
The ArchMapper Approach to Architectural
Conformance Checks: An Eclipse-based Tool for
Style-oriented Architecture to Code Mappings

Simon Giesecke1 and Michael Gottschalk2 and Wilhelm Hasselbring3

1 Simon Giesecke
BTC Business Technology Consulting AG

Kurfürstendamm 33
10719 Berlin

simon.giesecke@btc-ag.com
2 Michael Gottschalk

freiheit.com technologies GmbH
Straßenbahnring 22
20251 Hamburg

michael.gottschalk@freiheit.com
3 Wilhelm Hasselbring

Christian-Albrechts-Universität zu Kiel
Department of Computer Science

24098 Kiel
wha@informatik.uni-kiel.de

Abstract. The ArchMapper approach allows performing two activities
in the software development process efficiently: checking the conformance
of the code to the intended architecture as specified by an architectural
description, and generating code skeletons and architecture-related con-
figuration files from the architectural description. Both directions exploit
information based on the architectural style of the software system. An
architectural style may be as simple as the style of layered architectures,
or it may correspond to a specific middleware platform, which allows
more specific analyses and generation. We have applied the approach to
the style of the Spring MVC framework, where several architectural prop-
erties can be checked, and the Spring configuration file for the application
may be automatically generated from the architectural description.

1 Introduction

An important aspect in ensuring the evolvability of a software system is its
conceptual integrity. Conceptual integrity is guaranteed on the architectural level
by the adherence to a consistent architectural style. In practise, the adherence
to an architectural style can only be ensured in the long term when tool support
for checking the conformance of the implementation to the architecture and its
style is available. This is particularly true in the context of distributed software
development. Tool support requires that the architectural style can be formalised

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

71



in some way, which is not possible for all properties that can be associated with
an architectural style. Strict approaches focus on declarative properties of an
architectural style which require knowledge of a complex formalism in practically
relevant cases (see, e.g., [1]). It is often easier, though less rigorous, to specify
architectural rules by implementing checks for them imperatively. This does not
require an evaluation engine for declaratively specified rules. The ArchMapper
approach is such an approach. In this paper, we focus on using the ArchMapper
approach to perform style-based architectural conformance checks as described
before. However, the ArchMapper approach supports another activity, style-
based code generation.

In the following, we begin by describing the conceptual foundations of the
approach (Section 2). Then, we describe the architecture of the ArchMapper tool
that implements the approach (Section 3). In Section 4, we describe an evaluation
of the approach and the tool in a case study using a real-world system. Section 5
discusses related work, while Section 6 concludes the paper and provides thoughts
on future work.

2 Concept

2.1 Foundations

Software Architecture and Architectural Views Currently, there is no
consensus on the meaning of the term “software architecture” yet, so we briefly
introduce our understanding. We distinguish the general term “software archi-
tecture” and subordinate “architectural views” (other authors and related ap-
proaches implicitly or explicitly equate “software architecture” with a specific
“architectural view”, e.g. [2]). This understanding is based on the definitions in
the ISO 42010 Standard [3] for software architecture description, which defines
software architecture as “the fundamental organization of a system embodied in
its components, their relationships to each other and to the environment and
the principles guiding its design and evolution”.

The architecture of a software system can be described from different view-
points that may decompose the system into different kinds of elements, each
of which is called an architectural view. The most important viewpoints [4]
are the module viewpoint, which describes the structure of the code in terms
of modules (in Java, e.g., these are usually identified with packages), and the
component-and-connector viewpoint that describes the basic runtime structure
of the system. When designing new software systems, it is convenient to use
a straightforward mapping of components and connectors to modules, which
means that certain modules are used exclusively by their corresponding compo-
nents. However, library modules will typically be used by multiple components.
When the software system is run on a runtime component platform, components
may explicitly correspond to artefacts: For example, OSGi bundles (or Eclipse
plug-ins) are components in this sense.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

72



Architectural Styles Architectural styles can be defined for any architec-
tural view, but they are most commonly used together with the component-and-
connector view. Well-known examples are several variants of the pipe-and-filter
style and of layered styles. For this architectural view, the following definition
describes the seminal understanding of architectural styles: “An architectural
style determines the vocabulary of components and connectors that can be used
in instances of that style, together with a set of constraints on how they can
be combined” [5]. An “instance” of a style is an architectural description of a
concrete software system that conforms to the vocabulary and constraints of the
style.

2.2 Style-oriented Architecture to Code Mappings

Our mapping approach is based on architectural descriptions in the component-
and-connector view. The code however, is naturally organised in the module
view. Therefore, the definition of the architecture-to-code-mapping implicitly
involves a mapping between these architectural views.

