
A formal and pragmatic approach to engineering
safety-critical rail vehicle control software

Michael Wasilewski1, Wilhelm Hasselbring2

1Vossloh Locomotives GmbH

24152 Kiel

http://www.vossloh-locomotives.com/
2Universität Kiel

Institut für Informatik, Software Engineering Group, 24118 Kiel

http://se.informatik.uni-kiel.de/

Abstract: The engineering processes for safety-critical systems, for instance in the
health care or transportation domains, are regulated by law. For software in the railroad
industry in Europe the certification procedures have to obey the norm EN50128.

This paper presents the method that was introduced and employed for the devel-
opment and the successful certification of the software for the vehicle control unit
(VCU) of the Vossloh Locomotives’ G6 shunting locomotives. The primary goal in
the development of the software was conformity to EN50128, the secondary goal is
a cost-efficient process without sacrificing safety. To achieve these goals our method
is based on formal techniques, but also designed to be easily applicable in our con-
text (pragmatics). Central to our method are functional trees as a design specification
mechanism. The outcome of employing this method was the successful certification
of the locomotive G6 without any software-related problems.

1 Introduction

As for other means of transportation, the use of computer-based control systems in rail ve-

hicles increased significantly over the last years and is still growing. Due to the fact that by

rail heavy weights are moved with high velocities, faults in the control systems’ software

can have catastrophic consequences for human life and material goods. This potential risk

leads to safety and certification requirements that control software for rail vehicles has

to fulfill. At the same time manufacturers of rail vehicles have to develop software with

limited resources and budgets at high quality and within tight project schedules.

At Vossloh Locomotives we therefore focus on the most time and resource consuming

activities of the software development process. These are also the activities, where most

faults occur: the specification, verification, implementation and validation of the software

modules and their algorithms and the documentation of these activities.

The contribution of this paper is the presentation of a formal and pragmatic method to

engineer software components of safety-critical systems, together with an industrial eval-

uation of this method.

In Section 2, the project context for engineering and certifying the locomotive G6 Vehicle

Control Unit, is briefly introduced. Section 3 presents the employed method for devel-

oping the software modules, which is based on Binary Decision Diagrams. The guiding

principle of this approach is simplicity, both for the engineers and for the certification pro-

cess. So far, the method is applied manually without dedicated tool support. Such tool

support is subject to future work, as will be discussed in Section 4 and indicated in the

concluding Section 5. However, the presented method was already successfully employed

for developing and certifying the VCU of the locomotive G6 [VL110].

2 Project Context

The development of software for safety-critical sys-
���

������

�� ��	
��
��
�

���������	
������
�
	�

���������������������
�

�������
�����
��

Figure 1: Typical Rail Vehicle Control
Architecture

tems for rail vehicles starts with the definition of the

control architecture.

An example control architecture is displayed in Fig-

ure 1. The components of this architecture are the

Vehicle Control Unit (VCU), a Drive Control Unit

(DCU) and an I/O control module. The DCU is con-

nected with high-voltage power lines to the 3-phase

traction motors. The I/O module provides an inter-

face to additional devices, in our example a brake

lever. The architectural elements VCU, DCU and I/O

module are connected via a data communication bus.

For this paper the development of the safety-critical

software for the VCU of the Vossloh shunting loco-

motive G6 [VL110] is presented. This includes a

discussion of legal certification requirements and the

design to achieve these requirements.

Scope: The scope of the following considerations will be a signal processing system

that receives input signals from its environment and provides output signals which cause

a change in the environment of the signal processing system. Out of our method’s scope

are the concrete signal sources and sinks of the signal processing system; thus, we ab-

stract from the concrete signals. Here, it is only relevant that the behavior of this signal

processing system may cause a safety risk.

Legal Certification Requirements: Whenever the use of a technology, such as Nuclear

Power Plants, Railroads, or Airplanes, implies a potential risk to other legal assets, the use

of these technologies should be regulated by law. For software in the European railroad

industry, the norm EN50128 [CEN09] is relevant, which requires a software development

process based on the V-Model [RHB+07]. In Germany the software is certified for use

in rail verhicles by the Eisenbahnbundesamt (EBA) based upon an expert’s report of an

assessment agency, e.g. TüV. Subject to the assessment are the process planning, the

suitability of methods and tools and the documentation of the activities.

