
Towards Power Consumption Reduction by User Behavior Moni-
toring at Application level
M.Sc. Imran Asad Gul, Graduate School Trustsoft, Universität Oldenburg, Germany
Dr. Wilhelm Hasselbring, Software Engineering Group, Universität Kiel, Germany

Abstract

This paper gives an overview about our ongoing research which aims at adaptive power consumption optimization in
enterprise systems where cost for operating the cooling systems has almost reached near server operating cost. Our
methodology focuses at application level. This level can best describe user applications dependence on the underlying
system and can play an effective role in power management decisions. We will also present our initial level experimenta-
tion which can set a solid base for our research.

1 Introduction

Enterprise systems have evolved into complex software
systems with improved computational power i.e. perfor-
mance because of their innovative and technological de-
sign. However demand for improved computational power
continues to grow which results in high power consump-
tion and its implications i.e. heat dissipation, hardware re-
liability [9] and its cooling costs at large data centers give
raise to not only environmental issues but also decreases
the physical life of the systems. Due to these concerns
power optimization has become focal point for researchers.
Power optimization doesn’t necessarily guarantee energy
optimization. Energy and power are interrelated terms.
Energy is the amount of work done by a system during
a particular time period whereas power is the rate at which
system complete that work [22]. Hence energy and power
are defined as

P = W/T (1)

E = P × T (2)

where P is power andEw is energy,T is specified time and
W is total work done in that specified time. Energy is mea-
sured injoulesand power inwatts. The relation between
power and energy can be understood by a simple example.
If we have a container that can hold a particular amount of
liquid for instance 20 litres. A pipe connected with with
that container fills the container as and when needed. In
this scenario, energy is the amount of liquid that the con-
tainer can hold at any given time. While power is the rate
at which liquid comes into that container.
It depends on the context what is really needed either en-
ergy or power. For example, in case of mobile systems,
energy optimization would be a better option as this would
increase their battery life but in case of enterprise systems
i.e. servers, power optimization would be a better option
because of high temperature concerns. Furthermore server
consolidation due to space limitation in data centers and

compact hardware technology such as blade servers fur-
ther adds to this problem.
It has been widely accepted in literature [9, 10, 11, 14, 16]
that power consumption optimization comes at the cost of
performance loss which cannot be removed completely but
minimized. Central processing units (CPU) are the dom-
inant source of power consumption in enterprise systems.
Modern processors support dynamic voltage and frequency
scaling (DVFS). Dynamic power consumption is propor-
tional to the operating frequency and square of voltage.
This means that operating at lower frequency level can re-
duce considerable amount of power consumption per CPU
cycle. DVFS refers to the scaling (low or high) of fre-
quency and voltage supply depending on the workload.
This means that an effective DVFS strategy needs accurate
prediction of workload to have minimal effect on perfor-
mance.

I1 I2 I3

Interface to the user
Ap

pl
ic

at
io

n 
Le

ve
l

Figure 1: Application level



In this paper, we present (our work in progress) applica-
tion’s operation [21] based methodology for power con-
sumption optimization by user behavior monitoring at ap-
plication level. Application level refers to the top most
level which is exposed to the user where user can be hu-
man, or another system. Fig 1 depicts an abstract view of a
software and hardware system. User’s application which is
composed of components resides on the operating system
and are accessible through interfaces I1 to I3. We call this
level an application level. Because of such a direct contact,
applications at this level can best describe their dependen-
cies on the underlying system. Underlying system refers
to the system software i.e. operating system and physical
hardware i.e. processor and memory etc. Our work aims at
identifying execution areas of an application that require
less computational power. This information can be used
for an effective DVFS having little or no effect on perfor-
mance. Our approach comprises the following steps

1. Analyzing on-line user bahavior to model current
workload. Behavior model shows operations that are
being executed and operations that are going to be
performed

2. Cost for each operation in terms of resource usage
(CPU) is estimated and

3. System adaptation to new parameters accordingly to
save power.

The rest of the paper is organized as follows. Section 2
presents motivation of this research. Section 3 describes
background and related work. Section 4 discusses our ap-
proach. Section 5 our initial experimentation and finally
Section 6 concludes and discusses future work.