Architectural information inherently goes beyond the information that is
naturally contained in the source code. Any code-to-architecture conformance
checking approach uses an architectural description and a mapping from the
elements architectural description (e.g. components) to the elements of the code
(e.g. source files, packages, and classes). A (generic) conformance checker uses
the architectural description, the mapping and the source code to create a list
of violations (if any exist). This basic approach is extended by the ArchMapper
approach. An overview of its elements is shown in Figure 1.

In the ArchMapper approach, the architectural information consists of two
types of artefacts: style descriptions, which are reusable for all software systems
that are built on top of the same platform4, and architectural descriptions, which
correspond to a specific software system. In our evaluation, we use an academic
Architectural Description Language (ADL) called Acme for describing styles and
architectures. While this ADL is not well-known among software practitioners,
it is easy to learn since it can be said to be a minimal language that has the
required modelling features, i.e. the constructs necessary for modelling styles
and instances of styles5.

Acme has the additional benefit that a modelling tool is available, which is
integrated with Eclipse and allows checking the architecture for conformance
with the style, which means that these rules do not need to be checked di-
rectly in the code. However, there remain constraints imposed by a specific style
that need to be checked in the code, e.g. constraints that refer to constituents

4 An architectural style is a model of the platform from the component-and-connector
architectural view. A platform is a specific mode of use of a set of middleware
products. We distinguish platform and product since complex middleware products
can be used in a variety of ways that incur architectural differences.

5 We have shown that using the UML for this purpose is possible, but unfortunately
awkward if implemented rigorously [6].

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

73



MidArch Style 
Description

(Acme)

Architecture 
Description

(Acme)

Style-specific 
Mapping

(XML)

Architecture-
specific 
Mapping

(XML)

Generic 
Conformance 

Checker

Style-specific 
Conformance 

Checker

references references

conforms to

Source 
Code
(Java)

Platform-
specific 

Configuration 
Files

Rule Violations

Fig. 1. ArchMapper Approach to Style-specific Architecture Conformance Checks

(e.g. methods) of the target elements of the mapping (e.g. classes). Therefore,
the code-to-architecture conformance check can be improved by exploiting the
knowledge that a software system should adhere to a specified architectural style.

This knowledge is used in two ways:
– A style-specific mapping. It describes rules for mapping style-dependent el-
ements of an architectural description to the code. It is interpreted by the
generic conformance checker that is used for style-independent mappings as
well.

– A style-specific conformance checker. This may be used to check proper-
ties that cannot be easily expressed in the form of rules that the generic
conformance checker interprets.

It is important to note that both the style-specific mapping and the style-specific
conformance checker are specified or implemented independently from a specific
software system. They can be reused and be applied to any system that is spec-
ified to adhere to the same style.

The properties checked by the generic conformance checker are the following:
Communicational integrity: For each dependency between elements in the

code, an allowed dependency must be specified for the respective components
in the architectural description.

Missing elements: Each component must be implemented by at least one code
element, and every code element must be associated with a component.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

74



3 Architecture

3.1 Foundations

Eclipse Static Analysis Tools The Eclipse Static Analysis Tools are part
of the Eclipse Test and Performance Tools Platform. They provide a language-
neutral framework and GUI for implementing and running static code analyses.
A static analysis can be easily defined by implementing a Rule interface and
defining an extension to an extension point supplied by the Static Analysis Tools.

3.2 Architecture of the ArchMapper Tool

Fig. 2. Architecture of the ArchMapper Tool

Figure 2 shows an overview of the architecture of the ArchMapper tool6.
For the sake of simplicity, the diagram shows dependencies for the case of Java.
However, the architecture can be easily adapted to other languages supported
by IDEs based on the Eclipse Workbench IDE, such as C++. In the current Java
setup, the ArchMapper tool extends both the Eclipse Java Development Tools
(JDT) and the Static Analysis Tools. There is a core ArchMapper component
which implements the generic code generator and conformance checker as well
as the user interface. It uses an internal representation of the architectural de-
scription, which is supplied by ADL-specific plug-ins. Currently, only the Acme
plug-in is implemented, but UML support could be easily added as indicated
6 Available for download at http://archmapper.sourceforge.net/

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

75



in the figure. Style-specific code generators and conformance checkers are also
added via the Eclipse plug-in infrastructure, as it is currently done with the
SpringStyleMapper plug-in.

3.3 ArchMapper Tool Features

In addition to the style-based architectural conformance check, the ArchMapper
tool checks the following properties on the architectural level:
Average Component Dependency: The Average Component Dependency met-

ric [7] is calculated and shown as a warning, independently from its value.
Dependency cycles: Components that are part of a dependency cycle are

identified.