Documentation effort: The V-Model software development process is partitioned into

activities for requirements engineering, software architecture and design, and software

module implementation. For these activities, Table 1 lists some quantities of the documen-

tation effort for certifying the locomotive G6 to fulfill the documentation requirements

Focus on the software mod-
Nr. Phase Effort Functional

Test Cases

1 Software 4 documents 1300

Requirements 1000 pages

2 Architecture 6 documents none

and Design 1500 pages

3 Software 270 Modules 22000

Modules 1350 documents

60000 pages

Table 1: Documentation effort – Locomotive Vossloh G6

ule documentation activities:
The documentation of the soft-

ware modules was identified

at Vossloh Locomotives as the

most resource consuming ac-

tivity of a software develop-

ment process to meet the re-

quirements of EN50128.

The focus in the whole soft-

ware development process for

a rail vehicle is therefore put

on a time and cost effective approach to describe the software modules fulfilling the re-

quirements of EN50128 and covering about 22000 functional points.

The development activities for soft-

�

�

�

�

� �

� �

	

�

�������
	�

�
�
�
��

����������
��
����
�
�
�
��

�����������
����
�
�
�
��

��
����

�
����

�����
��
�
����

������
���
�������

Figure 2: Module Development according to V-Modell

ware modules are shown in Figure 2.

First activity is the specification of

the interfaces and the functionalities

(1) in a module design specification.

All functional requirements have to

be tested by procedures (2) defined

in the module test specification.

The test procedures are divided into

structural tests (white box) (3) and

functional tests (black box) (4). A

first verification step asserts whether

the functional requirements are met

(5) and testable by the defined pro-

cedure (6). The verification is doc-

umented in a module verification re-

port. Next the source code is implemented (7). The source code verification is based

on the structural sests (8) from the module test specification (3). After compilation, the

executable code is validated (9) according to the functional tests from the module test

specification (4). Finally, the module test report asserts the correct development according

to EN50128 (10). Five documents are created per module.

The software development strategy follows a product line architecture [PBvdL05]. The

software module development is part of domain engineering. Realizing a required function

of a concrete product is part of application engineering. The software engineer specifies

an architecture, where high-level concrete application requirements are mapped to module

requirements. This allows the re-use of the modules in multiple software projects.

3 Software Module Development

This section describes the software module implementation method as it has been intro-

duced and performed for the development of the Vehicle Control Unit for the Vossloh G6

locomotive. The method is based on an extension of Binary Decision Diagrams [Ake78]

and Binary Functions [Bry86]. We present the formal basis for the extension of these ideas

to describe functions that use discrete and continuous signals (Subsection 3.1), the graph-

based representation (Subsection 3.2), the employed development process for an example

(Subsection 3.3), and the compliance with high-level requirements (Subsection 3.4).

3.1 Formal Basis

A VCU is a part of a signal-processing system. We formally specify the various types of

signals by means of set theory. For our method, the uniqueness and completeness of the

defined sets is an important property, i.e. we define disjoint partitions of signal value sets.

In the following, n is defined as the number of valid values of a signal. A signal (such as

a brake lever) is represented by the set of possible signal values (such as the positions of a

brake lever).

Discrete Signals: Discrete Signals are used to represent well-defined states of the envi-

ronment. Signals are represented as integers. An example can be the position of a Brake

System Control Lever as shown in Table 2 with n = 3 valid positions.

Signal value Code Command

1 C1 = {1} Brake Cylinder Pressure Increase

2 C2 = {2} Brake Cylinder Pressure Constant

3 C3 = {3} Brake Cylinder Pressure Decrease

all others CΩ = Z\{1, 2, 3} Brake Cylinder Full Pressure

Table 2: Example for values of discrete signals

Definition of a Discrete Signal:
Any discrete signal value is an element of one of the following disjoint subsets of Z:

C1, C2, ..., Cn, CΩ ⊆ Z

The set CΩ represents the “unknown values.”