2 Motivation

2.1 OS power management and its impact
on performance

Central processing units are the major energy consumer
in enterprise computation systems. Modern CPUs are
equipped with power saving and performance states called
C-states and P-states. The Advance Configuration Power
Interface [1] encourages power optimization by transition
of unused components to lower power, in our case it is
CPU. [1] defines C-states such as C0, C1, C2 and C3. C0
is fully active state i.e. the CPU execution state while all
other states such as C1, C2 and C3 are idle states i.e. CPU
execution is slowed down. C3 consumes lower power than
C2 and C2’s power consumption is lower than that of C1.
C-states are managed by operating system power manage-
ment (OSPM). Depending on the situation, the OSPM pol-
icy decides which C-state CPU has to enter. A particular
latency time is associated with each C-state. [1] provides
an overview of the C-states latency and power consump-
tion, see Table 1. P-state defines frequency and voltage
level while the CPU is in its execution state. Processor’s

running at high clock speed provides better performance
but consume high power.

Table 1: ACPI power and latency depiction
C-state Latency in ms Power in mW

C1 20 1000
C2 40 750
C3 60 500

Furthermore, performance issues might prevent the CPU
to enter in the idle states which means CPU remains active
for nothing and a lot of CPU cycles are wasted. There are
some obvious situations in which the OSPM C-state selec-
tion policy effects performance e.g. Consider a scenario in
which an OSPM selectsC3 which has high latency time
(entry latency). During transition (going to idle) to state
C3 a sudden interrupt arrives for CPU activation than the
CPU will have to exitC3 state immediately after it enters
this state. This would results in a big latency time having
noticeable performance degradation.
The situation becomes more worse in case of multi-core
processors because any core can enter into any C-state de-
pending on OSPM policy, however the lowest C-state will
be opted by the CPU. For example, consider another sce-
nario. If there are two coresCr1 andCr2 and C-states are
from C0 to C3. If depending on the situation OSPM se-
lectsC1 for Cr1 thanC1 would be enabled automatically
for Cr2. In a typical situation under light workload where
C3 would be the best option forCr2 but it could only enter
C2.
In modern processors like AMD Opteron, Sun UltraSparc
and Nehalem, each core can enter any C-state independent
of the other e.g.Cr1 can enterC1 andCr2 can enterC3.
However, each state has to wait for a particular time before
it can enter any C-State. This particular time can be called
“remained-idle” time. For example, the remained-idle time
for entering intoC2 is 2000 ms. This implies that the core
can enter intoC2 only after it remained idle for 2000 ms
and no interrupt arrived during that time. Now consider
Cr1 remained idle for 1900 ms and suddenly an interrupt
arrived. Because of that interruptCr1 would have to wait
for another remained-idle lag.
In real world situations, all cores are rarely saturated with
non-stationary workload in a multicore system. This im-
plies that in highly diversified environments even if the
whole resource (CPU in our case) is not utilized we are
highly unsure of the requests that will arrive at the CPU.
This would result in the selection of C-state by OSPM.
Instead of having benefited from this technology, associ-
ated latencies with C-states and their selection mechanism
i.e. one C-state at one time results in degradation of per-
formance of overall system and power wastage. Forecast-
ing the CPU’s future activity i.e. workload and then im-
plementing dynamic power management policy can poten-
tially not only increase performance but also reduce power
consumption. We emphasis on proactive forecasting rather



than reactive forecasting for example forecasting just by
analysing the past events, this technique would not help
because of unpredictable and changing nature of workload.
By proactive (predictive) forecasting we mean monitoring
the system for defined time and profiling its behavior along
with user behavior. Such information can help to better
understand the system under various conditions. Based on
such profiled information, workload on the system under
various conditions can be modelled and its analysis using
machine learning techniques can perform pre-hand fore-
casting. As the system learns from its behavior, certainty
in forecasting becomes more positive which can result in
long-term forecasting.
By devising a proactive forecasting strategy, a trade off be-
tween performance and power consumption can be mini-
mized. This would also include active monitoring at ap-
plication level thereby relinquishing OSPM from selecting
any C-state and scaling each core according to forecast.
Our goal is to increase performance per watt.

