Using UNICORE and WS-BPEL for Scientific
Workflow Execution in Grid Environments

G. Scherp', A. Héing?, S. Gudenkauf', W. Hasselbring!, O. Kao?

1 OFFIS Institute for Information Technology, R&D-Division Energy, Escherweg 2,
26121 Oldenburg, Germany
email: [stefan.gudenkauf, guido.scherpl@offis.de,
wha@informatik.uni-kiel.de
2 Technische Universitéit Berlin, Faculty IV - Electrical Engineering and Computer
Science, Dept. of Telecommunication Systems, Complex and Distributed IT Systems,
FEinsteinufer 17, 10587 Berlin, Germany
email: [andre.hoeing, odej.kao]@tu-berlin.de

Abstract. Within the BIS-Grid project®, a BMBF-funded project in
the context of the German D-Grid initiative, we developed the BIS-Grid
workflow engine that is based upon service extensions to UNICORE 6 to
use an arbitrary WS-BPEL workflow engine and standard WS-BPEL to
orchestrate stateful, WSRF-based Grid services. Although aimed at prov-
ing the feasibility of applying Grid technologies for business information
systems integration, we illustrate that this engine is also well-suited for
scientific workflow execution, making standard WS-BPEL-based tooling
accessible for scientific workflows.

In this paper, we describe using the BIS-Grid engine for the execution
of scientific workflows. This includes a differentiation of scientific and
business workflows in general and an analysis of the suitability of the BIS-
Grid infrastructure to execute scientific workflows. We propose reusable
WS-BPEL patterns for typical scientific workflow activities whereas job
submission is focused. Finally, we prospect our future work.

1 DMotivation

Modern Grid middlewares such as UNICORE 6* are based on the Web Ser-
vice Resource Framework (WSRF) °, a standard that extends classical, stateless
Web services to be stateful. Like Web services, WSRF-based Web services, also
called Grid services, can be orchestrated to form complex workflows that itself
are provided as services by utilizing the Web Service Business Process Execution
Language (WS-BPEL). Although originally developed for service orchestration
in the business domain, WS-BPEL gained much attention from scientific com-
munities to be adopted for the design and execution of scientific workflows.

3 This work is supported by the German Federal Ministry of Education and Research
(BMBF) under grant No. 01IG07005 as part of the D-Grid initiative.

4 http://www.unicore.eu

® http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf



f BIS-Grid Workflow Engine

WSREF Interface

UNICORE/X Service WS-BPEL
UNICORE 6 Container Engine
Environment ActiveBPEL

BIS-Grid Service Extensions

WSREF Interface )) - <map>| > @

UNICORE 6 Workflow
Environment Instances

Fig. 1. Overview of architecture of the BIS-Grid workflow engine.

Within the BIS-Grid® project, a BMBF-funded project in the context of the
German D-Grid initiative, we developed the BIS-Grid workflow engine that is
based upon service extensions to UNICORE 6 to use an arbitrary WS-BPEL
workflow engine and standard WS-BPEL” to orchestrate Grid services. These
service extensions act as a WSRF proxy to the functionalities of the original WS-
BPEL engine and to the deployed WS-BPEL workflows itself, cp. Fig. 1, pro-
viding a Workflow Management Service for workflow deployment and a generic
Workflow Service for workflow execution and monitoring. For a more in-depth
view on the architecture of this engine, see [10]. Although originally aimed at
proving the feasibility of applying Grid technologies for the integration of busi-
ness information systems, this engine is also suited for scientific workflow execu-
tion, making standard WS-BPEL-based tooling accessible for scientific workflow
execution. To hide workflow complexity from the scientific user, we propose
reusable WS-BEL patterns for typical scientific workflow activities such as job
submission and data transfers instead of specific language extensions.

