
Model Driven Performance Measurement and
Assessment with MoDePeMART?

Marko Bošković1 and Wilhelm Hasselbring2

1 Athabasca University, Canada,
marko.boskovic@athabascau.ca,

2 Software Engineering Group, University of Kiel, Germany,
wha@informatik.uni-kiel.de

Abstract. Software performance is one of important software Quality
of Service attributes. For this reason, several approaches integrate perfor-
mance prediction in Model Driven Engineering(MDE). However, MDE
still lacks a systematic approach for performance measurement and met-
rics assessment. This paper presents MoDePeMART, an approach for
Model Driven Performance Measurement and Assessment with Rela-
tional Traces. The approach suggests declarative specification of per-
formance metrics in a domain specific language and usage of relational
databases for storage and metric computation. The approach is eval-
uated with the implementation of a UML Profile for UML Class and
State diagrams and transformations from profile to a commercial rela-
tional database management system.

1 Introduction

Increasing dependency on software systems, and consequences of their failures,
raises the question of software system trustworthiness [1]. In order to use soft-
ware systems as dependable systems, means for quantification, verification, and
contractual trust of those systems are being invented.

Means of quantification, verification, and contractual trust have to be done
for both, functional and non-functional requirements. Functional requirements
define functionality which is the objective of the system. Non-functional re-
quirements are constraints on system’s functionality offered by the system like
security, privacy, reliability, timeliness etc [2]. They are characteristics of func-
tionality design and implementation, and often they are called quality require-
ments [1].

Some of the non-functional properties of a service, of particular interest to
users, are often specified with the Quality of Service (QoS). Performance, is one
of the QoS attributes. In this paper, performance is defined as degree to which
objectives for timeliness are met [3]. It describes timing behavior of a software
system and it is measured with metrics like throughput and response time.

? This work is supported by the German Research Foundation(DFG), grant GRK
1076/1

Significance of meeting non-functional requirements in trustworthy software
systems development, requires addressing them in the early design phases, in
parallel to functional requirements. For this reason, research in meting perfor-
mance requirements in Model Driven Engineering (MDE) was mostly dedicated
to performance predictions with analytical modeling and simulation, e.g. [4].
Performance measurement and empirical assessment of predicted values are left
to be done with profiling tools, or various techniques of manual insertions of code
for data collection and metrics computation. There is still not a model driven
approach for performance measurement and assessment.

This paper shows an approach for Model Driven Performance Measurement
and Assessment with Relational Traces) called MoDePeMART. The essence
of the approach is: (1) declarative specification of measurement points and met-
rics in a domain specific language, (2) automatic generation of code for data col-
lection, storage, and metrics computation, and (3) usage of Relational Database
Management Systems (RDBMS) for performance data storage and computation.

The paper is structured as follows. Section 2 explains the need for a model
driven approach for performance measurement and assessment. Measurement
and assessment with MoDePeMART is depicted in Section 3. The metamodel
which enables declarative specification of measurements and metrics compu-
tation is described in Section 4. The evaluation of the approach through the
implementation as a UML Profile for UML Class and State diagrams and trans-
formations to MySQL RDBMS is shown in Section 5. Section 6 contains the
comparative analysis of the approach with other approaches for performance
measurement and assessment. The limitations (assumptions) of the approach
are specified in Section 7. Section 8 gives an outlook of the approach and the
directions for the future work.

2 Motivation

MDE is a software engineering paradigm which suggests using models as the
primary artifacts of software development. It relies on two basic principles [5]:
abstraction and automation.

Abstraction suggests usage of Domain Specific Modeling Languages (DSMLs).
DSMLs are specialized modeling languages for solving classes of domain prob-
lems. Users of DSMLs are experts of that domain. Accordingly, DSMLs contain
concepts used by domain experts. With DSMLs domain experts specify solutions
to domain problems without being distracted by implementation details.

Automation handles implementation. It suggests transformations of DSML
models to implementations. This principle can be seen as one more level of
compilation.