2.2 Adaptation

Conceptually a computer system is composed of a software
system and a hardware system. The software system can be
thought of a layer of components laying on hardware. This
implies that the upper layer (software layer) that is exposed
to external entities determines for hardware to act. Exter-
nal entities can be other systems or humans. Automation
on high scale has brought high complexity in software sys-
tems which exponentially has increased continuous human
observation to change system’s parameters as and when
required. Adaptive or self-managed software systems an-
swer this issue. Adaptation refers to change in system’s
behavior with respect to behavior of the external entities is
a main characteristics of autonomous systems. This fea-
ture guarantees robust performance in autonomous system
domains. Performance is an important attribute when it
comes to quality of service that a computer system is sup-
posed to provide. Adaptation of software systems has been
realized in [3, 12, 13].

Observation

AnalysisAdaptation

Figure 2: Adaptation cycle

Power optimization schemes trade off performance for

power reduction. It can be minimized (as mentioned ear-
lier) if software systems are studied in the context of adap-
tive systems. For this reason, our research is influenced
by [20], continuous adaptation cycle as depicted in Fig 3.
which would lay the base for this research. This adapta-
tion cycle is a rough representation of a feed-back loop in
autonomous systems. Following are the main operations

• Observe the user behavior to model workload, this
refers to the monitoring of user interaction with the
system i.e. How many users are active or present?
what is the intensity of the requests generated by the
users and what is the application’s behavior in re-
sponse?

• Analyse the monitored user behavior, i.e. based on
the previous usage patterns, forecast the future pat-
terns for a particular time interval.

• Adapt according to the forecast results to reduce
power consumption i.e. components (CPU) which
are not under heavy load can slow down or go idle.

3 Background and Related Work

Power consumption and its optimization has always been a
key issue in mobile, hand-held and portable devices. How-
ever during the last decade, it has become a focal point for
enterprise systems. High power consumption leads to con-
siderable heat dissipation which not only increases cooling
cost but it also adversely effects the reliability [9]. This
gets worst at data centers where cooling apparatus requires
from 50% to nearly the same of the power that computa-
tional hardware needs [5].
Power consumption can be differentiated into (i) dynamic
power consumption and (ii) static power consumption and
hence can be computed by the following equation.

PT = PD + PS (3)

where PT is total power consumption,PD is dynamic
power consumption andPS is static power consumption.
We will restrict ourselves to dynamic power consumption
which is

PD = ACfV 2 (4)

whereA is the activity factor i.e fraction of the circuit
which is switching. V is voltage supply,f is clock fre-
quency andC is physical capacitance.
There exist four ways by which dynamic power consump-
tion can be optimized [22] and each way possess its own
trades-off

1. By reducing the capacitance. This can be done by
reducing the size of transistors. This technique has
adverse effect on performance

2. By reducing the switching activity i.e. clock gating
means to activate the logic block only when it is



needed. It is an effective way of reducing both power
and energy in processors and widely used in Pentium
4

3. By reducing the clock frequency but it also has neg-
ative effect on performance thereby increasing the
execution time of the task

4. By reducing voltage supply because it increases gate
delays but doesn’t provide good results if used inde-
pendently

SincePD is proportional to the operating frequency and
square of voltage, the combination of last two techniques
i.e. frequency scaling and voltage scaling called dynamic
voltage and frequency scaling (DVFS) can give optimal
results for power and energy optimization and is most
widely used technique. This implies that operating at
lower frequency level can reduce considerable amount of
power consumption. Dynamic voltage and frequency scal-
ing (DVFS) refers to scaling of both frequency and sup-
ply voltage to reduce power consumption. The workload
on the processor varies at different time intervals and when
there is less workload, frequency and voltage supply can be
lowered to save power consumption with having little or no
effect on the performance. DVFS is an efficient technique
for power saving but complexity arises when it comes to
the prediction of workload. Workload prediction or fore-
casting refers to the estimation for the task in terms of time
and resources. Workload has unpredictable nature so it is
difficult to forecast future workload with reasonable ac-
curacy however different statistical and machine learning
techniques can be used to address this issue. Most of the
existing DVFS approaches lies in three categories [22].