The paper is organized as follows. Related work is discussed in Sec. 2, followed
by a short overview of the differences between scientific and business workflows
in Sec. 3. Section 4 discusses the principal requirements for scientific workflow
execution and how they are addressed by BIS-Grid. The use of WS-BPEL for
scientific workflows including our WS-BPEL pattern is shown in Sec. 5 by the
example of job submission. Section 6 provides an outlook on our future work,
and Sec. 7 provides a conclusion.

2 Related Work

The Chemomentum project already provides workflow extensions for UNICORE 6,
consisting of two UNICORE 6 service containers. The first represents a workflow
engine that processes workflows on a logical level, the second represents a service
orchestrator that transforms so-called Work Assignments into jobs, given in the
Job Submission Description Language (JSDL) [1]. Both, this UNICORE 6 work-
flow system and the BIS-Grid engine, are implemented as service extensions to

5 http://www.bisgrid.de
" Ie., we did not modify nor extend the WS-BPEL language.



the UNICORE 6 service container. However, the UNICORE 6 workflow system
does not support the integration of a WS-BPEL workflow engine.

Akram et al. [2] identify requirements for scientific workflows — namely mod-
ularity, exception handling, mechanisms compensation/recovery, adaptivity and
flexibility, and workflow management — by the example of a protein crystallog-
raphy workflow. They also describe how the BPEL language addresses these re-
quirements, and the shortcomings of BPEL for scientific workflows. Most promi-
nently, these are the limited adaptivity regarding workflow modifications at run-
time, the lack of support for user interactions by the BPEL specification, and
the need to wrap non-portable engine-specific workflow management capabilities
using appropriate standards in order to use them in a portable manner.

Regarding the use of BPEL for Grid service orchestration, Leymann pro-
poses BPEL4WS? as foundation since it already fulfills many requirements of
the WSRF standard [12]. The appropriateness of BPEL is also examined and
confirmed in [5], [6], [7], [8], and [14]. These works mainly focus on scientific
workflows and, except for Ezenwoye et al. [8], rely on extending or adapting
BPEL, thus creating dialects.

The execution of jobs with WS-BPEL is also discussed in [15] in which a two-
stage approach is proposed. In the first stage a base flow is modeled to define
job execution, supplemented by a JSDL job description and a fault-handling
policy based on WS-Policy?. This base flow is expanded automatically in the
second stage by additional WS-BPEL fault-handling activities corresponding to
the respective fault-handling policy. The execution of the workflow is based on
two further non-WS-BPEL services, a job proxy to encapsulate job execution and
to receive notification messages from a scheduling system, and a fault-handling
service to apply extended fault-handling strategies such as workflow instance
migration. The approach was implemented and tested on IBM software.

In [16], Zhao et al. present a visual tool that abstracts a typical sequence of
BPEL activities for scientific computing to a new single activity. This sequence
comprises steps like submitTask or getTaskStatus and looks slightly similar to
the job submission workflow we present in Sec. 5. However, Zhao et al. focus
on visual complexity in the workflow editor. Before workflow deployment, the
proprietary code is translated to standard WS-BPEL.

3 Scientific vs. Business Workflows

A comparison between scientific workflows and business workflows is the topic of
several publications — directly or indirectly, as, for example, in [2] and [3]. Thus,
we will not present a complete comparison but focus on the principal differences
of scientific and business workflows, see Tab. 1.

8 BPEL4WS 1.1 is the predecessor of WS-BPEL 2.0.
9 http://www.w3.org/Submission/WS-Policy/



Table 1. Scientific vs. business workflows.

Scientific workflows Business workflows

Data-driven Control-driven

Control flow is implicit; an activity starts when Data flow is implicit and data is manipulated

the required input data is available. when the corresponding activity is executed in
the control flow.

User-centric Role-centric

Rights are often associated to persons Rights are associated to roles that are associated

(scientists) directly. The workflow designer is to persons. Elaborate role models for workflow

often also the workflow executor (does not participants/stakeholders.

necessarily hold for e-Science).