4 Evaluation

The ArchMapper tool has been evaluated using a relevant middleware-oriented
architectural style of the Spring Model/View/Controller framework7 and a real-
world software system that has been in use at a postal service company.

4.1 Spring Web-MVC Architectural Style and Style-specific
Mapping

Fig. 3. Screenshot:Conformance check rules specific to the Spring Web-MVC style

7 http://static.springsource.org/spring/docs/2.0.x/reference/mvc.html

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

76



Figure 3 shows the conformance check rules that have been defined specif-
ically for the Spring MidArch Style, which is a specialisation of the general-
purpose Model-View-Controller style.

One of the architectural rules is the “No computation in Model classes” rule.
It is an architectural rule, since it governs the global interaction structure within
the application. It may be stated on the architectural level, however it cannot be
checked on the architectural level, but only using the implementation. In terms
of the implementation elements, it means that classes within a Model component
may only offer simple getter and setter methods.

The source code generation feature is used to generate the Spring XML con-
figuration file from the architectural description.

4.2 Application to the Architecture of an Existing Software System

The ArchMapper tool identified several violations of architectural rules that
have apparently not been noticed before. First, there are violations of the “No
computation in Model classes” rule, which has been violated 40 times in the
original implementation that was checked using ArchMapper. Additional viola-
tions of architectural rules that have been uncovered by ArchMapper include a
large number of violations of the generic architectural rule of communicational
integrity, for example direct accesses from classes of the controller component to
database classes. In addition, violations of the rules “No outgoing connections
in Model components” and “No static methods” have been detected. While the
violations of the communicational integrity rule could have been detected with
a generic architectural conformance checking tool, the other architectural rules
could not have been stated easily without the unique style-based approach un-
derlying ArchMapper, and hence the detection of their violation would not have
been possible.

5 Related Work

5.1 Academic Approaches

There are several academic approaches to architectural conformance checking,
but few that consider the relevance of style-specific checks. First, representa-
tive for those approaches that do not consider architectural styles, we discuss
the ArchJava approach. Second, we discuss the approach supported by the tool
ArchitectureChecker.

ArchJava Architectural information can be either provided as additional anno-
tations that are part of the source code files, or it can be provided as a separate
artefact. ArchJava [8] uses the former approach, while we chose the latter ap-
proach, which has several benefits:

– The software architecture has a different lifecycle than the code, since it is
initially created before any code is written. Thus, it can be used for code
generation. In addition, it is changed much less often than the code.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

77



– A separate software architecture description can be easily used as architec-
tural documentation. If the architectural information is distributed over a
large number of source code files, relationships between different fragments
are difficult to understand.

– Notations that are commonly used for architecture descriptions, e.g. the
UML or specialised architecture description languages, often are graphical
and are not designed to be intermixed with source code. A language for
annotating source code would require an additional learning effort.

– The mapping between architecture and code is made explicit. It can be
specified by rules and exceptions to these rules.

ArchitectureChecker In [9], another style-based approach to checking archi-
tectural conformance is presented. It is based on a declarative description of the
architectural style. In difference to the approach presented here, it only uses the
description of the style and a representation of the architecture derived from the
source code, i.e. a module view. It does not use an explicit model of the expected
architecture. It is not explicitly stated whether the architectural style refers to
the component-and-connector view or to the module view. A tool implementing
the approach also exists (ArchitectureChecker), but is not described in detail in
the paper.

5.2 Industrial Tools

There exist some industrial tools that allow to perform architecture conformance
checks. However, none of these tools supports the notion of an architectural
style natively. Furthermore, they are not based on an independent architectural
descriptions from the component-and-connector viewpoint, but rather operate
on code-based architectural elements and their dependencies.

SonarJ8 supports the definition of matrix-like structures of architectural el-
ements and implicitly defines a kind of basic architectural style that limits legal
dependencies between the architectural elements. It is limited to software sys-
tems implemented in Java.

Sotograph9 is a tool with an academic background [10] which has been ex-
tended towards an industrial-strength tool. It is implicitly based on a sort of
layered architectural style.

The CAST Application Intelligence Platform10 also provides some capabili-
ties for specifying and checking architectural rules.

6 Conclusions and Outlook

Compared to other approaches, ArchMapper has several unique properties:
8 http://www.hello2morrow.com/products/sonarj
9 http://www.hello2morrow.com/products/sotograph

10 http://www.castsoftware.com/Product/Application-Intelligence-Platform.aspx

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

78



– ArchMapper is the only tool that is based on an architecture that can easily
accommodate arbitrary architectural description notations, since we separate
the architecture description language from the mapping approach.

