarified, that
architecture erosion is not only a problem of software developed using outdated development paradigms,
but also occurs in modern object-oriented or component-based systems. Following Parnas, many design
principles that can help to prevent erosion are long known, but they are often ignored in practice. But
even if these principles are applied, architecture erosion still remains a problem, since its avoidance is
based on the predictability of future changes. These assumptions of Parnas are confirmed by van Gurp
and Bosch (2002), who evaluated design erosion of an exemplary system.

Architectural erosion is one of the reasons that complicate the understanding and the maintenance of
software systems and raise the costs of changes. That led to several research approaches in the field
of software evolution and modernisation which are described in the next chapter. These approaches try
to reduce the effect and the impact of architecture erosion and re-establish the intended architecture.
The complication of maintainability by architectural erosion is also one of the reasons for architecture
restructuring projects, if the implemented architecture shows large differences to the intended architecture
or a new architecture is developed that better suits the current architectural requirements.
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This chapter presents in overview on the basics and current approaches in the area of software evolution
and modernisation that are important in the context of MARE. Section 3.1 introduces the broad field of
reengineering of which architecture restructuring is a subdiscipline. Section 3.2 gives a broad overview
on migration which is a field of application for MARE. Reverse engineering, as described in Section 3.3
is used in MARE to gain knowledge about the existing system that is needed for the creation of the
complete mapping. Section 3.4 introduces architecture reconstruction, which is a field of application
of related approaches to MARE, which use similar methods. Sections 3.5 describes restructuring and
architecture restructuring. It presents the current state of the art and related approaches of MARE with
similar goals.

Software systems evolve over time. The evolution has several reasons and different scales during the
software life cycle. The evolutionary process of software after its delivery is called software maintenance.
The ISO/IEC (2006) defines software maintenance as follows:

Definition: Software Maintenance (ISO/IEC (2006)) Software maintenance is the process of modi-
fying a software system or component after delivery to correct faults, improve performances or other
attributes, or adapt to a changed environment.

Furthermore, they define four categories of maintenance:

• Corrective maintenance Reactive modification of a software product performed after delivery to
correct discovered problems.

• Adaptive maintenance Modification of a software product performed after delivery to keep a
software product usable in a changed or changing environment.

• Perfective maintenance Modification of a software product after delivery to improve performance
or maintainability.

• Preventive maintenance Modification of a software product after delivery to detect and correct
latent faults in the software product before they become effective faults.

A further categorisation is given by terming adaptive and perfective maintenance enhancements and pre-
ventive and corrective maintenance corrections, while preventive and perfective maintenance are proac-
tive and corrective and adaptive maintenance are reactive. Table 3.1 gives an overview of these categories.

Table 3.1: Maintenance Categories (Source: Abran et al. (2004)

Correction Enhancement
Proactive Preventive Perfective
Reactive Corrective Adaptive

According to Ulrich (2004) software modernisation ‘begins where existing practices fall short’. He also
states that ‘modernization examines, exposes and facilitates the refactoring, redesign and redeployment
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of core application architectures with the intent of meeting critical business requirements in a way that
lowers risks, costs and delivery timeframes’. I.e. modernisation becomes necessary when requirements
can not be implemented on the basis of the existing system anymore with reasonable effort. Modernisation
is then used to transform the system into a state that enables the envisioned changes.

Thus, software modernisation can be seen as a large software evolution step. Typically software mi-
gration belongs to this category. Migration in the common understanding denotes the transformation of
a software system from one environment to another without changing its functionality. Examples are
the migrations to new operating systems or programming languages or migrations to new development
paradigms as e.g. object-orientation or service-oriented architectures.

Abran et al. (2004) lists program comprehension, reengineering and reverse engineering as techniques
for maintenance. The remainder of this chapter will describe these topics in more detail, beginning
with reengineering, migration, and reverse engineering as basic terms in Sections 3.1 to 3.3. Further
topics are architecture reconstruction in Section 3.4 as well as restructuring and architecture restructuring
(Section 3.5) as fundamental reengineering methods, that are the basis for the topic of this thesis.

3.1 Reengineering

Reengineering is a task that performs fundamental changes to an existing software system, mostly with
the purpose to improve the quality of the system. The most common definition of reengineering is given
by Chikofsky and Cross (1990):

Definition: Reengineering (Chikofsky and Cross (1990)) Reengineering, also known as both reno-
vation and reclamation, is the examination and the alteration of a subject system to reconstitute it in a
new form and the subsequent implementation of the new form.

Following this definition reengineering can be subdivided into three parts: Reverse Engineering, Re-
structuring and Forward Engineering. This conforms to the horseshoe model presented by Kazman et al.
(1998). It is a metaphor for the integration of code-level and architectural reengineering. The model as
shown in Figure 3.1 represents the reverse engineering of the current system on the left-hand side and the
forward engineering of the new system on the right-hand side. The restructuring step is done by an ar-
chitecture transformation from the recovered source system architecture to the target system architecture.
According to Kazman et al. (1998) the architecture transformation is the context of further transforma-
tions on the lower levels of abstraction. The horseshoe model is used in this thesis as a basis for the
architecture restructuring process in the MARE Method.

A detailed description on reverse engineering and architecture reconstruction is given in Section 3.3
and in Section 3.4. Restructuring and architecture restructuring as a special case of an architecture trans-
formation are described in Section 3.5. Since forward engineering is not in the focus of this work, there
will be no further discussion on this topic here. For completeness the definition of Chikofsky and Cross
(1990) is provided.

Definition: Forward Engineering (Chikofsky and Cross (1990)) Forward engineering is the tradi-
tional process of moving from high-level abstractions and logical, implementation-independent designs
to the physical implementation of a system.

According to Abran et al. (2004) one of the main reasons for reengineering is to replace aging legacy
software. As a minor reason the improvement of maintainability of the system is mentioned.
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cally structured) abstractions from lower level components

through partially automated and expert-driven pattern

matching processes, architectural tools focus more on issues

regarding recognition of concepts such as architectural styles

and design patterns [5,11] rather than of “program plans”

[27,17].

The creation of architecture-level reengineering tools is

motivated by the realization that it is crucially important to

be able to extract, reason about, and evolve software archi-

tectures. A software architecture is the earliest realization of

a software system’s organization and thus embodies the most

fundamental and hardest to change design decisions [2]. As

such, it has a strong determining effect on:

• the system’s realization of quality attributes, such as per-
formance, modifiability, availability, security, etc.

• the work breakdown structure of the development; this
will be determined by the breakdown of modules or sub-
systems within the architecture

• planning for a software product line, based upon a com-
mon architecture and a set of shared assets

For these and other reasons, it is important to be able to

extract, reason about, analyze, and reengineer a system’s

software architecture in conjunction with its code. For exam-

ple, a typical reengineering effort these days is to rewrite a

large scale monolithic COBOL data processing application

as a distributed client-server application in C++.

The goal of this paper is to describe how such a reengi-

neering task might proceed, what tool support it requires,

and how an unified model of the artifacts shared among such

tools is necessary to effectively carry out the task. This goal

will be realized through a presentation of CORUM II, a revi-

sion of the original CORUM framework extended to include

concepts and tools from software architecture.

2: The Horseshoe

For the purposes of exposition we have created a visual

metaphor of the integration of code-level and architectural

reengineering views of the world. The process of moving

and mapping between these views within the overall reengi-

neering task is presented as a “horseshoe”. The horseshoe is

a framework on which we will hang the many analytical and
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[17,18,27]. In particular, the CORUM II horseshoe can be
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ous hierarchies.

The horseshoe, shown in Figure 1, is divided into three

related processes, operating across four levels of software

representation. The first process (going up the left hand side

of the horseshoe) is code and architecture recovery and con-

formance evaluation. Here, the architecture of an existing

system is recovered from extracted source code artifacts.

Included in this process is an architectural conformance step,

in which the as-built architecture is compared with the as-

designed architecture (if available) and deviations are noted.

The discovered architecture can also be evaluated with

respect to known architectural styles and analytic models to

more clearly understand the architecture’s fitness with

respect to a variety of quality attributes, such as perfor-

mance, reliability and security.

Given the existence of a desired new architecture based

on specific new system requirements, the second process in

the horseshoe is one of architectural transformation. In this

step the as-built architecture is reengineered to become the

desired new architecture. This new architecture will also be
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Figure 1: The HorseshoeFigure 3.1: The Horseshoe Model (Source: Kazman et al. (1998))

3.2 Migration
The term migration is commonly used for the transformation of a system from one environment to another
without changing its functionality. Gimnich and Winter (2005) distinguish four kinds of migration:

• Hardware Migration is the migration of a system between two hardware environments, e.g. from
a mainframe to a server environment.

• Runtime Environment Migration is e.g. the migration from one operating system to another.

• Development Environment Migration, e.g. the migration from COBOL to Java.

• Architecture Migration is the change of the system structure. In the context of this thesis it
is referred to as architecture restructuring. Practical aspects of the topic are also discussed by
Krieghoff et al. (2008).

According to Brodie and Stonebraker (1995) there are two principal migration strategies: Cold Turkey
and Chicken Little. The Cold Turkey strategy, also known as Big Bang, replaces the existing system in one
step by a newly developed software system with the same functionality. The Chicken Little strategy, also
known as Smooth Migration, on the other hand proposes an incremental replacement or transformation of
the system. Based on these basic strategies several migration processes were introduced in the literature
(e.g. Ackermann et al. (2005), Gimnich and Winter (2005) and Boos et al. (2006)).

Hasselbring et al. (2004) introduce a pattern for the smooth migration of information systems from
a monolithic system to a multi-tier architecture. This pattern, called DUBLO (DUal Business Logic),
promotes the dual definition of business logic in the new and the old environment. Both environments
are connected via standardised interfaces. Thus, new logic, implemented in the new environment, can use
functionality and data of the old implementation. The next step is to perform a stepwise transformation of
the logic implementing these interfaces to the new environment in order to improve the maintainability of
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the system and in the end completely replace the old system. Teschke et al. (2004) describe methods for
the identification of web service interfaces in the context of DUBLO. The further definition of migration
steps and the decision process for the decision which parts of the implementation are to be migrated in a
certain step are not discussed for DUBLO. Section 6.2.3 describes how MARE can be used to plan these
steps on the basis of the identified web services.

In recent years several approaches were developed, that introduced the automation of migration sce-
narios using model-driven technologies (e.g. Hunold et al. (2008), Kühnemann and Rünger (2006) and
Fleurey et al. (2007)). Most of these approaches concentrate on the migration of the development en-
vironment. They create complete models of the implementation of the software systems and transform
these models to models based on programming language. Problems like the migration from one program-
ming paradigm to another, the migration from procedural to object-oriented programming in the course
of a migration from COBOL to Java, are however not addressed. Also, the restructuring of the architec-
ture, that becomes necessary, when the environments require different architectural styles, is usually not
subject of the discussion.

3.3 Reverse Engineering

Reverse engineering is an important method of software evolution and the initial phase of reengineering
(Mens and Demeyer (2008)). This phase is used to gain information about a system under study by creat-
ing abstract views of the source code. A common definition of reverse engineering is given by Chikofsky
and Cross (1990):

Definition: Reverse Engineering (Chikofsky and Cross (1990)) Reverse engineering is the process
of analyzing a subject system to identify the system’s components and their interrelationships and create
representations of a system in another form or at a higher level of abstraction.

An important property of reverse engineering is, that it is passive (Abran et al. (2004)). I.e. it does
not change the implementation of a system under study, but is only used to gain information about the
system. A typical approach to reverse engineering is to extract all relevant facts from the source code
of a system and store them in a repository (Ebert et al. (2008)). From this basis further analyses can be
conducted to create more abstract views of the source code and improve the understanding of the system.
Jahnke (2008) emphasises that reverse engineering is goal-driven. It is typically used from some point
of the maintenance process, when the knowledge of the system is insufficient to adequately change the
system and be able to predict the consequences of the change.

Müller et al. (2000) present a roadmap on reverse engineering that highlights present and future topics
of reverse engineering. Furthermore, they give an overview on tools and reverse engineering processes.
They also highlight, that reverse engineering and program understanding should be applied continuously
to keep track of the properties of the implementation. The continuous update of information about the
system ensures the quality of the implementation and can make expensive reverse engineering projects
obsolete. Corresponding methods are e.g. provided by tools like Bauhaus,1 Sotograph,2 or CAST.3

The extraction of knowledge from the source code can be implemented using two principally different
methods, namely static analysis and dynamic analysis. Both will be described in the following subsec-
tions. Another method to gain knowledge about a system is the analysis of further sources besides the
programming language source code. Possible sources for this analysis are described in Section3.3.3.

1http://www.axivion.com/
2http://www.software-tomography.ch/
3http://www.castsoftware.com/
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As can be seen in the left part of Figure 3.1, reverse engineering can lead to specific representations
of a software system on different abstraction levels. For this thesis the architectural level is of special
interest. Therefore approaches for the reverse engineering to an architectural abstraction level is covered
in more detail in Section 3.4.

3.3.1 Static Analysis

Static source code analysis is the most investigated method in literature to gain knowledge about a soft-
ware system. It results in a model that contains the entities of the software system and their relationships.
A limitation of static analysis is that it is only able to reconstruct which relations are possible in the
system, but not which are really used in the running system.

3.3.2 Dynamic Analysis

Dynamic analysis tackles the limitation of static analysis not to be able to reconstruct dynamic properties
of the running system. In order to gain such knowledge, the source code is instrumented or interpreted
for special use cases. The instrumentation focuses on certain properties to be found and logs the data
in traces or call graphs. These represent the control flow through a system and enable the analysis,
which source code has really been executed. A current approach for non-intrusive instrumentation and
subsequent monitoring of the system is the Kieker framework presented by van Hoorn et al. (2009).

Xie and Notkin (2002) present a case study about Java call graph extractors. They focus on the dif-
ferences of call graph extraction for reverse engineering and other usages, such as compiler optimisation
or performance analysis. They also state that dynamic call graphs require some complementary static
information and an effective representation to aid program understanding. Thus, dynamic analysis is
mostly combined with static analysis to gain a complete picture of the system under study.

3.3.3 Analysis of other artefacts

For many software systems there are more artefacts than the mere source code that can be analysed to
gain information about the system. These artefacts are e.g. source code comments and all kinds of further
documentation from textually captured requirements to architectural documents and diagrams using UML
or other formal or informal notations. Also information about the implementation history like repository
logs that enable the reconstruction when a certain part of the code was developed or by whom it was
developed can be of interest for reverse engineering.

3.4 Architecture Reconstruction
Architecture reconstruction, also known as architecture recovery, is a part of the reverse engineering
process (cf. Bauer and Trifu (2004)). Van Deursen et al. (2004) describe it as the process of obtaining
a documented architecture for an existing system. As such it is aimed at the high-level understanding of
existing software systems for which documentation and especially architectural documents are rare.

Architecture reconstruction is a necessary precondition for manual architecture restructuring processes
and also reveals design flaws in existing systems and can therefore be used to improve the quality of
existing software systems. According to this, Medvidovic and Jakobac (2006) denominate architectural
erosion (cf. Section 2.5) as the main motivation for architecture reconstruction methods. Van Deursen
et al. (2004) state the realisation of migrations, auditing, application integration, or impact analysis as
main drivers for architecture reconstruction.



22 3 Software Evolution and Modernisation4

Goals

Processes

Techniques

Outputs

InputsSAR

Hybrid

Bottom-Up

Top-Down

Semi-Automatic

Quasi-Manual

Quasi-Automatic

Abstraction

Investigation

Construction

Exploration

Redocumentation

Reuse

Conformance

Analysis

Co-Evolution

Evolution

Related Artifacts

Styles

Viewpoints

Graph Pattern Matching 

Recognizers

State Engine 

Maps 

Source Code

Dynamic Information

Historical Information

Physical Organization

Human Expertise

Human Organization

Textual Information

Logic Queries 

Programs 

Lexical Queries 

Relational Queries

Architecture

Conformance

Analysis

Horizontal

Vertical

Visual
Clustering

Dominance 

Matrix

Concepts

Non-architectural

Architectural

Fig. 2. A process-oriented taxonomy for SAR

A. Rearchitecting Goals

Several authors have categorized architecture roles in soft-
ware development [48]; the roles involved in an architecture
define the motivations for rearchitecting. In particular, Kazman
and Bass have a pragmatic categorization of business goals [73]
that motivate having an architecture in the first place. Similarly,
in the context of maintenance, architecture reconstruction
should answer the business objectives of stakeholders; it is a
proactive process realized for future forward engineering tasks.

Knodel et al. identified ten distinct purposes or needs [83];
however, the purposes they present simultaneously are too
narrow and do not cover all goals. This is why we do not
use them for the present article. To classify SAR approaches
in Table I, we grouped these purposes into six main goal
categories refining the goals mentioned by Garlan [48].

Redocumentation and understanding: The primary goal
of SAR is to re-establish software abstractions. Recovered
architectural views document software applications and help
reverse engineers understand them [165]. For instance, the
software bookshelf introduced by Finningan et al. illustrates
this goal [12, 42, 67, 144]. Svetinotic and Godfrey state that
not only the recovered architecture is important, but also its
rationale, i.e., why it is as it is [155]. They focus on the
architecture rationale forces to recover the decisions made,
their alternatives, and why each one was or was not chosen.

Reuse investigation and product line migration: Software
product lines allow one to share commonalities among products
while getting customized products. Architectural views are
useful to identify commonalities and variabilities among
products in a line [36, 129, 149]. SAR has also been used
in the context of service-oriented architectures, to identify
components from existing systems that can be converted into

services [120].
Conformance: To evolve a software application, it seems

hazardous to use the conceptual architecture because it is often
inaccurate with respect to the concrete one. In this case, SAR
is a means to check conformance between the conceptual
and the concrete architectures. Murphy et al. introduced the
reflexion model and RMTool to bridge the gap between high-
level architectural models and the system’s source code [114,
115]. Using SAR, reverse engineers can check conformance of
the reconstructed architecture against rules or styles like in the
SARTool [41, 86], Nimeta [134], Symphony [165], DiscoTect
[180], Focus [24, 104] and DAMRAM [105].

Co-evolution: Architecture and implementation are two
levels of abstraction that evolve at different speeds. Ideally these
abstractions should be synchronized to avoid architectural drift.
Tran and Holt propose a method to repair evolution anomalies
between the conceptual and the concrete architectures, possibly
altering either the conceptual architecture or the source code
[162]. To dynamically maintain this synchronization, Wuyts
uses logic meta-programming [179], and Mens et al. use
intensional source-code views and relations through Intensive
[108, 109, 179]; Favre [38] uses metaware (i.e., meta- and meta-
meta-models); Huang et al. [69] use a reflection mechanism
based on dynamic information.

Analysis: An analysis framework may steer a SAR frame-
work so that it provides required architectural views to compute
architectural quality analyses. Such analysis frameworks assist
stakeholders in their decision-making processes. In ArchView
[126], SAR and evolution analysis activities are interleaved.
QADSAR is a tool that offers several analyses linked to
threads, waiting points and performance properties [150, 151].
Moreover, flexible SAR environments such as Dali [74, 78],

Figure 3.2: Architecture Reconstruction Taxonomy (Source: Ducasse and Pollet (2009))

Ducasse and Pollet (2009) present a taxonomy of architecture reconstruction. Figure 3.2 shows the
categories of the taxonomy. The categories are subsumed in five groups: the goal of the reconstruction,
the main process type, the inputs used as information source, the used techniques and the target output of
the approach. In the paper they classified 34 different approaches using the taxonomy.

The following sections describe methods for architecture reconstruction based on different input data.
Approaches are distinguished by the fact whether they employ architectural information or not. Since
MARE makes strong use of architectural information for the restructuring, approaches that also include
this input are methodologically close to MARE although they follow a different goal. Thus, this category
of the aforementioned taxonomy is the most relevant in the context of MARE.

While most approaches only use the source code and its implicit architectural information to support
the reconstruction of explicit architectural information of a system under study, there are also some ap-
proaches that employ hypothetical architectural information from the user. For these approaches reference
architectures can e.g. be used as an initial starting point. Furthermore, these techniques can be used to re-
veal architectural flaws in the implementation. Subsequent to these approaches architecture conformance
checking is briefly introduced. Conformance checking (cf. Section 3.4.3) is not directly concerned with
architecture reconstruction, but can also be used to discover architectural flaws and as a starting point for
manual architecture restructuring.

3.4.1 Architecture Reconstruction Based on Source Code

Most architecture reconstruction approaches, that are documented in the literature focus on the recon-
struction of architectural information from the source code as the only source of knowledge about the
system. The reason for this is, that reconstruction in practice is mainly applied to legacy systems, for
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which the source code is the only source available. Typically architecture reconstruction approaches fur-
ther concentrate on the reconstruction of structural information, i.e. the decomposition of the system into
modules. The main criteria for the reconstruction of these modules are cohesion and coupling. Thus, the
approaches assume that the system was build with at least an architectural blueprint in mind. Another
implicit assumption is, that architectural erosion has not progressed too far, because this sophisticates the
result of the reconstruction.

Koschke (2005) presents an extensive overview on the current state of architecture reconstruction meth-
ods. He also provides an overview which architecture viewtype (as described in Section 2.1) is recon-
structed by these approaches. It is shown, that the major part of reconstruction methods create views
in the module viewtype, while just a few approaches create views in the component-and-connector or
the allocation viewtype. It can further be seen that most approaches concentrate on special parts of the
architecture like e.g. class hierarchies, interface descriptions or design patterns.

In general, automatic architecture reconstruction methods do not produce an architectural view that
fully conforms to a manually reconstructed architecture. This aspect is e.g. reflected by the Information
Interpretation step in the general architecture reconstruction process presented by Van Deursen et al.
(2004). The main reason for this is, that there are often no direct equivalents to architectural entities in
the implementation and that architecture views are goal-driven and strongly influenced by the rationale
of the designer. Hence, in most cases a manual revision of the automatic results is necessary (cf. Fahmy
and Holt (2000)).

3.4.2 Architecture Reconstruction Employing Architectural Information

The most prominent approach in this field is the reflexion method. This section will describe this method
and some extensions made to it. Furthermore, a second approach called Focus is presented.

3.4.2.1 Reflexion Method

The reflexion method was originally developed by Murphy et al. (1995) in order to provide support for
architecture reconstruction based on the comparison of architectural models and the actual source code
of a system. The reflexion method takes an architectural model and a mapping of its elements to the
source code as user-defined inputs. The architectural model represents the hypothesised module view
of the system under study and reflects the expectations of the user. The elements of the hypothesised
architecture are mapped to implementation entities of the system under study.

From these inputs a reflexion model is computed. The reflexion model represents a comparison be-
tween the expected architectural model and the current implementation. It indicates convergent and di-
vergent dependencies between the elements described in the architectural model in comparison to the
source code as well as expected dependencies that do not exist in the source code. Figure 3.3 illustrates
this procedure.

The process of the reflexion method is iterative. In each iteration further source code entities are added
to the mapping and existing mappings can be changed. After that a new reflexion model is computed and
presented to the user. The goal is to find a decomposition with minimal coupling and maximum cohesion.

Koschke and Simon (2003) extend the reflexion method by the possibility to define hierarchical hypoth-
esised module views, which is necessary to apply the method to complex systems. The main discussion of
the paper is how lifted references between elements in the hypothesised architecture have to be handled.

In the original reflexion method the mapping of implementation entities to elements of the hypoth-
esised architecture has to be done manually. Christl et al. (2005) extend the reflexion method by a
semi-automatic mapping using clustering techniques. The mapping process is iterative and starts with
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Figure 3.3: The Reflexion Method (Source: Murphy et al. (2001))

the manual mapping as an initial seed of implementation entities. The clustering algorithm then automat-
ically adds all implementation entities to this mapping that unambiguously belong to one of the seeds.
Further entities are proposed for each seed, indicating the probability of their belonging to the different
seeds. After an agreement of the user further entities can be iteratively mapped. In Christl et al. (2007)
the attraction functions used to execute the clustering are described in more detail and the quality of the
automatic mapping is evaluated in four case studies.

3.4.2.2 Focus

Focus, as described in Medvidovic and Jakobac (2006), is an approach to reconstruct the component-
and-connector viewpoint of existing object-oriented systems and furthermore aims at rearchitecting the
system. Focus is an iterative approach in which the partly reconstruction of the architecture and the evo-
lution of the system alternate. Focus separates the logical architecture and the physical architecture of a
system, where the logical architecture refers to the documented architecture and the physical architecture
refers to the implemented architecture.

Figure 3.4 shows the architecture reconstruction process of focus. The goal of the process is to create
a refined architecture model of the system, similar to the reflexion method. In the first step computational
components and data components are recovered from the implementation employing class diagrams of
the implementation and rules on these diagrams that specify components. In the second step an idealised
architecture is modelled based on the expected architectural style of the implementation. After these
steps, the mapping of the reconstructed components to components of the idealised architecture can be
executed. This activity has to be done mainly manually.

The forth step is the identification of key use cases. The use cases as well as the idealised architecture
focus on the current evolution goal and therefore only cover parts of the implementation. In the next step
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Figure 3.4: Architectural Reconstruction in Focus (Source: Medvidovic and Jakobac (2006))

the interactions of the identified component are analysed in order to be able to integrate all of them into
the idealised architecture. The last step is the generation of the refined idealised architecture. During
this step inconsistencies between the components reconstructed in the physical architecture and the com-
ponents defined in the idealised logical architecture are revealed. Inconsistencies include inconsistent
dependencies as in the reflexion method. Furthermore, arising from the different mapping approach, the
appearance and the granularity of components in the two architecture models can also be inconsistent.

The architecture reconstruction phase in Focus is followed by an evolution phase. In this evolution
phase changes are made to the system on the basis of the refined idealised architecture. The changes
made in the implementation are fed back to the architecture description. After the evolution phase another
iteration can be started, setting the focus to another part of the system.

3.4.3 Architecture Conformance Checking
Architecture conformance checking is the process of finding source code dependencies that do not con-
form to the intended architecture of a system. Typically architecture conformance checking bases on a
mapping of the source code to intended architectural entities of the module view. One approach to archi-
tecture conformance checking is to use the reflexion method (see Section 3.4.2.1) with a concrete intended
architecture instead of a hypothesised architecture to check the implementation against that architecture.

Knodel and Popescu (2007) compare the reflexion method with two other rule-based approaches to
architecture conformance checking, that base on the names and interfaces of components. They present
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Figure 3.5: Architecture Conformance Checking (Source: Lilienthal (2009))

13 dimensions for the comparison of static conformance checking methods. These dimensions include
e.g. the kinds of architectural violations, that can be revealed and the probability of false positives. Further
dimensions, that are also of interest for the topic of this thesis are multiple view support, restructuring
scenarios, and architectural decision support.

The basic principle of architecture conformance checking has been depicted by Lilienthal (2009) (see
Figure 3.5). It is based on the activities of mapping the source code and the intended architecture and
checking the resulting implemented architecture against the intended architecture. Lilienthal (2009) also
describes three basic aspects (Modularity, Ordering, Pattern Conformity) that should be checked in order
to keep large software systems maintainable and presents the results of 24 case studies with Java systems.

Bischofberger et al. (2004) present the tool Sotograph, that automates architecture conformance check-
ing and allows for a continuous conformance and trend analysis covering subsequent versions of a sys-
tem. Sotograph is limited to layered architectures. The layers are subdivided in subsystems which are
mapped to Java packages or directories containing C files. The tool checks for typical violations in lay-
ered architectures as e.g. Illegal Upward Relationships, Interface Violations, Several Layer Downward
Relationships, and Illegal Relationships within a Layer.

Another way to establish the mapping between source code and the intended architecture is source
code annotation. Krahn and Rumpe (2006) propose to maintain an intermediate architecture description
in terms of architectural annotations to the source code during the development process. They highlight
the advantages, that the developers are always aware of the architecture and an up-to-date architecture
description can always be easily derived from the annotations. Furthermore, the intermediate description
can be checked automatically against an intended architecture model to ensure the conformance between
the intended architecture and the source code. The consistency of the annotations to the source code on
the other side have to be checked manually.

3.5 Restructuring

According to the horseshoe model, restructuring is the second phase of reengineering. The goal of re-
structuring is to transform the structure of an existing software system to improve its internal quality. A
widespread definition is given by Chikofsky and Cross (1990):
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Figure 3.6: Restructuring Concept Hierarchy

Definition: Restructuring (Chikofsky et al., 1990) Restructuring is the transformation from one rep-
resentation form to another at the same relative abstraction level, while preserving the subject system’s
external behaviour (functionality and semantics).

As depicted in the horseshoe model in Figure 3.1, restructuring can be performed on different levels
of abstraction from the source code to the architecture. In research the most examined form of restruc-
turing is program restructuring. The level of abstraction in that case is low since it mainly deals with the
restructuring on the level of functions and methods. Restructuring on the level of architectural elements
such as components is called architecture restructuring in this thesis.

Traditionally common reasons for restructuring are the increase of understandability and the reduction
of maintenance cost (Xu et al. (2004)). Parnas (1994) terms restructuring major surgery and emphasises
the role of restructuring to consolidate similar modules in a system family to a common code base, also to
support the goals mentioned before. In the case of restructuring on the architecture level further reasons
like e.g. flexibility and integrability into new environments are further important factors.

Figure 3.6 shows a concept hierarchy for restructuring concepts. Hence, restructuring is a subconcept
of evolution and can be partitioned into program restructuring, refactoring, architecture refactoring and
architecture restructuring. The remainder of this section will describe these subconcepts in more detail.
Section 3.5.1 and Section 3.5.2 examine restructuring on a fine-grained module-level, which is a lower
level than the focus of MARE, but shares methodological similarities. Section 3.5.3 describes approaches
the restructuring on the architecture level in small steps, while Section 3.5.4 examines approaches that
are related to MARE, since they also consider the coarse-grained restructuring of architectures. Sec-
tion 3.5.5 concludes the chapter describing approaches for the migration to SOA, which is a special case
of architecture restructuring and one of the application scenarios for MARE.

3.5.1 Program Restructuring

Program restructuring denotes the restructuring of the implementation of a system on the statement or
function level. It is the most established subconcept of restructuring. Its main concern is the restructuring
of structural elements to improve their cohesion. Program restructuring is typically applied to imperative
programming languages. Mens et al. (2003) give an overview of research on refactoring and program
restructuring.
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Frequently used methods for program restructuring are clustering (e.g. Wiggerts (1997) and Lung and
Zaman (2004)) and formal concept analysis (Tonella (2001)), which are used to rearrange the existing
structure.

3.5.2 Refactoring

Refactoring is the object-oriented equivalent to program restructuring (Mens et al. (2003)). The term has
originally been introduced by Opdyke (1992) and gained prominence through the book of Fowler (1999).
In this book Fowler defines refactoring as follows:

Definition: Refactoring (Fowler (1999)) A change made to the internal structure of software to make it
easier to understand and cheaper to modify without changing its observable behaviour.

The definition is similar to the definition of restructuring by Chikofsky and Cross (1990), while highlight-
ing the goals stated by Xu et al. (2004). In the book, a number of refactorings on object-oriented system
are described. They mainly deal with the introduction of abstraction, simplification and the organisation
of code and data. Refactorings are typically small changes to the code, that are executed regularly to keep
a constant code quality. Serban and Czibula (2008) present an approach for the automatic recognition of
refactorings using clustering analysis.

Mancl (2001) describes a refactoring case study and the migration from a legacy system to an object-
oriented code base using design patterns. The conclusions of the case study are, that code discovery is an
important but also very time-consuming step and that code modification should take place in small steps.

3.5.3 Architecture Refactoring

In contrast to coarse-grained architecture restructuring, which is the topic of Section 3.5.4, architecture
refactoring in this thesis denotes architecture evolution approaches, that have a small-step and continuous
character. The term refactoring has been chosen here, since the described approaches base on small
evolutionary steps that are similar to refactorings, but applied on the architectural level.

Architecture refactorings are defined as the first step in changing system implementation to match
specific quality-improvement goals by Ivkovic and Kontogiannis (2006). They also highlight the impact
of architecture models on detailed design models and the implementation, which have to be changed,
when the architecture evolves. For this technical aspect there is a parallel to methods of architecture
conformance checking. For incremental changes these methods can reveal necessary changes to the
implementation, when the refactored architecture is modelled as intended architecture of the system.

To keep the source code and the architecture description synchronised, Krahn and Rumpe (2006) pro-
pose an approach that adds architectural annotations to the source code. Using these annotations an
architect is directly able to see which parts of the source code are affected by an architecture refactoring.
Furthermore, the actual goal of the approach is to use the annotations to automate the synchronisation
of the source code, when the architecture description is changed by refactorings. While the approach
automates conformance checks between the architecture description and the source code annotations, the
annotations themselves have to be created and checked by hand.

Krahn and Rumpe (2006) also propose exemplary architectural refactorings. They include the addition
and removal of ports and connectors and the split of components. Ivkovic and Kontogiannis (2006)
describe a framework to define and apply architecture refactorings on the basis of architecture models
defined in the UML. However, they do not provide explicit architecture refactorings, but give a few
specific examples for the application of the framework.
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Fahmy and Holt (2000) view architectural changes as graph transformations and describe amongst
others transformations for the modification of an architecture. These transformations mainly deal with
fitting the concrete architecture implemented in the system and the architectural description.

Pashov (2004) presents an approach that joins feature-based requirements engineering and architecture
refactorings. He proposes a software evolution process that introduces architecture refactorings for each
change in the requirements features. Thus, it is ensured that the requirements, the architecture description
and the source code are always synchronised.

Lung (1998) presents an approach, that uses clustering analysis for architecture recovery, but also uses
the clustering results to propose refactorings of the system to improve the quality in terms of coupling
and cohesion. A similar goal is stated by Bauer and Trifu (2004). They also propose to impose a new
structure to a system based on a detailed architectural analysis of object-oriented systems.

As with refactorings on the source code level, architectural bad smells can be identified, which are
indicators for the application of certain architecture refactorings. Garcia et al. (2009) introduce the term
architectural bad smells and give four practical examples. Krahn and Rumpe (2006) also describe ex-
amples for architectural bad smells. Furthermore, architecture anti-patterns are e.g. described by Brown
et al. (1998) In contrast to MARE the aforementioned approaches focus on small changes to an existing
architecture, while MARE focuses on the coarse-grained change of the system’s structure. Furthermore,
many of the approaches only consider the architectural level and do not discuss the adjustment of the
source code according to the architectural changes.

3.5.4 Architecture Restructuring

Where traditional restructuring approaches focus on restructuring smaller pieces of the source code, ar-
chitecture restructuring focuses only on the overall structural organisation of the source code. Gimnich
and Winter (2005) also refer to architecture migration. In this thesis the term architecture restructuring is
used to avoid confusion with other migration approaches. Architecture restructuring itself is performed on
the architectural level only. The result of the restructuring is a model or documentation of a system. After
the restructuring on the architectural level the detailed design and the implementation also have to be
restructured to conform to the new architecture. I.e. elements of the implementation have to be removed
or restructured and dependencies between elements, which are not allowed in the target architecture, have
to be resolved. The MARE approach introduced in this thesis is an approach that supports the adjustment
of the detailed design to the restructured target architecture and thus prepares the restructuring of the
implementation.

Aoyama (2001) introduces the distinction of continuous and discontinuous software evolution. In the
context of this thesis one can refer to architecture refactoring as continuous evolution while architecture
restructuring corresponds to discontinuous evolution. Discontinuous software evolution is associated by
Aoyama (2001) with to main aspects: architectural change and feature change. While feature change can
be a reason for architecture restructuring, this aspect is not considered here.

Typical architecture restructuring projects can be seen as enhancement according to Table 3.1. As
stated by Tonella (2001) restructuring can also be seen as preventive maintenance, since it prevents faults
that result from incomprehensible source code.

Although architecture erosion and poor software design are often stated as reasons for architecture
restructuring tasks, this is not always the case. As mentioned by Garlan et al. (2009), another reason
for architecture restructuring is the regular evolution of software systems. Mostly this evolution can be
conducted in small steps, but in some cases, as e.g. changes to the environment, a system is used in,
also larger restructurings become necessary. Another possible reason is the migration to a new execution
environment, which can also involve architecture restructuring. An example for such a migration is
the migration from COBOL to Java, where both execution environments base on completely different
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architectural foundations.
Garlan et al. (2009) focus on the planning of architecture restructuring projects on the architectural

level. They introduce the notions of evolution paths and evolution patterns as building blocks for ar-
chitecture evolution. An evolution path defines a series of intermediate architectures, starting from the
current architecture of the system and ending with the intended target architecture. The intermediate
architectures define the steps of the restructuring project. Evolution styles define a family of domain-
specific architecture evolution paths and and common properties and constraints of these paths. However,
the approach does not define concrete evolutionary steps. The evolution styles rather describe possible
paths for the restructuring of an architecture based on the used architectural styles in the source and the
target architecture. Furthermore, a mapping to changes of the implementation is missing.