Completeness of a Discrete Signal:
The completeness of a discrete signal is given if for its subsets the following holds:

n⋃

i=1

Ci ∪ CΩ = Z

Uniqueness of a Discrete Signal:
The uniqueness of a discrete signal is given if for its subsets the following holds:

∀i, j ∈ N|i ≤ n ∧ j ≤ n ∧ i �= j ⇒ Ci ∩ Cj = {}
∀i ∈ N|i ≤ n ⇒ Ci ∩ CΩ = {}

Continuous Signals: Continuous Signals are used to represent physical values such as

voltages, temperatures etc. and are represented by real numbers.

Continuous signals
Value Range Description

< 10◦C RLO Engine Under-Temperature

10◦C ≥ T < 70◦C R1 Engine Cold

70◦C ≥ T < 110◦C R2 Engine Nominal Temperature

> 110◦C RHI Engine Over-Temperature

Table 3: Example for values of continuous signals

are discretized into

ranges. With this ap-

proach the same mech-

anisms as for discrete

signals can be used.

An example can be

the temperature of an

engine coolant as shown

in Table 3.

Definition of a Continuous Signal:
Any continuous signal value is an element of one of the following disjoint subsets of R:

RLO, R1, R2, ..., Rn, RHI ⊆ R

The set RLO represents the “underrun range” and RHI represents the “overrun range.”

Completeness of a Continuous Signal:
The completeness of a continuous signal is given if for its subsets the following holds:

RLO ∪
n⋃

i=1

Ri ∪RHI = R

Uniqueness of a Continuous Signal:
The uniqueness of a continuous signal is given if for its subsets the following holds:

∀i, j ∈ N|i ≤ n ∧ j ≤ n ∧ i �= j) ⇒ Ri ∩Rj = {}
∀i ∈ N|i ≤ n ⇒ Ri ∩ (RHI ∪RLO) = {}

RHI ∩RLO = {}

Binary Signals Binary signals are used to represent YES/NO decisions. They are ex-

pressed by a single bit. The representation as a single bit is important as it excludes any

wrong values. The completeness and uniqueness of binary signals are, thus, obvious.

Definition of a Binary Signal:
Any binary signal value is an element of a set with exactly two different elements. Exam-

ple: {0,1} or {TRUE,FALSE}.

3.2 Graph-Based Representation

Through the formal definition of signals we obtain a basis for specifying the functions by

means of so-called functional trees. We employ three basic patterns as shown in Figure 3

which we can be used for synthesizing complete functions represented as functional trees.

Figure 3: Basic elements for our functional specification

The patterns describe whether a decision for a result is reached or an additional, following

branch is taken:

• Discrete Signals (Figure 3a): Results (C1,CΩ) and additional branches (C2,C3)

• Continuous Signals (Figure 3b): Results (RHI ,RLO) and additional branches (R1,R2)

• Binary Signals (Figure 3c): Results (F) and additional branches (T)

3.3 Module development process activities

In the following, we discuss the module development process activities by means of an

example, the brake control.

Signal Name Type Description Range/Code Order

Sd Discrete Brake Lever C1: Apply Brake 1

Position C2: Constant Brake

C3: Release Brake

CΩ: Unknown Position

Sb1 Binary Driver Vital T: Driver vital 2

Signal F: Driver non-vital

Sb2 Binary Pressure Reservoir T: Reservoir Air available 3

Switch F: Reservoir Air exhausted

Table 4: Example functional signals

Construction of the functional tree (design specification): To specify a functional

tree, we use the signals in Table 4. This is an example for the computation of a brake

system action.

The functional tree is constructed by join-
��

�
� � �

��

��
���

��

��	

���
�

�

�

	
�

�

�
� �

Figure 4: Functional tree for the functional signals
in Table 4.

ing the specification patterns in Figure 3

according to the order of the signals in Ta-

ble 4. Essential for the signal order is not

the specific order itself, but the fact that

there exists an order. By recursively con-

necting following specification patterns to

the branches of a previous specification pat-

terns we obtain a functional tree. The con-

struction of the functional tree terminates

if all paths end in a leaf (terminal) that

represents the result of the corresponding

function.

The functional tree in Figure 4 is equiva-

lent to a logical function in disjunctive normal form (DNF) where one path in the func-

tional tree corresponds to one logical AND connected element in a DNF functional equa-

tion.