1. Interval-based approaches: In interval-based ap-
proaches, DVFS estimates the intervals for which
the processor remains busy and idle i.e it forecasts
the workload and scale the frequency accordingly.
Forecasting can be efficient if workload is regular
which is not the case. Because of irregularity, fore-
casting becomes very difficult if not impossible.

2. Intertask approaches: Intertask based approaches
are task oriented which means, frequencies are as-
signed to different tasks depending on the estima-
tion and it remains the same during the course of
the task’s execution. Besides irregularity in work-
load which creates problems in forecasting and es-
timation, these approaches do not consider internal
structure of the program which can really improve
DVFS.

3. Intratask approaches: Intratask approaches are
also task oriented. They estimate the task execution
paths within a task as different paths require differ-
ent frequency/voltage scaling. Different execution
paths require different amount of cycles to execute.

There exists three levels at which power optimization can
be made [11].

• Computer architectural level refers to the energy ef-
ficient design of hardware e.g. hardware such as pro-
cessors and I/O devices can go to sleep state if they
are not in use

• System level refers to the efficient use of underlying
hardware

• Application level, the top most level which is di-
rectly exposed to the user. This level can best de-
scribe the system behavior as a result of user behav-
ior i.e. application need for resources such as CPU
and its impact on performance.

Operating system power management under the umbrella
of “software power management” remained an area of fo-
cus for many researchers e.g. [7, 15, 16].
Application-level power management is a new concept as
compared to hardware controlled power management and
needs to be explored. Pereira et al. [19] puts forward a
concept of application guidance. This so called guidance
or hint information is gathered by an API responsible for
communication between application and the operating sys-
tem. Guidance information is transferred down to oper-
ating system via another API to make better decision for
power optimization i.e. Another approach by Anand et al.
[2] where application decides which resource to use based
on its cost. i.e. If local storage is turned down and could
cost more power and latency time to wakeup, it would
probably be cheap to use network to fetch the data.
Hotta et al. [10] proposed a profile based DVFS strategy.
Program is divided into regions which are instrumented to
measure the optimal execution time and power consump-
tion for each region during “trial runs”. During actual run,
program behavior is adapted according to the profile. Our
approach is similar to this because we also build a profile
which we call learning phase, however our profile is not
power profile, we just model the user behavior.
An effective DVFS strategy tries to minimize the power
consumption by satisfying performance constraints how-
ever Miyoshi at al. [18] proposed that completing the task
at peak frequency and then entering to the sleep state can
conserve considerable power consumption as compared to
running at low frequency. Similarly execution at lower fre-
quency level will conserve energy but execution time gets
increased thereby increasing the total power consumption
[14]
We argue that running the task at the frequency which is re-
quired can save more energy as compared to throttling first
and then entering into deep sleep state. This is because en-
tering into deep sleep state and then exiting for the same
would have particular latency attached with it. Though
DVFS at different levels of frequencies and voltage has
also transition times but latest innovations in the design of
microprocessors towards power optimizations has reduced



these transitions cost to the minimum level, making DVFS
an efficient way for power reduction.

Another approach called “PowerNap” is proposed by
Meisner at al. [17]. It is based on energy conservation of
the entire system or the components of the system that are
not in use by transitions from active or high performance
state to idle state.

4 Our Approach

Our approach centers around the idea of giving user appli-
cation a wider role in management decisions particularly
in power management. This refers to the autonomic or
adaptive behavior of an application towards power saving
strategies. Applications that have tendency to adapt ac-
cording to their environment are self-managed or adaptive
software systems in the domain of autonomic computing
[12]. Software adaptation as described by [20] is a three
phase cycle depicted in Figure 3. Observation refers to
the monitoring of software system to get useful informa-
tion about the environment. Analysis is the step where
decision are opted based on monitoring observations and
finally adaptation is the phase where these decision are im-
plemented for example1, if an observation of a task shows
that it requires 10 ms to complete and analysis shows that
its deadline is 100 ms and suggests the lowering of fre-
quency by 1/10 cycles/second. Then adaptation would be
to adapt to the suggested frequency level.

