A Coordination-based Model-Driven Method for
Parallel Application Development

S. Gudenkauf®

OFFIS Institute for Information Technology, R&D-Division Energy, Escherweg 2,
26121 Oldenburg, Germany
email: stefan.gudenkauf@offis.de

Abstract. A continuous trend in computing is the demand for increas-
ing computing performance. With the advent of multicore processors in
the consumer market, parallel systems moved out of the scientific niche
and became commodity. This raises the need to exploit concurrency in
software of all kinds and domains. Unfortunately, the majority of soft-
ware developers today are short on parallel programming experience, and
at least in the near future tools and techniques will not be able to fully
exploit concurrency in application development automatically.

In this position paper we propose to regard software architectures of
parallel systems as the main development artifact, focusing on the be-
havioral view and top-down application development. To address the
need for higher abstractions and to facilitate reuse, we propose a model-
driven software development approach based on a visual domain-specific
language that hierarchically separates coordination from computation.

1 Introduction

To continue to improve processor performance, companies such as Intel and
AMD turned to hyperthreading and multicore architectures since physical lim-
itations impede further performance gains that base on increasing clock speed
and optimizing execution flow [1]. These new performance drivers require to ex-
plicitly consider concurrency to exploit them in total. Unfortunately, after years
of sequential programming practice the majority of software developers today
are short on parallel programming experience, and at least in the near future
there will be no tools and techniques to fully exploit concurrency automatically.
Also, although being the predominant model for general-purpose parallel pro-
gramming, the threading model makes parallel programming harder than it has
to be because it is enormously nondeterministic and requires software developers
to cut away unwanted nondeterminism [2].

Concurrency has now to be exploited in applications of all kinds and domains,
especially regarding complex large-scale systems with a variety of associated roles
and stakeholders. The challenge is not solely software performance and speedup,
but also to provide a convenient way to participate in the new performance
drivers in general, and to facilitate reuse and portability. Especially the latter
aspects may turn out to be of major importance in parallel programming in the

large because of the high development costs of (re-)developing failure-safe parallel
software. In the following, we present related work in Sec. 2, motivating the
necessity of high level abstractions for parallel program development. In Sec. 3
we present our model-driven solution that is primarily targeted on abstraction
from the threading model, and the expected contributions. Finally, we describe
our plans for evaluation in Sec. 4 and conclude the paper in Sec. 5.

2 Related work

Lee argues that most of the difficulties in parallel programming are a conse-
quence of our concurrency abstractions [2]. He shows that the threading model,
although being a minor syntactical extension to existing languages, implies se-
vere consequences to programming since it is enormously nondeterministic and
demands to extensively cut away unwanted nondeterminism. He argues that co-
ordination languages provide a solution to challenge concurrency, since they are
orthogonal to established programming languages and facilitate to regard nonde-
terminism explicitly in an otherwise deterministic problem solution. Pankratius
et al. present a case study on parallelizing the open source compression program
BZip2 for multicore systems. [3]. At least in the context of this study, it is shown
that considerable speedup can be gained by exploiting concurrency on higher ab-
straction levels, and that parallel patterns turned out to be more significant to
speedup than fine-grained loop parallelization. It is also noted that industry ap-
proaches often propagate the feasibility of inserting parallelization constructs in
existing sequential code, thus limiting the amount of exploitable concurrency.

There are few approaches in model-driven parallel program development.
IBM alphaWorks provides a tool that generates parallel code from UML mod-
els and supports concurrent patterns for multicore environments [4]. Using the
tool involves different activities such as the creation of concurrency patterns by
pattern developers and serial computing kernels by C++ developers. Although
promising, there is very few information available and the current status of the
project is to the best of our knowledge unclear. Pllana et al. [5] propose an in-
telligent programming environment that targets multi-core systems and proac-
tively supports a user in program composition, design space exploration, and
resource usage optimization. This environment is envisioned to combine model-
driven development with software agents and high-level parallel building blocks
to automatize, for example, time-consuming tasks such as performance tuning.
Although proposing to use UML extension for graphical program composition,
the work falls short on describing the actual method and DSL to be used.

3 Solution approach

In addition to [3] and [2], we argue that for the broad mass of software devel-
opers, large-scale parallel systems development requires appropriate high-level
abstractions and methods to cope with complexity and scale.

Solution. We propose a model-driven method that regards the architectures
of parallel programs as the main development artifacts, based upon the following
aspects: (1) Top-down problem decomposition is facilitated. (2) Nondeterminism
is introduced when needed instead of being cut away when not needed. (3)
Mapping high-level units of execution to low-level processing entities is left for
model-driven development. (4) The development of large-scale parallel programs
of all kinds and domains is facilitated. (5) Ordinary software developers are
supported in developing parallel applications with considerable effort.