Voluminous data handling Information handling

Data handling often requires third-party Workflow data is usually small, regarded as

transfers (data transfers between two remote information and is stored in process variables

servers that are initialized by a local client). during workflow execution.

Ezxperiment itmplementation Service provisioning

Monitoring is of great importance, especially for Workflows must be guaranteed to complete and

intermediary results of a workflow. Workflows provide results as advertised to and

tend to evolve quickly as knowledge on the contractually agreed with customers [3].

domain/workflow is collected (cp. [3]).

4 BIS-Grid Engine for Scientific Workflows

As depicted in Sec. 2, WS-BPEL becomes more and more important for the
scientific community regarding the execution of scientific workflows in Grid envi-
ronments. Modern Grid middlewares such as UNICORE 6 and Globus Toolkit 4
provide their functionalities — for example, data transfer and job submission —
as (WSRF-based) Grid services. Scientific workflows that build on these Grid
middlewares must be described as an ordered invocation of such Grid services.
WS-BPEL, as the de facto standard for Web service orchestration, comes natu-
rally in mind for Grid service orchestration, although originally being designed
for business workflows.

Per se, WS-BPEL has some shortcomings that constrains its usability for
scientific workflows. Originally, the language has been designed to orchestrate
stateless Web services. Since data transfer and job execution, for example, have
state, the WSRF standard was developed to enable stateful Web services (Grid
services). Consequently, Grid service invocations are much more complex than
standard Web services — a WSRF service instance has to be created, is used, and
finally must be destroyed. To address this, we developed appropriate WS-BPEL
patterns for Grid service invocations for the Grid middlewares UNICORE 6
and Globus Toolkit 4 [4,11]. Further shortcomings do not originate from the
WS-BPEL language directly but from the workflow execution environments and
workflow design tools. Available WS-BPEL workflow engines, open source or
commercial, are not fully interoperable with the security features of existing Grid
middlewares. Such features are, for example, the support of SAML assertions
[13] to present additional signed security tokens (as roles), or the support of the
Grid Security Infrastructure (GSI) of Globus Toolkit 4 infrastructures that rely
on proxy certificates. Furthermore, available WS-BPEL design tools are usually
not suitable for scientific users because the applied workflow model is close to
the technical WS-BPEL language. Considering this, scientific users require a
workflow model fitting to their domain. For example, scientific users may need



to run several computations on selected data in a specific order by dropping
boxes (computations) onto a workbench and drawing lines (data flow) between
them. Prospects on these issues are presented in Sec. 6.

Table 2 presents an overview of the principal requirements we identified for
scientific workflows, and presents which of them are addressed by the WS-BPEL
language and tooling, or by the BIS-Grid engine. As shown, RQ-1 is met by
WS-BPEL itself. Regarding monitoring (RQ-2), the BIS-Grid engine supports
mechanisms that base upon the propagation of the monitoring capabilities of the
internal WS-BPEL engine by the UNICORE 6 layer, see Fig. 1, [10], and [11].
Upon these, advanced capabilities such as pull- or push/notification-based mon-
itoring of workflow activities can be implemented. Design-time error handling
and compensation (RQ-3 and RQ-4) are met by WS-BPEL, while run-time error
handling and compensation are matters of the workflow execution environment.
While these are important issues to be addressed in operational execution en-
vironments, they are not focused in BIS-Grid and regarded as underlying the
actual workflow execution engine. Regarding RQ-5, BIS-Grid relies on the the
Netbeans IDE!Y and it’s BPMN-oriented visual DSL (Domain-specific language).
Together with appropriate WS-BPEL patterns, this represents an abstraction
from the technical workflow implementation that is comfortable for general pur-
pose workflow design both for business workflows as well as scientific workflows,
and provides a basis for further domain-specific abstraction above the WS-BPEL
pattern layer. RQ-6, voluminous data transfers, is addressed in the following sec-
tions in terms of file staging.