– ArchMapper is one of only two existing approaches to exploit style informa-
tion in the mapping.
Our approach is more general, since the tool used by [11] is restricted to
layered architectures.

– ArchMapper is the only approach that is designed to produce architectural
rules and style-specific mappings across independently developed software
systems, since the architectural styles and style-specifics mapping aspects
are bound to the middleware product and platform that is used to build the
software system.

– ArchMapper is integrated with a popular IDE (Eclipse) and provides in-
formation on architectural violations directly side-by-side with the source
code.

– ArchMapper is the only approach that allows the addition of a style-specific
conformance checker, and is furthermore integrated with a code generation
feature, which has not been detailed in this paper.

– While the implementation is currently only available for Java as the imple-
mentation language, its architecture allows it to be easily be adapted to other
implementation languages that are supported by the Eclipse Static Analysis
Tools.

There are still some limitations to the approach, for which remedies could be
provided by future work:

– When using Acme as an ADL, it is not possible to explicitly specify the
direction of communication links. These are implicitly determined by the
semantics of the defined ports. This could be relieved by using a different
ADL for architecture specification, such as the UML-based modelling ap-
proach presented in [6].

– The mapping between the component-and-connector view and the module
view does not yet accommodate for modules that are not associated with
exactly one component, which is usually the case for any library module. One
way to handle this is to define library pseudo-components for each library
module. A component type for library components can be supplied by a
specific architectural style. Style-specific rules are that library components
may not access any non-library components. Among the library components,
communication restrictions may also be explicitly defined. The mapping of
library components to their source code may be reused for any software
system using the libraries.

– While it is quite easy to adapt the tool to an implementation language other
than Java, the application to multi-language software systems would require
an additional effort to make the specification of the architecture-to-code
mapping convenient.

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

79



References

1. Pahl, C., Giesecke, S., Hasselbring, W.: Ontology-based modelling of architectural
styles. Information & Software Technology 51 (2009) 1739–1749

2. Kazman, R., Bass, L., Webb, M., Abowd, G.: SAAM: a method for analyzing
the properties of software architectures. In: ICSE ’94: Proceedings of the 16th
international conference on Software engineering, Los Alamitos, CA, USA, IEEE
Computer Society Press (1994) 81–90

3. ISO: Recommended Practice for Architectural Description of Software-Intensive
Systems. (2006) IEEE Standard 1471-2000, ISO/IEC Standard 42010 (formerly
ISO/IEC DIS 25961).

4. Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., Little, R.: Doc-
umenting Software Architectures: Views and Beyond. Pearson Education (2002)

5. Garlan, D., Shaw, M.: An introduction to software architecture. In Ambriola, V.,
Tortora, G., eds.: Advances in Software Engineering and Knowledge Engineering,
Singapore, World Scientific Publishing Company (1993) 1–39

6. Giesecke, S., Marwede, F., Rohr, M., Hasselbring, W.: A Style-based Architecture
Modelling Approach for UML 2 Component Diagrams. In: Proceedings of the 11th
IASTED International Conference Software Engineering and Applications (SEA
2007), Cambridge, MA, USA, Anaheim, CA, USA, ACTA Press (2007) 530–538

7. Beck, C., Stuhr, O.: Stan – strukturanalyse für java. JavaSpektrum (2008) 44–49
8. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: connecting software architecture

to implementation. In: Proceedings of the 24th international conference on Software
engineering, ACM Press (2002) 187–197

9. Becker-Pechau, P.: Stilbasierte architekturprüfung. In Fischer, S., Mähle, E.,
Reischuk, R., eds.: Informatik 2009. Volume P-154 of Lecture Notes in Informatics.,
Bonn, Germany, Gesellschaft für Informatik e.V. (GI) (2009) 3264–3275

10. Bischofberger, W.R., Kühl, J., Löffler, S.: Sotograph - a pragmatic approach to
source code architecture conformance checking. In Oquendo, F., Warboys, B.,
Morrison, R., eds.: Software Architecture, First European Workshop, EWSA 2004,
St Andrews, UK, May 21-22, 2004, Proceedings. Volume 3047 of Lecture Notes in
Computer Science., Springer (2004) 1–9

11. Becker-Pechau, P., Karstens, B., Lilienthal, C.: Automatisierte softwareüberprü-
fung auf der basis von architekturregeln. In Biel, B., Book, M., Gruhn, V., eds.:
Software Engineering 2006, Fachtagung des GI-Fachbereichs Softwaretechnik, 28.-
31.3.2006 in Leipzig. Volume 79 of LNI., GI (2006) 27–37

3. Workshop zur Software-Qualitätsmodellierung und -bewertung

80