In such a development process performance analyst faces several problems
when trying to measure and assess performance. First, the modeling language
used for software functionality development might not support constructs needed
for the performance measurement and assessment, such as routines for obtaining
time. Second, even if it does, a performance analyst is not an expert in that mod-

eling language, and it might be difficult for him to use it. Finally, data collection
and assessment at the platform level can be error-pronouns. In order to do it a
performance analyst would have to know how the domain specific constructs are
transformed to the platform. To remove these problems we suggest declarative
specification of metrics of interest in DSML and automatic instrumentation and
code generation, facilitated with the MoDePeMARTapproach and depicted in
the next section.

3 MoDePeMART: Model Driven Performance
Measurement and Assessment with Relational Traces

MoDePeMARTintegrates performance measurement and assessment in MDE,
in such a way that it is transparent to the developer. The example on UML is
described in Figure 1.

Platform code
with probes

1. Design

4. Deployment

6. Testing

3, Transformation
(and Compilation)

A

B

SB

SA

SQL DML
Assessment Queries

6. Data collection
(measurements)

:Duration

MRT : SimpleAssessment

2. Instrumentation

7. Assessment

…
<<InstrumentedElement>> public a()
…

<<InstrumentedElement>>

SQL DDL Tables
Definition and DML
Initialization Code

5. Initialization

MDE MoDePeMART

Fig. 1. Performance Measurement and Assessment in MDE with MoDePeMART

After the design model is finalized (1), the instrumentation (2) takes place.
Here, measurement points are specified in the model. Furthermore, also are spec-
ified metrics of interest. Finally, the context of the service is specified. More on
context is explained in Subsection 3.1. Measurement points, metrics, and context
are specified in the DSML defined in Section 4.

From the design and performance measurement and assessment model trans-
formation (3) generates software code with integrated code for performance data
collection, and code for performance data storage and metrics computation. The
generated code for performance data storage and metrics computation is SQL
DDL code for tables needed for data storage, and SQL DML code for initial
table entries required for metrics computation. The transformation is followed
by compilation of the platform code.

After the deployment (5) of the generated code, RDBMS for storing and
metrics computation is initialized (6). Next, execution of test cases takes place
during which data about software execution are collected(7). Finally, to compute
performance metrics SQL DML queries are executed (8).

MoDePeMARTapproach is language independent approach. However, it
assumes some characteristics of modeling languages and systems. These charac-
teristics and performance assessment in such systems are discussed in the next
section.

3.1 Transformational and Reactive Software Systems and
Performance Assessment

MoDePeMARTassumes that a modeling language for software development
facilitates modeling of two subsystems: transformational and reactive. Transfor-
mational [6] systems are systems which take some input value and transform
them to some output value through the set of steps specified by some algo-
rithm. For the same input value, they will always go through the same steps. An
example of transformational software system is in Figure 2 a).

n-commercial Use Only

[type="movie"]
opt

videoItemFacade : VideoItemFacade itemFacade : ItemFacade

getItem(-, -)2:

getItem(-, -)3:

getVideoItem(-, -, -)1:

a)

On

Off

on() : voidoff() : void

b)

Fig. 2. Transformational (a) and reactive (b) behavior in getVideoItem method in-
vocation.

The getVideoItem method is a method for obtaining video items in a small
electronic items management application. Two kinds of items are obtained from
the database with this method: a movie and a music video item. When user
requests a movie, the value of the variable type is “movie” and the user gets
two files: a movie trailer and the movie. The getItem invocation 2 obtains the
trailer and the invocation 3 obtains the movie. When user requests a music
video item, the value of type is not “movie” and only the getItem invocation
3 executes. This invocation obtains a music video file from the database.

Transformational programs are composed of [7]: simple commands (e.g. as-
signing a value to a variable), composite commands (e.g. a command block),
guarded command (e.g. a UML option block or if statement), guarded com-
mand set (e.g. UML alternatives or the C switch statement), and loops. These
commands are composed with two relations [7]: invocation (one uses another
one) and sequential composition (one executes before another one).