Contributions. (1) DSL. A domain-specific language that abstracts from
the underlying low-level technologies, particularly, from the threading model.
(2) Method. An appropriate method to employ the DSL to model the behavioral
view of parallel software architectures, resulting in formally specified models as
a basis for model driven development. (3) Tooling. Tool support that integrates
with existing technologies and complementary architectural views.

Hypotheses. (1) Regarding parallel software architectures as the main devel-
opment artifact facilitates reuse. (2) Hierarchically separating coordination from
computation on all levels of software development facilitates the development
of large-scale parallel software systems. (3) Focusing parallel software architec-
tures encourages using parallel programming patterns at the highest level of
abstraction. (4) The ordinary software developer is short on parallel program-
ming expertise. (5) There will be the need to develop large numbers of parallel
software systems of all kinds and domains. (6) For many software development
projects, the goal will not be ultimate speedup but speedup and scalability as
properties among others (e.g., maintainability, portability, understandability).

Domain analysis. We define our target domain as parallel systems software
architecture engineering. The archetypical stakeholder roles are system/domain
architects, application domain experts, customers, and software developers. Re-
garding the software development stages construction, debugging, and perfor-
mance tuning (cp. [6]), we focus on program construction, see Fig. 1. We further
focus on the behavioral view, regarding the behavior of a software system as
concurrent processes that act with or upon data, where each process is itself
deterministic. Stakeholders are thus encouraged to decompose the problem to
be solved in terms of processes that consists of sub-processes and tasks to be
performed sequentially or in parallel, and control flows between them. Although
emphasizing control flows, data flows and objects are also parts of the view.
Fig. 2 present an appropriate feature diagram.

DSL. Developing parallel applications using traditional programming lan-
guages can be very tedious and error-prone due to the linearity of textual source
code. Visual DSLs are multi-dimensional, thus able to present multiple con-
current control flows naturally, while fine-grained concurrency control may be
encapsulated in appropriate language feature semantics [7], [8]. We regard the
threading model as the primary technology underlying our (therefore horizon-
tal) DSL. Orthogonality to existing programming languages is also considered
to provide an understandable large-scale overview of program structure (cp. [7]).
We require the DSL to be visual (RQ-1) and graph-based (RQ-2). Language con-

Architecture Module Implementation
Design Design

Process Object

‘ ‘ ‘ Tuning

End Event lstart Eventl

Sub-Process | |Dependency lData Objectl
Debugging

Design Space/Granularity

Development Space

[Paraltel And] [nclusive or] [Exclusive or|

Fig. 1. Target domain context. Fig. 2. Feature diagram.

structs must conform to domain concepts, ideally providing distinct constructs
for each distinct concept (RQ-3). Also, the vocabulary of the language shall be
as small as possible (RQ-4) and the constructs shall facilitate model quality
(RQ-5). The language must be scalable (RQ-6) and hierarchically composable
(RQ-T7, cp. Fig. 3). Concurrency must be expressed explicitly as the coordination
of tasks and (sub-) processes to separate coordination from computation (RQ-8).
Thereby, tasks represent computation and sub-processes represent further com-
positions of coordinated tasks and sub-processes. Both should be instantiable
to represent concurrent execution of the same computation (RQ-9). Also, the
language should be control-driven [9] (RQ-10).

Method. System architects use the proposed DSL to construct a model for
the behavioral view of the architecture of parallel systems. From this model,
there may be subsequent model-to-model transformations, before code is gener-
ated that represents the executional framework of the parallel system to be devel-
oped. These transformations are created by transformation developers (special
domain architects), while functional implementation is left for complementing
modeling stages or manual implementation. This method scenario is presented
in Fig. 4. The benefits of the method are: (1) Knowledge capture. Architecture
models provide a basis for communication between domain experts, system ar-
chitects, and software developers. (2) Reuse and portability. Reference models
and transformations can be reused, providing a basis for software product lin-
ing; different target platform transformation sets can be applied to the same
architecture model. (3) Quality. Model bugs, as well as the respective responsi-
bilities, are separated from implementation bugs — the former having to be cor-
rected only once in the transformation descriptions instead of multiple times in
the source code. (4) Information Hiding. Transformations encapsulate platform-
specific implementation.(5) Development time reduction. Reusing models and
transformations saves development time.