5 WS-BPEL Job Submission Pattern for Scientific
Workflows

Scientific workflows often are realized as (batch) jobs that can be defined as
non-interactive computational tasks that are intended to be executed on high-
performance computing (HPC) systems. Grid middlewares typically support the
submission of such jobs to an HPC system by utilizing the local batch system,
but modern Grid middlewares also provide means for exposing their functional-
ities as Grid services, thus enabling service orchestration. Grid services such as
job submission services support further standards like the Job Submission De-
scription Language (JSDL) or OGSA Basic Execution Services (OGSA-BES)!!.
Using job submission services results in almost generic sequences of Grid and/or
Web service invocations'? that can be encapsulated in a generic and config-
urable WS-BPEL (sub-)workflow. Our BIS-Grid engine allows to execute such
a workflow in Grid environments whereas the workflow itself is provided as a
Grid service. This facilitates reuse in higher-level service orchestrations. In [4]
we identified WS-BPEL patterns for orchestrating Grid services using standard

10 http://www.netbeans.org/features/soa/index.html
" http://www.ogf.org/documents/GFD.108.pdf
2 For most jobs, these sequences are almost identical, cp. [16].



Table 2. Principal requirements of scientific workflows.

RQ Requirement description Compliance

RQ-1 Modularity and composability. Although evolving in WS-BPEL is composable by nature.
nature, scientific workflows often base upon recurring
standard activities. Regarding different levels of ab-
straction, providing sub-workflows as standard activ-
ities of superior workflows facilitates reuse and main-
tenance. Separating workflows in different parts facil-
itates the scalability of workflow execution.

RQ-2 Monitoring. Scientific workflows are often long- The BIS-Grid engine supports basic
running; progress monitoring and the inspection of in- monitoring of workflow state. WS-
termediary results is therefore an important issue. BPEL EventHandlers improve simple

execution state monitoring.

RQ-3 Error handling and fault tolerance. The long-running WS-BPEL provides mechanisms for
nature of scientific workflows causes interruption due error handling at design time.
to errors to be regarded as highly undesirable. Mecha-
nisms should ideally address design-time (error han-
dling for forseen events) and run-time (fault toler-
ance).

RQ-4 Adaptability. As the underlying resource infrastruc- WS-BPEL provides mechanisms for
ture may change during workflow execution, work- compensation at design-time.
flow adaptability is regarded as desirable. Mechanisms
should ideally address design-time (compensation for
forseen events) and run-time.

RQ-5 Domain-specificity. Often, scientists are not only the BIS-Grid uses Netbeans IDE for work-
users of scientific workflows but also their designers. flow design, using it’s BPMN-like vi-
This requires adequate domain-specific modeling while sual DSL and appropriate WS-BPEL
technical details should be concealed as far as possible. patterns [4, 11] to abstract from tech-

nical workflow implementation.

RQ-6 Voluminous data transfers. Scientific computations Generally, third party transfers can
are often based on voluminous data. This data has to be modeled and executed with BIS-
be transferred to the respective computing resources. Grid. JSDL-compliant Grid middle-

wares provide file staging mechanisms
as defined by JSDL.

WS-BPEL. Based on this pattern we developed a WS-BPEL pattern to encap-
sulate Grid service invocations for job submission to UNICORE 6. A description
of this job submission pattern is presented in Tab. 3.

Job submission to UNICORE 6 consists of several phases that are described
briefly in the following. Additionally, Fig. 2 illustrates the corresponding work-
flow. Please note that we omitted exception handling and compensation for the
sake of clarity. The current signature of the job submission workflow is described
in Tab. 4. At least, the endpoint to a UNICORE 6 target system and the JDSL
Job description is mandatory as input. At the moment, the output is a job
failed /succeeded message. This workflow itself can be used in high level work-
flows in which a resource broker is invoked to choose a target system with least
load before submitting a job.

1. Job Submission Receive: A JSDL job description and configuration pa-
rameters are received and stored in process variables.