Architecture restructuring is less researched than the restructuring of the source code. However, a num-
ber of methods and principles are similar on both abstraction levels. Furthermore, source code restruc-
turing can be a necessary preceding step for architecture restructuring. Heckel et al. (2008) introduce the
term architectural transformations. An architectural transformation combines architectural restructuring
based on source code annotations with the automatic transformation to a new source representation.

Pashov et al. (2004) focus on the restructuring of systems, that contain disproportionally large compo-
nents. They propose an approach based on feature models to identify these components. Feature analysis
can also help to design smaller components in a new target architecture. However, it is not considered
how the source code can be adjusted to the target architecture, i.e. how the implementation of the large
components can be split up.

3.5.5 Migration to SOA

A current research topic is the migration to service-oriented architectures. In the terms introduced so far,
SOA migration is an architecture restructuring towards an architecture that allows for the integration of
the existing system into a service-oriented environment. A common strategy is to introduce wrappers
for an existing system that realise a service interface (van den Heuvel (2007)). This approach has the
advantage, that the existing system does not have to be changed and its internals do not have to be deeply
understood to (re-)use it in a modern environment. A disadvantage of this approach is, that in the case
of legacy systems it is still difficult to maintain the system and it is very difficult or almost impossible
to only use parts of the functionality. The reason for this is, that many so-called legacy systems expose
strong architectural erosion, that complicates the decoupling or extraction of single functionalities or
services. In these cases an architecture restructuring of the existing system becomes necessary. This
section presents current SOA migration approaches, which are a special case of architecture restructuring
(cf. Section 6.2.1).

Heckel et al. (2008) present the following six technical SOA properties and state their importance for
the reengineering of existing software system in order to (re-)use them in a service-oriented environment.

• Well-defined interfaces

• Loose coupling

• Logical and physical separation of business logic from presentation logic

• Highly-reusable services

• Coarse-grained granularity

• Multi-party and business process orientation
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The first two properties concern the service interface and are also important properties when it comes to
wrapping existing systems. The latter four properties can in most cases only be fulfilled by an architecture
restructuring of these systems. Hence, MARE is an approach that can be employed to obtain these
properties.

The approach by Heckel et al. (2008) has the goal to restructure a legacy system in order to be reusable
in a service-oriented architecture. This goal is fulfilled by several technological and functional decompo-
sition steps, each following the horseshoe model. They propose to start with a technological decompo-
sition step in order to separate the user interface from the business logic to enable the definition of web
service interfaces for the business logic. The further functional decomposition is mainly concerned with
the granularity of services.

The technological decomposition of Heckel et al. (2008) bases on code annotation as introduced by
Correia et al. (2007). Statements or larger units of code, such as methods and classes, are iteratively and
semi-automatically annotated with the categories they belong to (categories are e.g. UI, business logic or
data). The code is then reverse engineered to a graph model. Based on the code annotations, the model
is automatically restructured using graph transformations. In the end, the source code is restructured by
mapping the transformation rules to refactorings or by directly generating the source code.

The functional decomposition of the source code to services, described by Matos (2008) and Matos and
Heckel (2008), employs the same methods used for the technological decomposition. It is separated in
two tasks, namely operation identification and grouping operations into services. Thereby the functional
categories are assumed not to be known beforehand, but to be defined during the annotation phase. The
identification of service operations starts from entry points such as API’s used by the UI or external
systems. The grouping of the operations to services is done semi-automatically, supported by metrics
such as overlapping between operations, actors involved, information about data accessed, and similarity
measure.

Ziemann et al. (2006) describe an approach to SOA migration based on enterprise models. These
models are used to define services in legacy systems on an appropriate level of detail and to integrate
these services in processes. Winter and Ziemann (2006) extend the approach by adding a more technical
reengineering view to support the SOA migration. They also present an adjusted horseshoe model for
SOA migration and propose the model-based transformation of the existing system to a service-oriented
environment. Winter and Ziemann (2007) provide more details on this topic and especially outline the
role of metamodelling for the identification and transformation of services.

In the context of the SOAMIG project, Horn et al. (2009) present the application of model-driven
development methods and graph technologies for SOA migration. They show how graph queries and
transformations can be used to identify services and transform them to a SOA environment. Fuhr et al.
(2010) present an extension of the SOMA method (Arsanjani et al. (2008)). They show which steps of
SOMA have to be extended to allow for model-driven migration methods. The method is illustrated by
an exemplary extraction of a service from an open-source application.

Sneed (2007) defines four steps for the extraction of services from existing systems. The paper con-
centrates on the implementation with web services, but the concepts are also applicable for other techno-
logical environments.

1. Discovering potential services in the existing systems. A potential service is functionality with an
economic value in contrast to purely technical code.

2. Evaluating potential services. It has to be decided whether it is worthwhile to extract the code,
i.e. whether the technically effort of reusing the code is appropriate.

3. Extracting the source code. Dependencies to other parts of the system have to be resolved.
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4. Adapting the source code to the new environment. The code e.g. has to be adapted with a WSDL
(Web Services Description Language) interface.

An overview on the different types of SOA migration approaches is provided by Razavian and Lago
(2010). They conducted a review of current research approaches and define eight distinct categories called
SOA migration families. These are again summarised into two sets: the migration for modernisation,
which subsumes approaches that focus on the restructuring of the existing system, and the migration for
reuse in service-based development, which focusses on the adaptation of the existing code.

The MARE approach can be used to support the restructuring of an existing system and the extraction
of source code in terms of Sneed (2007). Thus, it complements the approaches described in this section.
A more detailed discussion of the relation of MARE to these approaches is given in Section 11.1.



4 Graph Clustering

Graph clustering is used in MARE to create the complete mapping. This chapter gives an overview of
the relevant foundations and applications of graph clustering. Section 4.1 describes the basic principles
of graphs, while Section 4.2 introduces the graph clusterings. Hierarchical clustering, which is used as
basis for the clustering in MARE as well as further common graph clustering algorithms are presented in
Section 4.3. Section 4.4 ends the chapter with an overview of applications of graph clustering.

4.1 Graphs

A graph is typically defined as a pair of sets G = (V,E), where V is a set of vertices (or nodes) and E is a
set of edges (see e.g. Schaeffer (2007)). The pair (v1,v2)∈ E denotes an edge between the vertices v1 ∈V
and v2 ∈ V . Edges can either be directed or undirected, so that (v1,v2) is either ordered or unordered.
Furthermore they can be annotated with weights using a weight function ω : E→R leading to a weighted
graph. A graph that contains more than one edge between two vertices is called multigraph. An edge that
connects more than two nodes is called hyperedge.

A path in a graph is defined as a sequence of edges that connect two vertices. A graph is called
connected, if a path exist between each pair of vertices in the graph. Else the graph is called disconnected.

Graphs and also edges can be typed according to the represented problem domain. In software reengi-
neering nodes types can e.g. be classes, functions or files. Typed edges are e.g. used in the TGraph
approach by Ebert et al. (2008). Edge types in software reengineering are e.g. containment or call rela-
tions.

4.2 Graph Clusterings

According to Schaeffer (2007), the goal of graph clustering is to divide the data set into clusters such that
the elements assigned to a particular cluster are similar or connected in some predefined sense. Maqbool
and Babri (2007) give a similar definition by stating that Clustering is the process of forming groups of
items or entities such that entities within a group are similar to one another and different from those in
other groups. Thus, a cluster is defined as a set C = {v1,v2, ...,vx}.

Typically, clusters are formed based on a similarity function or distance function. Examples for tradi-
tional graph clustering functions are given in Schaeffer (2007). The similarity of two vertices is computed
according to their internal properties. For software entities these properties are e.g. the name of the entity,
its size or its developer. The similarity of two vertices can also be computed on the basis of the edges con-
necting the vertices, which can also be seen as external properties of the vertices. It is typically defined
using the number of edges between two nodes, the weight of the edges between two nodes or the length
of the path between two vertices. For graphs with a notion of space, the distance can be also defined using
the length of edges.

For the remainder of this thesis the term similarity function is used. The reason for this is that distance
implies a notion of space and vertices with a low distance are expected to be clustered. In software
clustering, two nodes belong to the same cluster because of a functional relation for which the notion of
similarity is more appropriate. Typically, vertices with high similarity are clustered together. Similarity
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functions can be defined on vertices or on clusters, where most algorithms operate on clusters only. The
nodes are then assigned to initial clusters before the actual clustering. These initial clusters can contain
one or more nodes, depending on the clustering algorithm. Thus, it can be said that a similarity function
Sim returns a similarity value svC1C2 , that states the similarity of the two input clusters C1 and C2.

svC1C2 = Sim(C1,C2) (4.1)

The similarity of two clusters bases on the similarity of their contained nodes. The computation of the
similarity is described exemplarily for hierarchical clustering algorithms in Section 4.3.1.

Schaeffer (2007) describes a set of desirable graph theoretical properties of a cluster, which are also a
notion of cohesion of a cluster. The properties are summarized in the following list:

• A cluster should be connected.

• Preferably each pair of vertices should be connected by several paths.

• The paths should be internal to the cluster. I.e. each pair of vertices should be connected by at least
one path that only visits vertices that are part of the cluster.

• The vertices in a cluster should have more connections to other vertices in the cluster than to vertices
outside the cluster. This also accords to the software architecture principle of low coupling.

4.3 Clustering Algorithms
There is a multitude of different clustering algorithms for different purposes. In practice, especially in
software clustering, hierarchical clustering is most common and is also used in the MARE clustering
approach. Therefore, this section will describe hierarchical clustering in greater detail. As examples for
the vast number of other clustering algorithms, this section also shortly describes two algorithms with a
broad distribution and different properties in comparison with hierarchical clustering, namely Partitional
Clustering and Search Based Clustering.

4.3.1 Hierarchical Clustering
Hierarchical clustering is a clustering technique that bases on a hierarchical decomposition of nodes.
Hierarchical clustering algorithms can be subdivided into agglomerative and divisive algorithms. Divisive
algorithms start with the definition of the whole graph as one cluster. In each step of the algorithm
this cluster is hierarchically divided into smaller clusters until each vertex is represented by one cluster.
Agglomerative algorithms on the other side start by defining one cluster for each vertex in the graph. In
each step of the algorithm the two clusters with the highest similarity are merged to form a new cluster.
The result of hierarchical clusterings can be depicted in a dendrogram. Figure 4.1 shows an exemplary
dendrogram for agglomerative hierarchical clustering.

Agglomerative hierarchical clustering will be in focus in the remainder of this section, since it is more
commonly used in software reengineering and the basis for the MARE clustering algorithm presented in
Section 8.2.

4.3.1.1 Stopping Condition

Agglomerative hierarchical clustering algorithms stop, if only one cluster is left. For many applications
the order of the clustering and the resulting hierarchy are an adequate result of the clustering. Others,
that are interested in a certain intermediate result search for an adequate cut through the dendrogram that



4.3 Clustering Algorithms 35

Legend:
7

8

9

n Cluster

Clustering Step

2 3 4 51

6

Figure 4.1: Dendrogram Example

defines a resulting hierarchy. Alternatively specific stopping conditions can be employed. Quante (2008)
and Schaeffer (2007) mention two possible stopping conditions: dropping below a certain similarity
threshold and reaching a predefined number of clusters.

4.3.1.2 Vertex Similarity

The similarity of two vertices is defined by a similarity function. This bases on the attributes of the
vertices or the edges between the vertices. Depending on the context, two vertices that have similar
attributes or a strong connectivity are assigned a high similarity value.

Many clustering approaches also introduce different kinds of weighting schemes in order to apply a
more detailed definition of similarity. Andritsos and Tzerpos (2005) evaluate weighting schemes from dif-
ferent domains for their applicability for software clustering. Rayside et al. (2000) introduces a weighting
scheme, that defines weights for different relations in object-oriented software systems. Koschke (2000)
furthermore uses weights for different groups of properties, differentiating direct and indirect connections
as well as informal information about software artefacts.

4.3.1.3 Cluster Similarity

The computation of the similarity between a newly formed cluster and the existing clusters in each step
of a hierarchical clustering is often not newly computed based on the similarity of the single nodes, but
using an updating rule. (Maqbool and Babri, 2007, Table 3) describe the four basic strategies for this
computation:
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Single Linkage
Sim(Ci,C jk) = Max(Sim(Ci,C j),Sim(Ci,Ck)) (4.2)

Complete Linkage
Sim(Ci,C jk) = Min(Sim(Ci,C j),Sim(Ci,Ck)) (4.3)

Weighted Average Linkage

Sim(Ci,C jk) =
1
2
(Sim(Ci,C j)+

1
2
(Sim(Ci,Ck)) (4.4)

Unweighted Average Linkage

Sim(Ci,C jk) =
(Sim(Ci,C j)∗Size(C j)+(Sim(Ci,Ck)∗Size(Ck))

(size(C j)+(size(Ck))
(4.5)

In the equations Ci to Ck denote the set of clusters before the current clustering step and C jk the cluster
created in the current clustering step by merging the clusters C j and Ck, with C j 6= Ck. Max(X ,Y ) and
Min(X ,Y ) compute the maximum and the minimum of X and Y , where X and Y are similarities of clusters.
Size(Cx) returns the number of vertices in the cluster Cx.

The equations recursively base on the distance of clusters containing a single vertex.
Thus, Sim(Ci,C j) = Sim(vi,v j) for two vertices vi and v j, where Ci = {vi} and C j = {v j}. The sim-
ilarity of two vertices depends on the usage context of the clustering algorithm. The computation of
similarity in the context of MARE is discussed in Section 8.2.4.

4.3.1.4 Arbitrary Clustering Decisions

In the single steps of a hierarchical clustering more than two cluster pairs can have the same distance. In
this case an arbitrary decision is taken by the clustering implementation. This leads to non-deterministic
behaviour of the clustering algorithm, since, depending on the data set and the progress of the clustering,
another decision would have led to a potentially extremely different result.

Maqbool and Babri (2007) state that arbitrary decisions are the consequence of a lack of involvement of
necessary information. Thus, they propose a clustering algorithm that recomputes the distance between
a newly formed cluster and existing clusters based on available information instead of combining the
already computed distances, which is the case in the basic four strategies introduced in the previous
section.

4.3.2 Partitional Clustering
Instead of hierarchical clustering that creates clusters with a hierarchical order of its elements, partitional
clustering algorithms do not consider such relations between the elements, but only provide the division
of a set of objects into separate clusters. One of the most widely used partitional clustering algorithms is
the k-means algorithm that will be briefly described in the following. More details about the algorithm
can e.g. be found in (Tan et al., 2005, Chapter 8).

The k-means algorithm partitions a set of objects in k groups. Thereby, k is a parameter that is defined
by the user and represents the number of resulting clusters. The algorithm starts with the selection of k
centroids. A centroid is defined as the mean of a group of objects. Usually the centroids are not actual
objects from the set of objects to be clustered, but abstract entities. The selection of the initial centroids
is crucial, since it influences the quality of the clustering result. Tan et al. (2005) discuss strategies that
lead to a good choice.
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Clusters of the objects are formed by assigning each object to the closest centroid. Based on this
assignment new centroids are computed. This is repeated until the centroids do not change anymore and
a stable assignment of objects to clusters is found.

The decisive aspect of the algorithm is the definition of the proximity measure for the objects to com-
pute their distance to the centroids. The Euclidean distance is often used, if the objects can be defined in
Euclidean space, but also other notions are proximity are possible. Nonetheless, the measure should not
be too complex, since the distances have to be recomputed in each iteration.

Partitional clustering is not used in MARE, since the Euclidean distance can not be used so that another
definition of distance between the objects and the centroids would have to be defined. It is assumed that
this computation and the definition and computation of the centroids themselves are too complex to be
practically used in the context of MARE. Furthermore, it is not intended to include knowledge of the user,
e.g. in terms of a fix manual mapping of single objects to clusters, which can be realised with hierarchical
clustering.

4.3.3 Density-Based Clustering

Density-based clustering algorithms separate regions of high density from regions of low density. Thus,
they can recognise arbitrarily shaped and sized clusters, if the underlying objects have a notion of space.
One of the most prominent density-based clustering algorithms is DBSCAN that will be briefly described
in the following. More details about the algorithm can e.g. be found in (Tan et al., 2005, Chapter 8).

The DBSCAN algorithm has two main parameters: E ps is a user-specified radius around each point
and MinPts is a number that defines the required density of a cluster. The basis of the algorithm are the
definitions of core points, border points and noise points. Core points are points inside of a cluster. A
point is a core point if it has at least MinPts neighbouring points in E ps. A point is a border point if is has
less than MinPts points in E ps, but it has at least one core point in E ps. All other points are noise points.

The algorithm itself is relatively simple. All pairs of core points that are in the radius E ps of each other
are assigned to the same cluster. All border points are assigned to their neighbouring core points. If a
border point has more than one core point in E ps a cluster for the point has to be chosen. The original
definition of DBSCAN by Ester et al. (1996) describes the algorithm from a more technical point of view
and assigns the border point to the cluster of the core point for which is was found first.

Density-based clustering is not used in MARE, since the delimitation of source elements for different
target components is often not clear, so that the definition of border points and noise points is difficult.
Furthermore, noise points are not acceptable in the context of MARE, since a complete mapping of all
source elements is required.

4.4 Applications of Graph Clustering

The most important application scenario for the context of this thesis is software clustering. However,
clustering itself is used for a broad number of applications. These will be briefly described in Sec-
tion 4.4.2.

4.4.1 Software Clustering

The clustering of software is one important application scenario for graph clustering. This section will
show how software artefacts are mapped to a graph structure, which are the common application scenarios
for software clustering, and which typical problems arise when software is clustered.
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4.4.1.1 Software Graphs

A graph representation of a software system is the basis for the clustering of software systems. Graphs
are frequently used to analyse and visualise software systems. Thereby, the level of detail of the graph
varies depending on the rationale of the graph. E.g. Ebert et al. (2008), present a fine-grained graph of
a Java program. Typically each analysis tool has its own graph representation of certain programming
languages. The Graph eXchange Language (GXL), presented by Holt et al. (2006), is an approach to
introduce a common exchange format for graphs between software reengineering tools.

4.4.1.2 Software Clustering Applications and Problems

Common applications of software clustering are concerned with the understanding and reengineering
of software systems. Typical application scenarios are the redocumentation and reconstruction of the
architecture of legacy software systems (cf. Section 3.4). Furthermore, it is used in approaches for the re-
structuring of software systems (cf. Section 3.5). In MARE , clustering is used to support the restructuring
on an architectural level.

Libraries, that provide common functionalities of software systems, often lead to problems in software
clustering, since most clustering algorithms target the optimisation of coupling and cohesion. Libraries
tend to break these principles, since they are used all over the system and lead to high coupling. Also, they
do not necessarily exhibit high cohesion (Andritsos and Tzerpos (2003)). This can lead to the problem,
that source elements are clustered together with the libraries they use instead of other elements they
semantically belong to.

Bauer and Trifu (2004) therefore employ a library detection step before the actual clustering to be able
to treat libraries differently than the rest of the system. Andritsos and Tzerpos (2003) discover libraries
by using a clustering based on information theory.

Quante (2008) on the other side uses knowledge about library usage to cluster semantically similar
source elements. This works well, when the semantics of the library suits the semantics of the envisioned
system decomposition. Quante (2008) shows this by employing e.g. user interface, database and network
libraries to reconstruct the layered decomposition of a Java system. Libraries that do not fit the semantics
of the envisioned decomposition are excluded from the clustering to avoid the effects stated above.

4.4.2 Further Applications
In computer science graph clustering is also used in other contexts than software engineering. It is e.g.
used in the context of Data Mining to classify data sets or in image analysis, e.g. for object recognition.
Another application scenario is the classification of digital documents, such as text files or web pages, to
sort large document pools and find documents with similar content.

Besides application in computer science, clustering is also versatilely used in other sciences for the
analysis and classification of large data sets. It is further used in market research to analyse customer
behaviour.
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This chapter introduces model-driven software development, which is a conceptual basis of the MARE
Method. Section 5.1.1 introduces basic modelling concepts as e.g. the terms model and metamodel. Sec-
tion 5.2 describes model transformations, while Section 5.3 examines the role of architecture in current
model-driven software development approaches. Section 5.4 presents interoperability metamodels, which
are a conceptual basis for the metamodels used in the MARE Method. Section 5.5 ends the chapter with
an overview of model-driven reengineering approaches, which can be used to extend MARE towards the
restructuring of the implementation of a system.

Model-driven software development (MDSD) is a software development paradigm that makes models
primary artefacts of the software development process. In contrast to traditional software development
processes, models are not only used for documentation purposes, but serve as a central artefact for the
implementation of the system. Models are either the source for the generation of source code or they
are themselves executable by an interpreter. Furthermore, models can be used for various other task,
like communication between stakeholders or model-based analyses. This chapter presents the basics of
MDSD and its relation to the reengineering of software systems.

To provide further background and current research directions in MDSD, France and Rumpe (2007)
provide a roadmap for the model-driven development of complex software. They suggest to focus on
bridging the gap between problems and requirements on one side and the implementation on the other side
and also support research on executable models. In a concluding vision they encourage the development
of domain-specific application development environments. These environments integrate technologies
and tools that currently exist side by side. France and Rumpe (2007) state that this vision is hindered by
immature technologies and the lack of understanding and experience in the application of model-driven
development concepts. Selic (2003) and Uhl (2008) give more information on the application of MDSD
in practice.

5.1 Modelling Concepts

5.1.1 Models
Stachowiak (1973) defines three characteristics of a model: the mapping feature, the reduction feature
and the pragmatic feature. The first feature means that a system is a representation of a considered
system under study. In MDSD this system is the software system to be build or the domain of the system
respectively. The reduction feature implies that the model is an abstraction of the system that contains the
properties of the system that are relevant for the current context. The last feature highlights the purpose as
an important aspect of a model and the possibility to use the model instead of the original for this certain
purpose.

The ModelWare EU project uses a definition of model in the context of MDSD, that shares the theory
of these characteristics:

Definition: Model (ModelWare Glossary1) A formal representation of entities and relationships in the
real world (abstraction) with a certain correspondence (isomorphism) for a certain purpose (pragmatics).

1http://www.modelplex.org/index.php?option=com_content&task=view&id=199&Itemid=247
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Furthermore, Favre (2004a) discusses the definition of model on the basis of different definitions from the
literature and ends with properties for the definition of the term model, from which the most important is,
that a model is a representation of a system under study.

5.1.2 Metamodels

To automate the processing of models (e.g. in analysis, transformation or execution) a definition of the
modelling elements used in the models is needed. This definition is given by metamodels. The following
definition emphasises this role of a metamodel in MDSD:

Definition: Metamodel (Seidewitz (2003)) A metamodel is a specification model for a class of systems
under study (SUS) where each SUS in the class is itself a valid model expressed in a certain modelling
language. That is, a metamodel makes statements about what can be expressed in the valid models of a
certain modelling language.

A shorter definition, which will be used in the remained of this thesis, is given by Favre (2004b):

Definition: Metamodel (Favre (2004b)) A metamodel is a model of a modelling language.

He additionally introduces the term ConformsTo for the relation between a model and its metamodel
and discusses the difference to the commonly used InstanceOf relation. Atkinson and Kühne (2003)
distinguish ontological and linguistic metamodels. The difference between both concepts is an important
aspect in MDSD, especially when domain-specific languages (DSL) are created. Languages are defined
by linguistic metamodels. Ontological metamodels on the other side define a specific domain vocabulary.
Ontological metamodels can turn into linguistic metamodels when they are used to define a DSL (Kühne
(2006)). In the remainder of this thesis linguistic metamodels are used, that define languages to describe
specific aspects of software systems.

In research and practice there are a number of metamodelling approaches. The two most influential
in the practical application of metamodelling are the Meta Object Facility and the Eclipse Modeling
Framework. Both are described in the following subsections.

5.1.2.1 Meta Object Facility

The Meta Object Facility (MOF) is a metamodelling standard by the Object Management Group (OMG)
(2006). Currently there are two versions of MOF: Complete MOF (CMOF) and Essential MOF (EMOF).
CMOF contains all modelling capabilities of the standard and is e.g. used to define the UML meta-
model. EMOF is a subset of CMOF, that only supports basic metamodelling mechanisms, but defines a
straightforward mapping to the implementation of these mechanisms. CMOF was e.g. used to define the
metamodel of the Unified Modeling Language (UML).

MOF proposes a metamodel architecture with four layers that is the basis for most practical metamod-
elling approaches. Figure 5.1 shows the layers M0 to M4 on the left and a typical example from the
OMG model stack on the right. The relations of the OMG are replaced by the relations of Favre (2004b),
because they provide more clarity. As can be seen, the M0 layer has a special role, since it represents the
system to be modelled, which can be a software system or a real world entity and is as such not part of
the modelling stack. M1 to M3 are necessary for the definition and processing of models and modelling
languages in the context of MDSD. M1 represents a model edited by a user, M2 defines the modelling
language used to create the model in M1 and M3 defines a language for the definition of modelling lan-
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Figure 5.1: MOF Layered Metamodel Architecture

guages. The M3 layer is usually used to defined itself for reason of simplification of the metamodelling
stack.

The key concepts of MOF for the definition of metamodels are classes and their properties, associations
and operations. A UML diagram showing these concepts and their relations is shown in Figure 5.2. These
concepts are common in CMOF and EMOF.

5.1.2.2 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) (Steinberg et al. (2008)) is the core subproject of the Eclipse
Modeling Project2. It provides tools for the definition and implementation of metamodels. The metameta-
model of EMF, called Ecore, is almost identical to EMOF. EMF is currently very popular in practice and
constitutes the basis for a number of MDSD tools. It is also used as an quasi exchange standard for
modelling tools (Streekmann and Kruse (2009)).

5.2 Model Transformations

In a MDSD process, models are transformed in order to change their structure (horizontal transforma-
tion) or their level of abstraction (vertical transformation). Since the creation of a complete mapping can
also be seen as model transformation from several input models to the complete mapping model, model
transformations are introduced in this section. A model transformation is defined as follows:

Definition: Model Transformation (Baier et al. (2008)) A model transformation is a computable map-
ping, that transforms model instances of a set of source models into model instances of a set of target
models.

2http://www.eclipse.org/modeling/
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Figure 5.2: MOF Key Concepts (Source: Object Management Group (OMG) (2006))

A model transformation is defined on metamodels and executed by a transformation engine on models
conforming to those metamodels. This relation is depicted in Figure 5.3. The transformation defini-
tion itself can also be regarded as a model conforming to the metamodel of the transformation language.
Czarnecki and Helsen (2003) give a detailed overview on the properties of model transformations.

In practice, a difference is made between model-to-model transformations (M2M) and model-to-text
transformations (M2T). Model-to-text transformations, also referred to as code generation, are commonly
used in MDSD approaches in practice. There is also more mature tool support for several different appli-
cation contexts in proprietary as well as open source tools. Model-to-model transformation languages and
their tool support are still to immature for practical use and are more spread in academia. The most com-
mon model-to-model transformation languages are the ATLAS transformation language (ATL) (Jouault
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and Kurtev (2005)) and the QVT relations and QVT operational mappings languages as defined by the
Object Management Group (OMG) (2008).

5.3 Architecture in Model-Driven Software Development
There are two main widespread approaches that introduce the notion of architecture in MDSD. Model-
Driven Architecture focuses on the architecture of MDSD environments, while Architecture-Centric
Model-Driven Software Development centres on the architecture of the system to be developed.

5.3.1 Model-Driven Architecture
The Model-Driven Architecture (MDA) is a proposal of the OMG, that provides a general architecture
for MDSD environments. It focuses on the separation of concerns, especially of functional and technical
architecture aspects. Since it is a standardisation effort by tool vendors, its main goals are portability,
interoperability and reusability.

The MDA describes three different viewpoints on a system and according models: the computation
independent model CIM, the platform independent model PIM and the platform specific model PSM. It
further introduces the notion of a platform model (PM). The interrelations of these models are depicted
in Figure 5.4.

The CIM covers the functional aspects of the system without relations to their implementation. The
PIM defines the technical architecture of the system employing architectural styles. The PM defines
a concrete technical platform on which the system is to be implemented. The PSM is build on the
architectural decisions of how the architectural styles are implemented on certain concrete platforms. The
PSM can be used to generate platform specific source code. The figure is simplified since the possibility
of several PSM’s for different platforms and further models, that support the transformations, are omitted.
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In summary, the MDA is not an approach to support software architecture, but an approach for the
architecture of systems for development environments for model-driven software development. Nonethe-
less, the separation of concerns and the differentiation of architectural models of different granularity also
become important in the design of MARE.

5.3.2 Architecture-Centric Model-Driven Software Development

Stahl et al. (2007) describe a pragmatic MDSD approach called Architecture-Centric Model-Driven Soft-
ware Development (AC-MDSD), that bases on the architectural aspects of the target software system.
They describe AC-MDSD as a simple and low-risk approach for the introduction of MDSD. AC-MDSD
focuses on technical domains. In this case the modelling languages used can be seen as configuration
languages for the underlying technical libraries and frameworks. The goal of AC-MDSD is to abstract
from the framework specific implementation and to generate repetitive source code. Thus, it hinders ar-
chitecture erosion by the generation of architecture specific aspects. AC-MDSD is not fully automated,
since only the common and repetitive parts of the source code are generate. Application domain specifics
have to be added manually.

AC-MDSD is especially efficient if metamodels and generators can be reused for a number of applica-
tions. Hence, it is particularly appropriate for the development of software product lines with architectural
commonalities, since it encapsulates the corresponding common architectural platform and allows mod-
elling of varieties.

The modelling and generation of aspects from the application domain of software systems (Domain-
Centric MDSD) is described as an extension of a mature AC-MDSD approach. Models are in that case
more abstract and are similar to the CIM in MDA. Modelling languages in Domain-Centric MDSD are
based on domain vocabulary or can be used as configuration languages for application domain specific
frameworks.

5.4 Interoperability Metamodels for Reengineering

The term Interoperability Metamodel denotes a metamodel that is used to describe data that is exchanged
between different tools. In the context of reengineering there are many tools that extract, analyse or
restructure data about software systems. In most cases these tools work on proprietary data models and
are not developed with the focus of an exchange of data with other tools to e.g. allow other combinations
of extractor and analyser. To overcome this lack of interoperability, metamodels were developed, that
constitute a common data representation for the exchange of information about software systems.

According to Lethbridge et al. (2004) an exchange format needs to offer a metamodel and a syn-
tax. This section focuses on the metamodel aspect and will present the most common interoperability
metamodels in reengineering: the Dagstuhl Middle Metamodel (Section 5.4.1) and the Knowledge Dis-
covery Metamodel (Section 5.4.2) . Further metamodels are described by Trifu and Szulman (2005) and
Koschke (2000). Additionally a short overview on existing exchange syntaxes in this context is given in
Section 5.4.3.

5.4.1 Dagstuhl Middle Metamodel

The Dagstuhl Middle Metamodel (DMM) as described by Lethbridge et al. (2004) was created to rep-
resent software entities and their relationships. The abstraction level of DMM models conforms to the
function level of the horseshoe model, hence it is called middle metamodel. A full representation of the
abstract syntax of a program or information about the architecture of the system are not intended to be
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captured in the DMM. As such it is appropriate for the exchange of data between tools, that focus e.g. on
architecture reconstruction or the analysis of the structure of a system. The DMM only describes a meta-
model without elaborating on the exchange syntax. Instead GXL and TA (cf. Section 5.4.3) are suggested
as appropriate exchange syntaxes.

The DMM is intended to support the most common language constructs of procedural and object-
oriented programming languages such as C, C++, and Java. The metamodel is defined in UML class
diagrams. Figure 5.5 shows the top level classes, of which the most important are SourceObject, Mode-
lObject and Relationship.

SourceModelRelationshipSourceRelationship ModelRelationship

Relationship

ModelElement

ModelObjectSourceObject **

Structural Element Behavioural 
Element

Figure 5.5: Top Level Classes of the DMM (Source: Lethbridge et al. (2004))

The metamodel includes high-level syntactic entities (SourceObject), conceptual entities (ModelOb-
ject) and relationships between these entities. SourceObjects are e.g. files or macro definitions. ModelEle-
ments are subdivided in StructuralElements and BehaviouralElements which are e.g. classes or method
respectively. These two kinds of elements are modelled separately since it allows for the differentiation
of concepts and their programming language specific syntactical representation. This eases the analysis
and restructuring of the system.

Furthermore, the specification of the DMM allows for extensions and variants of the metamodel. One
example is the extension for dynamic information in Hamou-Lhadj and Lethbridge (2004).

5.4.2 Knowledge Discovery Metamodel

The Knowledge Discovery Metamodel (KDM) is a specification (Object Management Group (OMG)
(2009)) of the OMG to model existing systems with the goal of modernisation of these systems. The
KDM was designed to contain primary information (directly extracted from the source code or other



46 5 Model-Driven Software Development

artefacts) as well as aggregate information (obtained by analysis of primary information). The KDM does
not only cover information about the implementation of the system, but also contains information about
its intent. It consists of four layers (Infrastructure, Program Elements, Resource, and Abstractions) that
can be seen in Figure 5.6. The infrastructure layer defines core elements of the KDM and the equivalent
to the SourceObjects of the DMM.
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Event

Conceptual

Structure Build

Infrastructure 
Layer

Program Elements 
Layer

Resource 
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Figure 5.6: Layers and packages of the KDM (Source: Object Management Group (OMG) (2009))

The program elements layer defines the conceptual entities of the source code. Where the goal of the
DMM is to standardise the modelling of high-level programming concepts and map all programming
language specific realisations directly to these concepts, the goal of the KDM, according to Gerber et al.
(2004), is to capture as much information about a system as possible. The optional method of extending
the basic concepts in the DMM is the intended application of the KDM. Therefore, a stack of metamodels
is proposed, starting from a general static model, suited for a large number of programming languages
down to specific models for programming language versions. The metamodel is constructed to allow the
straightforward definition of common transformations on the model and programming language specific
extensions to these.

The resources layer contains elements to describe the environment of the system. The abstractions
layer is intended to represent the most abstract information about the system, including architectural
information about the structure of the system, its behaviour, and its build properties.

KDM and DMM represent different approaches to the modelling of existing systems. While the DMM
is a consolidation of different metamodels from existing tools and research approaches and does define the
elements necessary for practical analyses implemented in these tools, the KDM is a top-down approach,
that covers a major part of possible systems, which makes the metamodel much more complex.
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5.4.3 Exchange Syntaxes
This section describes common exchange syntaxes in current reengineering tools, which can e.g. be used
to serialise DMM instances. The KDM does not use one of the exchange syntaxes described here, but
defines its own serialisation using the XMI standard.

5.4.3.1 Tuple Attribute Language

Holt (2002) describes the Tuple Attribute Language (TA). TA defines a textual syntax that represents a
database for graphs. Graphs are described as tuples of binary edges with their source and target nodes.
Edges and nodes can be typed and more than one edge can be defined between two nodes, if the edges are
of different types. Thus, TA describes multigraphs. Attributes can be assigned to edges and nodes. These
can e.g. be information about the drawing of a graph or conceptual information in the case of graphs, that
are used to exchange reverse-engineering information.

The semantics of attributes are not defined in TA. It rather introduces a scheme level, that can be used
to define types of nodes and edges and their according attributes. Thereby, inheritance is supported by
TA, but only for notational convenience. It does not introduce concepts, that can not be modelled without
using inheritance.

5.4.3.2 Graph eXchange Language

The Graph eXchange Language (GXL) as described by Holt et al. (2006) is an XML based exchange
format for graph-based data, that was mainly designed for the exchange of data between reengineering
tools. Like TA, GXL supports graphs and their schemata. Schemata are represented in the same XML
graph notation as the graphs themselves. Schemata are defined using a GXL metaschema. Metaschema,
schema and graph are equivalent to the layers M1 to M3 in Figure 5.1.

Holt et al. (2006) have defined the following requirements for an exchange format in the reengineering
context:

• Universality The format has to support multiple purposes.

• Typing The elements of the format have to be typed.

• Flexibility The format has to be adaptable to domain specific data.

• Ease of use Support for the format has to be easy to implement.

• Scalability The format has to cope with large amounts of data.

• Modularity The format has to support the partition of data.

• Extensibility The format allows the extension for additional domains.

GXL fulfils these requirements by providing the following features: It supports the standard graph
elements as well as hyperedges, all of which are treated as first-class entities and may have attributes.
Edges of a node are ordered. The format provides the definition of graph schemata and hierarchical
graphs. It defines extension points to add new concepts.