Reactive software systems are systems which receive stimuli from environ-
ment and either change internal state, or produce some action in environment.
The behavior depends on both stimulus and current system state. The reactive
subsystem of the ItemFacade manages the data compression in database and
the getItem method communication. When the state is On, the data is com-
pressed in the DBMS and decompressed at the ItemFacade side. When Off,
there is no compression.

The context of the service execution has to be taken into account when assess-
ing performance. Inappropriate context specification can lead to inappropriate
performance assessment. In systems with interwoven transformational and re-
active part, both, transformational and reactive context have to be taken into
account. Transformational context is the sequence of method (non)executions
before and after the required service. For example, let us assume that it is of
interest the response time of the getItem method when obtaining a movie file.
If only the execution of the getItem would be considered without any specifi-
cation of previous executions, the computed response time would also include
executions of the getItem outside of the getVideoItem method. One more
attempt without the specification of context is to consider the time between
the invocation of the 3. getItem method from the getVideoItem method and
the arrival of it’s return value. However, in this case the final response time in-
cludes obtaining movies and music videos. The solution is in specification that
the response time is computed for getItem method which is invoked from the
getVideoItem method and that the optional block did not execute before the
getItem execution.

Reactive context is the state of the system. The state can have a diverse
impact on response time. For example, if the communication in the previous ex-
ample is compressed, obtaining a movie response time can be reduced. However,
the response time of obtaining a trailer can be increased. Due to the small size
of the trailer the compression, transfer of compressed data, and decompression
can take more time than transfer of non-compressed data.

4 The Metamodel for Performance Measurement and
Assessment

In previous section it is explained that the MoDePeMARTsuggest declara-
tive specification of performance measurements and metrics computation with a
DSML. For this reason, the DSML defining metamodel facilitates the declarative
specification of: execution context, and metric computation.

The declarative specification of transformational execution context is enabled
with the part of the metamodel in Figure 3.

l Use Only

InstrumentedElement

StateCondition

MeasuredEvent

ScenarioEvent

SubScenario

Alternatives

Scenario

PrecedeContain Negative

Group

Root

+absent

1

*

+measuredScenarioEvent
1

*

+scenarioEventCondition
0..1

*

+contained1

+contains1

+scenarioEvent

*

*

+preceded1

1

+precedes
1

1

+instrumentedElement
1

*

+alternative
1..*

*

+eventScenario1

*

+groupEvent*

*

+scenarioRoot1

Fig. 3. The part of the metamodel for transformational context specification.

The measurement points of a model are specified with instances of the In-
strumentedElement metaclass. Instrumented elements can be either simple
commands or statement block.

Transformational context can be specified with instances of Scenario, Root,
ScenarioEvent, Alternatives, Contain, Precede, Negation and SubSce-
nario metaclasses. A transformational context is encapsulated in the Scenario
metaclass, and consists of it’s ScenarioEvents, and interrelations between them.
A scenario event is an instrumented element and its reactive context. One in-
strumented element in the same reactive context can find itself several times
in a scenario and each time it is a different ScenarioEvent instance. For ex-
ample, getItem invocations in Figure 2 are specified with two ScenarioEvent
instances.

Interrelations form a tree composed of ScenarioEvent, Alternatives, Con-
tain, Precede, Negation and SubScenario metaclasses. A transformational
context starts with root invocation. A root can be either an instance of Scenar-
ioEvent for the scenario containing only one event, or an instance of Contain

ConditionElement

+conditionRelation : ConditionRelation

<<enumeration>>
ConditionRelation

overlapped

contains

overlaps
during

InstrumentedElement

StateCondition
ScenarioEvent

Binary

AND

NOT

OR

+scenarioEventCondition
0..1

*

+instrumentedElement
1

*

+instrumentedElement1

*

+leftOperand 1

*

+rightOperand 1
+operand

1

*

Fig. 4. The part of the metamodel for reactive context specification.

for more complex scenarios. Metaclasses Contain and Precede enable spec-
ification of invocation and sequential composition, respectively. The metaclass
Alternatives supports specification of guarded command sets. Simple com-
mands are being specified with ScenarioEvent. Composite command specified
with the usage of SubScenario and all other metaclasses mentioned in this
paragraph. Guarded commands specification is made possible with the Nega-
tion and Precede, as explained on the example in Subsection 3.1. Finally, loop
can be considered as a statement block and it can be specified either as an
instrumented element or a composite command.