Specification patterns are connected until all paths end in a decision. The decisions are

the result of the computation that is represented as a path through the functional tree. This

activity complies to step (1) in Figure 2. These trees can be expressed graphically as well

as in a table. One specification item is a path through the whole functional tree. As we

can see in this example, the Table 5 contains 7 possible paths through the whole functional

tree while the approach to cover all possible combinations would result in 16 possibilities

(Sd:4 x Sb1:2 x Sb2:2).

Specification of Tests: The specification of tests is divided into structural tests and func-

tional tests. It complies to step (2) in Figure 2. After structuring the design into a functional

tree, we have to verify that the function’s code is structured accordingly.

The basis for the source code
Path ID Sd Sb1 Sb2 Result

P1 C1 N/A N/A Apply Brake (x=0)

P2 C2 F N/A Apply Brake (x=0)

P3 C2 T N/A Constant Brake (x=1)

P4 C3 F N/A Apply Brake (x=0)

P5 C3 T F Apply Brake (x=0)

P6 C3 T T Release Brake (x=2)

P7 CΩ N/A N/A Apply Brake (x=0)

Table 5: Functional table

verification is shown in Tab-

le 5. The verification strategy

will be to find an execution

path through the source code

that corresponds to the path

in the functional tree (Design

Specification). Therefore we

have the same number of ver-

ification points as we have iden-

tified paths. The statement of

the verification points complies to step (3) in Figure 2.

Listing 1: Source code example

1 Trace = 0 ;

2 i f (Sd == 1)

3 Trace | = 0x1 ;

4 x = 0 ; } /∗ P1 ∗ /
5 e l s e i f (Sd == 2)

6 Trace | = 0x2 ;

7 i f (Sb1 == TRUE)

8 Trace | = 0x10 ;

9 x = 1 ; /∗ P3 ∗ /
10 e l s e
11 x = 0 ; /∗ P2 ∗ /
12 e l s e i f (Sd == 3)

13 Trace | = 0x4 ;

14 i f (Sb1 == TRUE)

15 Trace | = 0x10 ;

16 i f (Sb2 == TRUE)

17 Trace | = 0x20 ;

18 x = 2 ; /∗ P6 ∗ /
19 e l s e
20 x = 0 ; /∗ P5 ∗ /
21 e l s e
22 x = 0 ; /∗ P4 ∗ /
23 e l s e
24 x = 0 ; /∗ P7 ∗ /

After defining the source code verification points, we can define a test case for each path

by just setting the input values as specified and performing a test for the specified result.

The selection of the test cases complies to step (4) in Figure 2.

Verification of Design and Test Coverage: The module verification proves that the

functional design specification of the module corresponds to a unique and complete set

of paths of a functional tree. This step is mandatory for the compliance with EN50128.

It uses equivalence classes, which are a highly recommended verification technique in

EN50128. Our selection of paths guarantees the uniqueness and completeness of the sig-

nal’s value sets. Therefore the module verification can be done recursively by the proof of

completeness of the tree at the leafs (for instance, Sb1 to P2 and P3, resp. Sb2 to P5 and P6

in Figure 4). Based upon this first step, the completeness can be proven on the next level

(Sb1 with precondition Sd = C3) and is finished if the root node is reached (Sd). This

activity complies to step (5) in Figure 2. Another issue is the proof that the test cases cover

the whole functionality. This is given by the 1-to-1 mapping of functional requirements to

test cases. This activity complies to step (6) in Figure 2.

Generation/Implementation of the Source Code: The source code is written manually

as a transformation of the functional tree into conditional execution paths. There is no

conversion into any Boolean logic. This eliminates a source of faults and simplifies the

task of programming significantly. This activity complies to step (7) in Figure 2. The code

fragment in Listing 1 presents an example.

The Trace variable has been introduced to identify the execution path. This trace variable

is computed by setting it to 0 at the beginning of the computation and setting one specific

bit depending of the executed path.

Verification of the Generated Source Code: The source code verification is based upon

the verification points selected in the test specification of the function.