5.5 Model-Driven Reengineering Approaches
Although MDSD technologies are mainly targeting forward engineering processes, there are a number
of approaches that uses these technologies for reengineering. This section examines the current state of
research.
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5.5.1 Model-Driven Migration
A first group of approaches is mainly driven from industry and covers the migration of software systems.
Typically the approaches deal with the migration of systems from one operating system to another or a
programming language to another. A common case is the migration from COBOL to Java. Model-driven
approaches to these problems (e.g. Fleurey et al. (2007), Giese (2010) ) try to fully automate the migration
process through the complete representation of source code concepts in abstract models, the incremental
definition of transformation rules and the generation of adjusted code from the abstract models.

The methods of these approaches are quite similar. In a first phase migration tools or migration rules
are defined respectively using a representative part of the system. After this phase, the remaining parts of
the system are migrated using these tools. Graaf et al. (2008) employ similar methods for the automated
migration between different architectures of an embedded system. They migrate the behavioural models
from a style used in the source architecture to a style used in a target product-line architecture employing
model-to-model transformations.

5.5.2 Model-Driven SOA-Migration
Another important topic in practice is the migration to SOA. For this goal there are also approaches that
employ MDSD methods to automate the migration. These approaches (e.g. Winter and Ziemann (2006),
Winter and Ziemann (2007), and Ziemann et al. (2006)) employ software models and enterprise models
to model the specific aspects of the implementation and the domain-specific concepts of the services.
They also use model transformations and code generation in order to automate the migration process.
The MINT project (Reussner (2009)) examined how MDSD can be introduced to generate adapters for
the integration of existing systems in service-oriented environments.

5.5.3 Model-Driven Integration
The aforementioned MINT project approaches integration into SOA environments as well as classic en-
terprise application integration (EAI) aspects. Abels et al. (2008) describe adapter generation in MINT
and introduce a domain-specific case study on the integration of existing system using standardised com-
munication. Moreno and Vallecillo (2004) also examine major issues for the integration of existing com-
ponents into MDSD environments. They propose the modelling of the interfaces of existing components
and process models. From these, executable processes and adapters for existing systems can be generated.
Mosawi et al. (2006) give an overview on EAI approaches and propose a model-driven EAI architecture in
terms of a stack of models that represent the important EAI aspects. They propose models that distinguish
between inter- and intra-organisational integration and support different levels of application integration.
However, they concentrate on the modelling aspect and do not elaborate on model transformations and
code generation.

5.5.4 Migration to MDSD Environments
Further approaches examine the possibility to introduce MDSD in development and maintenance pro-
cesses for existing software systems. Mohagheghi et al. (2003) examine how the development of a system
in the telecommunication domain can be migrated to an MDSD environment. The system development
already relies on models that describe certain aspects, but these models are not complete and transforma-
tions are done manually. The approach incorporates reverse engineering in order to gain more complete
models. Nevertheless, for the given context it is currently not possible to create computationally com-
plete models to generate the complete source code of the system under study. However, the introduction
of model-driven techniques improved the development process.
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Reus et al. (2006) describe an approach to migrate an existing software system to an MDSD environ-
ment. They reverse-engineer the system to a generic abstract syntax tree, which they transform to UML
models. These models are used for documentation and code generation purposes. The latter is currently
only partially possible. As such the approach can be a first step to the migration to MDSD and is to
a large extent similar to the model-driven migration approaches also discussed in this section. What is
missing is the discussion which quality the reverse-engineered UML models have with regard to further
development and maintenance. It has to be examined whether more abstract and domain-specific pro-
gramming languages can be incorporated in order to avoid graphical programming in UML. The term
graphical programming refers to the usage of UML on the same abstraction level as textual programming
languages. This kind of modelling does not reduce complexity and is usually harder to understand by
developers, since it does not meet their accustomed working methods.
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6 MARE Approach

This chapter describes the foundations of the MARE approach, which is developed in this thesis. After
summarising the underlying problem description in Section 6.1, it introduces typical application scenarios
in Section 6.2. Based on these, the goals (Section 6.3) and research questions (Section 6.4) of MARE are
discussed. Finally, Section 6.5 defines basic terms of MARE.

6.1 Problem Description
The problems leading to an architecture restructuring are manifold. Usually, architecture restructuring is
a task applied to large long-living software systems. These systems are also often called legacy systems,
since they often suffer from architecture erosion and a lack of maintainability. But even if these prob-
lems do not arise, architecture restructuring can be a necessary task to adjust a software system to new
requirements (cf. Section 6.2).

As introduced in Section 3.5.4, architecture restructuring is a reengineering task following the tradi-
tional horseshoe model (cf. Section 3.1). While the reverse engineering part of the horseshoe model is
well researched in terms of architecture reconstruction and architecture conformance, and methods ex-
ist to automate the forward engineering based on architectural models (cf. Section 5.3.2), architecture
transformation involves extensive manual effort by reengineers and system experts.

Current tool support for architecture transformation is limited to simulate single incremental evolution-
ary steps or groups thereof (cf. Section 11.1.3). During these simulations, architectural constraints can be
checked and unwanted dependencies are revealed. Furthermore, a list of operations to transfer these steps
to the source code can be generated as a guideline for the restructuring of the implementation. However,
these methods still require a detailed understanding of the source system and do not provide support for
the problem, which architectural transformation steps should be taken in order to reach a given target
architecture.

6.2 Application Scenarios
There are several application scenarios in which the architecture of a system is restructured and in which
the conformation of the implementation to this new architecture is needed. This section gives an overview
on typical coarse-grained restructuring scenarios and sketches the application of MARE in these scenar-
ios. However, the choice of the scenarios is not intended to be exhaustive, since restructuring projects
always expose a large part of individual properties that can not be reflected by a single standard approach.
MARE supports the handling of these properties by the specific selection and weighting of dependency
types as well as the specific selection of source element types.

6.2.1 Evolution towards Service-Oriented Architectures

The evolution towards service-oriented architectures requires extensive restructurings of existing software
systems. Today, a common strategy to integrate an existing system in a service-oriented architecture is the
wrapping of the system with web services. This solution makes the functionality of the system accessible
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in the new environment, but does not address quality attributes such as loose coupling, high reusability
and maintainability. In order to consider these, an existing system has to be restructured into functional
service components with a defined set of functionality.

The latter is especially problematic for large systems with a technology-oriented decomposition and
strong dependencies between different functional aspects. These dependencies are replaced by service
calls in service-oriented architectures. In order to achieve the aforementioned quality attributes, func-
tional components have to be separated and internal dependencies have to be resolved. If the functional
components and their service interfaces can be defined clearly, MARE can be used to map the existing
implementation to the service components and indicate which dependencies have to be resolved in order
to clearly separate the components. The same problem arises, when single services are to be extracted
from a system as described in Fuhr et al. (2010). When a service interface has been identified, MARE
can be used to identify the implementing source code and dependencies to the implementation of other
services.

In both cases, MARE can be used to transfer the architecture restructuring to the implementation of the
system. The restructuring of a whole system into functional service components is the standard use case
of MARE as described before. The extraction of single service components from an existing system can
also be supported by MARE. In this case, the target architecture consists of two components: the service
component to be extracted and the rest of the system. The interfaces that should be considered are the
services of the service component and the interface between the service component and the rest of the
system. The latter is necessary, because functionality, that supports the implementation of the service,
may also be needed for other purposes in the system. Thus, the explicit modelling of these interfaces and
their consideration in the initial mapping supports the decision on which source elements belong to the
service component and which should remain in the existing system.

6.2.2 Re-establishing Maintainability

Maintainability is defined as ‘The ease with which a software system or component can be modified to cor-
rect faults, improve performance, or other attributes, or adapt to a changed environment’ (IEEE (1990)).
Influence factors for good maintainability are amongst others the understandability and the changeability
of the system. The former is supported by e.g. a good documentation as well as an appropriate decom-
position of the system. Changeability also depends on the decomposition of the system, e.g. whether
a required change was already foreseen in the decomposition of the target architecture. The maintain-
ability can e.g. decrease, when undocumented dependencies exist and thus changes lead to unpredictable
behaviour of the system. This phenomenon is called erosion (cf. 2.5). Especially for large long-living
software systems the maintainability has to be re-established in order to allow for the realisability of
future requirements.

In order to re-establish the maintainability and thus reduce architecture erosion, extensive architectural
restructurings are necessary. These include the removal of unwanted dependencies, but also the relocation
and consolidation of modules. The concrete actions depend on the concrete goals of the restructuring.

The maintainability of a software architecture depends on organisational aspects and the expected
maintenance scenarios. Hence, maintainable components could be defined with certain change scenarios
in mind or based on the capabilities of the developers in order to separate the work of different develop-
ment teams in different components.

MARE can be used to support the re-establishment of the maintainability of existing systems. In
order to rate the applicability of MARE for a concrete restructuring project different conditions of the
re-establishment of maintainability have to be considered. In cases where the target components are very
similar to the current architecture of the system and the maintainability problems are only caused by
many unwanted dependencies, MARE will only be of little use. The goal of the application of MARE
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zunächst weiter verwendet werden kann (um schließlich schrittweise ersetzt zu
werden). Insbesondere kann so aufwändige Geschäftslogik des Legacy-Systems,
die (wie bei 4GL Systemen häufig) intrinsisch mit dem Datenbenkzugriff ver-
woben ist, weiter genutzt werden und mehr oder weniger unverändert durch die
mittleren Schichten zu einer neuen Präsentationsschicht weitergereicht werden.
Im Laufe der Migration wird dann immer mehr Geschäftslogik portiert, bis der
Legacy-Adapter schließlich vollständig durch einen Datenbank-Adapter ersetzt
werden kann. Abbildung 1 zeigt die Struktur des Dublo-Architekturmusters.
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Abbildung 1. Strukturelle Sicht auf das Dublo-Architekturmuster

Im Kontext der KDO wird das Dublo-Architekturmuster eingesetzt, um
einen J2EE-Server [Sha01] an das bestehende Informix-4GL-System anzubin-
den. Dabei werden die Legacy-Adapter über Web Services realisiert. Von der
Nutzung einer standardisierten, plattformunabhängigen Technologie wie Web
Services verspricht man sich insbesondere Flexibilität bei Technologiewechseln
in der Datenbank- und Geschäftslogikschicht [PG03]. Alternativen zur Identifi-
kation geeigneter Web Services werden im folgenden Abschnitt diskutiert. Die
KDO wird die durch das Dublo-Muster eingeführte neue Präsentationsschicht
ergänzend zum Zugriff auf neue Geschäftslogik auch für den Zugriff auf alte
Geschäftslogik entwickeln, um die alte Präsentationsschicht abzulösen.

Die Verbindung zwischen Präsentationsschicht und Geschäftslogikschicht
muss aus Gründen der Datensicherheit gesondert gesichert werden. Dazu kann in
einer Java-Umgebung beispielsweise RMI und SSL eingesetzt werden. Im Kon-
text der KDO wurde diese Verbindung mittels OSCI (Online Services Computer
Interface) [OSC] gemäß gesetzlichen Vorgaben gesichert. Durch Sicherung der

Figure 6.1: Structural View of the Dublo pattern (Source: Teschke et al. (2004))

would then be reduced to relocate single source elements that are assigned to the wrong modules in the
implementation.

The actual potential of MARE can be used in cases of strong architecture erosion in which the intended
architecture is no longer manifest in the implementation or in cases in which the target architecture is
decomposed employing different maintainability criteria than the implemented architecture. MARE can
then be used to relocate modules and to reveal unwanted dependencies.

6.2.3 Smooth Migration

The term smooth migration describes the stepwise migration of a software system to a new environment
(also known as chicken little approach introduced by Brodie and Stonebraker (1995)). Hasselbring et al.
(2004) describe a pattern called Dublo (Dual Business Logic), that supports the smooth migration of
business information systems from a two-tier legacy architecture to a three-tier architecture. Hasselbring
et al. (2008) discuss additional variants for the management of existing data in the context of Dublo.

Figure 6.1 shows the structural view of the Dublo pattern. The upper and the right part of the figure
show the original two-tier architecture with a user client and a server that comprises the application logic
as well as the data management. The database is a pure data storage in these system, where the whole
data management is handled by the legacy system.

The Dublo pattern adds a new client tear as well as a pure business tier to the legacy system which is
implemented in the target environment. In the example of Hasselbring et al. (2004) the legacy system is
written in Informix 4GL while the business tier is implemented in J2EE. This serves future development
in two ways. On the one hand new functionality can be implemented in the new business tier using
already implemented functionality and data storage feature through a legacy adapter. On the other hand
the existing functionality can be smoothly migrated to the new environment by replacing the interfaces of
the legacy adapter with implementations in the new environment.

The details of this migration of existing functionality are not covered completely by Hasselbring et al.
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(2004). The selection of the interfaces provided by the legacy adapter is discussed by in detail by Teschke
et al. (2004). They compare data-driven, function-driven, and object-driven approaches for this task and
choose a function-driven approach for the exemplary context.

While the definition of the interfaces is thus covered, the selection of the corresponding implementing
code is not discussed. Since the implementation of different functions will overlap in most cases, the
migration of a certain functionality will also affect the implementation of other functionalities, that remain
in the legacy system in the particular migration step. Hence, interface of which the implementation is
strongly interleaved should be migrated together. Otherwise, new temporary interfaces have to be added
to the legacy adapter.

The decision which parts of the implementation of the legacy system should be migrated together and
the solution of the problem how to separate the implementation of the existing system to gain realisable
migration increments can be supported by MARE. The target architecture for the migration can be defined
based on the interfaces of the legacy adapter. Therefore, it has to be defined which source elements
are needed for the implementation of an adapter interface or groups thereof. MARE can be used to
identify these source elements and identify dependencies, that have to be resolved or lead to new adapter
interfaces. Based on this information lowly coupled parts of the implementation that consist of one or
more target components can be defined which can be migrated together in one migration step.

An initial mapping can be deduced from the mapping of the interface of the current adapters to the
implementation of the existing system.

6.3 Goals of MARE

The application scenarios show that a mapping of source elements to target components is necessary
in different contexts. Since this mapping is currently created mostly manual and requires large effort,
the main goal of MARE is to automate this task. In order to reduce the manual effort MARE creates a
complete mapping of the source elements of an existing software system to the target components of a
given target architecture model. In this way, the MARE approach provides support for the transformation
step of the horseshoe model.

Figure 6.2(b) shows an exemplary complete mapping (This abstract example refers to the architectures
of the case study presented in Section 10.1). While Source System Component 1 is reused as whole in
the target architecture, the three remaining source system components were restructured, resulting in the
target components 2-4.

The creation of a complete mapping follows two concurrent goals. The first goal is to provide a map-
ping that maps all source elements correctly according to the semantic intentions of the target architecture
components. If this goal can be obtained completely, an ideal implementation of the target architecture
could be achieved based on the existing source code.

On the other hand it is usually not feasible to restructure the implementation based on such an ideal
mapping, since project budgets for restructurings are limited. Furthermore, as the application scenarios
have shown, restructurings of large systems have to be conducted stepwise in coordination with regular
maintenance and development tasks. Thus, the second goal is to find a complete mapping that covers
as much of the semantic intention as possible, while diminishing the effort for the restructuring of the
implementation.

MARE does not target to provide new views on the current implementation of the system as with
architecture reconstruction approaches, but rather to support the change of the implemented system. I.e.
the result of MARE will be used to restructure the module structure of the implementation or to restructure
the mapping of modules to runtime components, respectively. It is not used to improve the quality of the
implementation with regard to the intended source architecture.
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Figure 6.2: Complete Mapping Example

6.4 Research Questions

The problems stated in Section 6.1 lead to the main research question

How can the architecture transformation step of an architecture restructuring task be
supported in order to reduce the effort for the creation of a complete mapping of source

system elements to target components?

The answer to this question is given by the MARE approach, which is described in detail in the subsequent
chapters.

The development of MARE leads to a number of more detailed research questions in the different
partitions of MARE. These questions are listed in Table 6.1. Each column lists a research question, the
research method with which it is answered, the type of the result and the section in which the result is
described.
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Table 6.1: Detailed Research Questions

Research Question Research Method Result Reference

How can knowledge about the
target architecture be considered
in the architecture restructuring
process?

Method
Engineering

Construction of the
MARE method

Chapter 7

How can the complete map-
ping of source elements to target
components be automated?

Method
Engineering

Definition of the
MARE clustering
algorithm

Chapter 8

How can the MARE approach
be applied in different contexts?

Argumentation Description of appli-
cation scenarios

Section 6.2

Which criteria influence the
complete mapping and how can
they be mapped to the clustering
algorithm?

Argumentation Source System
Model Definition,
Initial Mapping,
Weighting of De-
pendencies

Sections
7.2.2
and 8.2

How can the quality of the
MARE clustering algorithm be
evaluated?

Construction GQM plan Chapter 9

Does MARE Clustering produce
a complete mapping of sufficient
quality?

Case Studies Quality measures in
to case studies based
on reference map-
pings

Chapter 10

Does the MARE clustering algo-
rithm show a stable behaviour?

Case Studies Stability measure-
ment in two case
studies employ-
ing different input
modifications

Chapter 10

6.5 Definitions

This section defines basic terms of the MARE approach.

6.5.1 Source Elements

Mitchell and Mancoridis (2006) call the structural elements of the source system, that are subject of the
clustering, modules. They define a module as ‘a source code entity that encapsulates data and functions
that operate on the data’. For the MARE approach these, entities are called source elements in order to
avoid misunderstandings with other definitions of the term module. Since the granularity of these source
elements depends on the goal of the architecture restructuring, a broader definition is used here:

Definition: Source Element A source element is a structural element of the implementation.

Depending on the restructuring context structural elements are e.g. files, classes, methods and functions.
The factors that influence the choice of the granularity for a specific project is discussed in Section 7.1.3.



6.5 Definitions 59

6.5.2 Detailed Design Model
The term detailed design was defined in Section 2.2.1. In MARE the detailed design model of the source
system is an important input for the definition of the complete mapping. The term Detailed Design Model
is defined as follows, using the other definitions introduced in this section.

Definition: Detailed Design Model A detailed design model describes the structure of the implemen-
tation of a component in terms of source elements and their relationships.

6.5.3 Target Architecture
Architecture restructuring changes the current architecture of a source system to a new architecture with
desirable properties, that are not covered by the current architecture. Thus, the term target architecture is
defined as follows.

Definition: Target Architecture The desired architecture of the target system. The target architecture
defines the goal of the architecture restructuring.

More details on the assumptions about the target architecture as well as a metamodel are given in Sec-
tion 7.3.3.

6.5.4 Target Components
According to Section 2.1, an architecture is defined in terms of components and their relations. Since
MARE considers structure in the target architecture on different levels, the elements of this architecture,
which are called Target Components in MARE, are also defined to represent the elements on these differ-
ent levels.

Definition: Target Component A target component is a conceptual element of the target architecture.
Depending on the architecture restructuring context, a target component can refer to a module (as defined
in 2.1.1) or to a component (as defined in 2.1.2).
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The MARE method is an approach to support the planning of the restructuring of the implementation
of a system in an architecture restructuring process. The planning is supported by semi-automatically
creating a complete mapping of all source elements to target components. MARE employs a clustering
algorithm that bases on information about the source system and the target architecture. The approach
includes interactions with the user in order to include the users knowledge about the source system and
the decomposition criteria of the target architecture as well as to delegate key decisions to the user. An
early version of MARE was published at the Workshop on Software Quality and Maintainability (SQM
2009) (see Streekmann and Hasselbring (2009)).

As will be discussed in Section 11, existing approaches do not provide a comparably extensive support
for the transformation of an existing implementation to a target architecture in coarse-grained architecture
restructuring scenarios. They concentrate mainly on the analysis of the source system or the support of
an evolution of the architecture of the existing system in small steps. Furthermore, they do not include an
explicit target architecture model.

MARE, in contrast, bases on explicit knowledge about the target architecture and has the goal to min-
imise the understanding of the implementation and architecture decomposition criteria of the existing
implementation. This does reduce the manual effort in the architecture restructuring process, particu-
larly in cases where the current architecture and the target architecture show fundamental differences.
Especially in cases where the implicit architecture of the source system is not documented or shows in-
dications of architectural erosion, the effort for architecture reconstruction can become large, with an
uncertain value for the goal of the actual architecture restructuring task.

MARE is a design time approach, that supports the adjustment of the implementation to fit the target
architecture. This is done by mapping source elements to the structure of the target architecture and
by supporting the adjustment and refinement of the target architecture to include the constraints of the
current implementation, that have to be considered to restructure the implementation with reasonable
effort. In contrast to architecture reconstruction and subsequent continuous monitoring of the architecture
and architectural evolution in small steps, which is supported by current tools like Bauhaus,1 Sotoarc,2

or Lattix (Sangal et al. (2005)), MARE focusses on large-scale architectural evolution, that changes the
basic architectural rationale of a system and employs different decomposition criteria. This is usually not
a continuous process, but will be performed in a temporally limited project.

Furthermore, the application range is not necessarily limited to software systems that suffer from ar-
chitectural erosion. Even well designed and well documented software systems can be subject to funda-
mental architecture restructurings.

Figure 7.1 shows a complete overview of the process of the MARE method modelled as a UML activity
diagram. The process includes three main activities: Initialisation, MARE Clustering, and Implementa-
tion Restructuring. The Initialisation activity includes preliminary activities that create necessary inputs
for MARE Clustering. MARE Clustering creates a complete mapping on the basis of these inputs, which
is implemented in the Implementation Restructuring activity.

In the following sections the parts of this process are described in detail. Section 7.1 focusses on the
relation of MARE to the general reengineering process as introduced on Section 3.1 and explains the

1http://www.axivion.com/
2http://www.software-tomography.ch/
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Figure 7.1: Complete MARE Method Overview
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Figure 7.2: Model-Based Architecture Restructuring Process

subactivities of the Initialisation and Implementation Restructuring activities. Section 7.2 describes the
activities that are specific for MARE Clustering before Section 7.3 defines the data exchanged between
the activities and the incorporated metamodels. The concrete sections for each activity are also annotated
in Figure 7.1. Section 7.4 summarises the contributions, assumptions, and limitations of MARE.

7.1 Embedding in the Reengineering Process
MARE supports architecture restructuring and is thereby a part of a typical reengineering process. Fig-
ure 7.2 depicts the concrete activities of the Initialisation and the Implementation Restructuring in a UML
activity diagram. The decision A indicates the architecture restructuring iteration cycle (cf. Section 7.1.1).
It refers to the stepwise nature of large-scale practical reengineering projects. These are typically are not
executed in a big-bang approach, but proceed in small steps to keep the restructuring effort manageable
and to provide a running system at any time, which can also be adjusted to current requirements.

The vital activity of the model-based architecture restructuring process is the modelling of the target
architecture. The target architecture guides the remaining process and is the reference for all decisions. It
is the basis for the decision which level of detail is needed for the creation of the detailed design model
of the source system, since the target architecture determines which entities of the source system need to
be restructured. E.g. whether packages, classes or methods are the largest indivisible units in the restruc-
turing of an object-oriented system. Furthermore, the kind of dependency types and according source
system analysis methods and tools have to be chosen. Further discussion on these topics is provided in
Section 7.3.2.

After defining the target architecture and the creation of a detailed design model, containing adequate
information for the restructuring, MARE Clustering can be performed to gain a complete mapping of
source elements to target components. Since the details of MARE Clustering are the topic of Section 7.2,
it is modelled as a structured activity in the depicted process.

After a complete mapping has been composed, this mapping can be used to plan the restructuring of
the implementation of the system. This restructuring however is not in the focus of the MARE approach
and is not supported by a detailed process or tooling. Nonetheless, possibilities for of the usage of the
MARE results for the restructuring of the implementation and for the automation of the restructuring are
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Figure 7.3: Mapping of Activities to the Horseshoe Model

discussed in Sections 7.1.4 and 7.1.5.
To clarify the embedding of MARE in a reengineering process, Figure 7.3 shows a mapping of the

activities introduced in Figure 7.2 to the horseshoe model, as an overlay of Figure 3.1 on page 19. The
modelling of the target architecture corresponds to the creation of the Desired Architecture. This architec-
ture is not deduced directly from the architecture of the source system (Base Architecture in Figure 7.3),
but bases on the requirements and the desired evolution properties of the target system. During the appli-
cation of MARE such an ideal target architecture can be refined and changed in order to regard properties
of the source system that influence the restructuring effort.

The creation of the detailed design model of the source system is part of the reengineering or architec-
ture reconstruction part of the horseshoe model. In contrast to the horseshoe model, which is based on
architecture reconstruction and an incremental restructuring approach, the process envisioned in MARE
does not require a detailed Base Architecture. It only involves reverse engineering activities that lead to
a model of the source system on the level on which structural changes are intended. The restructuring of
the implementation corresponds directly to the Architecture Based Development in the horseshoe model.

MARE supports the Architecture Transformation in the horseshoe model. It principally incorporates
transformation on the layers of Function-Level Representation and Architectural Representation. Its main
task is to map the functional representation of the source system to the architectural representation of the
target system.

In the following the architecture restructuring iteration cycle in MARE and the concrete activities
in Figure 7.2 are described in more detail. The composite MARE Clustering activity is the topic of
Section 7.2.

7.1.1 Architecture Restructuring Iteration Cycle

In practice, architecture restructuring is typically an iterative process. Although the overall planning of
a restructuring project is not in the scope of MARE, this section describes typical strategies that can be
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Figure 7.4: Hierarchical Refinement Example

used to introduce stepwise restructuring. The applicability of these strategies depends on the goal of the
architecture restructuring project. MARE assumes an overall target architecture, which defines the goal
of the iterative process.

Iterations should be closed restructuring units, intending that architecture-based implementation
changes made in the iteration will not have to be revised as long as the architectural decisions of the
target architecture remain stable. For each iteration a target architecture is defined, that defines the part
of the overall architecture, that is going to be restructured in the current iteration.

7.1.1.1 Hierarchical Refinement

In a hierarchical refinement strategy, the iteration cycle starts with the definition of coarse components
that constitute the main decomposition blocks of the target system. These components are further refined
into subcomponents in successive iterations. Thereby the restructuring process can be realised similar to
a breadth-first or a depth-first search or a mixture of both.

Figure 7.4 shows the hierarchical refinement of the system into the subcomponents SC 1, SC 2 and
SC 3. After the iteration the components should be independent except for the defined interfaces. In a
pure breadth-first approach these subcomponents can be decomposed into subsubcomponents in subse-
quent iterations before the next hierarchical decomposition level is restructured. In contrast, a depth-first
approach restructures all relevant decomposition levels of one subcomponent before the restructuring of
the next subcomponent is started. In practice, a mixture of these approaches is most probable, where the
ongoing development and maintenance task of the source system is considered.

7.1.1.2 Vertical Extraction

In the vertical extraction strategy, selected components that represent functionality which is to be ex-
tracted for reuse in other contexts, are defined in detail in the target architecture. The rest of the system
is modelled as one component which only provides the interface needed by the extracted components. In
this way successive iterations lead to a stepwise extraction of functionality.
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Figure 7.5: Vertical Extraction Example

Ideally, extracted components should only be accessed by the rest of the system through their pro-
vided interfaces. In practice further temporal dependencies can occur, which are removed in successive
iterations through the restructuring of the implementation or follow-up quality improvements. Temporal
dependencies from the extracted component to the rest of the system should not occur, since that indi-
cates, that the extracted component has to be changed, even if there is no change in the architecture. I.e.
the closed character of the iteration is no longer ensured.

Figure 7.5 shows a simplified example of the vertical extraction strategy in two iterations. Each itera-
tion extracts one component from the source system. In the first iteration (Figure 7.5(b)) Component 1 is
extracted, introducing a temporal dependency to the source system. Component 2 is not part of the target
architecture, since it is not subject of the first iteration. Figure 7.5(c) shows the target architecture of the
second iteration, which extracts Component 2 from the source system. In practice, extracted components
will in many cases provide and require more than one interface. Further provided and required interfaces
of the source system are not relevant for the component extraction and can therefore be omitted in the
target architecture of the iteration.

7.1.1.3 Three-tier SOA

Heckel et al. (2008) describe the restructuring of a two-tier application to a three-tier architecture in the
context of a SOA. They propose an iterative process, that first decomposes the system to technical layers.
One of the main purposes of this step is to separate the GUI specific code in order to replace it with a
service layer. The functional decomposition into services is intended for a second iteration. This strategy
can be seen as a special case of hierarchical refinement in which the technical layers constitute the main
decomposition of the system. The layers are then hierarchically refined into functional components.

7.1.2 Model the Target Architecture

The goal of the Model Target Architecture activity is to create the target architecture for the current
iteration of the MARE architecture restructuring iteration cycle. This section summarises some relevant
approaches for the modelling of a target architecture, but does not contain a complete guideline on how to
develop this activity in a practical project. The reason is, that the modelling of a target architecture does
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not only depend on the goals and rationale of the future development of the system, but it is also strongly
dependent on standards and processes of the developing organisation. It also bases on the functionality
of the source system, since this has to be preserved during the restructuring. On the other side it should
not depend on the implementation of the source system in this phase. This influence is considered later
in the MARE process. Since the development and maintenance can usually not be stopped for a long-
term architecture restructuring, the creation of a target architecture is also strongly interelated with these
activities.

7.1.2.1 View and Decomposition

Only static views of the target architecture are considered in MARE . Requirements on the dynamics of the
target system are not considered in the restructuring process. The dynamic properties of the target system
result from the mapping of source elements to target components. For the computation of the complete
mapping, the dynamic properties of the source system can be included by adding dependencies based
on the dynamic analysis of the source system. This limitation to static views of the target architecture
is adequate, since extensive in the dynamics of a system are only relevant for the restructuring of the
implementation in the sense of MARE, if they also affect the structural views of the architecture.

The decomposition of the target architecture for an iteration is mainly determined by the decomposition
criteria of the overall target architecture and the goals of the restructuring. The decomposition does
not necessarily base on the current decomposition of the source system. Nonetheless, it may become
necessary to adjust the target architecture to the current structure in later stages of the MARE process in
order to reduce the effort for the restructuring of the implementation. The decomposition of the target
architecture of an iteration should be chosen so that it represents a useful and realisable step for the
restructuring of the implementation.

7.1.2.2 To-Be vs. Ideal Target Architecture

Engels et al. (2008) describe an approach for the evolution of application landscape architectures called
Quasar Enterprise. This evolution is also described as an activity that consists of a series of projects that
convert an as-is application landscape to an ideal application landscape. This ideal application landscape
guides the evolution, but is not expected to be reached due to operational development and costs. Instead
of the ideal, a to-be application landscape is taken as the goal to be reached for a series of evolutionary
projects. Figure 7.6 shows the relation between As-Is, To-Be and Ideal application landscape and the
stepwise evolution from as-is to to-be application landscape. It also depicts a Corridor of Balance, that
should be kept in mind to not drift from the original evolution goals or the operational necessities.

As in application landscape evolution, architecture restructuring as an example of large-scale applica-
tion evolution has to deal with trade-offs between an ideal target architecture and a target architecture that
is feasible in a realistic project context. The ideal architecture is only influenced by current and future
requirements of the target system. A realistic to-be target architecture on the other hand has to consider
the source system implementation and the restructuring effort.

These considerations influence the modelling of the target architecture as well as its adjustment, which
is also part of MARE (cf. Section 7.2.2). In the modelling activity, the influence of the source system
concentrates on the functionality the system provides and its observable behaviour. The trade-off between
the envisioned target architecture and the restructuring effort can only be made with more detailed knowl-
edge about the source system and its dependencies, which is provided in the course of MARE. Therefore,
each iteration of the architecture restructuring process should start with an ideal target architecture, which
is changed to a to-be target architecture for the restructuring of the implementation using the knowledge
gained during the application of MARE Clustering.
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7.1.2.3 Dependencies

The designer of the target architecture can provide allowed dependencies between target components in
terms of interfaces usages. These are not considered in the creation of the complete mapping, but in its
visualisation and interpretation. While the detailed compliance to the interface can only be determined
by a manual mapping of concrete dependencies to operations of the interface, at least the coarse-grained
information which component is allowed to access the interfaces of another component can be used to
give initial hints on the nature of dependencies between components in the complete mapping. Unwanted
dependencies, i.e. dependencies, that are not defined as allowed dependencies in the target architecture
can be highlighted, since they represent the first candidates for changes in the configuration step or for
the resolution of dependencies in the implementation restructuring respectively.

Furthermore, tolerated dependencies can be computed from the allowed dependencies as a further
graduation of dependencies, if this fits the rationale of the target architecture. Tolerated dependencies are
dependencies between two components, that do not have a direct representation in the target architecture,
but can be derived from a series of allowed dependencies. This principle is depicted in Figure 7.7. It e.g.
corresponds to the concept of non-strict layered architectures.

7.1.3 Create the Source System Model

The goal of the Create Source System Model activity is to create a model of the detailed design of the
source system and to define the considered dependency types. The creation of a detailed design model
of the source system is a typical reverse engineering task (cf. Section 3.3). This activity can be executed
highly automated, since it is not necessary in the context of MARE to obtain an architectural representa-
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tion of the system, but only a model that contains the relevant source elements and their dependencies.

The choice of source elements and dependencies that are relevant for the architecture restructuring
depend on the goals of the architecture restructuring and the decomposition criteria of the target architec-
ture as well as the level of system expertise of the user. The level of detail can also be increased during
the progress of the architecture restructuring iteration cycle. On the other hand, it is also important to
explicitly decide which elements to omit, because they represent the current architecture of the system.
These elements are not appropriate candidates for source elements, because they may crosscut the target
architecture.

7.1.3.1 Selection of Source Element Types

Source elements should be considered on the level of the system where the actual restructuring will take
place. If e.g. the goal is to restructure the coarse-grained components of a large Java system, packages
can be the appropriate candidates, when they are to be moved completely between components during
the restructuring. On the other hand, packages often represent the module structure of a Java system.
Thus, for restructurings of the module view of especially small and mid-sized Java systems classes and/or
methods are more appropriate source elements for the detailed design model.

When smaller elements like e.g. methods are omitted, because it was decided that classes are not to
be divided, it is important to lift the dependencies of these elements to their containing source elements.
E.g. when methods are omitted, method calls between methods in different classes have to be lifted to
the class level in order to not lose important dependency information. Method calls between methods
contained in the same class can be omitted in this case.

Further criteria for the selection of source element types are the user’s effort for understanding the
implementation and the performance of the analysis. The effort of the user increases with the decrease of
the abstraction level of source element types (e.g. from classes to methods). The reason for this is, that on
lower abstraction levels more source elements have to be considered in the configuration of the clustering
and the interpretation of its results. An overview of the performance of the clustering algorithm is given
in the description of the case studies in Section 10.

The selection of source element types may change in the course of the architecture restructuring iter-
ation cycle. E.g. with a hierarchical refinement strategy, more fine-grained source element types may be
chosen with a more detailed target architecture in later iterations.
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7.1.3.2 Selection of Dependency Types

Static Analysis The choice of dependency types, that are relevant for the architecture restructuring,
depends on the architectural decisions taken in the source system. Many reverse engineering tools are
able to statically extract and analyse dependencies from source code. Static dependency analysis recovers
possible runtime instances of the system. E.g. a class hierarchy with several subclasses of a superclass can
be defined in the source code, but it is not ensured that all classes are instantiated at runtime. The really
instantiated classes can not be found using static analysis, when classes are instantiated dynamically at
runtime. Another example are method calls that are defined in the source code, but never actually executed
at runtime, because certain conditions are not met.

Dynamic Analysis The deficiencies of static analysis can be compensated by dynamic analysis. It
employs source code instrumentation and subsequent monitoring of the system’s execution or the inter-
pretation of the code for typical use cases to reveal runtime information about the system (cf. Cornelissen
et al. (2009)). This information is necessary, if e.g. the source systems architecture makes extensive use
of dynamic instantiation or runtime configuration of the system. It is also useful to reveal dead code. On
the other hand, dynamic analysis often has to be supplemented with static analysis to gain a complete
picture of the system. The analysis itself is also costlier than static analysis since the system has to be
executed for all relevant use cases to get the sought information.

Semantic Analysis A third way to gain dependencies between source elements is the analysis of their
semantics. There are approaches that analyse and cluster source elements based on naming conventions,
comments, participation in design patterns, etc. This semantic information can also be used in MARE in
terms of dependencies, that influence the clustering. E.g. pairs of source elements with names that have
exceeded a certain degree of similarity can be coupled with a respective dependency. Indicators could
e.g. be a low hamming distance or the inclusion of certain domain terms or their ontological equivalents.
Further semantic dependencies can also be specified by the user on the basis of his knowledge about
coherence of source elements, that is not manifested in concrete relationships in the system.