The reactive context’s specification is enabled with the metamodel part
shown in Figure 4.

Reactive context is specified with a boolean algebra of active states during
the scenario event execution. Furthermore, the interrelation of active states and
the scenario event is also taken into account. The boolean algebra is specified
with StateCondition, Binary, AND, OR, NOT metaclasses, and Condi-
tionElement metaclass. The possible interrelations are specified in the enumer-
ation ConditionRelation enumeration. Based on the assumptions/limitations
of the approach, explained in Section 7, and on the ontology of the interval in-
terrelations identified in [8], four possible interrelations are identified: contains,
during, overlaps, and overlapped. Contains is the interrelation between a
state and a scenario event where a state starts before and ends after the execu-
tion of the scenario event. Overlaps is the interrelation in which a state starts
before the start of the scenario event execution, but ends before the end of the
scenario event execution. During and overlapped are inverse to contains and
overlaps, respectively.

The MeasuredEvent metaclass is used after the context specification for
the definition of an event of interest. It contains a context in the eventScenario
attribute, and the event of interest in measuredScenarioEvent attribute. Fi-
nally, in some cases there is a need for treating several events as one. For example,

Only For Non commercial Use O
meandeviation
avdeviation
stdeviation

median
mean
mode

max
min

<<enumeration>>
Statistics

StatisticalAnalysis

-statisticalFunction : Statistics

OcurrencePercentage

Distribution

-kind : DistributionKind

<<enumeration>>
DistributionKind

cumulative
density

OcurrenceRate

IntervalSet

Duration

Analysis

Metric

-durationAnalysis 1
*

-intervalSet1
*

Fig. 5. The part of the metamodel for performance metrics specification.

if a performance analyst would like to measure throughput of a component, he
would have to group all methods of that component, and then specify compu-
tation of throughput. The Group metaclass facilitates grouping of events for
which metrics are computed.

The specification of events of interest is followed by specification of desired
metrics and time intervals for which they are computed. The metrics metamodel
part facilitating metrics specification is presented in Figure 5.

Metrics for performance assessment defined in this metamodel correspond
to performance definition in Section 1, and UML SPT [9] and MARTE [10]
standard metrics. Duration and OccurrenceRate metaclasses correspond to
response time and throughput, respectively. OccurrencePercentage is used
for verification of execution probabilities of different alternatives in branching.

Duration of a program construct is being characterized with some statis-
tical functions. Those statistical functions are generalized with the Analysis
metaclass. Statistical functions are divided into two groups. One group are dis-
tribution functions, cumulative and density, defined with instances of Dis-
tribution and IntervalSet metaclasses. Distribution functions are computed
as histograms and IntervalSet instance defines withs of bars in histograms.
The second group of functions are statistical functions which summarize a set of
durations in one value. Such metrics’ computation is being defined with Statisti-
calAnalysis metaclass instances. Examples of these metrics are mean, median,
standard deviation, skewness and so on, and they are defined in the Statistics
enumeration. This set can be extended. The only requirement is that each func-
tion in this enumeration has the corresponding function in the target RDBMS.

Values of all metrics vary over the time. For example, during the peek periods
of day response time is higher than in the rest of the day. For this reason, the
assessment has to address issues of varying performance metrics values. This is
facilitated with the metamodel part in Figure 6.