4 Plans for Evaluation and Future Work

Our plans on evaluation are as follows: Domain model. To provide a refined
domain model, relevant concepts, their (shared and differentiating) features,

¥
Parallel Software DSL

System Architects use

create Model(s)
parallel

parallel
ot and (fork) task and (join) y
Stari en
O—<D <
I

event event Transformations

ion Developers
create

create

H Individual Parallel Software
Software Developers —————m Code i
create

uses Generate

expanded view on the sub-process A uses uses

O_’[}_’{ Il]_’O Platform

multiple-instance task

L Jonpoug amsfos

Fig. 3. DSL example. Fig. 4. Method scenario.

and additional requirements have to be further identified. This can be done
by identifying and analyzing reference applications for repetitive patterns [8]
Case studies. We intend to perform student case studies on developing an ex-
emplary parallel application using the proposed method, focussing on speedup.
Possible study scenarios are (a) a scenario in which the example application is
developed using the target platform technologies directly, and (b), a scenario
where the proposed method is used for architecture modeling, and subsequent
implementation of domain-specific functional aspects. Thereby, the case studies
have to be carefully designed regarding, for example, knowledge level, learn-
ing effects, and favouritism. Also, the exemplary application has to be selected
carefully considering, for example, source code and documentation availability,
implementation language, application size, algorithm complexity, and estimated
concurrency (cp. [3]). A possible application candidate currently regarded is
the Desmo-J! discrete-event simulation framework. A possible target platform
is Java since it is widely used in industry, supposed to be the first exposure
to parallel programming for many programmers, and provides JVM-supported
low-level thread management.

Our future work includes: (1) Language research. There are a number of
languages that can be regarded as coordination languages, and target to reduce
complexity by representing complex control-flow behavior of parallel programs
graphically, for example, discussed in[7], [9], and [10]. We will examine these
languages and their features for applicability to the envisioned DSL. We also
suppose the Business Process Modeling Notation (BPMN) to meet many of the
presented DSL requirements. Since it is well-known in the business workflow
domain it may provide a basis for the visual DSL representation with prospect
of broad dissemination, provided that the underlying semantics of the elements
remain fundamentally intact. (2) DSL Extension. We will examine the possi-
bility to extend the DSL to also abstract from message passing, thus covering

! http://desmoj.sourceforge.net/

the two most important parallel programming technologies. This may require
to extend the DSL by constructs for logical process locality. (3) Tool develop-
ment. We intend to support the method by appropriate tooling. This includes
a modeling environment that may base upon the Eclipse Modeling Tools? and
the openArchitectureWare MDA /MDD generator framework®.

5 Conclusion

In this position paper we discussed the need for higher abstractions in parallel
software development. This need is motivated by the inappropriateness of the
threading model since it requires to tame nondeterminism, the lack of parallel
programming experience, and the supposed impact of higher-level abstractions
on application performance. To satisfy this need, we proposed a model-driven
method that regards the architectures of parallel programs as the main devel-
opment artifact, and an adequate visual domain-specific language. Thereby, we
focused on the behavioral view, on top-down problem decomposition, and on the
controlled use of nondeterminism.

References

1. Sutter, H.: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software. Dr. Dobb’s Journal 30 (2005)
Lee, E.A.: The Problem with Threads. IEEE Computer 39 (2006) 33-42

3. Pankratius, V., Jannesari, A., Tichy, W.F.: Parallelizing BZip2. A Case Study in
Multicore Software Engineering. Technical report (2008)

4. IBM alphaWorks: Model-Driven Development Tool for Parallel Applications.
(http://www.alphaworks.ibm.com/tech/ngspattern) [Date posted: November 1,
2007; last visited: January 16, 2009].

5. Pllana, S., Benkner, S., Mehofer, E., Natvig, L., Xhafa, F.: Towards an Intelligent
Environment for Programming Multi-core Computing Systems. In Eduardo, C.,
Alexander, M., Streit, A., Traff, J.L., Cérin, C., Kniipfer, A., Kranzlmiiller, D.,
Shantenu, J., eds.: Euro-Par 2008 Workshops - Parallel Processing. Volume 5415.,
Berlin / Heidelberg, Springer (2009) 141-151

6. Zhang, K., Ma, W.: Graphical Assistance in Parallel Program Development. In:
Proc. of the 10th IEEE Intl Symp. on VisualVisual Languages, 1994. Proceedings.,
IEEE Symposium on. (1994) 168-170

7. Browne, J.C., Dongarra, J., Hyder, S.I., Moore, K., Newton, P.: Visual Program-
ming and Parallel Computing. Technical report, Knoxville, TN, USA (1994)

8. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Professional (2008)

9. Papadopoulos, G.A., Arbab, F.: Coordination Models and Languages. In: Advances
in Computers, Academic Press (1998) 329-400

10. Lee, P.A., Webber, J.: Taxonomy for Visual Parallel Programming Languages.
Technical report, School of Computing Science, University of Newcastle upon Tyne
(2003) Technical Report CS-TR-793.

N

2 http://www.eclipse.org
3 http://www.openarchitectureware.org/