Andritsos and Tzerpos (2005) show that the inclusion of directory structure and the mapping of source
elements to developers lead to better results for the reconstruction of a software decomposition. For
architecture restructuring, the inclusion of this information can also improve results, but this depends on
the rationale of the directory structure and the developer mapping of the source system. The improvement
bases on the equality of the desired decomposition result and the mapping rationale. E.g. if the target
architecture complies to the technical decomposition of the system, the clustering results will not be
improved by incorporating developer information, when the developers are allocated to functional tasks.

Sindhgatta and Pooloth (2007) show that the consideration data from software configuration manage-
ment (SCM) systems can improve clustering results in the context of architecture reconstruction. They
state that this data represents the semantics of the implementation since the joint change of files indicate
that they follow a common purpose. Thus, they argument that this information better reflects the purpose
of the developers of the system under study, which on the other hand can be different to the current de-
composition of the system. To be useful for the restructuring of the system, it has to be assessed whether
SCM data fits the decomposition criteria of the target architecture.

7.1.3.3 Handling of Libraries

The clustering of systems that incorporate library subsystems is a common problem in software clustering.
Many clustering approaches employ the dependencies between source elements to compute similarity
functions. Since libraries are usually used from many source elements throughout the system, this leads
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to clusterings that centre around library source elements. Thus, the comprehensibility and usability of the
results is reduced.

In clustering for architecture reconstruction there are various approaches for the handling of the prob-
lems libraries impose. Examples are the exclusion of libraries from the clustering or the mapping of all
libraries or library-like elements to a special library subsystem as e.g. proposed by Mitchell and Man-
coridis (2006). Another possibility is the use of weighting schemes, that weight elements, that are used
by many other elements lower than elements, that are used less. Andritsos and Tzerpos (2005) state the
TF.IDF weighting scheme, which is used in information retrieval, to be applicable for this purpose.

On the other hand, libraries can also be useful to identify certain functionalities in a system. E.g.
Quante (2008) introduces an approach that clusters source elements by the usage of libraries. He shows,
that this can be useful to separate e.g. the implementation of the user interface, the network access and
database access.

With respect to restructuring, libraries can be hindering as well as helpful for the clustering of source
elements. The latter will particularly be the case for functional libraries used in the source system, that
comply to the decomposition criteria of the target architecture. Common technical libraries of the pro-
gramming language (e.g., java.lang) will in most cases hinder the clustering, since they are used from
all over the code and do not provide a significant difference between source and target system. Functional
libraries encapsulate a more special functionality, that is only used by specific source elements. It is rec-
ommended to consider uses of the library in the source system model under the following conditions: the
functionality complies to a decomposition criterion of the target architecture and all source elements that
use the library are supposed to be assigned to the same target component. On the other hand, if the library
does not serve the decomposition of the target architecture, the consideration of uses of the library will
lead to counterintuitive clustering results.

7.1.3.4 Source Code Refactoring

In some cases a manual refactoring has to be done as preparatory work for the restructuring. It becomes
necessary, if the smallest source elements considered are also subject of the restructuring. An example
is the mix of database accesses and user interface code in a single method, when database accesses and
the user interface implementation are separated in different components of the target architecture. The
goal of the refactoring in this case is to lift the level of the smallest entity considered from statement to
method.

7.1.3.5 Tool Selection in Practice

In practice the decision for specific tools for the source code analysis is an important factor. Current
tools are focussed on certain programming languages and types of dependencies they are able to analyse.
Especially when a system is implemented in more than one language or programming paradigm (e.g.
imperative or object-oriented), an appropriate tool has to be chosen carefully. Another factor is the avail-
ability of tools in an organisation. An existing tool may already be set in an organisation or the purchase
of a certain tool may not be possible because of license or pricing policies.

7.1.4 Create a Detailed Design Model of the Target System
The creation of the detailed design model of the target system is the first activity of the Implementation
Restructuring. The model is the basis for the restructuring of the source code to establish its conformity
to the target architecture. The goal of the creation of the model is to provide the best quality possible
in the process of restructuring and with the available effort. Thus, unwanted dependencies in the com-
plete mapping have to be resolved. Dependencies, that can not be resolved due to high effort, should
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be marked as temporary in the detailed design model as well as the target architecture and resolved in
subsequent projects. These projects improve the quality of the system and the conformity to the ideal
target architecture.

The detailed design model of the target system bases on the detailed design model of the source system
and adopts the source elements as well as the dependencies between source elements, that are allowed in
relation to the target architecture. In contrast to the source system model, the target system model also
contains element types, that represent the architecture of the system, e.g. packages or other high-level
elements, that were omitted in the source system model.

7.1.5 Restructure the Source Code

The restructuring of the source code is the final activity to gain the intended restructured target system
for the current iteration of the architecture restructuring cycle. In this activity the implementation of the
system is fit to the detailed design model of the target system as defined in the preceding activity. The first
steps of this activity are the identification of the affected source artefacts and the induction of the target
structure. The most important and most complex part of the restructuring is the resolution of unwanted
dependencies.

7.1.5.1 Identify Affected Source Artefacts

The notion of a source artefact is in this context not limited to the source code of programming languages,
but also includes e.g. configuration files, such as deployment descriptors. In cases were only the mapping
between components and modules of the system is affected by the restructuring, changes of deployment
descriptors may be the only change of the source artefacts, while the actual programming language source
code remains the same.

7.1.5.2 Induction of the Target Structure

The first task for the induction of the target structure on the level of programming language source code
is the creation of new high-level structural elements, such as packages in Java or e.g. a directory structure
according to modules in C. The next task is the relocation of the source elements according to the intended
structure.

During the induction of the target structure all dependencies, that do not conform to the target archi-
tecture, should be resolved. The effort for the resolution of dependencies ranges from simple refactorings
to complex manual restructurings. In order to introduce an engineering method for the restructuring of
the implementation, a catalogue of patterns for the resolution of different dependency types in different
context can be developed from existing experiences with source code restructurings. This catalogue can
not be defined universally, since it depends on the languages and programming paradigms used in the
source system as well as the quality criteria of the target architecture. The advantage of such a catalogue
is, that the effort of the source code restructuring can be estimated on the basis of these patterns. When it
is possible to rate each pattern with the effort needed to execute it, the total effort of the restructuring can
be estimated from this rate and the frequency of the resolution of certain dependency types.

7.1.5.3 Automation of the Source Code Restructuring

In order to further reduce the effort of the overall restructuring process, methods can be used, that auto-
mate the restructuring of the source code. The following paragraphs sketch possible approaches for the
automation.
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Relocation of Source Elements The creation of a new source code structure and the relocation of
source elements in this structure can be executed based on the detailed design model of the target system,
that is derived from the complete mapping created by MARE. The link to the implementation of each
source element, that is contained in the complete mapping of MARE, is the only information required
for this operation. Many modern development environments already provide the implementation for such
relocation operations in terms of refactorings and also update all internal links to the moved elements.

Another approach, that supports patterns to change the structure of the code, is described by Hunold
et al. (2008). They support the user in applying restructuring decisions as transformations to abstract
source models and automate the generation of source code from these models. Hence, the approach is
complementary to MARE, since MARE supports the user in taking these decisions.

Resolution of Dependencies The automation of the resolution of dependencies based on patterns is
more complex, since it requires changes to the source code, that exceed simple structural changes.
Changes of control flow and data flow as well as the addition of source elements become necessary.
Therefore, a more detailed model of the source system, that represents every aspect of the source code,
is required in order to be able to define the pattern implementations. There are existing approaches, that
provide methods to create and manipulate model representations of the source code (see e.g. Fleurey et al.
(2007), Giese (2010), and Horn et al. (2009)). These approaches also allow the generation of the source
code of the target system from the detailed models. Thus, the definition of a model transformation on
the detailed models is needed, that takes the concrete unwanted dependencies found by MARE as an
input and creates a new detailed model, that only contains dependencies, that are intended in the target
architecture.

Nevertheless, in practice it will not be possible to resolve all dependencies by the automatic application
of patterns. Certain dependencies will be too specialised or complex to resolve to be expressible in model
transformations. Furthermore, there will be several patterns to resolve certain dependencies, from which
the user has to chose the appropriate solution for the specific context.

7.1.5.4 Particularities of the Component-and-Connector Viewtype

Figure 7.8 depicts an exemplary target architecture in the component-and-connector viewtype. It shows
two composite components CA and CB with their subcomponents. The subcomponents are assumed to
be mapped 1 : 1 to modules in a target module view. The only exception are the components B and B’
which are mapped to the same module. Therefore one of them will not be mapped in the initial mapping.
For the example it is assumed that B has been mapped.

Figure 7.9 depicts the dependencies from the clustering result mapped to the target architecture,
whereby the source elements that were mapped to B are also considered for B’ for the dependency
mapping. It can be seen that most dependencies (at least in this coarse-grained view) can directly be
mapped to the interfaces described in the target architecture. The only dependencies that do not fit the
target architecture are the dependency from C to B and the dependency from B to D. The dependency
from C to B can be ignored, because it is just a copy of the dependency from C to B’ which is part of
the same composite component as C. The dependency from B to D is more problematic since there is
no instance of D in CA and there is no according interface defined for CB. Possible resolutions of this
unwanted dependency from B to D include the following:

• Add an instance of D to CA.

• Add an interface to CB that is delegated to the interface of D.

• Remove B and add an interface to CB that is delegated to the interface of B’.
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• Add a new top-level component to the system that contains D or B and D with corresponding
interfaces, which are used by CA and CB.

7.2 MARE Clustering Activities
Figure 7.10 depicts the process from Figure 7.2 with merged Initialisation and Implementation Restruc-
turing activities and the expanded MARE Clustering activity. It shows that MARE Clustering contains
two main activities. They represent the Configuration of the clustering and the Clustering itself. The de-
cision B in the diagram represents the MARE Clustering iteration cycle. These three parts are described
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in the following subsections.
The clustering approach of MARE can be seen as a model transformation according to Section 5.2.

Figure 7.11 shows the transformation with reference to Figure 5.3 on page 43. The clustering activity
reads the defined target architecture and the source system model as well as further configurations given
by the initial mapping and weights for the dependency types used in the source system model. The latter
two are part of the configuration of MARE and are described in Section 7.2.2. This input is transformed
to a complete mapping using clustering techniques.

7.2.1 MARE Clustering Iteration Cycle
The MARE Clustering iteration cycle, referred to by the decision B in Figure 7.10, is responsible for the
improvement of the clustering results and represents the interactive character of the MARE process. The
decision to be taken is whether the result of the Clustering activity is adequate to start the restructuring
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of the implementation. If this is the case the application of MARE Clustering in the current restructuring
iteration (A) comes to an end and the result of the current MARE Clustering iteration is used to restructure
the implementation. If the result is not adequate, the next iteration of MARE Clustering begins with the
refinement of the input values of the clustering in the Configuration activity.

7.2.2 Configuration

The goal of the Configuration activity is to provide the information needed in the Clustering activity to
create the complete mapping. It includes four optional subactivities of which Adjust Target Architecture
is to be executed first, since it can influence the other activities. The remaining three activities, namely
Create / Refine Initial Mapping, Define Dependency Weights, and Adjust Detailed Design Model, can
be executed in parallel (see Figure 7.12). The activities create or manipulate the input values of the
clustering. Thus, they provide the possibility of human interaction and the exertion of influence on
the clustering result in successive MARE Clustering iterations. The following subsections describe the
activities and their rationale in detail.

7.2.2.1 Adjust the Target Architecture

The adjustment of the target architecture is an optional step in the MARE process. It can be performed,
if the validation of the clustering result yields new insights for the to-be target architecture. As described
in Section 7.1.2.2 the goal is to find a to-be architecture that is near to the ideal target architecture, but
also allows for a restructuring of the implementation with low effort. The insights gained during the ap-
plication of MARE can e.g. be the detection of dependencies for which the resolution in the restructuring
of the implementation would be too expensive. These can lead to the addition of target components or
subcomponents or the addition of interfaces.
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The need for such changes of the target architecture chosen in the Model Target Architecture activity
based on influences of the source system implementation is mainly caused by the trade-off between re-
structuring effort and quality goals. Goals as e.g. cohesion of target components or the absence of certain
(types of) dependencies between components may be placed back in favour of a less expensive restruc-
turing of the implementation. However, these decisions should be recorded in the target architecture
documentation. Future quality improvement projects can then be initiated to revise these decisions.

7.2.2.2 Create / Refine the Initial Mapping

An initial mapping has to be created in the first iteration of the MARE Clustering iteration cycle. The
refinement of this mapping is optional for all subsequent iterations. In this activity the user has to provide
a manual mapping of source elements to target components. The goal is to map a small number of source
elements by hand and the rest automatically. The number of manually mapped elements should be small
in order to reduce human effort for the analysis of the source system.

A necessary condition for the mapping is, that at least one source element has to be mapped to each
target component that shall be included in the clustering. Reasons for not including a target component
into the mapping are, that the target component is not relevant for the current iteration of the architecture
restructuring iteration cycle or, in the case of a restructuring based on the component-and-connector
viewpoint, that several instances of the component are used in the target architecture model. Another
condition is, that a source element can only be mapped to one target component.

The choice of the source elements to be mapped underlies the user. Obvious candidates are source
elements that represent the decomposition criteria of the target components and as such are central for its
semantics. If the user is not a system expert, the interfaces of a component are guides to find appropriate
source elements. It is assumed that a good first choice of source elements to be mapped are the equivalents
of the operations and types described in the interfaces. Medvidovic and Jakobac (2006) also use this
assumption in their architecture reconstruction approach to identify data components.

This assumption depends on good interface design. As a rule of thumb, interfaces should comprise
types that are as general as possible, but as specialised as necessary. E.g., Strings as types in an interface
can imply assumptions about their structure or numerical types be implicitly limited to a certain range of
values. The mapping of operations and types can in certain cases be supported by automatic matching
of similar names. Another mapping that can be made without major effort is the mapping of whole
subcomponents or coarse grained modules that are known to be reused in the target architecture.

7.2.2.3 Define the Dependency Type Weights

Dependency type weights are used in the MARE clustering algorithm (cf. Section 8.2) to cluster strongly
dependent source elements to the same target architecture component. The dependency types are defined
during the creation of the source system model (cf. Section 7.1.3). Since the weights are needed by the
clustering, this activity is required in the first iteration of MARE and optional in the subsequent iterations.
The strength of the dependency between two source elements should depend on the decomposition criteria
of the target architecture. This semantic information can be defined for the clustering in terms of weights
of different dependency types.

When e.g. the functional decomposition is emphasised in the target architecture, a high weight for
return types of methods or inheritance dependencies can lead to good results in the clustering of an
object-oriented system. The impact of different dependency types on the clustering result for different
types of systems and restructuring goals is discussed in Section 8.3.

Since the weighting of different dependency types is highly dependent on the usage of programming
concepts in the source system and the decomposition criteria of the target architecture, it remains a man-
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ual task. During the iterations of MARE, the dependency weights can therefore be adjusted after each
clustering step in order to improve the clustering result.

Experiences with dependency type weights are rarely described in the literature. Rayside et al. (2000)
define weights for the reconstruction of high-level views of object-oriented systems (see Table 7.1), but
they also indicate, that the weights are based on personal experiences and judgement. Furthermore, the
weights are only defined informally. Christl et al. (2007) adopt the weights and map them natural numbers
(low = 1, medium = 2, high = 3).

Table 7.1: Dependency Type Weights (Source: Rayside et al. (2000))

Dependency Type Weight

Inheritance low
Inner Class Decl. high
Type dependence low

Exceptions low
Instantiation high

Array Creation medium
Field Read medium

Static Field Read low
Field Write high

Static Field Write high
Invocation medium

The dependency type weights depend on the decomposition criteria of the target architecture in the
context of MARE. As stated in Section 2.3.2, an important architecture decomposition criterion is the
modifiability of the system. Depending on the context of the system this criterion can have different
characteristics and depends on the type of modifications that are expected in the future development of
the system. Therefore, e.g. the ALMA method by Bengtsson et al. (2004) bases on scenarios to assess
the modifiability of a concrete architecture.

In MARE these different characteristics are modelled by different weights of dependency types, since
it is assumed, that different architecture decisions lead to different types of dependencies between target
components and different types of dependencies that represent the cohesion inside a target component.
Experiences with dependency type weights in the context of restructuring in MARE are described in
Chapter 10. The impact of dependency type weights on clustering is discussed in Section 8.3.

7.2.2.4 Adjust the Source System Model

The intention of this activity is to adjust the detailed design model of the source system due to the findings
from the validation of the clustering result. Adjustments in this phase contain the following actions.

• Removal of Source Elements. Certain source elements like e.g. libraries or other elements, that
behave like libraries, can negatively influence the automation of the complete mapping. They have
strong dependencies to different parts of the system and thus lead to mappings, that do not follow
the decomposition criteria of the target architecture. If this is the case for single elements, it can
also be an indicator for the need of a preliminary refactoring of these elements (cf. Section 7.1.3.4).

• Addition of Dependency Types and corresponding dependencies. When the complete mapping
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reveals, that elements, that should conceptually be clustered to the same target component, are
not mapped accordingly, because the conceptual relation is not represented in the source model,
the inclusion of further dependency types can become necessary. A removal of dependency types
is not intended, since the contained types provide useful information for the restructuring of the
implementation. However, a dependency type can be excluded from the clustering by setting its
weight to zero.

7.2.3 Clustering

The goal of the Clustering activity is the creation of the complete mapping. As depicted in Figure 7.13, it
is subdivided into the activities Execute Clustering and Validate Clustering Result. The former represents
the automatic clustering of source elements based on the inputs defined in the Configuration activity. The
result is a complete mapping of source elements to target components. This mapping is the basis for the
creation of a detailed design model of the target system.

MARE uses an agglomerative hierarchical clustering algorithm for the execution of the clustering. The
specifics of the algorithm in relation to architecture restructuring are discussed in Section 8.2.

In the Validate Clustering Result activity, the resulting complete mapping is checked by the user. Based
on the insights of this check the user can decide to start another iteration of the clustering with changed
input values or to end the MARE Clustering activity and start the restructuring of the implementation
based on the clustering result. The support for the validation of the result given by MARE and the
possibilities to influence the clustering result are discussed in Section 8.5.

7.3 MARE Metamodels

Figure 7.14 abstracts from the explicit control flow, that was shown in the activity diagrams before and
depicts the data flow only. It contains all activities from the complete process model (Figure 7.1) and adds
the data objects that are exchanged by the activities. Each of the data objects conforms to a metamodel.
These metamodels are described in the following subsections.

Following the architecture view taxonomy of Matevska-Meyer et al. (2004) only structural views are
considered in MARE. The models moreover conform to the module viewtype and the component-and-
connector viewtype of Clements et al. (2003), respectively.
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Figure 7.14: Data Flow in MARE

The source system model represents the current low-level structure of the implementation of the sys-
tem. The elements of the source system model are not subject of the actual restructuring. Thus, these
elements will not be changed during the restructuring process and are also the building blocks of the
detailed design of the target system. The goal of MARE is to establish a mapping of these elements to
the target architecture. The transfer of the actual architecture restructuring to the implementation can
influence the decision which elements and dependencies are part of the source system model, such that
the model is about to change in the successive iterations of MARE (cf. Section 7.1.1).
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7.3.1 Applicability of Standard Interoperability Metamodels

Standard Interoperability Metamodels were introduced in Section 5.4. From the point of view of MARE
such metamodels can be used to import information from other tools or to provide the complete mapping
to other tools for further analysis or the automated restructuring of the implementation.

To serve as a metamodel for the input of MARE, a metamodel does at least have be able to represent
the source system model since this is required to be created with an external reverse engineering tool.
Thereby, it is sufficient to model elements on the function level for most use cases. A more fine-grained
model that comprises all details of the source code is not necessary. This conforms to the limitation made
in the DMM. Furthermore, the ability to model more than the syntactic dependencies of source elements
should be given to be able to represent e.g. semantic dependencies. This is possible with the KDM as
well as with the DMM.

To model the complete configuration of MARE, furthermore the possibility to model architecture arte-
facts as well as relations between architecture artefacts and implementation artefacts is necessary in order
to represent the target architecture and the complete mapping. Such architectural models can only be
modelled with the KDM, since the DMM focuses on the function level of a software system.

The representation of the created complete mapping also bases on the link of the architecture level and
the function level. Thus, only the KDM can be used to exchange this model with other tools. Another
benefit of the KDM is that it also allows the detailed modelling of the source code down to the level of
single instructions. Thus, the MARE implementation could read the needed input information from a
detailed KDM model and add the mapping information between target components and source elements
to the model after the execution of MARE Clustering. The restructuring of the implementation could then
operate on such a complete model to put the automation scenarios sketched in Section 7.1.5 into practice.

The following sections describe the metamodels used in MARE. They are not defined as extension
to one of the standard interoperability metamodels in order to focus on the aspects needed by MARE,
which are independent of the standard interoperability metamodels in the first place. Since also the
reverse engineering tools used in the case studies (cf. Section10) do not support one of the standard
interoperability metamodels, it was decided to use a direct representation of the metamodels defined in
Ecore to ease the implementation. Nonetheless, the metamodels can be mapped to the KDM and partly
also to the DMM as discusssed before in order to allow for the interoperability of MARE with other tools.

7.3.2 Source System Model

The purpose of the source system model is the representation of the structural elements of the source
system and their dependencies. This information is needed to semi-automatically create the complete
mapping of source elements to target components.

The source system model can be seen as a detailed design view of the source system implementation
leaving out information about the architectural structure of the source system such as packages, coarse-
grained modules or deployment information as well as fine-grained implementation information such as
single statements or control structures such as loops or conditional blocks.

Figure 7.15 shows the common metamodel of the source system model. It defines a Source System
Element with a name and a link to the corresponding element in the implementation as attributes and a
Dependency between source system elements as association class. Dependencies are typed. The meta-
model is kept generic in order to allow to restructure source systems that follow different development
paradigms as e.g. strictly imperative and object-oriented systems as well as source systems that are writ-
ten in different programming languages.

The metamodel has to be extended for concrete project settings. The class Source System Element
is then subclassed by concrete entities of the programming language of the source system. A simple
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example for Java is shown in Figure 7.16. The enumeration Dependency Types is also filled with the
concrete dependency types, that are relevant for the project.

7.3.3 Target Architecture

The purpose of the target architecture model is the definition of the decomposition of the target system,
which is the goal of the architectural restructuring process. The model is assumed to describe architectural
elements to which source elements are to be uniquely mapped.

The target architecture metamodel as depicted in Figure 7.17 is designed to model a structural view
of the target system. The core of the metamodel are target components as defined in Section 6.5. Tar-
get components can be hierarchically decomposed into subcomponents. Components can provide and
require interfaces, which are defined by their operations and the parameters thereof. They can further
contain information objects. Interfaces and information objects are not directly used by the MARE clus-
tering algorithm, but support the user in the definition of the initial mapping and the interpretation of the
clustering result. The metamodel is kept simple to allow for transformations from existing architecture
description languages such as UML or ACME. Thus, users can model the target architecture in their
preferred environment.

The architectural focus of MARE lies on the structure of software systems. This can include the
implementation structure as well as the runtime structure. Thus, the module viewtype as well as the
component and connector viewtype can be the basis for the description of the target architecture. The
following subsections describe for which projects goals which of the viewtypes are adequate.
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Figure 7.17: Target Architecture Metamodel

7.3.3.1 Viewtypes

As stated before different viewtypes can be the basis for the target architecture in MARE. For projects
that aim at the development quality of the target system, the module viewpoint is adequate, since it deter-
mines the structure of the implementation entities and allows for a decomposition of source elements that
supports the maintainability of the source code. In this case modules are modelled as target components.

For projects that focus on the (re-)use of elements of the source system in other contexts, e.g. by
extraction of functionality as components or the migration to SOA, a structural view of the component-
and-connector viewtype is more adequate. It does not focus on the source code structure, but on reusable
composition units, which hold a runtime identity, since this is the way most architects think of their
systems in early stages of architecture development.

Since only structural aspects are considered, both viewtypes can overlap in the definition of the target
architecture. As also stated by Szyperski et al. (2002, p. 420), atomic components are modules. A change
of the viewtypes from component-and-connector to module is especially probable in subsequent itera-
tions, when the hierarchical refinement strategy is applied. This strategy leads from abstract conceptual
architecture views to the concrete structure of the implementation.

Modelling of Connectors There is an ongoing discussion on whether connectors are first-class entities
in component-and-connector-views (cf. Giesecke (2008, p. 42ff.)). For the task at hand connectors are
modelled as second-class entities when possible, since they only have to be considered if they influence
the restructuring. In most cases the connectors of the target system will not exist in the source system, so
a more detailed specification is only required for the restructuring of th e implementation, but not needed
for the architecture restructuring step. In cases where the connectors already exist in the source system,
the respective source elements should be excluded from the clustering, because technical connectors
follow different implementation rules than functional components, which might cause problems in the
configuration of the clustering. When it is not possible to exclude the connector code from the source
system model, since it is also subject of the restructuring, it is possible to model connectors as regular
components. Since connectors usually have more than one instance, the same rules as for other multiple
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instance components have to be applied.

7.3.3.2 Concrete Syntax of the Target Architecture Model

To ease the use of the approach and to be able to support both viewtypes for different restructuring
tasks, UML component diagrams are used to model the target architecture in the module viewtype as
well as the component-and-connector viewtype. Besides differences in the semantics of modules and
components regarding the runtime properties of components, an important restriction of modelling a
module view with components is that (following the decomposition style defined in Clements et al. (2003,
p. 53ff.)) a subcomponent is not allowed to be part of more than one composite component. The MARE
approach does not demand a particular target architecture view, but leaves the decision to the user, since
the architectural restructuring may pursue different goals, which are reflected in the target architecture.

7.3.4 Initial Mapping

The initial mapping metamodel allows the mapping of source elements from the detailed design model
of the source system to target components from the target architecture model. This generic metamodel is
depicted in Figure 7.18. An arbitrary number of source elements can be mapped to each target component.
On the other hand, each source element can be mapped to at most one target component. An initial
mapping model contains mappings of at least one source elements for all components and subcomponents
of the target architecture model of the current iteration of the architecture restructuring iteration cycle.

In reference to target architectures of the component-and-connector viewtype a further restriction is,
that only one of possibly several instances of a component can be considered in the initial mapping and the
clustering step, since a source element can only be mapped to one target component. The consequences
for the other instances have to be analysed in the interpretation of the clustering result and the planning
of the implementation restructuring.

7.3.5 Dependency Type Weights

The dependency type weights metamodel is based on the dependency types that are used in the source
system model. These depend on the programming languages used in the source system and the applied
analysis tools. The metamodel itself is very simple and allows the assignment of a weight to each depen-
dency type. Figure 7.19 exemplarily shows the static dependencies of Java systems that can be extracted
with the SISSy3 reverse engineering tool, which is based on the Recoder framework4.

3http://sissy.fzi.de/
4http://recoder.sourceforge.net/
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Figure 7.19: Static Dependency Types in Java

The dependency types are categorised into three abstract types. Type Usage refers to the usage of
e.g. classes as types for return statements, parameters, variable types or inheritance relations. Structure
covers dependencies that represent the structure of the implementation, e.g. methods and local classes that
are contained in classes or classes that are contained in packages. Structural dependencies are usually
not considered in MARE since they often represent the structure of the current architecture, like e.g.
containment in packages. Access is the superclass of all dependencies that refer to accesses of variables
or methods.

7.3.6 Complete Mapping

The purpose of the complete mapping model is the determination of a mapping of all source system
elements to target architecture elements. The metamodel corresponds to the metamodel of the initial
mapping as shown in Figure 7.18. The only difference is, that each source system element has to be
mapped to exactly one target component in the complete mapping. The model resulting from the MARE
Clustering activity is an instance of this metamodel. If a source system element can not be mapped to
one of the target component, which can be the case if it has no (transitive) dependencies to the initially
mapped source elements, a new target component is added to the target architecture in order to illustrate
this fact to the user.

In order to make the clustering result more understandable and usable for users, different views can be
created on the model. One example is an UML diagram, that shows target components and their nested
source elements, modelled as UML classes as depicted in Figure 6.2 on page 57. Allowed, tolerated
and unwanted dependencies can be depicted as a graph (e.g. using Graphviz5) that shows the target
components as nodes and the different types of dependencies as different edges. Further visualisations
can be given as matrices with target components as rows and columns and different dependency measures
as entries. These measures are e.g. the number of dependencies between two target components or the
sum of the weights of the dependencies between two target components.

5http://www.graphviz.org/
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7.4 Summary

This chapter introduced the MARE Method. The core of the method is an iterative process model that
covers the whole process of architecture restructuring. MARE is a design-time approach that employs
abstract models of the source and the target system to support the planning of an architecture restructuring
project. In contrast to other approaches, the target architecture is the guiding artefact of the restructuring
process.

The MARE process model conforms to the horseshoe model, which is a common model for reengineer-
ing processes. A mapping of the activities of MARE to the horseshoe model was presented in Section 7.1.
The architecture restructuring iteration cycle of MARE reflects the requirement of a stepwise character
of restructuring projects that leads to lower risks and faster results of such projects. The decisive factor
of the iterations is the stepwise adjustment of the target architecture of each iteration to an intended to-
be target architecture. Possible strategies for this procedure are the hierarchical refinement of the target
architecture and the vertical extraction of target components.

The second important model that is needed by MARE besides the target architecture is a detailed
design model of the source system. This model comprises all source elements that are affected by the
restructuring and their dependencies. The selection of source element types and dependency types is
based on the decomposition criteria of the target architecture. The source element types should be chosen
such that they do not reflect the decomposition criteria of the source architecture. The abstraction level
of the source elements should also be not too low in order to allow for the traceability of the results
and a good performance of the clustering algorithm. The dependency types should reflect the distinctive
decomposition criteria of the target architecture as well as the structural dependencies that influence the
effort of the restructuring of the implementation.

The creation of these two models as well as the restructuring of the implementation are part of the
MARE process model, but are not in the focus of the contribution of MARE. They rather define the
requirements from the point of view of MARE. They same applies to the actual restructuring of the
implementation. This chapter described how a detailed model of the target system can be created from
the complete mapping resulting from MARE and how the restructuring of the implementation can be
automated using current methods from industry and research.

The focus of the MARE method lies on the creation of the complete mapping and the configuration
needed for this activity. The configuration comprises the adjustment of the target architecture and the
source system model as well as the definition of dependency type weights and an initial mapping. The
adjustment of the target architecture is included to be able to include temporary changes that reduce the
effort of the restructuring of the implementation. The adjustment of the source system model targets the
ability to remove source elements that negatively influence the automatic mapping of MARE or to add
further knowledge in terms of dependencies between source elements. The initial mapping is created and
refined manually and serves as a seed for the automatic creation of the complete mapping. It is further-
more used to include human knowledge and decisions in the clustering. A minimal initial mapping of
one source element per target component is necessary to start the automatic mapping process. The de-
pendency type weights also reflect the user’s knowledge about the system and the decomposition criteria
of the target architecture.

Besides the activities of the MARE process model the chapter described the metamodels used to define
the information needed to create the complete mapping. These include the target architecture and the
source system model as well as the initial mapping and the dependency type weights. The metamodels
are kept very generic in order to support the restructuring of systems that follow different implementation
paradigms and to support a variety of target architecture views.

It was also emphasised that standard interoperability metamodels are suitable to exchange information
between MARE and other reengineering tools. However, these metamodels are not used as a basis for the
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definition and the implementation of the MARE metamodels to keep the focus on the information that
is specific for MARE and since they are not implemented in the external tools used in the MARE case
studies.

The actual creation of the complete mapping and the definition of an according graph clustering algo-
rithm are the topic of the next chapter.





8 MARE Clustering

This chapter describes the creation of the complete mapping in MARE Clustering on the basis of graph
clustering. Section 8.1 describes the goals and criteria of MARE Clustering. Section 8.2 introduces the
actual clustering algorithm and its underlying graph model. Section 8.3 discusses the impact of dependen-
cies and their weights on the clustering, while Section 8.4 examines the role of arbitrary decisions taken
by the clustering algorithm. Section 8.5 discusses the validation of the clustering result before Section 8.6
summarises the results of the chapter.

8.1 Goals and Criteria of the Clustering
The goal of MARE Clustering is to provide the complete mapping of source elements to target com-
ponents in order to support the user with the restructuring of the implementation of a system towards
a target architecture. Since the manual definition of such a mapping demands an enormous effort, the
MARE approach is designed to automate as much of this effort as possible. It targets the inclusion of the
available knowledge of the user and the creation of a mapping that comes close to the manual mapping
the user would make.

The following subsections list the main criteria for ensuring the quality of the resulting complete map-
ping. They are the basis for the selection and definition of an appropriate clustering algorithm.

8.1.1 Complete Mapping
The primary goal of the clustering is the complete mapping of source elements to target components, as
described in Section 6.3. In order to improve the comprehensibility of the results, the examination of
intermediate results and the traceability of inputs to the resulting mapping should be possible.

The presentation of the results should clearly reflect the complete mapping, so that the user does not
have to interpret the result with regard to the mapping of single source elements or groups thereof.

8.1.2 Mapping Quality
Besides the goal of a complete mapping, this mapping also has to fulfil quality requirements. The criteria
for the definition of quality in this context are described in the following subsections. They influence the
adoption of hierarchical agglomerative clustering as described in Section 8.2.

8.1.2.1 Similarity to a Manual Mapping

An important criterion for the creation of a complete mapping using clustering is the similarity to a
manual mapping of the same source elements and target architecture. Since a purely manual mapping
is to be replaced by MARE, its criteria have to be formalised as well as possible. A manual mapping is
oriented towards the decomposition criteria of the target architecture and the knowledge about the existing
implementation. Information about the decomposition criteria of the target architecture is captured in the
components and interfaces of the target architecture model as well as the dependency type weights. The
knowledge about the existing implementation and its relation to the target architecture is captured in the
initial mapping and also in the dependency type weights.
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This information has to be processed in the clustering algorithm in an adequate way. Furthermore, the
results of the clustering have to be presented such that the user can easily interpret them and is able to
derive changes in the configuration in order to improve the clustering result to suit him.

8.1.2.2 Cohesion

Another important criterion for the mapping is the cohesion of the target components according to the de-
composition criteria of the target architecture. The decomposition criteria are assumed to be expressible
in the dependency type weights. Hence, these have a strong influence on the execution of the cluster-
ing. Regarding a high cohesion of target components, it is assumed, that dependency types, that reflect
the decomposition criteria are more likely to be found inside a target component than between target
components.

8.1.2.3 Coupling and Non-Conforming Dependencies

In software engineering, high cohesion and low coupling are common quality attributes of a system ar-
chitecture. While this is also true for cohesion in the case of restructuring, the situation for coupling is
different. Low coupling is still a goal for the target system, but since the restructuring is based on the
source implementation, which is build with different architecture decomposition criteria, low coupling
will not always be achievable for the complete mapping. Even when source elements are correctly as-
signed to a target component according to the decomposition criteria of the target architecture, there can
be unwanted dependencies to other target components through dependencies, that conform to the decom-
position criteria of the source architecture. This can lead to high coupling in terms of a high number of
unwanted dependencies. However, the weights of the dependencies should still be low as compared to
the dependencies of source elements assigned to the same target component.

These unwanted dependencies lead to a conflict of interests for the semi-automatic creation of the
complete mapping. While low weights for dependencies, that represent the source architecture, lead
to a good mapping of source elements to target components, they can also lead to a high number of
these dependencies between target components. This becomes a problem in the restructuring of the
implementation. In that phase, the dependencies that do not conform to the target architecture have to be
resolved in order to gain a high-quality target implementation. Thus, the clustering algorithm needs to
focus on high cohesion more than on low coupling.

8.2 Target-Architecture-Driven Clustering

MARE employs an agglomerative hierarchical clustering algorithm to create the complete mapping of
source elements to target components. Hierarchical clustering is a well-researched method in the recon-
struction of the structure of software systems (cf. e.g. Maqbool and Babri (2007)). In contrast to the
reconstruction of an existing structure, the goal of MARE is to adapt the implementation to a new struc-
ture given by the target architecture. Nevertheless, the fundamental idea is similar in both contexts. The
main difference is, that the criteria for the clustering of the system emphasise different aspects of the
system. Where architecture reconstruction incorporates the presumed decomposition criteria of the archi-
tects and developers of the source system, architecture restructuring has to incorporate the decomposition
criteria of the target architecture.

Still, the influence of the existing implementation is high. On the one hand, it contains knowledge
about the implemented functionality, which should be preserved. On the other hand, the architecture
decomposition criteria behind the existing implementation strongly influence the effort to change the
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implementation towards the target architecture and can thus also influence the target architecture in order
to keep the restructuring project budget low.

8.2.1 Adaptation of Hierarchical Graph Clustering
The target architecture and the knowledge of the reengineer about the functionality and implementation
of the system are the most important inputs for the clustering. In order to be able to incorporate this
information in the computation of the complete mapping, restructuring-specific adaptations to standard
hierarchical clustering as described in Section 4.3.1 are necessary. This subsection describes the concep-
tual adaptations while the subsections 8.2.2 to 8.2.4 describe the hierarchical clustering algorithm used in
MARE.