SimpleAssessment metaclass enables separation of performance assess-
ment time intervals into sub intervals. For example, let the assessment be for

ommercial Use Only For Non-c

CompositeAssessmentSimpleAssessment

TimeIntervalSet

Assessment

Analysis

Metric

Group

-previousLevelAssessment
1

*

-metricAnalysis
1

*

-analysisGroup1

-metric
1

*

-timeIntervalSet1

*

Fig. 6. The part of the metamodel for specification of time varying metrics observa-
tions.

a time interval of one day and the metric of interest mean duration. With a
SimpleAssessment instance and an instance of TimeIntervalSet it can be
specified that mean duration is computed for each hour of the day. The TimeIn-
tervalSet instance defines subintervals for which the metric is computed, here
each hour of a day.

CompositeAssessment metaclass enables further statistical analysis of the
simple assessment values. For example, with CompositeAssessment it can
be specified a computation of density distribution of previously mentioned one
hour mean durations. Furthermore, for example the standard deviation of one
hour mean durations for six hours time intervals can be computed. The time
subintervals for composite assessment are also specified with TimeIntervalSet
instances.

5 Evaluation

The approach is evaluated with an implementation of a UML Profile, and trans-
formations from the profile to Java with RMI and MySQL RDBMS. The UML
profile is entitled PeMA: The UML Profile for Performance Measurement and
Assessment, and it is, at the present moment, suited only for UML Class and
State diagrams. The implementaion in MagicDraw 15.1 Community Edition can
be seen in Figure 7.

For these two diagram types the only measurement elements which can be
instrumented are operations in Class diagrams and states in State diagrams. The
rest of the metamodel is implemented as a model library.

UML Class and State diagrams are transformed into client-server Java RMI
applications. For denotation of UML classes modeling client functionality is de-
fined a stereotype �Client�. A corresponding Java class is generated for each
class with the�Client� stereotype. Furthermore, generated are proxies of server
classes whose methods are directly invoked by clients.

Server classes are classes without the �Client� stereotype. For each server
class are generated a corresponding Java functionality implementation class and

Fig. 7. The implementation UML Profile for Performance Measurement and
Assessment in MagicDraw 15.1 CE. Figure shows the context specification part.

it’s instances pool class. Pool classes facilitate concurrent execution defined in
Section 7. When a client connects to the server immediately are allocated from
pools instances of Java functionality classes to serve to the client. Dispatching
between clients and corresponding instances is performed by generated RMI
server object class. State charts at the client and server side are implemented
with State pattern [11]. These transformations are out of this paper’s scope.

Used RDBMS for performance data storage and metrics computation is
MySQL 5.2. JDBC MySQL Connector/J driver version 5.1.5 was used as a
database driver for performance data storage. Transformations from measure-
ment and assessment part to SQL code for initialization and metrics computation
are out of scope of this paper.

Experiments on measuring the duration of the performance data storage
procedure were conducted to depict the impact of the measurements to the
overall performance. The application was running on the Intel Pentium 4 3.00
GHZ hyperthreaded processor (two virtual cores), 1GB of physical memory, and
GNU/Linux 2.6.17.13. The observed value in the experiment was the duration
of the performance measurement and data storage routine. Furthermore, it is
analyzed with different number of concurrent service requests. For each number
of concurrent requests, the experiment was repeated 10 times. Each repetition
contained the complete restart of the server, in order to approximate the impact
of the distribution of server software over working memory pages.

The experiment was conducted to show the central tendency of the duration
of the routine. This should serve as orientation to the performance analyst of
how long might the routine last. For this reason was computed the median of the

Concurrent requests 1 10 20 30 60 100

mean(median) 192ms 204 ms 229ms 260ms 289ms 327ms
Table 1. The mean of the median for various concurrent invocations.

duration routine. Then, in order to approximate the value of the data collection
and storage routine median, it is computed the mean for all 10 repetitions. The
results can be seen in Table 5.

The results show that the performance data collection and storage routine
increases with the number of concurrent service requests. In order to obtain
the right values of the response times the resulting values from Table 5 for the
appropriate number of concurrent invocations should be multiplied by the num-
ber of the measurement points at one service and subtracted from the complete
measured service response time.