2. Target System Service Instance Create: A Target System Service in-
stance is created via the default factory instance of the Target System Fac-
tory Service.

3. Target System Service Instance Submit Job: The JSDL job description
is submitted to the Target System Service instance which creates a Job Man-
agement Service instance.



Table 3. Job Submission Pattern.

Pattern description

Motivation Scientific workflows often are designed as non-interactive computational tasks in the
form of (batch) jobs. Regarding reuse, there is the need to integrate such jobs in
workflows that are designed on a higher level of abstraction than jobs.

Intention Define a workflow that executes a (batch) job on a UNICORE 6 installation by using
the target system service and it’s job management service to submit and start a job
and its respective data, and to retrieve the job’s outcome upon completion.

Behavior See Figure 2.

Participants The invoker of the job submission workflow, the Target System Factory Service, the
Target System Service, and the Job Submission Service.

Consequences (1) Job submission is encapsulated in a workflow using an appropriate workflow

description language. This facilitates the reuse of existing jobs on a higher level of
abstraction and reduces submission errors and redundant user-triggered submissions
by reuse.
(2) Workflow reuse also simplifies the protocol of high-level workflows and abstracts
from submission details. When the workflow language allows hierarchical composi-
tion, as WS-BPEL, the job submission may be described with the same language as
the high-level workflows.

4. Job Management Service Instance Start Job: The Job Management Ser-
vice instance is used to start job execution.

5. Job Management Service Instance Retrieve Result: The status of the
job execution is fetched periodically from the Job Management Service until
the job is completed or failed, afterwards the job result is stored in a process
variable.

6. Job Management Service Instance Destroy: The Job Management Ser-
vice instance is destroyed.

7. Target System Service Instance Destroy: The Target System Service
instance is destroyed.

8. Job Result Reply: The job result is returned.

Table 4. Signature of the job submission workflow.

Name Type Description
Input parameters
TargetSystem
(mandatory) wsa:EndpointReferenceType  The endpoint to the Target System Factory Ser-
vice that should be used to create the Target Sys-
tem Service instance.
JSDL
(mandatory) jsdl:JobDefinition_-Type The job description according to the JSDL stan-
dard.
LifetimeIntervall
(optional) xsd:duration Maximum runtime of the job execution. If omit-
ted, a default lifetime is used.
WaitInterval
(optional) xsd:duration Waiting time between two job execution status
retrievals. If omitted, a default waiting time is
used.
Output parameters
Result xsd:string The result (successful or failed) of the job execu-

tion.



Job Submission Receive /7 Target System Service Instance Create

[Assign] [Invoke]
TSR create TSR factory
request service

[Receive]
job submission
request.

Target System Service Instance Submit Job

(( [Assi qn] [Assign] [Assign] [Assign] [Invoke]
endpoint £il1 endpoint endpoint job definition| | target system
reference reference reference to (JSDL) to (submit job)

\_to variable partnerLink message

Job Management Service Instance Start Job

[Assign] [Invoke]
[Assign]
endpoint [Assign] job management
£ill endpoint
reference to start message service
reference
partnerLink (start job) J

Job Management Service Instance Retrieve Result

[Assi qn
endpoint
reference

to variable

\

P
[Rssi. gn] (Assign] [Assign] [Assign]
endpoint endpoint Resource

£i11 endpoint
reference reforance reference to Property doc
\_to variable partnerLink request
[Invoke] [Wait]
job management predefined
service date/
‘ (get RP doc) time period
[Repeat until
job done
g Job Management Service Instance Destroy
[Assign] [Assign] [Assign] [Invoke]
£i11 endpomL endpoint destroy job management
reference reference to request service
partnerLink (destroy)
/’ Target System Service Instance Destroy
[Assign] [Assign] [Assign] [Invoke]
£i11 endpomc endpoint destroy target system
reference reference to request (destroy)
partnerLink
’/ Job Result Reply
[Assign] [Reply]
set job result job result @

Fig. 2. Job submission process.