8.2.1.1 Stopping Condition

As described in Section 4.3.1 typical stopping conditions include reaching a predefined number of clusters
or the dropping of the similarity between clusters below a given threshold. Since the goal in MARE is to
gain one cluster of source elements for each target component, a special stopping condition is introduced.
It stops the clustering, when each source element, that has a connection to one or more source elements
of the initial mapping, is part of a cluster, that can be mapped to a target component.

The mere definition of the number of target components will not be sufficient to gain adequate clusters,
since the resulting clusters will not be directly mappable to the target components. The definition of a
similarity threshold will also not produce adequate clusters and furthermore conflicts with the goal of
automating as much of the creation of the complete mapping as possible. A clustering using a similarity
threshold will leave a large number of decisions to the user. The same applies to hierarchical clustering
without a stopping condition, since the cut through the dendrogram that represents the clustering result
has to be defined by the user and requires an intensive analysis.

8.2.1.2 Merging of Clusters

Knowledge of the reengineer about the mapping of certain source elements to target components can be
expressed in the initial mapping. This is adopted in the clustering algorithm by the creation of initial
clusters in a pre-clustering phase. The initial clusters contain all source elements, that were mapped to a
certain component in the initial mapping. Since the initial clusters represent the target components during
the clustering, they are called component clusters. The representation of component cluster leads to the
rule, that component clusters are not allowed to be merged. A merge of two component clusters would
make it impossible to directly map the resulting clusters of the algorithm to target components. Thus, this
restriction to standard hierarchical clustering has to be made to gain a clustering result with the required
properties.

8.2.1.3 Similarity Function

The knowledge of the reengineer on how the decomposition criteria of the target architecture can be
mapped to the existing implementation is reflected in the dependency type weights. The dependency
types that reflect the desired decomposition in the target architecture, should be weighted higher than
other dependency types. E.g. when the target architecture is based on a domain decomposition of the
system and it is known that inheritance relations in the system reflect cohesion in terms of domain-specific
functionality, this dependency type should be weighted high. The reflection of decomposition criteria in
dependency type weights indicates that also the definition of similarity between clusters is based on these
weights. Thus, similarity of nodes and clusters in the context of MARE does not describe the similarity
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Figure 8.1: Graph Metamodel

of these elements in terms of their properties, but similarity in terms of their mapping to the same target
component.

8.2.2 Graph Model

In order to compute the complete mapping using hierarchical clustering an underlying abstract graph
model is created. This model is the basis for the graph clustering algorithm and contains the information
from the models created in the Configuration activity. Thus, the clustering algorithm creates a complete
mapping on the basis of these models and implements the model transformation introduced in Section 7.2.
This section describes the metamodel of the graph model and the creation of model instances.

8.2.2.1 Graph Metamodel

The metamodel used as the basis for the hierarchical clustering is a simple graph model. Figure 8.1 shows
the classes of the graph metamodel. It basically contains nodes which are mapped to source elements and
edges representing their dependencies. Nodes have a name and a link to the according source element
in the source system model. Edges have a weight and allow to model more than one relationship of the
same type between two nodes, indicated by the count attribute.

Nodes and edges are typed. The types are represented by enumerations, which contain all possible
types. Thus, the metamodel can be extended and to implemented easily. Since the types are specific to
the programming language of the source system and the used reverse engineering tool, details are omitted
in the figure. Nodes can be contained in a Cluster. A cluster is named, can be marked as component
cluster and does in that case have a link to the according target component in the target architecture.

Based on the links from nodes to source elements and from clusters to target components, the clustering
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result can be mapped back to a complete mapping model and be visualised to the user as described in
Section 7.3.6. This is necessary to enable the user to execute the validation of the clustering results as
described in Section 8.5.

The edges are modelled as an association class to highlight their character as a relation between two
nodes as well as their character as an object with specific properties. The association ends are bags,
since there can be several edges between two nodes, even of the same type. As can be concluded from
the association end names, the edges of the graph are directed. This feature is not used in the current
similarity functions (cf. Section 8.2.4), but provides the possibility to define more complex similarity
functions. Examples for concrete DependencyTypes in Java systems are shown in Figure 7.19 on page 85.
To simplify an instance of the metamodel, all edges of the same type between the same nodes can be
merged to one edge for which the count is set to the number of edges of this type between the same
nodes. The default count for edges, that are not merged, is 1.

To simplify the definition of the similarity function between clusters, the notion of an edge between
nodes can also be lifted to edges between clusters. Then, an edge exists between two clusters for each
edge between two nodes which are contained in two different clusters. Thus, (v1,v2)∈EC1,C2 with v1 ∈C1
and v2 ∈C2 is the set of all edges between the clusters C1 and C2.

Since multiple edges are allowed between two nodes, the model is a multigraph. It can be transformed
into a simple graph by merging all edges between two nodes into a single edge. The edges between two
nodes n1 and n2 can be merged by replacing them with a new single edge e12 with the weight ωe12 defined
as follows:

ω(e12) = ∑
e∈E12

ω(e)∗χ(e) (8.1)

with E12 being the set of all edges between n1 and n2 and χ(e) being the count of edge e. The merging
simplification and the introduction of the count attribute improves the performance the recomputation of
distances during the execution of the clustering algorithm. However, it is not applicable in the whole
MARE life cycle, since changes to the dependency type weights in the configuration phase of MARE are
only meaningful on the multigraph representation.

8.2.2.2 Creation of the Graph Model

To create the adequate graph representation of the source system, all elements of the source system
model (cf. Section 7.3.2) are mapped to graph elements. The source elements are mapped to nodes while
dependencies between these elements are modelled as edges. The dependency weights defined in the
Configuration activity are assigned to the edges of the respective type. The information from the target
architecture and the initial mapping are included in the model in the pre-clustering phase of the clustering
algorithm (cf. Section 8.2.3).

Internal attributes of source elements can also be modelled as edges between nodes in order to consider
their similarity for the interrelation of the nodes. E.g. the attribute developer used by Andritsos and Tzer-
pos (2005) can be included by creating pairwise edges between all nodes that represent source elements,
that were implemented by the same developer.

In order to reduce the complexity of the graph and to improve the performance of the clustering, some
optimisations can be made during the creation of the graph model. One is the transformation into a
simple graph as mentioned before. Furthermore, all dependencies with weight 0 can be removed from
the graph model, since they do not influence the clustering result. Still, these edges should be visible to
the user during the interpretation of the result, since also edges between two clusters that have a weight
of 0 influence the restructuring of the implementation and can therefor lead to the decision to change the
configuration for a subsequent clustering run. When the removal leads to nodes without edges, they are
also removed for the clustering run.
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Figure 8.2: Adjusted Hierarchical Clustering Algorithm

8.2.3 Clustering Algorithm

MARE uses agglomerative hierarchical clustering to create the complete assignment. Figure 8.2 depicts
an exemplary dendrogram of the adjusted hierarchical clustering algorithm. The stages of the clustering
algorithm are described in the following paragraphs. Listing 8.1 explains the algorithm in pseudocode.

8.2.3.1 Initialisation

The algorithm starts with a simple initialisation step, that assigns each node of the graph model to a single
cluster (Clusters 1-9 in Figure 8.2). The similarities of the clusters are computed using the similarity
function for singular clusters as described in Section 8.2.4. The creation of clusters in the FOREACH
loop in Listing 8.1 is deterministic and the order of the creation will not influence the clustering result.
However, the order of the clusters in the target data structure can influence the choice of the most similar
clusters in the Hierarchical Clustering phase depending on the implementation.

8.2.3.2 Pre-clustering

In the pre-clustering phase, initial clusters are created for each target component and are marked as com-
ponent clusters (Clusters 10 and 11). The clusters representing the source elements that are mapped
to the according target component in the initial mapping are merged to the new cluster. The similar-
ities of the clusters are computed using the similarity function for composite clusters as described in
Section 8.2.4. The hierarchy of target components is flattened in the pre-clustering. I.e. hierarchical
relations between target components have no influence on the resulting component clusters. The order
of the processing of the target components in the FOREACH loop does not influence the clustering re-
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sult, since it is not allowed to map source elements to more than one target component in the initial
mapping.

ALGORITHM MARE_Clustering ( graphModel , targetArchitecture , initialMapping )

/ / I n i t i a l i s a t i o n
FOREACH ( Node n IN graphModel )

C l u s t e r c = c r e a t e C l u s t e r ( n ) ;
END FOREACH

/ / Pre−c l u s t e r i n g
FOREACH ( TargetComponent tc IN targetArchitecture )

Merge a l l c l u s t e r s c where c.contains(n)
AND n i s i n i t i a l l y mapped t o tc ;

END FOREACH

/ / H i e r a r c h i c a l C l u s t e r i n g
WHILE (∃ C l u s t e r c : c.isConnected AND !c.isComponentCluster ) )

S ea r c h f o r two c l u s t e r s c1 and c2 wi th t h e
h i g h e s t s i m i l a r i t y where

NOT ( c1.isComponentCluster AND c2.isComponentCluster ) ;

C l u s t e r c12 = merge ( c1 , c2 ) ;

IF ( c1.isComponentCluster OR c2.isComponentCluster )
c12.isComponentCluster = t r u e ;

END IF
END WHILE

Listing 8.1: Clustering Algorithm in Pseudocode

8.2.3.3 Hierarchical Clustering

After the pre-clustering phase, the actual hierarchical clustering begins. The similarities of the clusters are
computed using the similarity function for composite clusters as described in Section 8.2.4. As described
in Section 8.2.1 it is not allowed to merge two component clusters, even if they have the highest similarity
value. In such a case the two clusters with the highest similarity value, that are not both component
clusters, are merged.

In the case that more than one pair of clusters has the same highest similarity value, it has to be decided
which pair of clusters will be merge in the current step. This decision is of prime importance for the result
of the clustering, since it potentially influences the similarity values and the component clusters of the
following iterations of the WHILE loop. Hence, this issue is discussed in detail in Section 8.4.

8.2.3.4 Stopping Condition

The clustering stops, when only component clusters and disconnected clusters are left. Thus, the clus-
tering creates nTC clusters (with nTC = number of target components) for connected graphs. For discon-
nected graphs the clustering creates at most nTC + nDP− 1 (with nDP = number of disconnected graph
partitions), when only nodes in one graph partition are mapped in the initial mapping.
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8.2.4 Similarity of Clusters

The mapping of nodes to a component cluster is based on the decomposition criteria of the target archi-
tecture. This has to be mapped to properties of the graph elements in order to be available to the similarity
function and can thereby influence the clustering.

8.2.4.1 Similarity of Singular Clusters

Singular clusters are clusters, that only contain a single node. These clusters are created in the initiali-
sation phase of the clustering algorithm. The rationale to assign two source elements to the same target
component is mapped to the dependencies between the source elements in MARE. Thus, the similarity
function (Sim : Ci×C j → R) for two singular clusters Ci and C j computes the similarity value for two
clusters by summing up the weights of the edges between the clusters. The direction of edges is not
considered, since the similarity value represents the reasonability to assign both clusters to the same tar-
get component and for this task edges in both directions are of interest. The similarity function can be
formalised as follows:

Sim(Ci,C j) =
k

∑
x=1

ω(ex)∗χ(ex) (8.2)

with ex ∈ ECi,C j , where ECi,C j is the set of edges between the nodes in Ci and C j, k being the number of
edges in ECi,C j and χ(ex) being the count of edge ex.

8.2.4.2 Similarity of Composite Clusters

Following the criterion of high cohesion for the clustering, this section introduces possible similarity
functions to compute the similarity between an existing cluster Ci and a new cluster C jk merged from
the clusters C j and Ck, and discusses their differences. Functions that do compute the similarity of new
clusters to existing clusters from their predecessors (as e.g. the functions introduced in Section 4.3.1) are
called updating rules by Wiggerts (1997). This term will also be used in the remainder of the thesis. A
straight-forward way to define the similarity of composite clusters is to adopt the definition in Equation 8.2
for the computation of the similarity of a cluster to a newly formed cluster as follows:

Sim(Ci,C jk) = Sim(Ci,C j)+Sim(Ci,Ck) (8.3)

This sums up the weights of all edges between nodes in Ci and the newly formed cluster C jk, hence this
updating rule is called Sum in the remainder of this thesis. With respect to cohesion the definition is
assumed to be not ideal, since it also leads to a high similarity for clusters that contain a few nodes, that
are connected by highly weighted edges, and a large number of nodes that only have edges to these but
not among each other.

Section 4.3.1 already described standard updating rules for hierarchical clustering. Since the litera-
ture indicates, that updating rules, that base on average linkage, lead to clusters with high cohesion, the
functions defined in Equations 4.4 and 4.5 on page 36 are preferable here.

Furthermore, Koschke (2000, p. 190) defined a similarity function for composite clusters, that also
bases on average linkage and can in this context be formalised as follows:

Sim(Ci,C jk) =

n
∑

x=1
ω(ex)∗χ(ex)

|Ci| ∗ |C jk|
(8.4)
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Figure 8.3: Example for Equation 8.5

with ex ∈ ECi,C jk and n being the number of edges in ECi,C jk. This function is not an updating rule since it
computes the similarity of composite clusters based on the properties of the clusters and not the existing
similarity values of the predecessor of the new cluster.

Another similarity function for composite clusters that will be called Sum Relative to Nodes in the
remainder of the thesis, can be defined. It uses previously computed similarity values, but computes a
new value based on the edges between the single nodes in the clusters. To do this, the function has to
extend Equation 8.2 by the notion of multiple nodes per cluster. This results in the following function:

Sim(Ci,C jk) = (Sim(Ci,C j)+Sim(Ci,Ck))∗
|NInv|
|NAll |

(8.5)

where |NInv| is the number of nodes in Ci and C jk that have edges to nodes in the other cluster and |NAll |
the total number of nodes in these clusters. Thus, the weight of the edges between the clusters is rated
with the connectedness of the nodes of the two clusters. If all nodes in both clusters have connections to
nodes in the other cluster the latter term evaluates to 1 and the whole weight is taken as new similarity
value. If only some part of the nodes has connections to nodes in the other cluster, only a fraction of the
weight is taken. Figure 8.3 shows two small examples and the corresponding similarity values. Since the
similarity function takes into account the number of nodes, that contribute to the edges between the two
clusters, and therefore prefers highly connected clusters, it is assumed, that it leads to a higher cohesion
of the resulting component clusters.

The Unweighted Average Linkage updating rule and the Sum updating rule defined above as well as the
latter two functions, that do not only compute the similarity of the existing clusters to a new composite
cluster from the existing similarities but also include further information, will be evaluated in the case
studies in Chapter 10.

8.3 Impact of Dependencies on the Clustering
Since dependencies form the basis of the computation of the similarity of two clusters, they have a de-
terminant impact on the clustering result. As Equation 8.2 shows, the clustering bases on the sum of
the weights of all edges between two nodes. Thus, the weight and the number of dependencies are the
main factor for the mapping of source elements to target components. This section shows how the weight
and the number of edges interact in the clustering and how this has to be considered in the weighting of
dependency types.
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Figure 8.4: Example for the Impact of Dependencies

Figure 8.4 shows an example in which the nodes are classes. N2 inherits from N1 and calls methods in
N3. Each of the nodes is mapped to a singular cluster. For the example it is assumed, that the decomposi-
tion criteria of the target architecture indicate to map two classes, that have an inheritance relation, to the
same target component.

If all dependencies are weighted equally with e.g. a weight of 1, C2 will be merged with C3. Under the
assumptions described above, this would not be the intended result of the clustering. On the other hand
the number of edges of a certain type can be compensated by the weight of other edges of which less
occur between two nodes. In order to gain the intended result of a merge of C2 and C1, the weight of the
inheritance type has to be at least 4. This shows the interaction of the number of dependencies of a certain
type and the dependency type weights. It can be argued, that the number of equally typed edges between
two clusters should not be considered in the computation of the similarity of these clusters. E.g. the mere
fact, that a function calls another function more than once does not necessarily make the functions more
similar. For the example described above this would mean, that a weight of 2 for the inheritance edge
would lead to a clustering of C2 to C1.

On the other hand, keeping in mind that for the restructuring of the implementation the similarity
between two clusters also represents the effort for the resolution of dependencies between two target
components, also the number of equally typed edges is an important information in relation to the clus-
tering decision. Therefore, the default behaviour in MARE is to map all occurrences of dependencies to
edges in the graph model. Nevertheless, a user can decide to map all occurrences of dependencies of the
same type between two source elements to only one edge with a count of 1 in the creation of the graph
model.

Mitchell (2002) also outlines the importance of dependency weights for the result of clusterings. But
he also indicates that current clustering approaches do not provide knowledge on the concrete impact of
dependency type weights and their change on clustering results. In the Bunch tool described in the thesis,
a weight of 1 is assumed for each dependency type. This weight can be adapted by users. However, hints
for a procedure of how the weights can be adapted to a certain application context are not given. They
are described as topics for future research. For the context of architecture restructuring MARE examines
the possible indicators for the change of dependency type weights. This topic is discussed in Section 8.5.

Andritsos and Tzerpos (2005) evaluate the influence of weighting schemes for the application of clus-
tering based on information theory for architecture reconstruction. Similarly, the influence of dependency
type weights on the presented clustering algorithm will be evaluated in Chapter 10.
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Figure 8.5: Example for Arbitrary Decisions

8.4 Arbitrary Decisions

The presented clustering algorithm has to make arbitrary decisions when the result of the similarity value
is the same for several cluster pairs. As a consequence, two clustering runs that take different decisions
will result in a different complete mapping. Figure 8.5 shows a simple example for the influence of
arbitrary decisions using the similarity function from Equation 8.3. Similar but more complex examples
can also be found for the other similarity functions.

Figure 8.5(a) depicts the initial situation allowing the decisions to merge the clusters 1 and 2 or 3 and
4. The clusters 1 and 4 are initially mapped to different target components. 8.5(b) shows the complete
clustering for the decision to merge 1 and 2 first, while 8.5(c) shows the clustering for the complete
clustering for the decision to merge 3 and 4 first. The results illustrate, that cluster 3 is always merged
with cluster 4, while cluster 2 is clustered depending on the decision, which clusters are merged first.

In order to cope with this situation different strategies can be applied. These strategies are described in
the following subsections.
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8.4.1 Allow Arbitrary Decisions

The most simple strategy is to allow arbitrary decisions by introducing a fixed rule to determine the
decision. A simple to implement rule is to always take the first or the last occurrence of the similarity
value. This strategy leads to a deterministic result of the clustering as long as the order of the clusters
remains the same. It will however not necessarily lead to good complete mappings when a big number of
arbitrary decisions occurs or the decisions occur early in the clustering process and have a major influence
on the clustering result.

8.4.2 Reduce Arbitrary Decisions

Maqbool and Babri (2007) investigate the influence of arbitrary decisions for the similarity functions pre-
sented in Section 4.3.1. They argument, that arbitrary decisions do not negatively influence the clustering
result, when the information reflected in the underlying model appropriately covers the characteristics
of interest of the clustering. They argue that the negative influence of arbitrary decisions can be com-
pensated by the inclusion of more information in the similarity function. Thus, they propose the use of
clustering algorithms that include more knowledge about the system and recompute the similarity value
for each cluster merge instead of computing the similarity based on previous similarity values. They eval-
uate this using two such algorithms called LIMBO as introduced by Andritsos and Tzerpos (2005) and
the Weighted Combined Algorithm defined by Maqbool and Babri (2004). They come to the conclusion,
that the algorithms lead to less arbitrary decisions in later stages of the clustering process and to better
results compared to the use of updating rules. On the other hand, they state that the algorithms also lead
to less stable results.

In MARE the similarity functions for composite clusters as defined in Equation 8.4 and Equation 8.5
also include further information in the computation of the similarity of merged clusters. Their influence
on the stability of the clustering is examined in the open source case study in Section 10.2.

8.4.3 Compute All Decisions

The optimal solution to avoid the influence of arbitrary decisions is to compute all possible decisions
and compare the results of all the different clustering runs. For the small example in Figure 8.5, the two
possible results are shown in 8.5(b) and 8.5(c). Based on the comparison, the optimal clustering solution
can then be chosen. E.g. 8.5(c) could be chosen, because it provides better values for the sums of weights
of internal and external dependencies than 8.5(b). For large systems the computation of all alternatives
and the automatic decision for the best solution can become very complex and computation-intensive.

8.4.4 Consolidating Iterations

A practical strategy, that bases on the advantages of the previous strategy is to compute several clustering
runs with a different order of clusters in the initialisation phase and to consolidate their results. This
strategy leads to non-determinism in the clustering runs. I.e. every run on the same input data can create
a different complete mapping, depending on the decision taken, when several cluster pairs have the same
similarity value. Compared to the optimal solution, this strategy does not include all possible arbitrary
decisions, but can be computed with less effort and is assumed to lead to more stable results than single
clustering runs.

A possibility to consolidate the result and to gain a better clustering quality is to take the results of
several runs and extract the nodes, that were mapped to the same component cluster in each run. These
can be used to complement the initial mapping for another series of cluster runs. It is assumed that then
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Figure 8.6: Example for Several Clustering Runs

more nodes will be clustered uniquely. The strategy is depicted in Figure 8.6 and called Consolidating
Iterations in the remainder of the thesis.

The strategy can be further clarified using the example from Figure 8.5. A first series of clustering
runs will produce the clusterings shown in 8.5(b) and 8.5(c). Since each clustering maps cluster 3 to
component cluster 4, this information will be added to the initial mapping for the next series of clustering
runs. In this series, component 2 will also be clustered to component cluster 4 in all clustering runs. Thus,
the iterative clustering ends with 8.5(c) as the complete mapping.

In summary, the concept of consolidating iterations is to introduce an iterative clustering to resolve as
much arbitrary decisions as possible by incrementally adding uniquely clustered elements to the compo-
nent clusters. This does not preclude arbitrary decisions, but leads to a reduction of arbitrary decisions
and their negative impact on clustering results. However, there are cases in which nodes cannot be clus-
tered uniquely. In these cases arbitrary decisions have to be taken or the user is requested to extend the
mapping for the next series of clustering runs.

Since arbitrary decisions are not processed in a schematic way, but by randomly changing the input for
different clustering runs, it cannot be ensured, that all possible decisions are taken during a clustering se-
ries. Hence, an optimal complete mapping cannot be guaranteed, but the strategy provides more accurate
results, than the strategy described in Section 8.4.1 and is not as computation-intensive as the strategy
presented in Section 8.4.3. Therefore, this strategy has been chosen for the creation of the complete map-
ping in MARE. It is compared to the basic strategy presented in Section 8.4.1 in the evaluation of MARE
(cf. Chapter 10).

8.5 Result Validation
The validation of the clustering result is a manual task, that is supported by simple tools in the prototypical
MARE implementation. This section shows how the clustering result can be interpreted in order to find
weaknesses of the complete mapping and how these weaknesses can be approached by changing the
configuration of the clustering.

8.5.1 Interpretation of the Result

The criteria for the interpretation of the results are to gain a functionally meaningful mapping of source
elements and target components with a high cohesion in relation to the highly weighted dependency types.
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Furthermore, with regard to the restructuring of the implementation unwanted dependencies should be
reduced as much as possible.

8.5.1.1 Measuring Cohesion

In Section 2.4.2, existing metrics for cohesion were described. Since these are defined on the class-level,
they are not suited for the measurement of cohesion of the more coarse-grained target components of
MARE. There is no known metric to measure the cohesion of an arbitrary set of source elements with
individually selected and weighted dependency types. However, the redefinition of LCOM by Hitz and
Montazeri (1995) can easily be extended to measure the cohesion of target components in relation to
the source elements mapped to it. It is defined employing the connectivity of a graph of methods with
method calls and instance variable accesses as edges. Based on this definition one can derive a metric for
the Lack of Cohesion in Source Elements (LCOSE) by extending the graph to the graph model defined
in Section 8.2.2. LCOSE is then defined as the number of connected subgraphs of the graph. However,
it is not clear whether all dependency types should be considered for the computation of LCOSE, which
would lead to the highest possible level of cohesion, or only selected dependency types, which better
reflect the intended decomposition criteria and probably give a more realistic view.

Furthermore, the criticism of Hitz and Montazeri (1995), that LCOM returns a value of 1 for all kinds of
connected graphs, also holds for the the definition of LCOSE. In many cases the source elements mapped
to a target component will form a connected graph and a more fine grained graduation of cohesion is
necessary. Therefore, the connectivity metric of Hitz and Montazeri (1995), which is defined as 2 ∗
|E|−(n−1)

(n−1)∗(n−2) (cf. Equation 2.1 on page 15) can also be adopted here.
Since the edges in the MARE graph are weighted and the weights have a decisive meaning for the

restructuring process, an extended metric called Weighted Connectivity can also defined.

WeightedConnectivity = 2∗ |Dtc|− (ntc−1)
(ntc−1)∗ (ntc−2)

∗ ∑ω(dtc)

|Dtc| ∗
⋂

d∈D ω(d)
(8.6)

with ntc being the number of source elements in the target component, Dtc being the set of dependencies
in the target component, and dtc ∈ Dtc. ∑ω(dtc) denotes the sum of the weights of all dependencies
between the source elements mapped to the target component and

⋂
d∈D ω(d) denotes the average weight

of all dependencies in the graph model.
Weighted Connectivity considers the ratio of the weights of internal dependencies of the target com-

ponent to the weights of all dependencies in the graph. Thus, the connectivity value is higher if the
average dependency weight inside the target component is higher than the average dependency weight of
the whole graph. Thus, results of complete mappings created with different dependency type weights are
more comparable.

However, the reference mappings used in the case studies in Chapter 10, which represents the optimal
complete mapping, indicate that the cohesion metrics defined above are at least not appropriate in every
case to characterise a high quality of the complete mapping. The reference mapping of the preliminary
case studies shows acceptable cohesion values for the metrics. The LCOSE value is 1 for all target
components and the values for Connectivity and Weighted Connectivity have a mean value of 0.33 and
0.43, respectively. However, the single values are widely scattered, between 0.14 and 0.66 as well as 0.17
and 0.94, respectively. The reference mapping open source case study on the other hand has an average
LCOSE value of 3.12 with a maximum value of 10. The five target components with a LCOSE value of
1 also have a very low average connectivity of 0.02. This shows, that the intended cohesion is not in any
case measurable with the available metrics.

Hence, it is not clear whether the presented metrics for cohesion can be used to indicate a good quality
of the complete mapping. Therefore, they are not used in the evaluation of MARE. Instead, the examina-
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tion whether existing metrics for cohesion are suited for the rating of the quality of the complete mapping
or whether new metrics for the cohesion of coarse-grained modules are needed that better reflect the de-
composition criteria of the target architecture and the intentions of the architects are needed is subject to
future work.

Sindhgatta and Pooloth (2007) question the role of coupling and cohesion for the definition of the de-
composition of software systems in the context of architecture reconstruction. They state that developers
decompose systems rather on the basis of a similar purpose of the source elements than on the basis of low
coupling and high cohesion. Thus, the modules in such decompositions often have a high coupling and a
low cohesion in terms of structural dependencies between source elements. In the context of architecture
restructuring it is meaningful to consider high coupling in terms of structural dependencies, because the
coupling of target components influences the restructuring of the implementation in terms of the reso-
lution of unwanted dependencies. However, cohesion in the context of MARE should be measured in
terms of the decomposition criteria of the target architecture, which includes the similarity of purpose
and depends on the developers intention. Thus, coupling and cohesion can have a different measurement
basis and high cohesion can not be equated with low coupling.

Furthermore, cohesion can only be an indicator for the quality of the complete mapping. Provided that
the dependency weights represent a good mapping of the decomposition criteria of the target architec-
ture, high cohesion can indicate, that a good mapping has been found. Nevertheless, high cohesion of
the target components in the complete mapping alone does not guarantee a good clustering result with
respect to the feasibility of the restructuring of the implementation. A high coupling caused by unwanted
dependencies can still make the restructuring unfeasible or cause the necessity of an adjustment of the
target architecture. On the other hand, high coupling is no indicator for a low quality of the complete
mapping, because it may not be possible to produce a complete mapping with low coupling because of
the dependencies in the existing implementation.

Since it is unclear whether the presented cohesion metrics are suitable, a weaker indicator for the
common goals of high cohesion and low coupling in software architectures is used in the evaluation.
It is assumed, that a good quality is given, when a component has more internal dependencies than
external dependencies. Therefore, the ratio between internal and external dependencies is considered as
an indicator for the quality of a clustering. It is assumed, that a higher value of this ratio implies a higher
quality of the complete mapping.

8.5.1.2 Wrongly Mapped Source Elements

In many cases, a user with a certain knowledge about the system can find wrongly mapped elements
by browsing the mappings of single target components. However, especially for complex systems, a
more goal-oriented approach is necessary. There are several strategies for how a user can approach the
interpretation of the result and find wrongly mapped source elements.

Examine elements first, that were mapped early in the clustering process Source elements that are
mapped wrong early in the clustering process have a high impact on the subsequent clustering process
and can cause the wrong mapping of further source elements that have a high similarity to them. Hence,
the examination of early clustered source elements can reveal wrongly mapped source elements with a
high influence on the quality of the overall complete mapping. If the Consolidating Iterations strategy
is used to reduce the negative influence of arbitrary decisions, also the examination of the intermediate
initial mappings produced by the strategy can be helpful to find such source elements.

Examine unwanted dependencies Another approach to find wrongly mapped elements is to examine
the unwanted dependencies between two target components. Since these dependencies have to be re-
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solved during the restructuring of the implementation, they are good candidates to find source elements
that are mapped adversely for the restructuring of the implementation.

8.5.2 Criteria for Configuration Changes

This section lists criteria for the change of the clustering configuration in order to gain a clustering result,
that better suits the requirements of the restructuring of the implementation. The main influence factor
for the effort of the restructuring of the implementation are the unwanted dependencies between two
target components. In order to reduce the effort, these dependencies have to be reduced by changing the
clustering configuration. Thereby, the adjustment of the target architecture takes a special role.

8.5.2.1 Adjustment of the Target Architecture

An important problem that arises in the creation of the complete mapping are concurrent goals, that
are pursued with this complete mapping. On the one hand, the conformance between the restructured
implementation and the target architecture is expected to be high, in order to ease future maintenance of
the system. On the other hand, the effort of the restructuring should be as low as possible, in order to
provide a usable system as soon as possible. Furthermore, the effort should be below the effort for the
implementation and migration to a completely new system.

When it becomes clear during the interpretation of the clustering result, that it is unfeasible to restruc-
ture the implementation to the given target architecture, a possibility to still enable the restructuring is
to adjust the target architecture. The adjustment is a crucial configuration change, since all other inputs
for the clustering are possibly affected as well. Possible adjustments of the target architecture range from
the extension of interfaces to allow for further dependencies to changes in the component structure and
decomposition criteria.

8.5.2.2 Further configuration changes

Whether a dependency is unwanted or not, depends on the target architecture. This especially means, that
not only dependencies, that result from maintenance tasks, that did not respect the source architecture of
the system, tend to be classified as unwanted, as it is mostly the case in architecture reconstruction. On
the contrary, such dependencies may even conform to the target architecture, while other dependencies,
that conform to the source architecture may be unwanted in the target architecture, since the source and
target source element are mapped to different target components.

Unwanted dependencies can be reduced by changing the configuration of the clustering. The main
influence factors for the reduction are the initial mapping and the dependency type weights. However,
some dependencies cannot be removed in this way and have to be resolved in the restructuring of the
implementation.

Change of the Initial Mapping The initial mapping allows the user to define manual mapping deci-
sions. Thus, for the case that two elements, that are mapped to different clusters, lead to an unwanted
dependency and the user is able to manually map them to a common target component, this decision
can be expressed in the initial mapping. The decision should also regard further dependencies of the
source elements, as they can lead to new dependencies between the affected clusters. Figure 8.7 shows
a simplified example of this situation. Furthermore, the manual mapping of a single source element can
induce the unforeseen automatic mapping of further source elements, which may also lead to unwanted
dependencies or wrongly mapped source elements.
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Figure 8.7: Example for the Change of the Initial Mapping

Change of Dependency Type Weights By changing dependency type weights, a user does not only
influence a single mapping decision, but a number of equal decisions throughout the system. Starting
from unwanted dependencies, it can be analysed, which kinds of dependency types are affected more
than once. If in these cases a mapping of the source and target source elements of the dependencies to
the same target component can be preferred to the resolution of the dependencies in the restructuring
of the implementation, the increase of the weight for this dependency type can be used to influence the
clustering result. Since the weight is an attribute of the edge in the graph model and not an attribute of
the edge type, it can also be changed for single dependencies. However, the manual change of single
dependency weights leads to an enormous human effort in the analysis of a system, wherefore the change
of weights on the level of dependency types is preferred.

8.6 Summary

This chapter introduced the clustering algorithm used by MARE to create the complete mapping of source
elements to target components. The chapter discussed the quality criteria of the complete mapping.
The main criteria are that all source elements are mapped and that the clusters created by the clustering
algorithm can be clearly mapped to target components so that the user does not have to interpret the
clustering result in order to be able to use the mapping in the further restructuring process. Based on this,
the quality criteria are the similarity to an according manual mapping and measures like coupling and
cohesion, whereas the latter are only partially applicable.

In Section 8.2 the MARE clustering algorithm was introduced. The section introduces the underlying
analyses model and discusses differences to conventional hierarchical clustering algorithms. The MARE
clustering algorithm is an adjusted graph clustering algorithm that includes a pre-clustering phase to
incorporate the initial mapping and stops when only component clusters and disconnected clusters are
left. The similarity of singular clusters is computed by the sum of the dependency type weights of the
dependencies between two connected nodes. The similarity to newly merged composite clusters can
be computed by applying different updating rules and similarity functions. The properties of these are
subject of the following evaluation.

Furthermore, the chapter discussed the impact of dependencies on the clustering. It is exemplarily
shown that different types of dependencies should be considered in the clustering and how weights can
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be used to rate the influence of the types. It was also shown, why it can be useful to consider the number
of several dependencies of the same type between two source elements.

Another relevant influence factor on the clustering are arbitrary decisions. It is shown how arbitrary
decisions can negatively influence the stability of a clustering algorithm. Section 8.4 discusses different
strategies to cope with this influence. The strategies include the reduction of arbitrary decisions by using
more detailed information in the computation of the similarity of clusters during the clustering and the in-
troduction of consolidating iterations to find constantly clustered source elements and use this information
to stabilise the final clustering result.

The validation of the clustering result is another important task in the MARE process. This chapter
showed how the result can be interpreted in terms of cohesion and wrongly mapped source elements.
Particularly, the measurement of cohesion is an open challenge in the MARE context. Existing cohesion
metrics are not applicable since the are mostly defined for small-grained modules such as classes or files.
Since the modules considered by MARE are more coarse-grained, the portability of the existing metrics
is discussed and according metrics are proposed. However, the examination of the reference mapping of
the evaluation shows that it is not clear whether the presented metrics for cohesion can be used to indicate
a good quality of the complete mapping. Therefore, the measurement of the cohesion of coarse-grained
modules will be subject of future work. Hence, a weaker indicator to measure the quality in terms of
high cohesion and low coupling in the evaluation is proposed. It computes the ratio of internal to external
dependencies of a target component.

Finally, the chapter introduced criteria for the change of the configuration based on the validation of
the clustering result. These include the adjustment of the target architecture when it is unfeasible to
restructure the implementation to the given target architecture
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This chapter describes the goals and methods of the evaluation of MARE. Section 9.1 introduces the two
main goals of the evaluation: the quality and the stability of the clustering algorithm. Section 9.2 gives an
introduction to the GQM method and defines the MARE GQM plan which is the basis of the evaluation.

9.1 Goals of the Evaluation
The main goal of the evaluation is to show the applicability of MARE. The focus of the evaluation lies on
the evaluation of the clustering algorithm. It is subdivided into two subgoals: the evaluation of the quality
of the clustering results and a sensitivity analysis to show the stability of the results for changing inputs
of the clustering.

The complete MARE process can not be evaluated in practice, since it covers the complete process
of the restructuring of a system. This process can reach over a long time span and requires a suitable
restructuring project, which was not feasible in the scope of this dissertation. Nonetheless, some parts
of the GQM plan deal with the reaction of the MARE clustering algorithm on changing inputs and thus
provide insights to the execution of the architecture restructuring iteration cycle.