6 Related Work

The measurement and assessment of performance is an important topic in soft-
ware engineering. This section compares MoDePeMARTwith approaches for
performance measurement and assessment at the platforms level, shows their
shortcomings, and explains improvements which MoDePeMARTadds. Sub-
section 6.1 explains the concerns in performance measurement and assessment
and Subection 6.2 shows the comparative analysis of addressing the concerns.

6.1 Comparative Analysis Criteria

One of the major concerns is facilitating statistical analysis of response time.
Different kinds of system require different statistical analysis. Furthermore, the
parallel analysis of response time and throughput is also needed for validation
of meeting SLAs with different number of users. Moreover, workload character-
istics observations are important for validation of correspondence of prediction
assumptions with test cases. Workload is described with the number, request
rate, and arrival pattern.

Characteristics of paths are also of significant interest in measurement and
assessment. Path characteristics, such as probability of execution and number of
iterations are used in performance predictions.

Not all business tasks are of the same importance in systems, and the most
important have to be met in any conditions. Ability of their isolation is of great
importance. Furthermore, identification of execution context for critical business
tasks is as important as identification of critical tasks themselves.

Performance analysis of software systems has to be done for representative
time periods. For example, mean response time of whole day usage must not be
the same as during the peek usage period.

Instrumentation transparency is also of great importance in measurement.
Additional code for measurement can make the code for business logic more com-
plex and hard to understand. Furthermore, reduction of measurement points is

-+--+-o-------The Open Group [15]

++(o)+(o)++++-++-++MoDePeMART
-++---o-----++Diaconescu et al. [18]

+++-o-o-------Debusman and Geihs [17]

+-+-o-o-------Marenholz et al. [16]

+++-o-oo-++-++Hollingsworth et al. [14]

+++-o-oo-+---+Liao and Cohen [13]

+++-o-o------+Klar et al. [12]

M
easurem

ent
points reduction

M
easurem

ent and
m

etric com
putation

data types
consistency

Instrum
entation

transparency

M
etrics validity

period specification

S
pecification of

execution context
(transform

ational
and reactive)

Isolation of critical
business tasks

P
ath characteristics

(probability in
branching, loop iteration

num
bers)

W
orkload

characteristics
(num

ber of requests,
request rate, pattern)

Throughput
R

esponse tim
e

statistical analysis

Measurement and
Assessment Concern

Approach

Fig. 8. Comparative analysis of related work ((+) facilitated, (-) not facilitated, (o)
partially facilitated)

also one of the major concerns. It reduces measurement induced system overhead
and saves space and time in metrics computation.

Finally, for avoiding assessment failures, keeping consistency between the
data structures of collected data and for analysis is also of significant importance.

6.2 The Comparative Analysis

The results of the comparative analysis can be seen in Table 8.
Klar et al. [12] introduced the idea of relating design models and instru-

mentation. Their approach enabled statistical analysis of durations. The instru-
mentation is done at the model level, and instrumentation and metrics compu-
tation automatically generated. However, there is no possibility of throughput
and workload characteristics assessment. Furthermore, there is no negation of
an occurrence. For this reason transformational context specification and isola-
tion of business critical task is only partially supported. Reactive context and
specification of metrics computation for various intervals is also not supported.

Liao and Cohen [13] and Hollingsworth et al. [14] introduced languages for
performance assessment and monitoring. The major shortcomings of these lan-
guages are: lack of the reactive context analysis and inability to specify metrics
computation for time intervals. Furthermore, due to the lack of the sequence
not execution construct the business task isolation, and transformational con-
text specification are only partially supported. Finally, Liao and Cohen [13] do
not enable throughput assessment. Application Response Measurement (ARM)
standard is an attempt of standardization of data types in performance analysis.
This standard addresses the questions of transformation context specification
and the consistency of data in measurements and metrics computation. Aspect
orientation, on the other hand, e.g. Marenholz et al. [16] solves only the prob-
lems of transparent instrumentation. Debusman and Geihs [17] combine AOP
and ARM.

Diaconescu et al. [18] add a transparent software layer between components
and middleware. Instrumentation is done at component interface, which is not
sufficient for context and critical business instrumentation.