The JSDL standard includes the description of file staging (RQ-6) to initiate
file transfers before (stage-in) and after (stage-out) the actual job execution.
This mechanism can be used to transfer input and output data (often several
gigabytes) for a single job execution. Hence, the corresponding job submission
workflow does not include explicit file transfer activities. Note that the proposed
pattern is not directly applicable to all kinds of scenarios. For example, a scien-
tific user may want to run several jobs using the same input data that should
not be transfered for each single job execution. A solution to this scenario is to
provide a special file transfer workflow that can be directly integrated in the job
submission workflow, or in higher-level workflows (cp. Sec. 6).

6 Prospects

As already stated in Sec. 5, file staging for compute jobs is implicitly possible
(cp. RQ-6). The staging is defined in JSDL, placing the responsibility for pre- and
post-job execution of data transfers on the execution environment. More complex
scenarios, however, require more sophisticated functionalities. For example, this



is the case for explicit data staging as input for a bundle of jobs. Generally,
file staging requires to transfer files from a source to a destination — supported
by appropriate protocols such as GridFTP or UNICORE File Transfer Services.
Typical file transfers are executed between a local user client and a remote
destination, or between a remote source and a remote destination, the latter
being referred to as third-party transfers. Since available workflow engines usually
are not designed to pass and transfer voluminous data (RQ-6) directly, third-
party transfers can be realized by workflows — using the workflow engine solely for
transfer coordination. We propose to regard such transfer workflows as a single,
configurable workflow activity specific to the scientific domain (cp. RQ-5).

We developed a WS-BPEL pattern to invoke Grid services in Globus Toolkit 4
(GT4) [4]. This pattern provides a basis to develop GT4 job submission and file
transfer workflows analogous to those discussed in this paper. However, beside
mere service orchestration it is necessary to address the respective security in-
frastructures. Since the BIS-Grid engine is based on UNICORE 6, the secure
invocation of (external) UNICORE 6 Grid services in workflows is guaranteed.
To enable the secure invocation of GT4 Grid services we plan to support the
GT4 Grid Security Infrastructure (GSI) in the BIS-Grid engine. This will be eval-
uated in an appropriate application scenario which is currently being prepared.
Another important issue for scientific workflows is scalability, which is already
considered in the design of the BIS-Grid engine [9]. Nevertheless, scalability is
currently not supported directly and thus regarded as future work.

7 Conclusion

In this paper, we described to use the BIS-Grid workflow engine, consisting of
service extensions to UNICORE 6 and an arbitrary WS-BPEL engine, for the
execution of scientific workflows. Thereby we focused on job submission as an im-
portant aspect of scientific workflows, and presented an appropriate WS-BPEL
pattern for job submission with UNICORE 6. Previously, we discussed the prin-
cipal differences of scientific and business workflows, and presented the principal
requirements of scientific workflows. We also presented our future work focusing
on advanced file staging mechanisms, on interoperability with Globus Toolkit 4
by supporting the Grid Security Infrastructure and by developing analogous
WS-BPEL patterns specific to Globus Toolkit 4, and on regarding scalability.

References

1. Job Submission Description Language (JSDL) Specification, Version 1.0.
http://www.gridforum.org/documents/GFD.56.pdf, November 2005.

2. Asif Akram, David Meredith, and Rob Allan. Evaluation of BPEL to Scientific
Workflows. In CCGRID °06: Proceedings of the Sizth IEEE International Sympo-
sium on Cluster Computing and the Grid, pages 269—274, Washington, DC, USA,
2006. IEEE Computer Society.



10.

11.

12.

13.

14.

15.

16.

Roger Barga and Dennis Gannon. Scientific versus Business Workflows. In Work-
flows for e-Science, pages 9-16. Springer London, 2007. ISBN 978-1-84628-519-6
(Print) 978-1-84628-757-2 (Online).