9.1.1 Quality of the MARE Clustering
The quality of the MARE clustering algorithm is crucial for the use of MARE. The resulting complete
mapping has to provide a high quality since it is the basis for the restructuring of the implementation. In
order to provide helpful support in the restructuring of a system the automatic mapping executed by the
clustering algorithm needs to have a significant impact on the creation of the complete mapping. There-
fore, a high degree of the source elements have to be mapped correctly. To measure the correctness of
the complete mapping, reference mappings can be employed for the evaluation of MARE. The reference
mappings are created by experts or derived from the implementation of completed restructuring projects
and can thus be used to assess the quality of the complete mapping created by MARE. Another indicator
for the quality of the complete mapping is the cohesion of target components, which was discussed in
Section 8.5.

Another criterion for the quality of MARE is the traceability of the influence of the configuration on the
complete mapping. An important aspect thereof is also, that strategies can be specified for the definition
of dependency type weights and the creation of the initial mapping. Since MARE has not been applied
in long-term industrial projects yet, no mature strategies can be defined in this dissertation. Nonetheless,
the results of the case studies in Chapter 10 can give first hints about important influencing factors.

Furthermore, the technical clustering algorithm quality is another aspect of the evaluation. It is ex-
amined which impact the consolidating iterations for the reduction of the negative influence of arbitrary
decisions has on the clustering result.

9.1.2 Stability
The stability of the clustering algorithm is an important factor for the applicability of MARE. Changes
to the configuration should always result in more or less predictable changes of the resulting complete
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mapping. Stability of the clustering algorithm is important for the usability of a clustering method, since
unpredictable changes of the result as a reaction to small changes in the input values or configuration of
a clustering algorithm will reduce the users trust in the method.

Tzerpos and Holt (2000) define a clustering algorithm to be stable if the obtained clusters are not
grossly affected by slight modifications in its input. Since they use clustering in the context of continuous
architecture reconstruction, the input to be modified is different to the input in MARE. The only input
modification Tzerpos and Holt (2000) consider is the modification of the source system. In MARE,
however, the source system is not changed and also the source system model and the target architecture
are not subject to frequent changes. On the other hand, dependency type weights and the initial mapping
are more likely to change. Thus, these are the main subject of a sensitivity analysis performed in one of
the case studies in Chapter 10.

The term slight modification also has to be refined for the MARE context. Tzerpos and Holt (2000)
define it by means of the modifications to a software system during a few days of development. For
MARE a slight modification can be defined as a modification typically made to the configuration in the
course of one iteration of MARE Clustering. Since there is no extensive experience of the use of MARE
in practice, a slight modification is assumed to be the change of a single dependency type weight value
x in the interval [ x

5 ,5x]. For changes in the initial mapping a slight modification is assumed to be the
addition of up to 3% of the number of source elements.

The grossly affection of the clustering result is defined by Tzerpos and Holt (2000) using the MoJo
metric as defined in Tzerpos and Holt (1999). They use MoJo to compare the results of the clustering of
the unchanged input and the slightly modified input with a large number of different modifications. They
assume a clustering algorithm to be stable if 80% of the comparisons reveal a small MoJo value. Thereby,
the definition of small is relative to the source system, since MoJo measures the absolute number of Move
and Join operations needed to transfer one clustering result to another and this number depends on the
number of source elements in the source system model.

9.2 GQM plan

The evaluation of MARE is executed on the basis of a GQM plan. Section 9.2.1 briefly introduces the
GQM approach. Section 9.2.2 describes the MoJo metrics, which are used in the evaluation of MARE.
Further metrics are described directly in the MARE GQM plan, since their definition is less complex. The
MARE GQM plan, which is the basis for the evaluation in the case studies that are describe in Section 10,
is described in Section 9.2.3.

9.2.1 GQM Basics

The Goal Question Metric (GQM) approach was introduced by Basili et al. (1994). GQM is a procedure
model for measurement. It bases on the assumptions, that measurements should follow certain goals and
that the interpretation of results should base on predefined expected values. As depicted in Figure 9.1
GQM consists of three levels. The goals of the measurement are defined on the conceptual level. Each
goal is described by a set of attributes. These are the Purpose of the measurement, a quality Issue, a
measurement Object and a Viewpoint, that determines the emphases and expectations of the measurement.

For each goal a number of questions is defined on the operational level. The questions concretise
the goal and determine the expected quality of the measurement. The quantitative level defines a set of
metrics. These metrics are used to answer the questions defined on the operational level. Thereby, a
metric can be associated to several questions. Basili et al. (1994) distinguish objective and subjective
metrics. The latter depend on the object and the viewpoint of the goal, while the former only depend



9.2 GQM plan 111

Metric 1 Metric 2 Metric 3 Metric 4 Metric 5

Question 
1.1

Question 
1.2

Question 
2.1

Question 
2.2

Goal 1 Goal 2Conceptual Level

Operational Level

Quantitative Level

Figure 9.1: GQM Levels (Based on Basili et al. (1994))

on the object. The MARE GQM plan employs objective metrics, which are partly supplemented by
subjective expert ratings.

9.2.2 MoJo Metrics
This section gives a brief overview of the MoJo metrics, that are commonly used to measure the quality
of clustering results. Further, more simple metrics, that are used in the evaluation are described in the
according subsections of Section 9.2.3.

9.2.2.1 MoJo

MoJo is a common metric for the comparision of clustering results. It was originally presented by Tzerpos
and Holt (1999). MoJo measures the similarity of two clustering results A and B by the minimum number
of Move and Join operations (mno(A,B)) on nodes and clusters, that are necessary to transform one result
into the other. Since it is possible that mno(A,B) 6= mno(B,A), the minimum of both is taken. This case
can occur, when the number of clusters is different in A and B, since the joining of cluster can be executed
by a single Join operation, while the splitting of clusters requires several Move operations. The metric is
formalised as

MoJo(A,B) = min(mno(A,B),mno(B,A)) (9.1)

9.2.2.2 MoJoFM

MoJoFM was introduced by Wen and Tzerpos (2004). It is a metric based on MoJo, that is used to
measure the difference between a clustering result A and a reference mapping B in percent. In order to do
so, the maximum distance between all possible clustering results of the clustering (∀A) and the reference
mapping B denoted by max(mno(∀A,B)) is calculated. The metric is formalised as

MoJoFM(A,B) = (1− mno(A,B)
max(mno(∀A,B))

)∗100% (9.2)

Since the transformation from the clustering result to the reference mapping is the main interest, only
mno(A,B) and not mno(B,A) is used. To calculate MoJo and MoJoFM the implementation by the York
University was used1 in the evaluation of MARE.

1http://www.cse.yorku.ca/~bil/downloads/
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9.2.3 MARE GQM plan
The MARE GQM plan bases on the goals defined in Section 9.1. It consists of the two goals Quality (cf.
Section 9.1.1) and Stability (cf. Section 9.1.2) and according questions and metrics, that are described in
the following.

9.2.3.1 Goal 1: Quality

Purpose Quantify

Issue the quality

Object of the MARE clustering algorithm

Viewpoint from the MARE user’s viewpoint

Question 1.1: Which quality of the complete mapping can be reached?
This question targets the best quality of the complete mapping, that can be reached with the capabilities

of MARE. This is also an indicator for the suitability of the complete mapping for the restructuring of the
implementation in the last step of the MARE process.

In order to consider the iterative character of MARE, experiments with different inputs have to be
conducted in the case studies. Since the dependency weights and the initial mapping are more likely
to be changed than the target architecture and the source system model, these will be the emphases in
the experiments. It is expected, that the quality will increase for adjusted dependency type weights and
additions to the initial mapping.

Metrics for Question 1.1
Number of source elements per target component: With regard to maintainability, it can be argued,
that all target components on the same hierarchical level should have the same number of source elements.
In practice this will seldom be the case, because even for target components on the same hierarchical level
the complexity of the implementation of a component varies. The is specially true in reengineering, since
the current system will influence the target architecture. Therefore, it is at least expected, that the number
of source elements per target components fits the ratio of all source elements that is expected by a system
expert. Hence, concrete values for a high or low quality of the mapping depend on the concrete systems.

If a reference mapping is available, it is expected that the clustering creates target components, that fit
the dimensions of the according target components in the reference mapping. Since there are more expres-
sive metrics to compare a clustering result to a reference mapping, this metric is not computed in this case.

Ratio of internal to external dependencies: The ratio of internal to external dependencies can be seen
as an indicator for the cohesion of a target component. It is expected, that the ratio is significantly higher
than 1.0 for cohesive target components. However, the concrete value depends on the characteristics of
the source system and the target architect as well as the chosen dependency types. A ratio under 1.0 indi-
cates, that the target component has more external than internal dependencies which, so that the cohesion
is very low for the considered dependency types. This indicates a low quality of the mapping provided
that the dependency types reflect the decomposition criteria of the system.

MoJo: MoJo is used to compare the clustering result with a reference mapping. It is expected, that
the MoJo value decreases for adjusted dependency weights and improved initial mappings. An absolute
value can not be defined here, since it depends on the characteristics of the evaluated system.
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MoJoFM: MoJoFM is used to compare the clustering result with a reference mapping. It is expected,
that the MoJoFM value increases for adjusted dependency weights and improved initial mappings. A
MoJoFM value of 80-90% is assumed to be useful for the subsequent implementation restructuring.

Number of correctly mapped source elements (NCMSE): To compute the number of correctly mapped
source elements, all source elements, that are mapped to the same target component in the complete map-
ping produced by MARE and the reference mapping, are counted. It is expected that the sum of NCSME
and the MoJo value of the considered complete mapping corresponds to the total number of source ele-
ments. The reason for this is, that MoJo should only measure move operations in the context of MARE ,
because the joining of clusters is not very likely, since the number of clusters is the same for both map-
pings.

Percentage of correctly mapped source elements (PCMSE): This metric computes the percentage of
correctly mapped source elements in relation to the total number of source elements. Hence, the PCMSE
value is 100% if all source elements are mapped correctly compared to a reference mapping. It is 0%
when all source elements are mapped to other target components than in the reference mapping. Thus,
the minimum PCMSE value is the percentage of initially mapped source elements of the number of all
source elements in the source system model. It is expected, that the metric corresponds to MoJoFM, since
both measure the difference to the reference mapping in percent.

Expert Rating: In cases where no reference mapping is available, the fact whether a complete map-
ping fits the decomposition criteria of the target architecture can only be rated by a system expert. This
metric is the only subjective metric used in the MARE GQM plan. It is applied only if no reference
mapping exists.

Question 1.2: What is a good choice for dependency type weights?
The question targets the finding of the best possible set of dependency type weights for the respective

case studies. In order to find a good choice, the complete mapping resulting from several clustering runs
that employ different dependency type weights, while the rest of the configuration remains stable, have
to be compared.

It is assumed that a good choice of dependency type weights depends on the decomposition criteria
of the target architecture and the characteristic dependency types of the system under study. Therefore,
the criteria for the definition of the dependency type weights, that lead to the complete mapping with the
best quality, are also of interest. They can give useful hints for the definition of common strategies to
define good choices of dependency type weights for the first iteration of MARE Clustering in practical
restructuring projects.

Metrics for Question 1.2
The metrics used to answer this question, are the same metrics that are defined to determine the best
overall quality of the resulting complete mappings for Question 1.1. The expected values also conform
to the expectation described for Question 1.1.

Question 1.3: Which characteristics should source elements in the initial mapping have?
The question targets the finding of the best possible strategy to define the initial mapping for the respec-

tive case studies. In order to find a good strategy, the complete mapping resulting from several clustering
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runs that employ initial mappings, that were created using different strategies, while the rest of the con-
figuration remains stable, have to be compared. It is assumed, that such a strategy can be used for the
definition of initial mappings for the first iteration of MARE Clustering in practical restructuring projects.

Metrics Question for 1.3
The metrics used to assess this question, are the same metrics that are defined to determine the best over-
all quality of the resulting complete mappings for Question 1.1. The expected values also conform to the
expectation described for Question 1.1.

Question 1.4: How do consolidating iterations influence the quality of the clustering result?
This question does not target the MARE process model, but only the technical implementation of the

MARE clustering algorithm. It examines the decision to use consolidating iterations to reduce the nega-
tive influence of arbitrary decisions.

Metrics for Question 1.4
The metrics defined for Question 1.1 can also used to approach this question. It is expected, that the
quality of the complete mapping is more stable with the use of consolidating iterations and that it is av-
eragely higher, since the number of low quality results is reduced. It is also assumed, that the number of
consolidating iterations also increases the quality up to a level at which the quality of the results remains
stable.

9.2.3.2 Goal 2: Stability

Purpose Quantify

Issue the stability

Object of the MARE clustering algorithm

Viewpoint from the MARE user’s viewpoint

Question 2.1: How does the complete mapping change for modifications to the dependency type
weights?

This question targets the stability of the MARE clustering algorithm regarding slight modifications of
the dependency type weights. To measure the stability only single dependency weights are modified.
The examination of the stability regarding modifications of several dependency type weights as once is
more complex, since the interactions of different dependency types have to be regarded. Therefore, the
extension to the change of the weights of different dependency types at once is left for future work.

Metrics for Question 2.1
Comparison with a reference mapping:
To measure the change of the complete mapping for slight modifications of the dependency weights, the
same metrics as for Question 1.1 can be used, if a reference mapping is avaiable. It is expected, that the
values for the metrics will also only change slightly. I.e. e.g. up to 2% for MoJoFM and PCMSE.
Comparison of complete mappings without reference mapping:
Beside the usage in the comparison of a given complete mapping to a reference mapping as mentioned
for Question 1.1, the PCMSE metric can also be used for the comparison of two different complete map-
pings resulting from different configurations of the MARE clustering algorithm. Correctly clustered is



9.2 GQM plan 115

interpreted as clustered identically in this case. PCMSE in contrast to MoJoFM is a symmetric metric.
I.e. PCMSE(A,B) = PCMSE(B,A) for two clustering result A and B. Therefore, it is better suited for
the comparison of two clustering results than MoJoFM. It is expected, that the measurement of PCMSE
results in values of more than 95% to fulfil the requirements for a high stability of the clustering algo-
rithm. An algorithm with strongly unstable results is less appropriate in practice, since the results are less
comprehensible and reliable.

Question Q 2.2: How does the complete mapping change for modifications to the initial mapping?
This question targets the stability of the MARE clustering algorithm regarding slight modifications of

the initial mapping. To measure the stability complete mappings, that were created employing initial
mappings which vary in the number of mapped source elements of about 3% are compared.

Metrics for Question 2.2
The metrics and expectations used to answer this question, are the same metrics and expectations, that
are defined to measure the stability of the clustering algorithm for different dependency type weights for
Question 2.1.





10 Case Studies

This chapter presents the results of three case studies, that were conducted to evaluate the quality and
stability of the complete mappings created by MARE clustering. Section 10.1 describes a preliminary
case study with a small Java reference implementation, that was used to examine and accentuate the
concepts of MARE and create initial versions of the prototypical implementation.

The most extensive case study is presented in Section 10.2. In this section the already completed
restructuring a middle-sized open source system is reproduced using MARE . Thus, the case study gives
deeper insights to the usage of MARE in practice and enables the rating of the quality of the results.

Section 10.3 presents an industrial case study in which MARE is applied in a restructuring project of a
large industrial system. Since the project is not yet finished, the results are not suited to rate the quality
of the complete mapping created by MARE. On the other hand it shows, that MARE can also be applied
to large software systems and gives insights in the quality and behaviour of the clustering algorithm.

The case studies are divided into experiments. To avoid misunderstandings it has to be stressed here
that these are not experiments in terms of controlled experiments as e.g. introduced by Easterbrook et al.
(2007), since the required level of control can not be ensured in the case studies. The experiments rather
represent different tasks in the case studies that examine different configuration aspects of MARE.

10.1 Preliminary Case Study

10.1.1 Setting

The preliminary case study targets the restructuring of the iBATIS JPetStore 5. The JPetStore is a ref-
erence implementation of the iBATIS O/R mapper, which was meanwhile renamed to myibatis1. The
current JPetStore consists of one component with a package structure that is decomposed following tech-
nical criteria. As shown in Figure 10.1 the package structure is subdivided into four packages, from which
the Persistence package is further divided into an interface package and an implementation package. The
figure also shows all classes and interfaces in the packages. The classes DaoConfig and BaseSqlMapDao
do not contain functional code of the JPetStore, but technical code for the use of the iBATIS O/R mapper.
The other classes represent the functionalities of the JPetStore and are considered in the clustering. The
overall size of the considered classes and interfaces is about 1400 lines of code.

The goal of the restructuring is to divide the JPetStore into four separate components following a func-
tional decomposition. This can be seen as an evolution towards service-oriented architectures (cf. Sec-
tion 6.2.1) in the small. The target architecture of the JPetStore is depicted in Figure 10.2. The Presen-
tation package is transferred unchanged into the Presentation component. The other target components
focus on the functional aspects of the JPetStore, each implementing one of the services in the original
Service package. The goal of the application of MARE is to map the classes and interfaces of the pack-
ages Service, Persistence, and Domain to the target components User Management, Order Handling, and
Catalog.

1http://code.google.com/p/mybatis/
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Figure 10.3: Reference Mapping of the JPetStore

10.1.2 Experiment Design

To rate the results of MARE, a reference mapping was created, which is shown in Figure 10.3. DaoCon-
fig and BaseSqlMapDao are not included in the mapping, since they are used in all three components.
Possible solutions for this multiple mapping problem are the duplication of the classes, the introduction
of a further target component for the classes, or the mapping to one of the existing target components.
The Presentation component is omitted in the figure, since it remains unchanged. The reference mapping
was created by the author of this thesis based on the functional connection of the classes with respect to
the implementation of the functionality provided by the classes in the original Service package.

The reference mapping includes 25 classes and interfaces. These share 170 dependencies. The ref-
erence mapping is used to compare the results of clusterings with four different weight sets and four
different initial mappings. The focus of the experiments is Goal 1 of the MARE GQM plan, i.e. the qual-
ity of the MARE results. The stability of the results is not target of the case study, since it is too small to
obtain meaningful results.

Table 10.1 lists the four weight sets, that are used in the experiments. The Equal Weights set weights
every dependency type with 1.0. The two Ratio Weights sets are obtained from the ratio of internal
and external dependencies in the reference mapping of all target components for each dependency type.
Thereby, Ratio Weights 1 only includes the dependencies of the functional source elements, while Ratio
Weights 2 also includes the dependencies of DaoConfig and BaseSqlMapDao. The Best Weights set is the
set that led to the best complete mappings during the experiments.

The four initial mappings used in the experiments each map one source element to each target com-
ponent. The source elements are taken from the same original package respectively. One mapping maps
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Table 10.1: JPetStore Dependency Weights

DependencyType Equal
Weights

Ratio
Weights 1

Ratio
Weights 2

Best
Weights

Return Type 1.0 21.0 21.0 17.0
Parameter Type 1.0 2.17 2.17 1.0

Constructor Parameter 1.0 3.0 3.0 1.0
Method Variable Type 1.0 7.0 7.0 1.0

Inheritance 1.0 6.0 2.0 1.0
Cast Type 1.0 6.67 6.67 1.0
Static Type 1.0 0.0 0.5 1.0

Method Call 1.0 1.29 1.24 1.0
Constructor Call 1.0 6.0 2.0 1.0

all service classes (AccountService, OrderService, and CatalogService) from the Service package. The
remaining three initial mapping sets map the classes and interfaces that conform to the functional entities
Account, Order, and Product as typical representatives of the Domain, Persistence.Iface, and Persis-
tence.SqlMapDao packages.

The case study includes two experiments. Both experiments measure NCMSE and PCMSE for the
presented weight sets and initial mappings.

Experiment 1 does only consider the source elements from the reference mapping, while Experiment
2 also considers the classes DaoConfig and BaseSqlMapDao in the clustering to see how these technical
classes influence the clustering results. For this experiment the weight set (Ratio Weights 2) was intro-
duced. It can be assumed, that this set leads to better results, since it better reflects the dependencies in
the system.

There are no specific experiments regarding question 1.4, since no influence of arbitrary decisions
could be detected during the work with the JPetStore. It is assumed, that the number and influence of
arbitrary decision grows with the size of the system.

10.1.3 Validity
The main threats to validity lie in the external validity of the case study. The transferability of the results to
other systems is limited for several reasons. The most striking reason is the size of the system. Especially
in the context of an evolution to SOA, systems that have to be considered in practice are much larger and
more complex. Another threat is the reference implementation character of the system. It was developed
to present the capabilities of the iBATIS O/R mapper and does not show the signs of erosion, that are
typical for systems with a longer maintenance history. Nonetheless, the case study allows insights to the
operation of MARE and especially to the implemented clustering algorithm and gives hints to important
issues that have to be regarded for the usage of MARE with larger systems.

10.1.4 Results
10.1.4.1 Experiment 1

Table 10.2 shows the NCMSE values for the clusterings without DaoConfig and BaseSqlMapDao. It can
be seen, that the clustering employing the Best Weights set always maps all but one of the 25 source
elements correctly (96% PCMSE). In all cases the one source element is the LineItem class. The reason



10.1 Preliminary Case Study 121

for the wrong mapping is the strong dependency between LineItem, Item, and CartItem, which leads to
the mapping of LineItem to the Catalog target component instead of the Order target component. Hence,
the mapping can not be corrected by changing dependency type weights, but only by an explicit initial
mapping.

Table 10.2: NCMSE Results Without DaoConfig and BaseSqlMapDao

Service
Mapping

Domain
Mapping

Pers. Impl.
Mapping

Pers. Iface
Mapping

Best Weights 24 24 24 24
Ratio Weights 1 20 20 20 20
Equal Weights 18 21 15 18

Using the Ratio Weights 1 set, five source elements are mapped wrong in with all four initial mappings
(80% PCMSE). The reason for this is similar to the reason for the Best Weights mapping. The five source
elements are Item, ItemSqlMapDao, CartItem, Cart and ItemDao, which are clustered wrong because of
their strong dependencies to LineItem and Order. The Equal Weights set provides the worst result with
between 15 and 21 mapped source elements, which conforms to 60-84% PCMSE.

10.1.4.2 Experiment 2

Table 10.3 shows the NCMSE values for the clusterings with DaoConfig and BaseSqlMapDao. The two
classes themselves are excepted from the calculation of NCMSE and PCMSE. The reason for this is, that
both classes can be mapped correctly to all target components. Despite their exception, their dependencies
influence the clustering and consequently also the mapping results as described in the following.

Table 10.3: NCMSE Results With DaoConfig and BaseSqlMapDao

Service
Mapping

Domain
Mapping

Pers. Impl.
Mapping

Pers. Iface
Mapping

Best Weights 24 24 24 24
Ratio Weights 1 20 20 20 20
Ratio Weights 2 18 18 18 18
Equal Weights 16 20 14 16

The weight sets Best Weights and Ratio Weights 1 lead to the same results as in Experiment 1. The
Ratio Weights 2 set leads to slightly worse results, since the classes Sequence and SequenceSqlMapDao
are also mapped wrong. The reason for this is supposed to be the influence of the addition of the two
technical classes, which makes the ratio weights less clear, since their value is nearer to 1.0 and hence the
Equal Weights set. The Equal Weights set itself again results in the worst NCMSE values.

10.1.5 Conclusions
The examination of the quality of the results show, that an almost ideal clustering with a PCMSE value
of 96% can be reached. This high quality is owed to the small size and the reference implementation
character of the JPetStore.
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The results furthermore show that the weighting of dependency types on the basis of the ratio of the
dependencies in the reference mapping leads to better results than equal weights for all dependency types.
However, the best results regarding the weighting of dependency types could be obtained by weighting the
Return Type dependency with at least 17.0 and all other dependency types with 1.0. The reason for this is
assumed to be that this dependency type best reflects the decomposition criteria of the target architecture.
It also has the highest ratio between internal and external dependencies of all dependency types.

Regarding the initial mappings, only minimal mappings were examined due to the low overall number
of source elements. The NCMSE values for the different initial mappings only differ for the Equal
Weights set. It can be seen, that the Domain Mapping leads to the best results, while the mapping that
maps the persistence implementation classes produces the worst results. This indicates, that for the goal
of a functional decomposition, the mapping of functional elements is better suited than elements with
more relations to technical frameworks. However, this depends on the functionality and usage of the
framework, so that in certain cases the consideration of framework usage can also lead to higher quality
of the complete mapping.

In summary, the influence of the dependency weights on the result is higher than the influence of the
initial mappings in this case study. However, this can not be generalised for all uses of MARE due to the
small size and reference implementation character of the JPetStore.

10.2 Open Source Case Study

10.2.1 Setting

The setting of this case study is the reproduction of the integration of the open-source generator frame-
work openArchitectureWare2 (oAW) into the Eclipse Modeling Project3 (EMP). During this process some
parts of oAW had to be restructured to fit the projects in EMP. This kind of restructuring does not directly
fit into one of the typical application scenarios described in Section 6.2, but can be seen as a kind of re-
establishment or improvement of maintainability. OAW consists of four major parts: a workflow engine
(called MWE in Eclipse), a facility for the extension and transformation of metamodels (Xtend), a gener-
ator (Xpand), and a framework for the creation of domain-specific languages (Xtext). The parts shared a
common structure in oAW and became separate projects in EMP.

During the separation of the parts, commonly used code had to be assigned to one of the parts. Fur-
thermore, the inner structure of the single parts was partially changed, leading to further architectural
restructurings. Hence, the challenge of the integration is the decision over the target structure and the
mapping of the source elements to target components. The latter can be supported by MARE. Since oAW
is an open-source project and the integration is already completed, it has been chosen as a scenario for
the evaluation of MARE. Furthermore, it has a size, that allows for a manual interpretation of the results.
Hence, the current implementation of the oAW components in EMP can be used as a reference mapping
for the validation of the results of the restructuring of the previous oAW version.

Since Xtext has been rewritten in major parts during the transition to Eclipse, it is not considered in
the evaluation. Xpand is also not considered, since it is clearly separated from the other parts in both
environments and remained nearly unchanged.

MWE and Xtend, however, were subject of larger restructurings and are interleaved in the modular-
isation of the source system. The considered restructurings are changes in the mapping of classes and
subpackages to packages. The package structure of the considered packages is shown in Figure 10.4.
MWE and Xtend contain 805 source elements (classes, interfaces and local classes), which have a total

2http://www.openarchitectureware.org
3http://www.eclipse.org/modeling
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Figure 10.4: Package Structure of oAW

size of about 60000 lines of code. The packages were not considered as source elements, since they
reflect the source architecture.

The target architecture, as depicted in Figure 10.5, is derived from the package structure of MWE and
Xtend in EMP and consists of 25 target components to which the source elements are mapped. The figure
shows 29 target components, but Org.Eclipse.Internal.Xtend, Org.Eclipse.Xtend.UI, Org.Eclipse.EMF.-
MWE, and Org.Eclipse.EMF.MWE.Internal do not contain source elements directly and are thus not con-
sidered in the mapping. Furthermore, some subpackages where not considered as target components in
the target architecture, because they remained unchanged during the restructuring. Their source elements
are mapped to the according parent target components. The interfaces and allowed dependencies of the
target components are omitted for more clarity.
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10.2.2 Experiment Design
Since the integration of oAW into EMP is already completed and thus a reference mapping exists for the
target architecture, all quantitative metrics of the GQM plan can be computed and thus all questions can
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be processed.
For the experiments a source system model has been created using SISSy4. The considered dependency

types are the source code dependencies of Java 5 as described in Section 7.3.5 on page 84. These depen-
dency types can easily be extracted with the existing tooling and they represent the functional coherence
of the source elements. Furthermore, they also partly reflect the semantics of the source code and the
intentions of the developers, since they are used to express semantic relations between source elements.

Although structural dependencies that reflect the source architecture are usually not considered in
MARE, the containment of local classes in their parent classes, is considered in this case study, since
their dependencies are also important for the mapping of their parent classes. All the more, because the
containment of the local classes remained unchanged during the restructuring.

For the execution of the experiments, two sets of weights have been determined. They are listed in
Table 10.4. The Equal Weights (EW) set weights every dependency with the same weight of 1.0. The
Best Weights (BW) set represents the best dependency weights found in the course of the case study.
The basis of the set are the ratios between internal and external dependencies of the respective types for
all target components (cf. Table 10.9 on page 133). The according weights were adjusted based on the
knowledge about the system and the experiences made with changing weights during the experiments
with oAW.

Table 10.4: oAW Dependency Weights

DependencyType Equal
Weights

Best
Weights

Return Type 1.0 0.32
Parameter Type 1.0 0.69

Constructor Parameter 1.0 0.9
Variable Type 1.0 2.25

Method Variable Type 1.0 0.6
Inheritance 1.0 3.6
Cast Type 1.0 0.62

Contained In 1.0 10.0
Static Type 1.0 1.35

Method Call 1.0 0.42
Constructor Call 1.0 5.0

The initial mapping strategies were also varied in the experiments. The basis for the Experiments 1
and 2 are five initial mappings, that map between 5% and 25% of the source elements. They were cre-
ated iteratively, beginning with one representative source element for each target component and adding
wrongly mapped source elements to the initial mapping in each iteration. Thereby, source elements, that
were assumed to have a high similarity to other wrongly mapped source elements were chosen first in
order to achieve the best possible mapping for the subsequent iteration. Experiment 3 evaluates further
mapping strategies and does not employ these five initial mappings. In Experiment 4 another initial
mapping created earlier based on knowledge about the system was used, that covers 7.7% of the source
elements.

The actual settings of all four experiments are described in the following subsections. Except for
Experiment 1, all experiments were executed with 10 consolidating iterations of the clustering algorithm.

4http://sissy.fzi.de/
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To enable the rating of the effect of this decision, the first experiment targets the influence of theses
iterations.

10.2.2.1 Experiment 1: Influence of Consolidating Iterations and Similarity Functions

To reduce the influence of arbitrary decisions on the clustering result, the MARE clustering algorithm
includes the possibility to employ consolidating iterations. To examine the effect of this configuration
option, clusterings without iterations and with 10 iterations are compared in this experiment for the two
aforementioned weight sets. Furthermore, the updating rules Unweighted Average Linkage and Sum as
well as the two similarity functions described in Section 8.2.4 on page 96 are compared.

10.2.2.2 Experiment 2: Comparison of Different Weight Sets and Updating Rules

The focus of this experiment is the comparison of the two weight sets defined above. Clusterings are
executed with both sets, the updating rules Unweighted Average Linkage and Sum, and for the aforemen-
tioned five initial mappings. The experiment targets Question 1.1 and Question 1.2 of the GQM plan.
MoJo, MoJoFM, NCMSE and PCMSE are used as metrics.

10.2.2.3 Experiment 3: Comparison of Different Initial Mapping Strategies

The focus of this experiment is the examination of the application of different strategies for the cre-
ation of the initial mapping. Therefore, three different strategies are compared: the mapping of source
elements, that are strongly used by other target components (incoming dependencies), the mapping of
source elements, that strongly use other target components (outgoing dependencies), and the mapping of
source elements, that are strongly used inside the target component. The creation of the respective initial
mapping bases on the dependencies in the reference mapping.

For the creation of the five initial mappings more fine-grained steps as for the creation of the initial
mappings used in the previous experiments were considered. The initial mappings include between 25
(3.1%) and 200 (24.8%) source elements with steps of 25 source elements.

10.2.2.4 Experiment 4: Sensitivity Analysis

To measure the influence of the change of dependency type weights, a sensitivity analysis was conducted.
The analysis was subject of the bachelor thesis of Florian Postel (2010). It examined the influence of the
change of single dependency type weights on the complete mapping. The weights were changed in 21
steps from 0.0001 to 10000.

For the sensitivity analysis the Equal Weights set and a preceding version of the Best Weights set
(Sensitivity Weights) were used. The concrete weights of the latter are listed in Table 10.5. A comparison
of this set with the Best Weight set showed that the PCMSE values were 1-4% lower for the Sensitivity
Weights set, but revealed a similar behaviour.

Furthermore, the target architecture was varied in this experiment. Supplementing the target architec-
ture described before, the sensitivity analysis was also executed for a simple target architecture employing
only the top-level components MWE and Xtend as target components. This was done to examine the influ-
ence of a hierarchical refinement of the target architecture in the iterations of the architecture restructuring
iteration cycle as described in Section 7.1.1.
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Table 10.5: Weights for the Sensitivity Analysis

DependencyType Best
Weights

Sensitivity
Weights

Return Type 0.32 0.64
Parameter Type 0.69 0.69

Constructor Parameter 0.9 0.9
Variable Type 2.25 2.25

Method Variable Type 0.6 0.6
Inheritance 3.6 1.8
Cast Type 0.62 0.62

Contained In 10.0 15.0
Static Type 1.35 1.35

Method Call 0.42 0.85
Constructor Call 5.0 1.6

10.2.3 Validity

The main threats to the validity of the results of the case study are as in the preliminary case study seen
in the portability of the results to the restructuring of other systems. In contrast to the preliminary case
study, this case study bases on a software system, that is actively used and developed for several years
and as such better represents the systems, that are typically target of restructurings. The remaining threats
are, that the results are only valid for the Java 5 language and the programming conventions used by the
oAW developers. Furthermore, with regard to restructuring, this is only one type of restructuring with
individual reasons and decomposition criteria of the target architecture.

10.2.4 Results

10.2.4.1 Experiment 1: Influence of Consolidating Iterations and Similarity Functions

The PCMSE results for the updating rules Sum and Unweighted Average Linkage (abbr. UAL in the
figures) and the Best Weights (abbr. BW) set as well as the Equal Weights (abbr. EW) set are shown in
Figure 10.6 and Figure 10.7. MoJo, MoJoFM and NCMSE lead to corresponding results. The 15% initial
mapping set was chosen for all clusterings. It can be seen, that the results with 10 iterations are more
stable for most configurations. Except for the Equal Weights set with the Sum updating rule, where the
difference between minimum and maximum is 3.8%, the variation of the results is less than 1%.

Another exception are the results for the Best Weights set with the Sum updating rule for the clustering
without iterations. It is as stable as most configurations with iterations and provides the best clustering re-
sults together with the same configuration for 10 iterations. For the other configurations without iterations
the difference between maximum and minimum is between 1.7% and 3.1%.

Regarding the difference in the absolute quality for the results without and with consolidating iterations,
the results are slightly different for the Best Weights set and the Equal Weights set. While for the Best
Weights set the median of the results with iterations is 0.2% - 2% higher, it is 0.2% - 0.9% lower for
the Equal Weights set. Given that also the most stable configurations vary to up to 1%, it can be said,
that there is no clear difference in the absolute quality for clusterings with and without consolidating
iterations.

The according PCMSE results for the similarity function defined by Koschke (2000) and the Sum
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Figure 10.6: Experiment 1: Results without Consolidating Iterations for Updating Rules
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Figure 10.7: Experiment 1: Results for 10 Consolidating Iterations for Updating Rules

Relative to Nodes (abbr. SumRel) function are shown in Figure 10.8 and Figure 10.9. It can be seen that
the results are more stable than the result of the updating rules. The Sum Relative to Nodes function
without iterations does even compute the same result for all clustering runs. Exceptions are the function
defined by Kosche without iterations, which shows a variation of up to 4.1% for the Best Weights set, as
well as the Sum Relative to Nodes functions with iterations, which shows a variation of up to 2.1% for
the Equal Weights set. With regard to the influence of consolidating iterations no significant difference
can be revealed. It is assumed, that this is a consequence of the already stable results of the clusterings
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Figure 10.8: Experiment 1: Results without Consolidating Iterations for Composite Cluster Similarity Functions
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Figure 10.9: Experiment 1: Results for 10 Consolidating Iterations for Composite Cluster Similarity Functions

without consolidating iterations. The in total higher stability conforms to the results of Maqbool and
Babri (2007) who state that functions that include more information than pure updating rules lead to
more stable clustering results since they reduce the number of arbitrary decisions.

Regarding the quality the result of the function by Koschke (2000) are very similar to the results of the
Unweighted Average Linkage updating function. The quality of the results of the Sum Relative to Nodes
function on the other hand are the lowest of the experiment. To compare the quality in terms of similarity
to the reference mapping and in terms of high cohesion and low coupling, Table 10.6 and Table 10.7 show
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the average NCMSE and the average ratio of internal to external dependencies of the complete mapping
for the different configurations.

Table 10.6: Experiment 1: Quality for Updating Rules

Average
NCMSE

Average
Ratio

BW Sum Without Iterations 75.75% 1.71
BW Sum With 10 Iterations 75.91% 1.71
EW Sum Without Iterations 71.05% 1.84
EW Sum With 10 Iterations 71.83% 1.86
BW UAL Without Iterations 72.2% 1.33
BW UAL With 10 Iterations 73.7% 1.34
EW UAL Without Iterations 69.28% 1.5
EW UAL With 10 Iterations 68.31% 1.5

Table 10.7: Experiment 1: Quality for Composite Cluster Similarity Functions

Average
NCMSE

Average
Ratio

BW SumRel Without Iterations 69,4% 1.61
BW SumRel With 10 Iterations 69% 1.6
EW SumRel Without Iterations 67.75% 1.67
EW SumRel With 10 Iterations 67.39% 1.62
BW Koschke Without Iterations 71.89% 1.31
BW Koschke With 10 Iterations 73.64% 1.34
EW Koschke Without Iterations 69.09% 1.49
EW Koschke With 10 Iterations 68.61% 1.5

It can again be seen that the results of the Unweighted Average Linkage updating rule and the similarity
function defined by Koschke are almost identical. Regarding the ratio of internal to external dependencies
the results indicate that the Sum updating rule and Sum Relative to Nodes function lead to more cohesive
and less coupled clusters, while only the former also leads to a high quality in terms of the comparison to
the reference mapping. This indicates that the two quality metrics are not equivalent.