MoDePeMARTapproach manages all of the previous mentioned concern
except for number of loop iterations analysis. Workload arrival pattern recogni-
tion is still not supported.

7 Limitations

MoDePeMARTcan be used in software systems satisfying the following as-
sumptions.

Measurement and assessment is possible only in systems with con-
currency without intercommunication. In the execution model it is as-
sumed that there are no concurrent executions which interfere. Moreover, the
or invoker of a scenario is not aware of concurrent execution. Such approach is
implemented in, for example, JEE Session Beans.

Synchronous communication. At the present time MoDePeMARTsupports
only performance measurement and assessment for the systems communicating
synchronously. Synchronous communication is the one where the caller of an
operation is blocked and waits until the callee returns a result. After the caller
gets the result it continues the execution [19].

There is no support for specification of measurement and metrics
computation of loopbacks. A loopback is when in a scenario execution control
flow reenters the method whose body already executes. The simplest loopback
is recursion.

Granularity of timing mechanism is large enough so that execution
of each instrumented element occurs in different chronon. Chronon is
the smallest unit of time supported by the discrete time model. The granularity
is defined with the smallest time units supported by the timing mechanism, such
as milliseconds or nanoseconds. The assumption of this approach is that each
instrumented element execution with the same sequence identifier executes in
different chronon.

Job flow is assumed in the composite occurrence rate assessment.
The system should be fast enough to handle the service requests, and thus the
competition rate equals the arrival rate.

Finally, the approach can be used only for verifying response time
and throughput of services. Verifying the equivalence between assumptions
on workload, data, and loop iteration numbers in predictions and measurements
and in execution is not facilitated.

8 Outlook and Future Work

This paper presents the MoDePeMARTan approach for model driven perfor-
mance measurement and assessment. This approach introduces an idea of raising

the abstraction level of measurement and assessment in two ways. First, measure-
ment and assessment is specified in the terms of modeling and not in the terms of
implementation constructs. Second, it suggests a DSML for metrics specification
and computation. Moreover, it suggests usage of relational database management
systems for performance metrics storage and computation. The metamodel for
the performance measurement and assessment DSML and a validation as a UML
Profile are presented in this paper. With the comparative analysis it is shown
that the major benefits of this approach are specification of performance metrics
interval computation and the isolation of critical business tasks. However, there
are several possible improvements of the metamodel.

The metamodel could be extended in several ways. It could be extended to
support performance measurement and assessment of asynchronous communica-
tion. Furthermore, the metamodel could be extended to support measurement
and assessment of resources utilization. Moreover, the characterization of data
used as parameters in services could also be added to the metamodel. Addi-
tionally, computation of iteration loop numbers could also be added. This is
often needed when assessing the service characteristics. Finally, workload pat-
terns are of great importance for service performance assessment. Extension of
the metamodel for workload patterns assessment would be of great usefulness to
performance analyst.

Current PeMA profile used only State and Class diagrams and both of them
are not suited for specification of measurement context. It could be explored us-
age of activity and sequence diagrams for specification of execution scenario of in-
terest. These diagrams are usually used for control flow description/prescription.
This qualifies them as a good basis for transformational context specification.
However, still remains the problem of finding the appropriate elements for state
context, metrics, and the assessment part of the metamodel. Furthermore, ap-
plication of the profile to other diagrams could be explored. In extending the
profile for application to other diagrams the major challenge is the development
of the stereotypes denotating instrumented elements. For example, in the UML
metamodel body of activity diagram ConditionalNode is specified as an at-
tribute. For this reason, it can not be directly annotated as an instrumented
element.

The MoDePeMARTcurrently facilitates only assessment of services per-
formance. However, it offers a several promising extension directions. With pre-
viously mentioned metamodel extension, it could be made very useful in perfor-
mance debugging or even continuous monitoring. Such language could be support
for specification of automatic system adaptation based on the captured runtime
performance characteristics.