Figure 3: Adaptation Cycle

4.1 Self-management in our context

Applications are composed of components which provide
operations that might be requested by other components,
external users or systems. A sequence of operations rep-
resents a complete request from its start to end of an ex-
ecution called execution trace. Our goal is to identify the
regions of execution traces which are not CPU intensive.
This implies that certain operations may require low com-
putational power as compare to others in whole execution
traces. Applying DVFS during those operations saves con-
siderable power at the cost of little performance loss. We
refer to performance loss as transition time and transition
energy called transition cost [4]. The basic idea of ap-
plication level power management requires high level in-
volvement of an application in power management deci-
sion making [22].

Figure 4: Conceptual Design

Figure 4 depicts our approach towards power optimiza-
tion. The main components of our approach are forecasting
based on behavior model, power manager and frequency
mapper. These three components are representation of the
logical phases of adaptation cycle. Behavior model is the
observation phase which is based on monitoring the ap-
plication. Power manager is the analyser that can suggest
adaptation operations based on the observation. Frequency
mapper that normalises the suggested adaptation opera-
tions which are then propagated down to hardware. We
discuss them in detail.

4.2 Forecasting

As mentioned in Section 1, an efficient DVFS needs ef-
fective forecasting of workload. Workload refers to the

1this example is taken from [22]



number of tasks being processed by the CPU. Workload
has non-deterministic nature which makes it very difficult
to exactly forecast what is coming next. For example, In
case of web server. User interaction invokes certain com-
ponents to execute a task. It is very difficult to predict
user’s next move or in other words what is going to ex-
ecute next. We overcome this problem through behavior
modelling by continuous application monitoring which we
call learning phase. A learned behavior model is a so called
pattern which depicts each and every walk of user. Based
on such pattern, we can make near to accurate forecasts.

4.2.1 Behavior Model

Behavior model represents user interactions with the sys-
tem. We use Markov chains to model user behavior from
monitoring data as a result of continuous monitoring [21].
We use markov chains because they provide a common
stochastic means to describe dynamic system behavior. For
detail discussion, we refer to our previous work [21] and
[8]

Monitoring The application is instrumented with moni-
toring prob which gets monitoring data called monitoring
record and put into the repository. Each record provides
information about individual operation executions such as
start time, end time and operation name etc.

Clustering However, in case of web or application
servers, more than one user accesses the system which re-
sults in a huge number of Markov chains having many of
them identical or with little difference. Clustering is used
to group related Markov chains to get accumulative behav-
ior model.

Fig 5 represents a behavioral model of the users interac-
tions with a sample application that we used for our initial
experimentation. Behavioral model is a graphical repre-
sentation of user’s walk during its session.

Figure 5: Adaptation cycle

The $ symbol represents the start of user interaction. Be-
cause of space limitation, we numbered the operations or
methods that were instrumented. As we can see in Fig 5
that certain operations have high probabilities. This means
that those operations were accessed by the most users.

4.3 Power Manager

Power manager compute the current workload on the sys-
tem. It then assigns an appropriate frequency for the cal-
culated workload to save power by taking following con-
siderations into account.

• How much resource (CPU) is required for the given
operation. This also refers to the deadline (defined
by SLAs) which has to be met in order to conserve
performance and how much of the CPU time is ac-
tually available for the given operation?

• What should be the appropriate frequency for the
given operation?

• Based on the above calculation, adapt to the new fre-
quency level if required

The low power consumption goal cannot be achieved if the
transition time and energy is higher than the energy con-
sumed by an operation as a result of the above-mentioned
calculations even if an operation execution would still meet
the deadline.

4.3.1 Workload Characterization

Workload characterization means deriving a workload
model that can best describe its behavior [6]. Our goal
(work in progress) is to derive a workload model that refers



to the aggregate of the requests by the users that are access-
ing certain operations. Currently, we use our behavioral
model that can not only model upcoming operations that
a user is going to perform but can also time stamps such
start time and end time for a given operation during learn-
ing phase as discussed in Section 4.2.

4.4 Frequency Mapper

It maps the calculated frequency to the nearest fre-
quency that CPU supports. For example, the outcome
of power manager is that the given operation requires
150 MHz frequency without violating deadline and tran-
sition constraints however, the hardware only supports
{200,600,800,1000}MHz, it would be feasible to adapt to
200 MHz.