Regarding the performance, the computation of the composite cluster similarity functions is more
expensive than the computation of the updating rules. Table 10.8 shows the average computation time
for the different configurations measured on a MacBook with 2GHz Intel Core Duo processor and 4GB
RAM. It can be seen that especially the Sum Relative to Nodes function takes much longer to compute
than the updating rules.

In summary, the results show that clustering with consolidating iterations leads to more stable results
in most cases. The best results could be achieved with the Best Weights set and the Sum updating rule.
However, since the Sum updating rule also created the most exceptional and therefore less predictable
results and since the results of both updating rules were on a comparable level in most other experiments,
the Unweighted Average Linkage updating rule is used as standard updating rule in the subsequent exper-
iments. The composite cluster similarity functions are also not used in the subsequent experiments. The
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Table 10.8: Experiment 1: Performance for Different Configurations

Without Iterations With 10 Iterations

Sum 9s 12s
UAL 10s 18s

Koschke 13s 80s
SumRel 70s 700s

Referenz 5% 10% 15% 18,50% 20% 25% 22,70% Interne 

Abhängigkeiten 

Referenz

Externe 

Abhängigkeiten 

Referenz

Cluster Data::Internal.Xtend::Expression
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Cluster Data::MWE::Utils
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133 3 13 16 16 16 17 448 586

66 3 6 8 8 8 8 298 145

37 2 4 7 10 11 13 256 850

21 1 2 3 5 6 7 44 170
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6 1 1 2 2 2 3 26 90
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Figure 10.10: Experiment 2: Results for Best Weights and Equal Weights

function defined by Koschke provides similar results as the Unweighted Average Linkage updating rule,
but takes longer to be computed. Although the Sum Relative to Nodes function provides the most stable
results, its quality and performance are the lowest of all compared functions.

10.2.4.2 Experiment 2: Comparison of Different Weight Sets and Updating Rules

Figure 10.10 shows the PCMSE values for clusterings with the two dependency type weight sets and
different initial mappings. It can be seen that the Best Weights set always leads to better results than the
Equal Weights set. The distance between the sets amounts to up to 5%. This can also be observed in the
results of Experiment 1.

The MoJoFM values were also computed for these configurations. A result comparison of MoJoFM
and PCMSE is depicted in Figure 10.11. The assumption, that both metrics lead to corresponding results
could only be confirmed for a large number of initially mapped source elements or a high similarity with
the reference mapping respectively. For the other initial mappings MoJoFM indicates better results than
PCMSE.

The reason for these differences is, that MARE uses a fixed mapping of clusters to target components.
MoJo on the other side is defined to compare clustering algorithms, that do not use such a fixed mapping.
Hence, MoJoFM compares the most similar source element groups. I.e. when e.g. the assigned source
elements of two clusters are exchanged completely, this will not change the MoJoFM value, but the
PCMSE value will be much lower, since the groups are not correctly mapped to target compoents. This
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Figure 10.11: Experiment 2: Comparison of PCMSE and MoJoFM

difference, however, is important for the validation of the MARE clustering results. The user examines
the mapping of source elements to target components in the first place and not the possible fit of groups
of the source elements to other target components. Hence, the result should reflect this in order to reduce
the validation effort.

The quality of the results is not satisfactory for initial mappings including less than 20% of the source
elements. The reason for this is assumed to be the low ratio of internal to external dependencies in
the reference mapping. Internal dependencies are dependencies between two source elements in the same
target component while external dependencies are dependencies between source elements in two different
target components.

Table 10.9 lists the ratio for all dependencies in the reference mapping and for the single dependency
types. It can be seen that the average ratio is only 1.15. Also the ratios for the single dependency types
are mostly near to 1.0 with a maximum ratio of 2.84 for variable accesses. The ratios thus indicate no
significant difference for the relation of source elements inside a target component and source elements in
different target components. This is an indicator for a low cohesion of the target components in relation
to the considered dependency types. In conclusion, this means that the original restructuring was not
conducted with high cohesion and low coupling as a primary goal or that the chosen dependency types
are not sufficient to define the cohesion of the target components.

In any case, the closeness of the ratios to 1.0 leads to a low influence of the dependency weights on the
clustering result. The reason for this is, that the MARE clustering algorithm bases on the assumptions that
target components have a high cohesion in relation to the decomposition criteria and that this relation can
be mapped to dependency type weights. When the difference between internal an external dependencies
and the difference between the ratios of different dependency types is low, the distinguishing aspect of
the dependency weights declines. Thus, the initial mapping becomes the decisive factor of the clustering
in this case study.

Nonetheless, the clustering results confirm that the clustering algorithm tends to create more cohesive
target components. As Table 10.10 shows, the ratio is higher for clusterings with less initially mapped
source elements. Hence, it can be concluded that the algorithm produces better results if the dependency
type weights better reflect cohesion in relation to the decomposition criteria of the target architecture.

The assumption, that the sum of MoJo and NCMSE corresponds to the total number of source elements
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Table 10.9: Internal and External Dependencies

Dependency Type Internal
Dependen-

cies

External
Dependen-

cies

Ratio

Total Number of
Dependencies

4328 3748 1.15

Return Type 304 381 0.79
Parameter Type 357 452 0.79

Constructor Parameter 119 111 1.07
Variable Type 383 135 2.84

Method Variable Type 347 477 0.73
Inheritance 339 172 1.97
Cast Type 96 135 0.71

Contained In 310 0
Static Type 261 221 1.18

Method Call 1401 1446 0.97
Constructor Call 411 218 1.89

Table 10.10: Internal and External Dependencies for different initial mappings

5% 10% 15% 20% 25% Reference

Internal De-
pendencies

4883 4955 4621 4519 4356 4328

External De-
pendencies

3193 3121 3455 3557 3720 3748

Ratio 1.53 1.59 1.34 1.27 1.17 1.15

has also been examined in the experiment. Table 10.11 shows the according results. It can be seen, that
the sum for the two largest initial mappings almost reaches the total number of 805 source elements. The
higher difference for the other mappings is assumed to base on the same effects as the difference between
MoJo and PCMSE. Thus, the assumption could be confirmed for this experiment setting.

Table 10.11: Results for MoJo and NCMSE for Best Weights and different initial mappings

Metric 5% 10% 15% 20% 25%

MoJo 281 223 178 122 91
NCMSE 436 540 593 679 712
MoJo +
NCMSE

717 763 771 801 803
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Figure 10.12: Experiment 3: Results for Different Initial Mapping Strategies

10.2.4.3 Experiment 3: Comparison of Different Initial Mapping Strategies

The results of the comparison of different initial mapping strategies are depicted in Figure 10.12. The
results show, that for the oAW scenario the initial mapping of source elements with strong internal depen-
dencies (IM A) provides better results than the initial mappings of source elements with strong external
dependencies. Viewing only the latter shows, that the initial mapping of source elements with strong
incoming dependencies (IM B) from other clusters induces a similar behaviour as the initial mapping of
source elements with strong outgoing dependencies (IM C).

It was further examined whether the similarity of the results of IM B and IM C are a consequence
of equal source elements in both initial mappings. Table 10.12 shows the number of different source
elements in the three initial mapping sets. The pairwise comparison shows, that at least 50% of the
elements are different for all pairs and sizes of the initial mapping sets. Hence, it is assumed, that the
similarity results from the similarly strong binding to other target components, that is inherent to both
initial mapping strategies.

Table 10.12: Number of Different Source Elements in the Different Initial Mappings

25 50 75 100 125 150 175 200

IM A - IM B 15 30 42 59 68 85 98 110
IM A - IM C 20 39 58 70 81 97 109 116
IM B - IM C 19 39 60 73 82 93 102 111

Figure 10.12 also shows, that only in one case the initial mapping of more source elements led to a
decrease of the PCMSE value. This decrease amounts to 1.2%. Hence, it does not count as major quality
problem, considering the variation of the clustering algorithm of about 1%.

Considering the improvement of the complete mapping for each step of change of the initial mapping,
it can be observed, that the average growth is 4-6%. I.e. for each manually added source element only
one further source element is mapped automatically. This value is even lower for initial mappings of 20%
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and more. I.e. the major improvements are made in the initial mappings with up to 20% initially mapped
source elements with up to 17% improvement per step.

The fact that the growth of the correctly mapped source elements in the complete mapping is smaller
than the growth of the initial mapping and can also decrease for an initial mapping with more source
elements as in IM A can have two reasons. The first is, that the creation of the initial mapping sets is
not based on the clustering results with the smaller initial mapping sets. I.e. the initial mapping sets can
include source elements, that were already mapped correctly by the algorithm for smaller initial mapping
sets. This was since done the goal of this experiment is not to simulate the extension of the initial mapping
in subsequent MARE Clustering iterations, but to find a good initial mapping strategy for the creation of
an initial mapping in the first iteration.

Another reason can be, that the initial mapping of a source element SE entails the wrong automatic
mapping of dependent source elements. This can be the case, when the source elements that belong to
different target components are highly dependent. When all source elements were mapped to the same
target component in the complete mapping created with the smaller initial mapping including a wrong
mapping of SE, the initial mapping of SE can lead to the wrong mapping of the other source elements.

The results indicate, that the initial mapping of core elements, that have many dependencies inside a
target component, is more promising than the initial mapping of elements, that represent the interfaces
of the target component. However, all three sets do not reach the quality of the results achieved with
the initial mappings described in Section 10.2.2, that are based on knowledge about the system and the
clustering behaviour. The results also show that the major support of the clustering algorithm can be
expected for initial mappings of up to 20% of the source elements. Hence, the results indicate, that the
best strategy for this case study would be to map at most 20% of the source elements that are supposed to
have the many dependencies inside the target component in the first iteration of MARE Clustering, and
then refine this initial mapping due to the resulting complete mapping.

10.2.4.4 Experiment 4: Sensitivity Analysis

The results of the sensitivity analysis are ambivalent. Figure 10.13 shows exemplary results for three
different dependency types. All results in the figure were gained using the detailed target architecture
model and the Equal Weights set for all but the analysed dependency type.

The figures shows expectable results for the Contained In and the Cast Type dependency types in
relation to their ratios in the reference mapping (cf. Table 10.9). The former, having a rather high ratio,
remains on a constant low level for all weights lower than 0.1 and on a constant high level for all values
higher than 1.0. I.e. weighting this dependency type higher than the others leads to better results. The
relatively constant levels are supposed to be the effect of the clear relation between the local classes and
their parents, between which this dependency type appears.

The Cast Type dependency type also shows expectable behaviour in relation to its low ratio of 0.71.
Weighting it lower than the other dependency types leads to better results than weights higher than 1.0.
Other dependency types such as the Constructor Call type depicted in the figure, do not reveal such a
comprehensible behaviour.

In summary for the detailed target architecture, it can be observed, that the algorithm shows a com-
prehensible behaviour in the large majority of slight modifications of single dependency type weights.
This is valid for the Equal Weights set as well as the Sensitivity Weights set. However, in some cases
inexplicable changes of more than the expected 3% for slight modifications appear. Hence, the behaviour
in such cases should be further examined in future experiments.

Figure 10.14 shows exemplary results for the simplified target architecture, containing only two coarse-
grained target components. The results have a much higher quality of about 90% even for the Equal
Weights set and reveal less reaction of the algorithm to changing dependency weights. As can be seen
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Figure 10.13: Experiment 4: Exemplary Sensitivity Analysis Results for the Detailed Target Architecture
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Figure 10.14: Experiment 4: Exemplary Sensitivity Analysis Results for the Coarse Target Architecture

in the figure, the Constructor Call dependency type represents an exception as its modification leads
to unpredictable results. The reason for the higher quality and the smaller reaction to modifications is
supposed to be the dependency profile of the target components. Added up, the two target components
contain 7795 internal dependencies, but only 281 external dependencies. Thus, a high ratio of internal to
external dependencies is also obtained for all dependency types. I.e. the separation of the two components
is already high in the source system, which eases the automatic creation of the complete mapping and
leads to less influence of the dependency weights and their modification.
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10.2.5 Conclusions
One of the main insights this case study gives to the applicability of MARE is the role of the relation
between the decomposition criteria of the target architecture and the dependency types. MARE bases
on the assumption, that the target components are in a common sense cohesive and that this cohesion
is reflected in the distribution of dependency types for internal and external dependencies of the target
components.

However, the case study shows, that the cohesion of target components is not always reflected in the
syntactical dependency types that are available in common programming languages. It is assumed, that
the decomposition criteria applied in practice are often primarily reflected in semantic relations between
source elements. To take advantage of the property of the clustering algorithm to create cohesive clusters,
these semantic relations have to be mapped to according dependency types. The further examination of
appropriate dependency types and a reasonable definition of cohesion on the module and component level
is subject to future work.

Nonetheless, the case study also shows the promising potential of MARE in combination with conven-
tional Java dependency types. In the following, the results of the experiments are examined according to
the goals and questions in the GQM plan. The final subsection furthermore discusses further observations
of the case study.

10.2.5.1 Goal 1: Quality

The quantification of the quality of the MARE clustering algorithm is addressed by the experiments 1-3.
A good quality in terms of MoJoFM and PCMSE values of more than 80% could only be measured for
the Best Weights set and the best initial mappings, that mapped 20-25% of the source elements. This
mapping value should be lower to effectively apply MARE in practice. The main reason for the relatively
low values is assumed to be the insufficient ability to represent the decomposition criteria of the target
architecture using the standard Java dependency types. It is expected, that better results can be reached
using further semantic dependencies that allow this representation.

The MoJo and the NCMSE metric showed the expected behaviour. They continuously confirm the
assumption, that adjusted weight sets and the addition of source elements to the initial mapping improve
the quality of the complete mapping.

Question 1.2, that addresses the good choice of dependency type weights, can not be answered def-
initely. The best values for the considered metrics could be reached with the Best Weight set. The set
bases on the ratio of internal to external dependencies and knowledge about the system and the clustering
behaviour. Since a large part of the this knowledge can not be gained without knowing the reference
mapping no approach for a user without this knowledge can be easily derived from it. Nonetheless, it can
be said, that high weights for dependency types, that reflect the decomposition criteria, and low weights
for dependency types, that contradict these criteria are a good starting point. Furthermore, the examina-
tion of intermediate clustering results for dependency type weights, that cause wrong mappings of source
elements is a strategy to improve the weights.

The best choice of an initial mapping also bases on knowledge about the reference mapping. Nonethe-
less, the results of Experiment 3 show, that source elements with high internal dependencies in the target
decomposition are a better choice than source elements, that represent an interface of a target component.
This again shows, that a clear definition of the decomposition criteria is necessary to gain a good complete
mapping.

The influence of consolidating iterations to reduce the negative influence of arbitrary decisions could
also be shown by a comparison of the clustering algorithm with and without consolidating iterations. It
could be shown, that for most configurations the clustering with iterations produced more stable results
and reduced the instability caused by arbitrary decisions. The expected average improvement of the
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results for the usage of the algorithm with consolidating iterations could only be confirmed for individual
cases.

In conclusion, the quality of the complete mappings in this case study is worthy of improvement. The
main point of improvement however is not MARE itself, but its use and the modelling of the decom-
position criteria by dependency types. Furthermore, it was observed, that the best weight set and the
best initial mapping are based on knowledge about the reference mapping. Nonetheless, strategies for
the creation of both without this knowledge can be derived, that base on the precise definition of the
decomposition criteria of the target architecture.

10.2.5.2 Goal 2: Stability

In Experiment 3 the complete mappings for modifications of the initial mapping in steps of 25 source
elements or 3.1% were examined. Only in one case the addition of source elements to the initial mapping
did not show a positive influence on the complete mapping. Nonetheless, a positive effect of the addition
of source elements in terms of an improvement of the PCMSE value of significantly more than 3.1%
can only be observed for initial mappings that map less than 20% of the source elements. Therefore,
it can be concluded for this case study, that the addition of source elements to the initial mapping will
not deteriorate the complete mapping in most cases and that the largest improvements can be made with
additions up to an initial mapping size of 20% of the source elements.

Experiment 4 examined the influence of the modifications of dependency type weights on the complete
mapping employing a sensitivity analysis. The result show no uniform picture. While the most modifi-
cations lead to comprehensible changes in the complete mapping, there are also a number of exceptions
that can not explicable. The comparison of the results for the detailed target architecture with a simplified
target architecture with two target components shows that the quality of the results strongly improve if
the decomposition criteria of the target architecture is well reflected in the source system, measured by
high ratios of internal to external dependencies for all dependency types. In this case, the influence of the
single weights strongly decreases except for some also not explicable exceptions.

10.2.6 Further Conclusions

The course of this case study showed, that the Sum and Unweighted Average Linkage updating rules led
to the best results regarding stability and quality. The similarity function defined by Koschke (2000) led to
similar results as the Unweighed Average Linkage rule. The Sum Relative to Nodes function led to good
results regarding stability and quality in terms of high cohesion and low coupling, but revealed low values
for the quality in terms of similarity to the reference mapping. Experiment 1 furthermore indicated, that
Sum leads to less stable results. Hence, Unweighted Average Linkage was preferred in the subsequent
experiments.

The experiments furthermore revealed, that MoJo and MoJoFM have deficiencies in the rating of
MARE results in comparison to a reference mapping. This results from the particularity of MARE, that
it predefines the identity of clusters and target components, while the MoJo metrics are aimed at more
general clustering techniques in the field of architecture reconstruction, where the goal is to find modules
and components. NCMSE and PCMSE provide more interpretable results in the MARE context, since
their measured values are lower than the values of the MoJo metrics if the grouping of source elements
is correct, but the assignment to the target components does not match the user’s expectation. However,
this aspect is mainly significant for results with a low quality. For better complete mappings, the results
of the metrics are similar.
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10.3 Industrial Case Study

10.3.1 Setting
The setting of the industrial case study is a large industrial system written in C/C++. The system has been
developed for about 15 years and has a size of about 3.5 million lines of code excluding comments and
empty lines. The system is partially object-oriented and much of the communication and synchronisation
in the system is done using global variables and shared memory objects. More details on the system can
not be given here for reasons of confidentiality.

The case study was part of a project with the goal to analyse and restructure the architecture of the
system. The system suffers from architectural erosion due to many years of maintenance. The goal of
the project is the development of a target architecture, that allows for the planned future developments
of the system, and the modernisation of the system to meet this architecture. Since the goal is the re-
establishment of maintainability, the envisaged target architecture is an idealised As-Is architecture.

The case study is represents the application of parts of MARE in an industrial context. It shows the
transferability of the MARE Clustering to a larger system, written in another programming language
and employing other dependency types than the case studies described before. However, the quality of
the results of MARE can not be assessed clearly, since no reference mapping is available, because the
restructuring project is not finished and the system experts are also not yet able to create a final mapping
for the system. Furthermore, the applicability of all MARE concepts can not be evaluated, since there
is no fix target architecture. The restructuring of the system is still ongoing and thus only a few hints to
the quality of the complete mapping of MARE are available. Parts of the results of the case study were
published at the Workshop Software-Reengineering (WSR 2010) (see Streekmann (2010)).

10.3.2 Experiment Design
The industrial case study is divided into two experiments with different source system models and target
architectures. The Experiment 2 employs the source system model of a later version of the system and a
reworked target architecture. While the source system model used in Experiment 1 includes only files, the
source system model used in Experiment 2 is extended by explicitly modelling global variables and shared
memory objects in order to be able to map them independently from the other global variables, shared
memory objects, and functions they are defined with in the same file. The number of dependencies is not
influenced by this, since the dependencies to these source elements were lifted to the file level before.
Apart from that, the source system models for both experiments were created using the same reverse
engineering tool and involve the same dependency types.

10.3.2.1 Experiment 1

The target architecture for the experiments was designed based on Quasar categories (cf. [p. 73ff.]Sieders-
leben (2004)). It contains 14 target components, that represent different functionalities of the system.
These reach from common functions like error handling and authentication to specific target components,
that represent e.g. the data model or all customer-specific adaptations of the system. More details about
the target components in particular can not be given here for reasons of confidentiality.

The source system model includes between 4821 and 5752 files. The number varies since some ele-
ments were removed during the iterations of MARE Clustering. Depending on this the number of depen-
dencies varies from 504405 to 2.5 million. In the implementation these were reduced for performance
reasons to between 87251 and 230227 dependencies by subsuming all dependencies between two nodes
to one with the sum of the single weights as new weight. The initial mapping contains between 104 and
122 source elements.
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The weights for the dependency types are listed in Table 10.13. The dependency types are typical struc-
tural dependencies in C/C++ systems, as e.g. reading, writing and executing accesses to global variables
and functions. The weights reflect the decomposition criteria of the target architecture. E.g. inheritance
is weighted high, because two classes that inherit from each other should be mapped to the same target
component in the same way as functions that write the same global variable should be mapped to the same
target component. On the other hand Macro Accesses and Rely On dependencies, which refer to type us-
ages in C/C++, appear throughout the system and are appropriate for the mapping to target components.
Thus, they are weighted very low.

Table 10.13: Weights for the Industrial Case Study

DependencyType Weight

Execute 0.01
Read 0.003

Macro Access 0.000000001
Write 20

Include 0.01
Rely On 0.000000001
Contain 1.0
Inherit 200

Member Access 0.1

The experiment targets the MARE Clustering iteration cycle. In the iterations, the reaction of the clus-
tering algorithm to the changes in the configuration are examined. Changes are the removal of source el-
ements from the source system model, the addition of source elements to the initial mapping and changes
of the dependency type weights. All clusterings in this experiment were conducted using an early version
of the clustering implementation employing the Sum updating rule. In this early version, no consoli-
dating iterations to reduce the negative influence of arbitrary decisions were employed in the clustering
algorithm.

10.3.2.2 Experiment 2

The second experiment examines the influence of consolidating iterations in the clustering algorithm
to avoid the negative influence of arbitrary decisions on the clustering result. To do so, 10 complete
mappings, that were created with the same configuration and the same number of clustering runs are
compared. The comparison is done using the PCMSE metric. The experiment is conducted without
consolidating iterations and with 10 consolidating iterations. It is expected, that the complete mappings
are more similar to each other for the latter algorithm. The clusterings were created using the Sum as well
as the Unweighted Average Linkage updating rule.

The target architecture of Experiment 2 is a reworked version of the target architecture of Experiment 1,
in which the definition of the main components was slightly changed and subcomponents were added. It
contains 13 target components with 20 subcomponents. The dependency weights are the same weights as
listed in Table 10.13. The source system model contains 4915 files, 361 shared memory objects and 3940
global variables. These elements share 632300 dependencies, which were subsumed as in Experiment 1
to 123330 dependencies for performance reasons. The initial mapping contains 253 files.
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10.3.3 Validity

The main threat to the validity of the experiments in this case study is, that there is no reference mapping
to which the complete mappings created by the clustering algorithm can be compared. Thus, the metrics
can only give indications on the quality of the results. Furthermore, a detailed insight to all 5000 to 10000
source elements is not expectable of a human expert. Hence, the expert that rated the results can check
the mapping on a random basis. This check is also complicated by the fact, that the target architecture of
the system is not fixed.

10.3.4 Results

10.3.4.1 Experiment 1

The complete mapping gained in the MARE Clustering iterations of Experiment 1 are depicted as pie
charts in Figure 10.15. For the larger target components the percent values represent the percentage of
source elements mapped to the target components. The real names of the components are not used due to
confidentiality reasons. The letters are used for the same target component in each subfigure.

The first iteration of the MARE Clustering iteration cycle (cf. Section 7.2.1) in Experiment 1 led to a
complete mapping in which one target component contained more than 90% of the source elements. It
could be seen from the sequence of the clustering, that the choice of which target component included
most of the source elements depended on the clustering of a single file, that was clustered very early in
the clustering process. This single source element has 5264 incoming and 376 outgoing dependencies
and was used all over the system. Hence, it facilitates the creation of large clusters.

The removal of this source element slightly improved the clustering and led to the result depicted in
Figure 10.15(a). It still includes one target component containing 85% of the source elements, but also
two further components containing more than 5% of the source elements.

In the next MARE Clustering iteration 769 further files, that were identified as internal libraries by
domain experts, were removed from the source system model. This significantly improved the result
as can be seen in Figure 10.15(b). The distribution of source elements to target components is much
more homogeneous. Furthermore, the larger target components are also expected to contain more source
elements by the system experts, since they represent a larger part of specific functionalities. As discussed
before, the equal size of all target components is not likely in practice and also in this case study, the
target components are expected to contain different amounts of source elements, which is reflected in the
system experts rating of the complete mapping. Nonetheless, a certain degree homogeneity in which the
size of the largest components does not diverge to much is desirable for the complete mapping in this case
study.

Figure 10.15(c) shows the result after the extension of the initial mapping from 104 to 122 source ele-
ments. It can be seen, that this only resulted in small changes in the complete mapping. In the subsequent
MARE Clustering iteration the number of files was further reduced to 4821, whereby further files with a
library character were removed from the source system model. The consequence is a complete mapping
with an again slightly more regular distribution of the size of the target components (Figure 10.15(d)), but
also a strong change of the largest cluster (The share of target component I changed from 43% to 11%,
while the share of target component F changed from 9% to 33%). Unfortunately, no final explanation of
this phenomenon could be found during the case study. One assumption is, that both target components
share the same basic files and that a large block of source elements changed the target component due to
the changes caused by the removal of the source elements.

In the last MARE Clustering iteration the weights of execution accesses and reading accesses were
lowered. The reason for this change is, that these kinds of accesses are allowed between different target
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Figure 10.15: Experiment 1: Results of the MARE Clustering Iterations

components as well as inside target components, while e.g. writing accesses should mainly be encapsu-
lated inside a target component. In consequence, the sizes of the target components I and F changed
again. In the overall view of the complete mapping the target component sizes are again more homoge-
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Figure 10.16: Experiment 2: Result for the Extended Target Architecture

neous than in the previous results. In summary, the system expert rates this result good given the current
state of the restructuring project. Reasons for this rating are that the sizes of the target components broadly
match the expectations of the share of the corresponding functionalities in the system and that considered
samples of the source system mappings seem to be reasonable.

10.3.4.2 Experiment 2

Figure 10.16 shows the result of a clustering with the updated configuration and the clustering implemen-
tation of Experiment 1 to give a valid comparison of the results. It can be seen, that the results are again
more homogeneous, which is also owed to the larger number of target components. The largest target
component subsumes a large number of specific function groups, that are not further subdivided. Thus,
the difference to the size of the other target components is explicable.

Table 10.14 shows the results of the comparison of clusterings with and without consolidating itera-
tions. For the Sum updating rule it can be seen, that the similarity of the 10 compared complete mapping
is already very high without consolidating iterations with a median of 99,1%. This value also increases
for the clusterings with 10 consolidating iteration with a Median of 99,4% and higher minimum and
maximum values, but the difference is not significant due to the already high level of the PCMSE val-
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ues.

Table 10.14: Similarity of Complete Mappings with and without Consolidating Iterations

Minimum Maximum Median

Sum Without Iterations 98,5% 99,7% 99,1%
Sum 10 Iterations 98,9% 99,8% 99,4%

UAL Without Iterations 75,2% 95% 82,4%
UAL 10 Iterations 70,5% 90,5% 79,9%
UAL 20 Iterations 77,3% 91,6% 81,5%

The results for the Unweighted Average Linkage updating rule are much lower than the results obtained
with the Sum updating rule. The median for clusterings without consolidating iterations is 82,4%. The
values employing 10 consolidating iterations are even lower, resulting in a median of 79,9% for the
comparison of 10 complete mappings. This result contradicts the expectations and can not be explained
from the current experiences with the clustering. The results for 20 consolidating iterations with a median
of 81.5% are nearer to the results without consolidating iterations, but still lower, so that an increase of
stability by the usage of consolidating iterations can not be observed as well. Hence, further examinations
of the behaviour of the clustering algorithm regarding consolidating iterations and arbitrary decisions is
subject of future work.

Regarding a reason for the deterioration of the result it is assumed that the number of initially mapped
source elements, which are less than 3%, may be too low. Therefore, experiments with larger initial
mappings should be conducted to examine the consequent behaviour. Another aspect for future work is
the increase of the number of consolidating iterations, which may be necessary to obtain the desired effect
due to the larger number of possible arbitrary decisions in this case study compared to the open source
case study, where the consolidating iterations led to better results. A drawback of this is the increase of
computing time, that is involved by the increase of consolidating iterations.

10.3.5 Conclusions

Regarding the quality of the complete mapping,? the Questions 1.1 to 1.3 of the GQM plan can not be
answered to the same extent as for the preceding case studies, since no reference mapping is available
for this case study. The only quantifiable metric, that is applicable, is the number of source elements
per target component. The values of this metric are distributed inhomogeneously. However, in the given
context this is no sign of a low quality of the complete mappings, but reflects the different natures of the
target components.

It can also be concluded from Experiment 1, that the mapping quality improves with the removal of
library-like source elements, the extension of the initial mapping and the change of dependency type
weights. Thereby, the first shows the highest impact, while the latter led to the smallest changes.

Experiment 2 showed a high level of similarity of the complete mappings, that were obtained em-
ploying the Sum updating rule for clusterings with as well as without consolidating iterations. The Un-
weighted Average Linkage updating rule resulted in much less similar results and also contradicted the
expectation, that the similarity increases with the usage of consolidating iterations. Hence, the experiment
leaves demand of further examination of the behaviour of the MARE clustering algorithm.

Goal 2 of the GQM plan, the stability of the clustering algorithm with regard to modifications of the
dependency type weights or the initial mapping, was not in the focus of the case study. The results of the
experiments are also not extensive enough for meaningful statements regarding the stability.
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10.4 Summary
This chapter presented the results of three case studies employing different types of restructurings for a
small, a medium-sized, and a large software system. They cover the programming languages Java and
C/C++ as well as open source and industrial systems with a maintenance history of up to 15 years.

The evaluation bases on the GQM plan defined in Chapter 9. Concerning the quality of the complete
mappings produced by MARE, it could be shown that a high quality compared to a reference mapping can
be produced. Furthermore, hints for strategies to define dependency type weights and initial mappings
could be developed.

With respect to the influence of consolidating iterations to reduce the negative effects of arbitrary
decisions no final answer can be read from the case studies. While the open source case study showed
more stable results with a slightly higher quality for the algorithm with consolidating iterations, this could
not be confirmed in the industrial case study. Further experiments with more extensive configurations are
necessary here.

The stability of the approach with regard to changing initial mappings and dependency type weights
could also be shown in the open source case study. A few exceptions that appeared in the sensitivity
analysis of the open source case study should be further examined in future work. The choice of the best
updating rule or similarity function for composite clusters used in the clustering algorithm is also subject
to future work. In the preliminary and the open source case study Sum and Unweighted Average Linkage
led to the best complete mappings. Regarding the stability of the results for the two updating rules,
however, the results of the open source and the industrial case study are ambiguous. While Unweighted
Average Linkage was slightly more stable and more or less behaviourally equivalent to Sum in the open
source case study, its results were much less stable in the industrial case study.

An influence of library-like source elements on clustering results could also be observed in the pre-
liminary and the industrial case study. In the open source case study, the source elements with the most
incoming and outgoing dependencies did not lead to a deterioration of the results, but rather supported
a good clustering, since the dependencies mostly connected them to other source elements in the same
target architecture. Hence, libraries, frameworks, and source elements with many dependencies should be
examined on for their potential role in the target system. Depending on this role they should be removed
from the source system model or considered as central elements in the initial mapping.

The portability of the results in total is limited, since restructuring projects depend on a large number
of influencing factors. Thus, more experience is needed to be able to make general statements. The
main influencing factors are the complexity of the systems, their programming language as wells as
programming conventions, and most importantly the decomposition criteria of the target architecture and
the possibility to map these to dependency types.
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This chapter discusses related work of the MARE approach. It considers work in three categories. Sec-
tion 11.1 compares MARE to other approaches that support architecture restructuring on different levels.
Section 11.2 points out the differences to methodological similar approaches for architecture reconstruc-
tion and Section 11.3 examines alternative approaches for the creation of the complete mapping.

11.1 Architecture Restructuring

11.1.1 Architecture Restructuring Using Source Code Annotations and Graph
Transformations

Correia et al. (2007) present an approach to architecture restructuring using graph transformation rules,
which is also described in more detail in Heckel et al. (2008). They employ target architecture infor-
mation for the source code transformation by semi-automatically annotating the source code with source
categories. They describe the exemplary transformation of a system towards service-oriented systems
employing three-tier architectures. The annotated source code is reverse engineered to a graph model,
which is then transformed to a model representing the system conforming to the target architecture. From
this model the source code of the target system is generated. The actual restructuring of the system is
encapsulated in the graph transformation rules.

In the approach, the source code can be categorised down to the level of single statements, which
principally allows for a more fine-grained restructuring than MARE. The restructuring is based on refac-
toring rules. The paper does, however, not state how single statements are reassembled in the target code.
Furthermore, the approach is restricted to object-oriented systems.

The main differences to MARE are the code annotations and the automatic transformation of the source
code. The semi-automatic annotation of source code elements can in principle be compared to the clus-
tering of source elements based on the initial mapping in MARE. Nevertheless, it requires more detailed
knowledge of the system to annotate the code manually and to define the rules for the automatic annota-
tion. This level of detail is hard to gain for current large-scale systems and necessitates additional upfront
reconstruction steps. Furthermore Correia et al. (2007) are focussed on the technological decomposi-
tion of the target architecture and leave out the challenges of the functional decomposition. Automated
generation of the restructured code is subject to future work in MARE (cf. Section 13.1).

Matos (2008) extends the former work by focussing the functional decomposition. He adds a method
to identify service operations in the source code and group them in order to gain coherent services. The
goal for this task are loosely coupled, coarse-grained services. Several techniques are used to identify
service operations in the source code, where MARE uses the target architecture as starting point for the
mapping of service interfaces to source code. This kind of functional target architecture as a complement
of the technological target architecture in Correia et al. (2007) is not included in the approach.

The loose coupling is obtained in the way that service operations do not depend on the use of operations
of other services. However, loose coupling in the sense of loosely coupled service implementations to
foster reuse in different contexts and exchangeability of services and the problems adherent to this are
not discussed in detail. This is in contrast a focus of the component restructuring that is possible with
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MARE. Matos and Heckel (2008) summarise the whole approach, including functional and technological
decomposition, targeting the migration to service-oriented architectures.

11.1.2 The SOAMIG Approach

Fuhr et al. (2010) extend the Service Oriented Modeling and Architecture (SOMA) method by IBM, as
described in Arsanjani et al. (2008), in order to provide an end-to-end method for the migration of existing
systems to service-oriented architectures. The method includes the identification and specification of
services as well as their realisation and implementation. In the context of MARE, the identification and
specification phases lead to the definition of the target architecture. MARE itself can be used in the service
realisation phase, where existing implementation have to be mapped to the services. The implementation
phase conforms to the Implementation Restructuring in MARE.

The service realisation phase in Fuhr et al. (2010) is conducted by extracting the complete but minimal
code that serves as the implementation of a service interface defined in the service identification phase.
This phase also identifies source elements that contain the direct equivalents to the defined service op-
erations. The identification of the realising code is then done by querying all call, type and inheritance
dependencies from a graph, which represents the complete source code.

The main difference to MARE is, that this identification of the code belonging to the service im-
plementation is based on the analysis of the dependencies of the elements already found in the service
identification phase. Although this can be compared to the initial mapping in MARE, the difference is
that also the interfaces of other components of the system are considered in MARE. I.e. other service
implementations, that also depend on the identified code, are not considered by Fuhr et al. (2010). Fur-
thermore, they do not discuss which required interfaces the resulting component will have. This is an
important issue, because without this knowledge code maybe unnecessarily duplicated or the component
may require code through its interface which could be better included in the component itself. Also, it is
not discussed that components may realise more than one service. These issues can be modelled in the
target architecture of MARE and are thus considered in the clustering.