André Brinkmann, Stefan Gudenkauf, Wilhelm Hasselbring, André Hoéing, Odej
Kao, Holger Karl, Holger Nitsche, and Guido Scherp. Employing WS-BPEL Design
Patterns for Grid Service Orchestration using a Standard WS-BPEL Engine and a
Grid Middleware. In Marian Bubak, Michal Turala, and Wiatr Kazimierz, editors,
CGW’08 Proceedings, pages 103—110, Cracow, Poland, 2009. ACC CYFRONET
AGH.

Kuo-Ming Chao, Muhammad Younas, Nathan Griffiths, Irfan Awan, Rachid
Anane, and C-F Tsai. Analysis of Grid Service Composition with BPEL4WS.
In Proceedings of the 18th International Conference on Advanced Information Net-
working and Application (AINA’04), volume 01, page 284, Los Alamitos, CA, USA,
2004. IEEE Computer Society.

Tim Doérnemann, Thomas Friese, Sergej Herdt, Ernst Juhnke, and Bernd
Freisleben. Grid Workflow Modelling Using Grid-Specific BPEL Extensions. 2007.
Wolfgang Emmerich, Ben Butchard, Liang Chen, Sarah L. Price, and Bruno
Wassermann. Grid Service Orchestration Using the Business Process Execution
Language (BPEL). In Journal of Grid Computing (2006), pages 283-304. Springer,
2006.

Onyeka Ezenwoye, S. Masoud Sadjadi, Ariel Cary, and Michael Robinson. Orches-
trating WSRF-based Grid Services. Technical report, School of Computing and
Information Sciences, Florida International University, April 2007.

Stefan Gudenkauf, Wilhelm Hasselbring, Felix Heine, André Héing, Guido Scherp,
and Odej Kao. Bis-Grid: Business Workflows for the Grid. In CGW’07 Proceedings,
pages 86-94, Krakow, Poland, 2008. ACC CYFRONET AGH.

Stefan Gudenkauf, Wilhelm Hasselbring, André Hoing, Guido Scherp, and Odej
Kao. Workflow Service Extensions for UNICORE 6 - Utilising a Standard WS-
BPEL Engine for Grid Service Orchestration. Lecture Notes in Computer Science:
FEuro-Par 2008 Workshops - Parallel Processing, 5415, 2009.

Stefan Gudenkauf, André Héing, and Guido Scherp. Catalogue of WS-BPEL De-
sign Patterns. Technical report, 05 2008.

Frank Leymann. Choreography for the Grid: towards fitting BPEL to the resource
framework: Research Articles. Concurr. Comput. : Pract. Ezper., 18(10):1201—
1217, 2006.

Nick Ragouzis, John Hughes, Rob Philpott, Eve Maler, Paul Madsen, and
Tom Scavo.  Security Assertion Markup Language (SAML) V2.0 Techni-
cal Overview. http://www.oasis-open.org/committees/download.php/22553/
sstc-saml-tech-overview-2%200-draft-13.pdf, February 2007. Working Draft.
Aleksander Slomiski. On using BPEL extensibility to implement OGSI and WSRF
Grid workflows: Research Articles. Concurr. Comput. : Pract. Exper., 18(10):1229—
1241, 2006.

Wei Tan, Liana Fong, and Norman Bobroff. BPEL4Job: A Fault-Handling Design
for Job Flow Management. In ICSOC ’07: Proceedings of the 5th international
conference on Service-Oriented Computing, pages 27-42, Berlin, Heidelberg, 2007.
Springer-Verlag.

Zhili Zhao, Ruisheng Zhang, Jiazao Lin, Ying Chen, Huajian Zhang, and Lian Li.
An Improved Visual BPEL-Based Environment for Scientific Workflow. In GCC
"08: Proceedings of the 2008 Seventh International Conference on Grid and Coop-
erative Computing, pages 435—441, Washington, DC, USA, 2008. IEEE Computer
Society.