5 Experimentation

We perform a small experiment as a proof-of-concept
which would laid the basis for our future work. For this
purpose, we used a small application written in Java that
simulates 20 users at a time. The application has an in-
terface which let the users to perform some actions such
as

• Searching for a book

• Weather report

• Getting information about some computer game

• Music albem releases

Each action corresponds a method which is instrumented.
Table 2 gives the action names with their assigned num-
bers. We assigned these numbers because of space lim-
itation. User actions with their associated numbers and
execution time in micro seconds are shown in Table 2.

Table 2: Actions
Opr name Assigned num Mean exec time in ms

menu $ 0
bookSearch 1 148
whatsNew 2 54

weatherReport 3 2432
library 4 215
offers 5 201

gamesInfo 6 10170

5.1 Monitoring

Since the users interaction with the application is prob-
abilistic. This means that during every execution phase,
which we refer to our learning phase, each user interacted
randomly. During the execution, a behavioral profile for

each user is created. 20 users had 20 corresponding pro-
files or Markov chains. As discussed in Section 4.2.1, re-
lated Markov chains are combined together to form a clus-
ter. Since we have a small system, all our behavioral pro-
files were nearly the same. We clustered them to form a
single common behavioral profile as depicted in Figure 5.
The dark colored line along the path in Figure 5 represents
mostly accessed path by the users.

5.2 Power Manager and adaptation

We used time stamps associated with actions shown in Ta-
ble 2 to calculate CPU resource needed to perform specific
operation. For example, the mean execution time for the
operation “weatherReport” is 148µ seconds and the SLA
between user and weatherReport service provider compo-
nent says that the complete request should be served in 300
µ seconds. Then the CPU frequency could be scaled to the
half of its frequency provided if the transition execution
time and service provision time do not violate SLA. For
the sake of simplicity, we define the response time limit
to be 200µ seconds in our experiment. The experiment
was performed using AMD Athlon 64 processor which
supports number of frequencies and their associated power
as shown in Table 3. For dynamic voltage and frequency
scaling, we used linux kernel CPUFreq.

Table 3: AMD Athlon 64 supported frequencies
Frequency (GHZ) Watt (W)

3.0 131.2
2.8 124.5
2.6 116.5
2.4 113.2
2.2 107.4
2.0 105.6
1.8 103.7
1.0 94.6

It is important to note that these experimentations were
performed as a proof-of-concept which would be the basis
for our future work. We conducted two kinds of experi-
ments.

• Non-power aware

• Power aware

Non-power aware experiment is without any power saving
strategies however, we perform DVFS in power aware ex-
periment. Each experiment can run for a defined amount
time with defined number of users. Our experiment lasted
from 60 to 75 seconds during which 20 users interact. The
response time limit for every operation that user perform is
200µ seconds.



5.3 Results

For our initial power measurement experiments, we use
ordinary multimeter that can take samples every second.
Since CPU is one of the power dominant component, its
frequency can really effect the overall power consumption.

5.3.1 Non-power Aware System

Without DVFS

-10 0 10 20 30 40 50 60 70

Time (seconds)

130

135

140

145

150

155

160

165

170

175

180

P
o

w
e

r 
(W

a
tt

s
)

Figure 6: Power consumption in non-power aware system

Figure 6 depicts power consumption of the system during
the test run. It can be observed that the system is drawing
power above 135 watts per second which is the minimum
power level that the system consumes.

CPU vs Power

Power(R)
Users(L)

1
4

7
10

13
16

19
22

25
28

31
34

37
40

43
46

49
52

55
58

61
64

67
70

Time

-100

0

100

200

300

400

500

600

700

800

900

1000

R
e

s
o

u
rc

e
 (

C
P

U
)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

P
o

w
e

r 
(W

a
tt

)

Figure 7: Power consumption in non-power aware system

Figure 7 depicts the users that are interacting along a time
line and power consumption while users interaction. The
big red spike shows that some particular method or oper-
ation took a lot more processing thereby violating the re-
sponse limit. However, it is interesting to see that majority
of the response limits are met.