11.1.3 Incremental Architecture Restructuring

Hunold et al. (2008) describe an approach for the semi-automatic transformation of a legacy system to
a client-server architecture. The transformation is done on an architectural level based on refactoring
patterns. These also include the extraction of functionality from a desktop application in order to execute
it on a server. However, only the technical implementation of the transformation of selected parts of the
code is discussed, but not how this selection can be supported. In this way the approach supports the
evolution to a target architecture by incrementally applying patterns for single refactoring or restructur-
ing operations selected by the user, who decides which steps have to be performed to reach the target
architecture.

Similar methods are implemented in the tools Sotoarch1 and Lattix (Sangal et al. (2005)), which vi-
sualise the layered architecture of object-oriented systems and dependencies between layers and single
elements. On this basis, they support the planning of incremental architecture restructuring by computing
the changes, that occur, when elements are moved. In all these approaches the target architecture has to
be created manually in small steps from the reconstructed source architecture.

1http://www.software-tomography.ch/
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11.1.4 Automated Architecture Improvement

Approaches for automated architecture improvement in most cases use the principles of low coupling and
high cohesion as criteria for the improvement. Thus, they provide useful support for the automation of
refactorings to improve the maintainability of a system. In contrast to MARE they are not designed to
support the coarse-grained restructuring to new architectures with significant difference to the existing
architecture.

Lung (1998) presents an approach to restructure software systems using graph clustering. The goal is
to improve the architecture in terms of higher cohesion and lower coupling. Therefore, a clustering algo-
rithm is used to find a pattern that can be used to improve the architecture targeting this goal. In contrast
to MARE, maintainability (addressed in terms of coupling and cohesion) is the only restructuring goal
of interest. Further goals, that can e.g. be gained by the examination of a target architecture, especially
restructuring based on a functional decomposition, are not considered.

Bauer and Trifu (2004) also have the goal to improve the structure of a system under study. They
perform graph clustering based on architectural clues to reconstruct the intended structure of the system.
By optimising the similarity function for coupling and cohesion they try to impose an improved structure,
that is suited better for program understanding. In contrast to MARE, the improvement is not based on a
new target decomposition, but improves the quality measures of the existing decomposition.

11.2 Architecture Reconstruction

MARE uses methods, that are similar to the methods used for architecture reconstruction, e.g. in the
reflexion method and other clustering-based reconstructing approaches. The main difference to these
approaches is, that the goal of MARE is not to reconstruct the implemented or intended architecture of an
existing system, but creates a mapping of the implementation to a new target architecture. This changes
the underlying problem and the assumptions connected to it.

11.2.1 Architecture Reconstruction Based on Source Code

The main difference of MARE to these methods is, that the results these methods provide, must be
interpreted and often also reworked by the user in order to gain a consistent architectural view of the
system under study. In MARE this architectural view is given by the target architecture and thus the effort
for the interpretation of the result can be limited to defined aspects. These include unwanted dependencies
between target components resulting from the complete mapping and the mapping of single entities or
small groups of entities respectively.

11.2.2 Architecture Reconstruction Employing Architectural Information

Major methodical similarities to the MARE approach can be found in architecture reconstruction meth-
ods, that employ architectural information as a user input. The main differences to MARE is in these
cases the goal of the approach, which is to obtain knowledge about the existing system, while the goal
of MARE is to transfer the existing implementation to a target architecture with different decomposition
criteria. In terms of the horseshoe model (cf. Section 3.1) architecture reconstruction methods focus on
the reverse engineering of the base architecture, while MARE focuses on the transformation of a system
towards a desired architecture.
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11.2.2.1 The Extended Reflexion Method

The goal of the reflexion method is to find differences between the dependencies in a hypothesised archi-
tecture and the dependencies induced by a mapping of source elements to elements of this architecture.
The extended reflexion method by Christl et al. (2007), as introduced in Section 3.4.2.1, proposes an
approach for the semi-automatic creation of this mapping. To do this, a clustering approach is introduced,
that iteratively creates the mapping of source elements based on the dependencies to already mapped
source elements.

While the extended reflexion method and MARE both base on an architectural description as their main
input, the role of these architectures differs significantly. Where the reflexion method uses a hypothesised
architecture which reflects the experts expectation on the current implementation of the system, MARE
uses a target architecture which reflects the experts plan of the future implementation of the system. The
decompositions reflected in these architectures follow different goals and, as they can be seen as the input
and output of the restructuring transformation, are assumed to show significant differences. The high-level
architecture of the source system is not of interest for MARE. The addressed problem remains the same
even if an extensive architectural documentation of the source system exists. Therefore it is assumed, that
the hypothesised architecture is more similar to the implicit architecture of the implementation than the
target architecture of MARE. This also leads to different requirements for the clustering.

Instead of a hierarchical clustering approach as described in Section 8.2.3 they use a partial clustering
algorithm, that maps previously unmapped source elements to hypothesised high-level modules of the
system under study. The basis for the clustering are dependencies between mapped and unmapped source
elements. This causes that cohesive subclusters in the unassigned source elements are not considered.
It also supports the strongly human-controlled nature of the reflexion method. In contrast to the MARE
approach, the understanding of the implemented architecture of the source system is the main goal of
the reflexion method. This is reflected in the partial clustering of Christl et al. (2007), while the MARE
approach sets its priority on the interfaces between target components as stated in Section 8.1. The
arbitrary decisions, that gain special attention in the clustering algorithm in MARE are not of interest
in the extended reflexion method, since only obvious mappings are made automatically in the partial
clustering.

Christl et al. (2007) also recommend to spend effort on creating a good conceptual model that resembles
the implemented architecture and to provide a corresponding initial mapping. While the latter is also true
for MARE, the resemblance between the target architecture and the implemented architecture cannot
be assumed in the MARE approach, since restructuring may fundamentally change the implemented
architecture. These differences in their objective also leads to different requirements for the approaches
themselves.

MARE as well as Christl et al. (2007) make use of dependency type weights in order to indicate the
impact of dependencies and the conceptual semantics they represent on the clustering result. Christl et al.
(2007) use the dependency type weights proposed in Rayside et al. (2000) and leave the discussion of the
role of dependency weights and the evaluation of other weights to future work. MARE on the other hand
contributes a discussion on the impact of dependency type weights (cf. Section 8.3) and evaluates this
impact for concrete examples (cf. Section 10).

Another difference can be found in the interpretation of the clustering result. While divergences in the
reflexion model typically lead to an adjustment of the hypothesised architecture in the reflexion method,
in MARE unwanted dependencies lead to changes in the implementation of the system, since they are the
main targets of the restructuring of the implementation.

In summary, the extended reflexion method reveals methodical similarities to the MARE approach, but
differs significantly in its objective. Table 11.1 summarises the main differences between MARE and the
extended reflexion method.



11.2 Architecture Reconstruction 151

Table 11.1: Comparison between the extended reflexion method and MARE

Extended Reflexion Method (Christl
et al. (2007))

MARE

Goal Architecture Reconstruction Support for Architecture
Restructuring

Process Iterative adjustment of the
hypothesised architecture

Iterative adjustment of the
implementation to the target

architecture
Assumptions Decomposition criteria of the

hypothesised architecture can be
found in the source system

Support for Architecture
Restructuring

Clustering
Method

Partial Clustering Complete Hierarchical Clustering

Inclusion of
Architectural
Knowledge

Manual Mapping, φ factor (allowed
coupling)

Initial mapping, dependency
weights

Clustering
Goal

High cohesion and low coupling High cohesion in relation to the
decomposition criteria of the target

architecture
Handling of
Divergences

Rework of the hypothesised
architecture

Change of dependency weights or
adjustment of the implementation

Arbitrary
Decisions

Only obvious mappings are
automated

Iterative mapping, alignment of
different decisions

11.2.2.2 Focus

In contrast to the reflexion method, Focus, as described by Medvidovic and Jakobac (2006), does not
start with a hypothesised architecture of the system under study, but with an idealised logical model of
the system. This model is based on the architectural style of the system, the functional user requirements
and the implementation platform, e.g. the used libraries and frameworks. Unlike the reflexion method
and MARE, Focus does only consider object-oriented systems. It follows an incremental approach to
reconstruction and evolution of the system. I.e. only the part of the system that is subject to a current
evolutionary requirement is reconstructed and changed.

This top-down step is complemented with a typical bottom-up architecture recovery step to reconstruct
a consistent but partial architectural view of the system. During the bottom-up step, classes are clustered
through the application of rules that are based on dependency types. The difference to clustering in MARE
is that the groups are not assigned to target components and the set of rules is fix and is not intended to
be adapted to the target decomposition.

The results of the top-down and the bottom-up step are mapped to each other in order to gain a com-
plete architecture view. During the mapping, Focus identifies inconsistencies between the idealised and
the reconstructed architecture, which is similar to the recognition of differences between hypothesised
architecture and implementation in the reflexion method. Based on the reconstructed architecture, the
architecture evolution is performed.

The approach incrementally starts with a high-level view of the system and hierarchically refines the
parts of the system, that are relevant to the evolution task at hand, in the further iterations. This meets one
of the iteration strategies described for MARE in Section 7.1.1. The reflexion method also incorporates
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hierarchical refinement, but describes more detailed understanding instead of the adoption of a certain
evolution task as the driver of the iterations.

11.2.2.3 SARA

SARA is a semi-automatic subsystem decomposition technique defined by Girard (2005). It produces a
hierarchical module view of a source system. SARA is subdivided in three phases:

1. Collapse molecular components
2. Partition and cluster
3. Integration and refinement

In each of the phases specific feedback from the user is incorporated to improve the overall result. The
first phase identifies groups of source elements, that are considered as molecular components in the other
phases. The techniques used in this phase focus on strong relationships of the source elements in the
existing implementation, that represent the implicit architecture of the source system. As such they are
not commonly usable for the restructuring of the system to a new architecture.

The second phase uses partitioning and clustering in order to create a dendrogram, that represent the
hierarchical decomposition of the system. This phase is subdivided in four steps:

1. Support and driver filtering
2. Data preparation
3. Partitioning
4. Clustering

The first step removes source elements, that do not call other source elements or that call a relatively
large number of other source elements. This equals the removal of libraries in MARE and leads to better
results in the subsequent steps. In relation to restructuring the removal of these source elements should be
further differentiated, since these elements can also be representative for the target architecture and thus
should not be removed.

The second step can be compared to the creation of the source system model in MARE since it describes
which relations and attributes are considered in the clustering. The structural dependencies between
source elements are weighted by the number of equal dependencies to other source elements and not as
in MARE by the relevance of the dependencies for the target decomposition. Further optional attributes
of source elements are dominance relations, containments hierarchies, and naming conventions as well
as special system-specific attributes. All these attributes can also be useful for restructuring, but should
be chosen carefully for the specific project context. In MARE these attributes are modelled as further
dependency types, which are weighted by their relevance for the restructuring. Such a weighting is not
intended by SARA.

The third step partitions the source elements into small cohesive components. The goal is to correct
the drawback of the local nature of hierarchical clustering. This can lead to the clustering of two source
elements because they are highly similar, although they belong to the same component. This can e.g.
happen, when two components are highly dependent. In MARE, this drawback is tackled by a higher
weighting of dependencies, that indicate the intended cohesion of the component, as well as the iterative
improvement of the initial mapping.

The fourth step clusters the source element or groups of source elements created in the preceding steps,
respectively. SARA employs six different similarity functions to compute the similarity between clusters.
The results of the clusterings are compared based on the similarity to a partial manual mapping or on
coupling and cohesion measures. In the end, the clustering with the best quality is chosen as input of
the third phase. MARE is also able to use different similarity functions, but does not employ the parallel
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execution and comparison of clustering results. In MARE, all clusterings have the same similarity to
the initial mapping since component clusters are not allowed to be merged during the clustering. A
comparison based on cohesion metrics would be possible, but is left to the user.

The third phase of SARA interprets the clustering result and reintegrates the source elements removed
in the first step of the second phase. The interpretation of the clustering results bases on the creation of a
hierarchical system decomposition based on analysis of the dendrogram created by the clustering in the
second phase. Since the MARE clustering algorithm does not result in a complete dendrogram, but stops
the hierarchical clustering when only component clusters are left, the mapping of source elements to target
components can directly be read from the clustering result. Furthermore, the hierarchical decomposition
is the same as in the target architecture. Further subcomponents are not revealed by MARE.

In summary, SARA is a sophisticated approach, that combines several techniques to execute architec-
ture reconstruction. The main similarities to MARE are that hierarchical clustering is a central technique
and that knowledge of the user is strongly integrated in the approach. The main methodological differ-
ences are that MARE does directly incorporate the initial mapping and the target architecture into the
clustering algorithm while SARA mainly uses the architectural input from the user for the validation and
selection of the result of specific reconstruction methods. Furthermore, MARE bases on user defined
dependency weights to incorporate the decomposition criteria of the target architecture.

11.2.2.4 Further Hierarchical Clustering Approaches for Architecture Reconstruction

Maqbool and Babri (2007) review the state-of-the-art of the usage of hierarchical clustering algorithms
in approaches for architecture reconstruction. Coupling and cohesion are assumed to be a good basis for
architecture reconstruction approaches and often determine the metrics of their results. For architecture
restructuring this only works in special cases, when the implemented principles of coupling and cohesion
are similar to the principles of the target architecture. In most cases MARE will result in a complete
mapping with non-optimal coupling and cohesion. Thus, further steps changing the implementation are
necessary in order to ensure the quality of the implementation relating to the intended quality of the target
architecture.

11.3 Alternatives to Hierarchical Clustering

In the related literature on restructuring and architecture reconstruction many methods were proposed to
reveal structures in software systems and create architectural views. In the following, the most frequently
used methods are described and the rationale for choosing hierarchical clustering for the creation of the
complete mapping in MARE is given.

11.3.1 Formal Concept Analysis

According to Tilley et al. (2005) a typical application scenario for formal concept analysis (FCA) in soft-
ware engineering is refactoring and restructuring as well as the identification of object-oriented structures.
The paper also gives an overview of recent work in this area. FCA defines concepts on a set of objects
and a set of attributes of these objects. A concept defines a grouping of objects with certain attributes.
Thus, FCA is suitable for finding groups of source elements (objects) with certain predefined properties
(attributes).

Tonella (2001) proposes the usage of FCA to restructure fine-grained modules in software systems. He
defines functions as objects and the data structures they use as attributes of these objects. A module is
assumed to correspond to a formal concept found with a common FCA algorithm.
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A possible usage of FCA in MARE would be to map dependencies to attributes. However, this only
works for dependencies that represent common attributes of source elements, but not for dependencies,
that represent direct relations between source elements. Furthermore, the weighting of dependencies
cannot be transferred to FCA, since a weighting of attributes, that influences the definition of concepts is
not intended.

11.3.2 Data Mining Techniques

Some architecture reconstruction approaches use data mining techniques for the creation of architecture
views of existing systems. Sartipi and Kontogiannis (2003) present an approach that bases on an a priori
algorithm to determine the similarity between source elements and components. Components are defined
as subsystems, that contain composite source elements (files) which again contain elementary source
elements (functions, data types and variables).

The a priori algorithm computes frequent itemsets, which contain a set of elementary functions F and a
set of source elements E in which every source element in E is used by every function in F . The user can
thereby define the minimum number of functions in F , which is called the minimum-support. A k-itemset
is a frequent itemset with k = |E| and k > 0, where |E| is the number of source elements in E.

The similarity of two source elements is defined as max(|E|+ω ∗ |F |) with 0 < ω < 1 being a weight
which is by default set to 0.5. The maximum is taken, when two source elements are contained in more
than one itemset. The similarity between components is based on the sum of similarities of the source
elements contained in the components.

Based on this definition of similarity a partitional clustering is executed to cluster files to components.
An initial partitioning of the system is created by identifying core files with high similarities to a large
number of other components. These seed files form singular clusters, while all other files are composed
to a rest-of-system cluster. An iterative partitioning algorithm then computes in each step the similarity of
each file to all other clusters and moves the file to the most similar cluster, until no file is moved anymore.
The clusters are then proposed to the user as subsystems of the system. The influence of the user on
the clustering is limited to the investigation of the results, including manual improvements. After the
clustering, the modularity of the clusters is rated, which can lead to merging or splitting of clusters as
well as a definite mapping of files to clusters, which cannot be changed in further clustering steps.

In order to be usable for the computation of the complete mapping in MARE, the a priori algorithm
would have to be extended to enable the inclusion of weights for different types of dependencies between
source elements. This includes the definition of another notion of frequent itemsets. The drawback would
be, that the changes to dependency weights only indirectly influence the similarity measure, which leads
to more effort in the interpretation of the results and the definition of changes in subsequent iterations.

11.3.3 Data Flow Analysis

An alternative approach for the extraction of components from a source system is data flow analysis.
Starting from an interface of the system, the data flow through the system is analysed in order to find
source elements, that are involved in the execution of the functionality defined by the interface. Horn
et al. (2009) use data flow analysis to identify source elements for the extraction of a service in the
course of SOA migration. While data flow analysis probably finds all source elements, that are directly
needed for the service implementation, dependencies from other elements to these elements as e.g. in
class hierarchies or commonly used parts of the code are not identified as such. The can lead to unwanted
interfaces between the extracted components and the rest of the system. Especially, when the other
interfaces and functionalities realised in the system are not considered.
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11.4 Summary

This chapter discussed the related work of the MARE approach. The related work can be mainly divided
into three parts: work on architecture restructuring employing different methods, work that employs
similar methods for architecture reconstruction and alternatives to the graph clustering approach chosen
in MARE.

Since coarse-grained architecture restructuring is not researched as well as e.g. architecture reconstruc-
tion and the most work on restructuring concentrates on restructurings on the function or class level, only
two major related approaches in the of service-oriented architectures as well as several approaches for in-
cremental restructuring and architecture improvement were identified. The latter support users in special
aspects of procedures that changes architectures in small steps in contrast to the coarse-grained architec-
ture changes targeted in MARE. The first major approach supports architecture restructuring by source
code annotations and graph transformations. Thus, the abstraction layer is lower as in MARE and support
for source code annotations is only existing rudimentarily. The SOAMIG approach focuses the architec-
ture restructuring to service-oriented architectures. It provides concrete methods for the identification of
service interfaces and technical support for the extraction of code, but does provide mature support for
the mapping of source elements to services.

The advantage of MARE compared to the other architecture restructuring approaches is that MARE is
the only approach that systematically supports the decision to which target component a source element
is mapped. Furthermore, it is a generic approach that is not limited to a certain paradigm in the source
system implementation or the target architecture style.

In architecture reconstruction, clustering methods are employed by a large number of research ap-
proaches. Of these, approaches that employ architectural information are the most related to MARE .
Three approaches were discussed in detail. The extended reflexion method uses similar methods, but
differs significantly in its objective. It supports the the manual reflexion method with partial clusterings
in contrast to the complete clusterings targeted in MARE. Since it focuses on the reconstruction of the
source architecture, the influence of decomposition criteria and dependency weights have another role in
the approach. The Focus method employs architectural information to gain more detailed information of
certain parts of a system. It employs hierarchical refinement of an idealised logical model, but focusses
on more fine-grained evolution tasks, that are supported by the reconstruction. SARA is a sophisticated
subsystem decomposition technique, that employs best practices from other approaches to produce a hi-
erarchical module view of a source system. It uses hierarchical clustering as one of four reconstruction
steps, but only uses architectural information to validate and classify the clustering results and not as
a driving input as in MARE. It furthermore defines a number of common analyses and classifications
of source system dependencies for architecture reconstruction, while MARE bases on the mapping of
decomposition criteria to dependency type weights in order to define the restructuring context.

These architecture reconstruction approaches are similar to MARE, since they also employ architec-
tural information to group source elements. The main difference is the objective and the approach to
support architecture restructuring. While the aforementioned approaches support architecture restruc-
turing by providing knowledge about the source system as a basis for human planning, MARE directly
supports this planning activity by including knowledge about the target architecture and its decomposition
criteria.

There are several alternative to clustering to perform the task of creating a complete mapping to support
architecture restructuring. These approaches have been successfully applied in lower level restructurings
or architecture reconstruction. One of these approaches is formal concept analysis (FCA) which allows
the grouping of source elements with predefined properties. The problem in the application of FCA is
the representation of weighted dependencies as properties. Another possibility is the use of data mining
techniques. An a-priori algorithm can e.g. be used to compute frequent itemsets with highly related
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source elements which are then used as input for a partitional clustering algorithm. The problem in the
application of this method is again the representation of dependency types and weights as well as the
interpretability of the results. The last presented alternative is data flow analysis, which can be used for
the extraction of components by identifying all source elements that are needed to implement a certain
interface. A remaining problem is the handling of source elements that are used for the implementation
of several interfaces.

The hierarchical clustering algorithm employed by MARE is that it provides a complete one-to-one
mapping of source elements to target components. Furthermore, it allows a transparent inclusion of ar-
chitectural knowledge and provides comprehensible and traceable mapping decision for the single source
elements.



Part IV

Conclusion





12 Results

This chapter summarises the results and contributions of this thesis. The thesis introduced the MARE
approach for the clustering-based support of software architecture restructuring. The chapter is organised
following the main contributions of MARE: the MARE Method (Section 12.1), which represents the
overall process model for architecture restructuring, MARE Clustering (Section 12.2), which introduces
an adjusted clustering algorithm to create the complete mapping of source elements to target architectures,
and the evaluation of MARE (Section 12.3), which examined the application of the approach in different
contexts as well as the quality and stability of the clustering algorithm. The according sections base on
the research questions presented in Section 6.4.

12.1 MARE Method
The research question that underlies the MARE Method is:

How can knowledge about the target architecture be considered in the architecture
restructuring process?

The MARE Method emphasises the target architecture as the basis for the architecture restructuring. All
models created during the MARE process use the target architecture and its decomposition criteria as a
major input.

Furthermore, the MARE process model incorporates two iteration cycles. The architecture restruc-
turing iteration cycle structures the overall project. In the iterations the implementation is adapted to the
target architecture in a number of steps. Strategies to plan the iterations are e.g. the hierarchical refinement
of the target architecture or the vertical extraction of single target components. The MARE Clustering
iteration cycle supports the interactive improvement of the complete mapping. The user can add knowl-
edge about the existing system and the intended properties of the target system to the configuration of the
clustering in each iteration to influence the creation of the complete mapping.

The MARE process model subdivides the overall architecture restructuring process into three phases.
In the Initialisation phase the target architecture and the source system model are defined. Thereby, the
choice of source elements and dependency types representing the source system depends on the decom-
position criteria of the target architecture, since they define which source elements are reused in the target
system and which dependency types have to be considered, because they characterise the cohesion of the
target components or are unwanted between target components.

The MARE Clustering phase represents the planning of the architecture restructuring on the model
level. In this phase the complete mapping is created based on the target architecture and the source
system model as well as further configurations in terms of dependency type weights and an initial human
mapping of source elements to target components.

In the Implementation Restructuring phase the complete mapping is transferred to the implementation.
I.e. the source code is restructured and unwanted dependencies are resolved. This phase can be automated
by using existing model-driven approaches. However, this is not in the scope of MARE, but subject of
future work (cf. Section 13.1).

MARE provides metamodels for all models used for the representation of the information needed in the
MARE process. These metamodels are designed as generic as possible in order to allow the application of
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MARE for a wide range of programming paradigms for existing systems and types of target architectures.
Another research question, that regards the applicability in different restructuring contexts is:

How can the MARE approach be applied in different contexts?

This question could not finally be answered within the scope of this thesis, because more extensive ex-
periences in different types of restructuring projects are necessary. However, Section 6.2 described the
possibility of the application of MARE in the three contexts Evolution towards Service-Oriented Archi-
tectures, Re-establishing Maintainability, and Smooth Migration.

With regard to the evolution towards service-oriented architecture MARE can be used to support for
the extraction of services from a complex system. MARE can e.g. help choosing the part of the imple-
mentation that can be extracted from the system and defining the necessary interfaces between extracted
services and the remaining system. The re-establishment of maintainability is a field of application in
which MARE can mainly be helpful when the implemented architecture and the target architecture show
major differences. In cases were the goal is the reduction architecture erosion and the re-establishment
of the intended architecture and in which implemented and intended architecture are similar except for
unwanted dependencies, it is assumed that other approaches are more helpful. The last use case discussed
is the support of the planning of a smooth migration. In project that target the stepwise migration of an
existing system to a target architecture that is given by a new development environment, MARE can be
used to define the steps in which the migration will be executed. The parts of the implementation that are
migrated in one step depend on the target components and their interfaces as well as the strength of the
dependencies in the source system. MARE can support the planning by finding lowly coupled parts that
conform to one or more target components.

12.2 MARE Clustering Algorithm
The research question that led to the development of the MARE clustering algorithm is:

How can the creation of the complete mapping of source elements to target components be
automated?

The clustering algorithm provides a solution that bases on an adjusted hierarchical clustering algorithm.
The adjustments were made to incorporate knowledge about the target architecture. By representing the
decomposition criteria of the target architecture in the dependency type weights that are the basis for the
computation of the similarity between clusters, the algorithm adopts human mapping methods.

However, the creation of the complete mapping can not be fully automated, but is a semi-automatic
task. The knowledge of the user has to be made available to the algorithm in order to create a meaningful
complete mapping that can be used as a basis for the restructuring of the implementation.

An important basis for the automation of the creation of the complete mapping is the following research
question:

Which criteria influence the complete mapping and how can they be mapped to the
clustering algorithm?

One of the main influences of the of the creation of the complete mapping are the decomposition criteria
of the target architecture. As mentioned above, they are represented by the dependency type weights.
The actual weights are depending on the project context and can be adjusted during the execution of
MARE. The clustering algorithm also considers the target architecture itself. The stopping condition of
the algorithm is aimed at the target components. For each of the components exactly one cluster of source
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elements is created. Thus, the created clusters can directly be mapped to the target components without
further human interpretation.

Furthermore, MARE employs the knowledge of the user about the system and the semantics of its
source elements by using a manually created initial mapping of source elements to target components.
This initial mapping serves as the definition of a seed for the clusters produced by the algorithm. Further
human knowledge and decisions are integrated by introducing an iterative clustering process. This pro-
cess comprises the configuration of the clustering and the clustering itself. If the user observes wrongly
mapped source elements or unwanted dependencies in the resulting complete mapping of an iteration,
manual changes to the configuration of the clustering can be made in order to improve the result in the
subsequent iteration.

Another technical influence to the complete mapping are arbitrary decisions that occur during the
clustering. When several pairs of clusters have the same similarity to each other, the algorithm has to
choose which of the pairs is clustered first. This decision can influence the resulting complete mapping.
Thus, arbitrary decisions can reduce the stability of the clustering result, because repeated executions of
the algorithm can have strongly varying results. The employed strategy of consolidating iterations of the
clustering algorithm partly led to more stable results in the evaluation.

12.3 Evaluation
The basis of the implementation is formed by a GQM plan. The underlying research question for this
plan is:

How can the quality of the MARE clustering algorithm be evaluated?

The evaluation of the quality of the clustering algorithm concentrates on the quality of the clustering
results and the stability of the results of the clustering algorithm for changing inputs. These are also
addressed in separate research questions in Section 6.4 and were chosen as goals for the GQM plan.

The question regarding the quality focusses the overall quality in terms of similarity to a reference
mapping as well as expert rating. Another aspect of the quality is the influence of the consolidating
iterations on repeated executions of the algorithm without changes to the input. To measure the stability
regarding changing inputs, modifications of the dependency weights as well as modifications to the initial
mapping are considered.

The evaluation itself comprises three case studies. A preliminary case study in which the JPetStore, a
Java reference implementation of a webshop, was restructured, served a testbed to develop the concepts
and the prototypical implementation of MARE. An open source case study that deals with the restructur-
ing of the generator framework openArchitectureWare was employed to evaluate the quality and stability
of the MARE clustering algorithm with a middle-sized productively used system. The final industrial
case study could only be used to show the stability of the clustering algorithm and to assess the quality
using expert ratings. Objective quality metrics could not be applied, since no reference mapping exists
for the project that is still ongoing.

Regarding the quality of the complete mapping, the case studies showed that it depends on the choices
of dependency type weights and source elements in the initial mapping. Thereby, the dependency types
have to represent the decomposition criteria of the target architecture. I.e. the dependency types that
represent the cohesion of the target components and that are unwanted as dependencies between different
target components should be weighted high. Furthermore, libraries, frameworks, as well as library-like
source elements with dependencies to many other source elements can have a strong influence on the
quality of the complete mapping. They should be examined on whether they are also used in the target
architecture and whether they support or contradict the intended decomposition.
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With regard to the stability of the complete mapping with respect to changing dependency types and
initial mappings, the open source case study showed good results with a few exceptions that have to be
further examined in the future work. The evaluation also examined the stability of different updating
rules. However, these results were ambiguous. While Unweighted Average Linkage was slightly more
stable and more or less behaviourally equivalent to Sum in the open source case study, its results were
much less stable in the industrial case study.
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A number of possibilities for future work on MARE were already identified throughout the thesis. This
chapter supplements and discusses these possibilities. The main topics for future work are the automated
restructuring of the implementation (Section 13.1), the definition of cohesion for coarse-grained modules
(Section 13.2), and the further evaluation of the MARE approach (Section 13.3).

13.1 Automated Restructuring of the Implementation

The restructuring of the implementation is to some extent discussed in Section 7.1.5. A catalogue of
patterns is proposed as a basis for the automation of the resolution of unwanted dependencies. It is
assumed that for each dependency type one or more patterns can be described that can be used to automate
the resolution of that dependency type in different contexts. It still has to be examined whether this is
possible for all dependency types and all contexts or whether additional manual effort for the resolution
of dependencies is necessary. Furthermore, an exemplary catalogue for the considered languages has to
be composed.

Regarding the automation of the restructuring of the source code, there already is a number of model-
driven approaches that are able to transform the source code on a model level. For these transformations,
transformation rules are necessary that are typically created manually. Based on the aforementioned
patters, model transformation rules can be defined that use a complete model of the source code and the
complete mapping created by MARE as input and create a complete model of the target system. A similar
approach is describe by Giese (2010).

Hence, future work on the MARE method has to examine the integration of existing approaches that
allow for the transformations on complete models of the source code in order to automatically restruc-
ture the implementation. Important challenges are the definition of a pattern catalogue and according
transformation rules.

A potential problem in the automation of the restructuring of the implementation occurs if the target
architecture requires the use of libraries that are not used in the source system or make libraries of the
source system obsolete. The replacement of a library by another library may be automatable, if both
libraries use concepts that can be mapped to each other such that the dependencies to the old library can
be replaced by dependencies to the new library. In other cases manual adjustments may be inevitable.

13.2 Definition of Cohesion for Coarse-Grained Modules

Section 8.5 discussed the measurement of cohesion of target components. It showed that existing cohesion
metrics as e.g. LCOM are not applicable for coarse-grained modules. The problem of these metrics is that
they are defined for a certain clear context. In the case of LCOM, this is the measurement of cohesion
for classes in object-oriented systems based on method calls and variable uses. In these contexts the
considered dependency types are obvious. For more coarse-grained modules as e.g. packages in Java
systems the cohesion of the module depends on the intention of the designer of the module.

E.g. classes can be assigned to the same package when they provide a certain functionality together
by calling each others methods. Another reason to assign classes the same package is that they provide
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a similar functionality and implement the same interfaces or inherit from the same superclass without
mutually calling their methods. On the other hand frameworks provide abstract classes that are inherited
from by classes in other packages. Another alternative are packages that contain classes without any
structural dependencies, but common semantics. These different types of cohesion of packages should be
represented by a cohesion metric in order to be able to meaningfully measure the quality of the complete
mapping created by MARE.

13.3 Further Evaluation of MARE
The evaluation of MARE showed positive results for the application of MARE and the quality and sta-
bility of the clustering algorithm. However, it still leaves open questions for future work. These are
discussed in the following.

• The experiments reveal exceptional results in a number of cases, e.g. some larger changes in the
sensitivity analysis in the open source case study or in the measurement of the stability of the updat-
ing rules and similarity function for composite clusters in different contexts. These exceptions have
to be further examined in order to gain more insight in the behaviour of the clustering algorithm
and give better recommendation for the configuration of MARE in practical projects.

• Another aspect that requires further examination is the behaviour of the algorithm regarding con-
solidating iterations. While consolidating iterations led to more stable results in most cases, there
are also cases in which consolidating iterations led to more unstable results. These have to be ex-
amined to be able to state conditions under which consolidating iterations are useful and to state a
good number of iterations.

• The sensitivity analysis regarding the dependency type weights was only executed for the changes
of single weights. However, the combination of changes of the weights is a remaining challenge,
since in practice the combination of a higher weighting of dependency types that support the desired
decomposition criteria and a lower weighting for other dependency types will lead to the best
results. The interaction of dependency type weights and the relation of the dependency types to
typical programming styles and conventions has to be examined to be able to define strategies for
the creation of a good weight set for a concrete architecture restructuring project.

• The choice for the best updating rule or similarity function for composite clusters is another topic
for the future evaluation of the clustering algorithm. The Unweighted Average Linkage updating
rule was chosen for most experiments in the case study, because it led to relatively stable results
with a high quality, but the other considered updating rules and similarity functions partly pro-
vided better results in terms of quality or stability. This has to be further examined and related to
preconditions that encourage the desired behaviour.

• In order to show the applicability of MARE to industrial systems, the approach has to be evaluated
employing a completed large-scale architecture restructuring project. A completed project has
the advantage that a reference mapping for the evaluation can be extracted from the restructured
implementation. Unfortunately, it is often not possible to obtain such conditions in a research
context.

• The practical experiences will also have to show, whether initial sets of appropriate dependency
type weights for certain architecture restructuring projects can be defined. While MARE provides
support for the improvement of the dependency weights in the MARE Clustering iteration cycle,
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a process has to be described to classify the experiences from completed practical projects in a
structured way. This structure should be determined by the decomposition criteria of the target ar-
chitecture and the programming conventions of the source system to define the application context
of MARE. This application context can then be associated to the dependency type weight sets that
led to good restructuring result in similar practical projects.

• The current tools for the execution of MARE are prototypes that are constructed for the evaluation
of MARE, but not for the use by users that are not involved in the development of MARE. Hence,
another aspect of future work is the development of more usable tool support. This involves the
integration with reverse engineering and modelling tools in order to support the Initialisation and
MARE Clustering phases as well as tool support for the presentation and analysis of the complete
mapping. These tools also have to be evaluated in terms of the usability. The evaluation of the
applicability of a method and its supporting tools conform to a Type II validation as proposed by
Eusgeld et al. (2008).

• Another precondition for the application of MARE in industrial projects is to show the reduction
of effort in contrast to a manual mapping, which conforms to a Type III validation as proposed
by Eusgeld et al. (2008). This could be done by performing the architecture restructuring of a
system with and without MARE under realistic conditions. To show the real impact of MARE
the size of the system should at least be the size of the system in the open source case study.
This precondition makes it impossible to perform such a comparison in a research context as e.g.
a student experiment. Also a parallel execution of a real architecture restructuring project with
both approaches is too costly and not feasible. Other problems are conditions like a similar level
of knowledge of the system and the target architecture of the users that perform the restructuring
as well as the elimination of learning effects if the two restructurings are performed successively.
Since these conditions are hard to realise in an industrial project, only positive experiences in
further exemplary projects can be employed to convince users in practice.





14 Concluding Remarks

This thesis contributes to the field of architecture restructuring by introducing and evaluating the semi-
automated MARE Method, which supports the transformation of the implementation of an existing sys-
tem so that it conforms to a given target architecture. The second contribution of the thesis is the MARE
Clustering Algorithm that creates a complete mapping of source elements to target components and thus
automates an important part of the planning of the restructuring of the implementation in the course of
an architecture restructuring. The third contribution is the evaluation, which mainly covers the clustering
part of MARE. It shows that complete mappings with a high quality and stability can be produced and
sketches strategies for the practical realisation of the configuration of the clustering.

The previous chapter discussed the remaining challenges to make MARE applicable in concrete in-
dustrial projects and open issues for future research. The main topics are the integration with other
approaches to combine the restructuring of MARE on the model level with automated source code trans-
formation, further research on the cohesion of coarse-grained modules, and the further evaluation of
MARE. The execution of these topics will increase the degree of automation of architecture restructuring
and improve the maturity of MARE. Even though there is much work left to make automated architecture
restructuring techniques the state of the art, MARE represents a promising step towards this goal.

The iterative character of the presented process model conforms to the strategies of current reengineer-
ing projects and thus facilitates the use of MARE in practice. Furthermore, the use of generic metamodels
allows for the application of MARE for the architecture restructuring of a wide range of different systems
and types of target architectures. The iterative configuration of dependency type weights also allows for
the fine-grained adjustment to the individual properties of concrete architecture restructuring projects.

Reengineers can benefit from MARE, because it provides a systematic process to support architecture
restructuring and eases the creation of a complete mapping by the introduction of a semi-automated
clustering process. In summary, MARE can be used in different architecture restructuring contexts to
support the overall restructuring process and reduce human effort.
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