This activity complies to step (8) in Figure 2. In our
Verification Line Result

Point

P1 04 OK

P2 11 OK

P3 09 OK

P4 22 OK

P5 20 OK

P6 18 OK

P7 24 OK

Table 6: Source Code Verification
Results

example we can map the verification points to the source

code lines according to Table 6. The main purpose of

the source code verification is, to prove that the ex-

ecution paths of the source code have an equivalent

structure as the paths through the functional tree. This

proof is the base of the statement that the specified

tests provide a complete condition and path coverage

of the source code. The source code verification is a

requirement of EN50128. This verification technique

also uses equivalence classes, which are highly rec-

ommended by EN50128.

Module Testing: The module testing is performed by setting the input variables and

executing the code. This activity complies to step (9) in Figure 2. After each computation

step both the result and the trace information are available. This is shown for our example

in Table 7.

By recording the trace, we not only
Test Case Tested Result hex binary

Path Trace Trace

Tc1 P1 0 0x1 00 0001

Tc2 P2 0 0x2 01 0010

Tc3 P3 1 0x12 01 0010

Tc4 P4 0 0x4 00 0100

Tc5 P5 0 0x14 01 0100

Tc6 P6 2 0x34 11 0100

Tc7 P7 0 0x0 00 0000

Table 7: Module Test Results

validate the result of a test case but

additionally assert that the result

is achieved by executing the paths

which represents the requirement

for this particular test case. In our

example the result x=0 appears sev-

eral times, but can always be traced

back to the line of code at which

it was set. After completing the

tests, we are able to make a final

statement on the usability of the

module in the software project that

has to be developed according to EN50128. This complies to step (10) in Figure 2.

ID Requirement Text Module Paths

Rq1 An invalid position of the Brake

Command Lever shall always apply

full pressure on the Brake Cylinders

P1 to P6: Valid Positions, not appli-

cable

P2: Brake applied

Rq2 The Brakes shall never be released

with an inactive Driver Vital Signal

P1 to P4,P7: Brake applied

P5 and P6: Brake released when

Driver Vital Sign active

Table 8: Module Test Results

3.4 Compliance with High Level Requirements

The compliance of the module design to fulfill the functional software requirements is

asserted by comparing the informally written high-level requirements of a software re-

quirements specification to the formally written design elements of the module design

specification. This is shown in Table 8.

4 Related Work

Advanced model checking techniques can be seen as related work [BBB+04]. The idea

behind model checking is to avoid having humans construct proofs. Many important pro-

grams, such as vehicle control units, have ongoing behavior and ideally run forever; they

don’t just start and stop. Temporal logic has been established as a way to describe and

reason about these programs. Then, if a program can be specified in temporal logic, it can

be realized as a finite state program. A model checker checks whether a finite state graph

is a model of a temporal logic specification. A great challenge with model checking is

the state-explosion problem, which means that the number of the states may go exponen-

tially high with the number of components of the system. Techniques such as symbolic

and bounded model checking achieved significant results to overcome the state-explosion

problem [CES09]. Our approach is based on binary decision diagrams which are an en-

abling technology for model checking [BBB+04, CES09]. So far, we do not employ

advanced tools, because our primary motivation is to use the method both for implemen-

tation and certification. For automatic model checking, it would be necessary to translate

the requirements texts of Table 8 into temporal logic formulas. We envision several areas

for tool support as will be indicated in the following section.

A comparable project is the SACEM software [GH90] for train control of the RER Line A

in Paris. It consists of 21000 line of ADA code while the Vossloh G6 locomotive has 22000

functional points. Comparability is limited by the fact that the software validation included

the whole specification process in the B language, while our approach is restricted to the

software modules. The effort for the SACEM project was 100 men years [WLBF09].

5 Conclusions and Outlook

Our presented method strives for both formality and pragmatics. The primary goal is to

engineer safe vehicle control units with a method that facilitates building safe vehicle con-

trol units and that is approachable to both our engineers and the certification inspectors.

Formality is achieved by the mathematical foundation as introduced in Section 3. Prag-

matics is achieved by deliberately neglecting advanced tool support. The method is simple

such that the certification inspectors can easily retrace the activities of our engineers.