5.3.2 Power Aware System

Now we present, how a system reacts that possess power
aware strategies.

With DVFS

1 7 13 19 25 31 37 43 49 55 61

Time (Seconds)

90

100

110

120

130

140

150

160

170

180

190

P
o
w

e
r 

(W
a
tt
s
)

Figure 8: Power consumption in power aware system

As the time line for the experiment increases as shown
in Fig 8, the power consumption of the system becomes
lower. As discussed earlier, we model each and every
walk of the user, our power-aware strategy takes behav-
ioral model into account and perform DVFS before the
most probable operations that user would perform.

Figure 9: CPU load vs in power aware system

Figure 9 represents a comparison between CPU execution
time when the system is non-power aware and when the
system is power aware. We can see that there are 7 requests
that exceeded beyond the defined response time limit.
Figure 10 compare the power consumption results from
both systems, power aware and non-power aware. Interest-
ingly, our power aware system consumed a lot less power
as compare to non-power aware system with majority of
the requests served under the time limit.



Power consumption comparison

withDVFS
woDVFS1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70

Time

90

100

110

120

130

140

150

160

170

180

190

P
o

w
e

r 
(W

a
tt

s
)

Figure 10: Comparison between power aware and non-
power aware system

6 Conclusion and Future Work

In this paper we outlined our proposed approach (in
progress) and initial level experimentation for power opti-
mization at application level by user behavior monitoring.
High heat dissipation as a result of high power consump-
tion decreases reliability of hardware systems. DVFS is an
efficient way of reducing power consumption, however it
can only be used efficiently when future workload infor-
mation is known. We presented our proposed approach for
forecasting the workload. Though, our experimentation is
based on the request level processing however, our goal is
to derive a workload model that refers to the aggregate of
the users load on the system.
At a glance, monitoring appears to be an additional over-
head however this additional overhead can result in an ac-
curate workload forecast. The power manager computes
the lowest frequency and voltage level for the incoming
operations which should not violate the deadline and tim-
ing constraints and finally it is mapped to the appropriate
frequency and voltage supported by the hardware. Below
is the future work for our proposed methodology

• As described in Section 4.3, the power manager
has to be implemented which needs further explo-
ration of frequency and voltage transition (time and
cost). Furthermore studying correlation between
time needed for an operation to execute and time the
CPU actually has for that operation and its impact
on performance.

• Despite of having a near to accurate behavior pat-
tern, certainty cannot be guaranteed. Devising
strategies for recovering and recovering from un-
certain forecasts and studying its effects on perfor-
mance.

• Development of a framework that can best evaluate
our proposed approach. We plan to have evalua-

tion by simulation and lab experiments by using real
client server environment.

References

[1] ACPI. Advanced configuration and power interface
spefication http://acpi.info.

[2] M. Anand, E. B. Nightingale, and J. Flinn. Ghosts
in the machine: interfaces for better power manage-
ment. InMobiSys ’04: Proceedings of the 2nd inter-
national conference on Mobile systems, applications,
and services, pages 23–35, New York, NY, USA,
2004. ACM.

[3] E. Arnautovic, H. Kaindl, and J. Falb. An architec-
ture for gradual transition towards self-managed soft-
ware systems.SIGSOFT Softw. Eng. Notes, 31(6):1–
2, 2006.

[4] T. Burd, T. Pering, A. Stratakos, and R. Brodersen.
A dynamic voltage scaled microprocessor system.
Solid-State Circuits, IEEE Journal of, 35(11):1571–
1580, Nov 2000.

[5] R. S. C. D. Patel, C. E. Bash and M. Beitelmal. Smart
cooling of data centers. InProceedings of IPACK,
July 2003.

[6] M. Calzarossa, L. Massari, and D. Tessera. Workload
characterization issues and methodologies. In G. Har-
ing, C. Lindemann, and M. Reiser, editors,Perfor-
mance Evaluation: Origins and Directions, pages
459–482. Springer-Verlag, 2000. Lect. Notes Com-
put. Sci. vol. 1769.