References

1. Hasselbring, W., Reussner, R.: Toward Trustworthy Software Systems. IEEE Com-
puter, 39(4), pp. 91-92 (2006)

2. I. Sommerville. Software Engineering (8th Ed.). Pearson Addison Wesley, 2007.

3. Smith, C. U., Williams, L. G.: Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison-Wesley, MA, USA (2001)

4. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-Based Performance
Prediction in Software Development: A Survey. IEEE Transactions on Software
Engineering, 30(5), pp. 295-310 (2004)

5. Selic, B.: A Short Course on MDA Specifications, INFWEST Seminar on Model
Driven Software Engineering. Pirkkala, Tampere, Finland (2006)

6. Wieringa, R. J.: Design Methods for Reactive Systems: Yourdon, Statemate, and
the UML. Morgan Kaufmann Publishers, San Fransisco, CA, USA (2003)

7. Dijkstra, E. W.: A Discipline of Programming. Prentice Hall PTR, Englewood Cliffs,
NJ, USA (1976)

8. Allen, J. F.: Maintaining Knowledge About Temporal Intervals. Communications
of ACM, 26(11), pp. 832-843 (1983)

9. Object Management Group. UML Profile for Schedulability, Performance, and
Time Specification, OMG document formal/05-01-02, http://www.omg.org/cgibin/
apps/doc?formal/05-01-02.pdf, January 2005a, Accessed May 2009.

10. Object Management Group. A UML Profile for MARTE: Modeling and Analyz-
ing Real-Time and Embedded Systems, Beta 2, OMG Adopted Spec., OMG docu-
ment ptc/2008-06-09, http://www.omgmarte.org/Documents/Specifications/08-06-
09.pdf, June 2008, Accessed May 2009.

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, Boston, MA, USA (1995)

12. Klar, R., Quick, A., Soetz, F.: Tools for a Model-driven Instrumentation for Mon-
itoring. In: the 5th Int’l. Conf. on Modeling Techniques and Tools for Comp. Perf.
Evaluation, pp. 165-180. Elsevier Science Publisher B.V. (1991)

13. Liao, Y., Cohen, D.: A Specificational Approach to High Level Program Monitoring
and Measuring. IEEE Trans. on Soft. Engineering, 18(11), pp. 969-978 (1992)

14. Hollingsworth, J. K., Niam, O., Miller, B. P., Xu, Z., Goncalves, M. J. R., Zheng,
L.: MDL: A Language and a Compiler for Dynamic Program Instrumentation. In
Proc. of the 1997 Int. Con. on Parallel Architectures and Compiler Techniques, pp
201-213, IEEE Computer Society, Washington, DC, USA (1997)

15. The Open Group. Application Response Measurement (ARM),
http://www.opengroup.org/tech/management/arm, 1998. Technical Standard,
Version 2, Issue 4.1, Accessed May 2009.

16. Mahrenholz, D., Spinczyk, O., Schroeder-Preikschat, W.: Program Instrumentation
for Debugging and Monitoring with AspectC++. In Proc. of the 5th IEEE Int.
Symp. on Object-Oriented Real-Time Distributed Computing, pp 249-256, IEEE
Computer Society, Washington, DC, USA (2002)

17. Debusmann, M., Geihs, K.: Efficient and Transparent Instrumentation of Appli-
cation Components using an Aspect-oriented Approach. In 14th IFIP/IEEE Work-
shop on Distributed Systems: Operations and Management (DSOM 2003), LCNS
vol 2867, pp. 209-220, Springer, Heidelberg, Germany (2003)

18. Diaconescu, A., Mos, A., Murphey, J.: Automatic Performance Management in
Component Based Systems. In: 1st International Conference on Autonomic Com-
puting (ICAC’04), pp. 214-221, IEEE Computer Society, Washington, DC, USA
(2004)

19. Object Management Group. UML 2.0 Specification: Superstructure, OMG docu-
ment ptc/05- 07-04. http://www.omg.org/cgi-bin/doc?formal/05-07-04, November
2004. Accessed May 2009.