Based upon certification requirements, the software controlling rail vehicles in Europe has

to be developed according to EN50128. In the development process, the documentation

of the software modules has been identified as the most cost and time consuming part. To

standardize this process at Vossloh Locomotives, the specification of the functionality of

modules has been based upon a formal definition of the terms completeness and unique-

ness. The process employs a constructive model building, based upon the functional re-

quirements to describe single computation steps. This allows to use a manual verification

technique. This formal method fulfills the requirements of the EN50128 as follows:

• Specification and proof of uniqueness and completeness requirements

• Simple extraction of test cases with traceability to requirements

• Proof of complete test coverage of requirements and test cases

• Simple creation of readable and maintainable source code with traceability to the

requirements

• Proof of structural correspondence of source code and requirements

• Proof of complete condition and path coverage of test cases

To achieve the compliance of the development process to EN50128, we avoid the trans-

formation of functional requirements into Boolean logic. Instead, we employ functional

trees. This eliminates potential sources of errors and significantly simplifies the coding

process. Additionally full traceability of test results to requirements by execution tracing

validates the correctness of the algorithms.

The practical use of this approach is already evaluated in the development of the Voss-

loh Class G6 shunting locomotive. The whole documentation of over 60000 pages has

been generated manually with a three person team within less than two years. For further

locomotive projects a re-use rate of over 70% of the software modules is expected, thus

making the process long-term productive. The certification authorities have not requested

any further extensions of the software documentation or changes of the software develop-

ment process to certify the locomotive. The development of the software is considered as

a critical issue in many other rail vehicle projects.

Future work will address tool support for routine tasks in our method. As discussed in

Section 4, the use of model checking tools could become an option. Particularly, tool

support for model-based and model-driven code instrumentation [BH09], model-driven

testing [BH08] and trace analysis [RvHG+08] is on our agenda. Another topic for future

work addresses the scalability of our methods toward more complex systems. Appropriate

tool support will be an important factor. One concrete idea is to define a domain-specific

language for our functional trees and to generate the instrumented code automatically from

this representation. A coupled transformation could generate test cases and input to some

model checker from the same or from some extended representation.

References

[Ake78] S.B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers, 27:509–
516, 1978.

[BBB+04] R. Buschermöhle, M. Brörkens, I. Brückner, W. Damm, W. Hasselbring, B. Josko,
C. Schulte, and T. Wolf. Model Checking - Grundlagen und Praxiserfahrungen.
Informatik-Spektrum, 27(2):146–158, April 2004.

[BH08] Stefan Bärisch and Wilhelm Hasselbring. Model-Driven Test Case Construction by
Domain Experts. In Proc. 1st Workshop on Model-based Testing in Practice (MoTiP
2008), pages 9–18, 2008.

[BH09] Marko Boskovic and Wilhelm Hasselbring. Model Driven Performance Measurement
and Assessment with MoDePeMART. In Proc. MODELS 2009, volume 5795 of LNCS,
pages 62–76. Springer-Verlag, 2009.

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers, 35(8):677–691, 1986.

[CEN09] CENELEC. EN50128 - Railway Applications: Software for Railway Control and Pro-
tection Systems. CENELEC, 2009.

[CES09] Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking: algorith-
mic verification and debugging. Commun. ACM, 52(11):74–84, 2009.

[GH90] G. Guiho and C. Hennebert. SACEM software validation. In Proceedings of the
12th international conference on Software engineering, ICSE ’90, pages 186–191,
Los Alamitos, CA, USA, 1990. IEEE Computer Society Press.

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank van der Linden, editors. Software Product Line
Engineering. Springer, Berlin Heidelberg New York, August 2005.

[RHB+07] A. Rausch, R. Höhn, M. Broy, K. Bergner, and S. Höppner. Das V-Modell XT: Grund-
lagen, Methodik und Anwendungen. dpunkt.verlag, Heidelberg, 2007.

[RvHG+08] Matthias Rohr, André van Hoorn, Simon Giesecke, Jasminka Matevska, and Wilhelm
Hasselbring. Trace-Context Sensitive Performance Models from Monitoring Data of
Software Systems. In Proc. TIMERS 2008, pages 37–44, 2008.

[VL110] Vossloh Locomotives GmbH, Kiel. Diesel-hydraulische Lokomotive G6,
2010. http://www.vossloh-locomotives.com/cms/de/products_
and_services/diesel-hydraulic_locomotives/g6/g6_1.html.

[WLBF09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. Formal
methods: Practice and experience. ACM Comput. Surv., 41:19:1–19:36, October 2009.