[7] C. Gniady, A. R. Butt, Y. C. Hu, and Y.-H. Lu.
Program counter-based prediction techniques for dy-
namic power management.IEEE Transactions on
Computers, 55(6):641–658, 2006.

[8] I. Gul, N. Sommer, M. Rohr, A. van Hoorn, and
W. Hasselbring. Evaluation of control flow traces in
software applications for intrusion detection. InMul-
titopic Conference, 2008. INMIC 2008. IEEE Inter-
national, pages 368–373, Dec. 2008.

[9] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin,
N. Vijaykrishnan, M. T. Kandemir, T. Li, and L. K.
John. Using complete machine simulation for soft-
ware power estimation: The SoftWatt approach. In
Proceedings of the Eighth International Symposium
on High-Performance Computer Architecture (8th
HPCA’02), pages 141–150, Boston, MA, USA, Feb.
2002. IEEE Computer Society.

[10] Y. Hotta, M. Sato, H. Kimura, S. Matsuoka, T. Boku,
and D. Takahashi. Profile-based optimization of
power performance by using dynamic voltage scal-
ing on a PC cluster. InIPDPS. IEEE, 2006.



[11] A. Kansal and F. Zhao. Fine-grained energy profiling
for power-aware application design.SIGMETRICS
Perform. Eval. Rev., 36(2):26–31, 2008.

[12] J. Kephart and D. Chess. The vision of autonomic
computing.Computer, 36(1):41–50, Jan. 2003.

[13] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. InFOSE ’07: 2007 Future
of Software Engineering, pages 259–268, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[14] J. R. Lorch and A. J. Smith. Improving dynamic volt-
age scaling algorithms with pace. InSIGMETRICS
’01: Proceedings of the 2001 ACM SIGMETRICS
international conference on Measurement and mod-
eling of computer systems, pages 50–61, New York,
NY, USA, 2001. ACM.

[15] Y.-H. Lu, L. Benini, and G. De Micheli. Low-power
task scheduling for multiple devices. InCODES
’00: Proceedings of the eighth international work-
shop on Hardware/software codesign, pages 39–43,
New York, NY, USA, 2000. ACM.

[16] Y.-H. Lu, L. Benini, and G. De Micheli. Operating-
system directed power reduction. InISLPED ’00:
Proceedings of the 2000 international symposium
on Low power electronics and design, pages 37–42,
New York, NY, USA, 2000. ACM.

[17] D. Meisner, B. T. Gold, and T. F. Wenisch. Powernap:
eliminating server idle power. InASPLOS ’09: Pro-
ceeding of the 14th international conference on Ar-
chitectural support for programming languages and

operating systems, pages 205–216, New York, NY,
USA, 2009. ACM.

[18] A. Miyoshi, C. Lefurgy, E. Van Hensbergen, R. Raja-
mony, and R. Rajkumar. Critical power slope: under-
standing the runtime effects of frequency scaling. In
ICS ’02: Proceedings of the 16th international con-
ference on Supercomputing, pages 35–44, New York,
NY, USA, 2002. ACM.

[19] C. Pereira, R. Gupta, and M. Srivastava. PASA: A
software architecture for building power aware em-
bedded systems. InProceedings of the IEEE CAS
Workshop on Wireless Communications and Net-
working - Power efficient wireless ad hoc networks,
Sept. 2002.

[20] M. Rohr, S. Giesecke, W. Hasselbring, M. Hiel, W.-
J. van den Heuvel, and H. Weigand. A Classification
Scheme for Self-adaptation Research. InProceedings
of the International Conference on Self-Organization
and Autonomous Systems In Computing and Commu-
nications (SOAS’2006), Sept. 2006.

[21] M. Rohr, A. van Hoorn, J. Matevska, N. Sommer,
L. Stoever, S. Giesecke, and W. Hasselbring. Kieker:
Continuous monitoring and on demand visualization
of Java software behavior. InProceedings of the
IASTED International Conference on Software Engi-
neering 2008 (SE 2008), pages 80–85. ACTA Press,
Feb. 2008.

[22] V. Venkatachalam and M. Franz. Power reduction
techniques for microprocessor systems.ACM Com-
put. Surv., 37(3):195–237, 2005.


