EMEF Ecore Based Meta Model Evolution and Model
Co-Evolution

Moritz Eysholdt
itemis AG
Schauenburgerstr. 116, 24118 Kiel
moritz.eysholdtQitemis.de

Abstract

The description of data used for e.g. persisting or
transmitting information should be defined in a struc-
tured way. The structure itself can therefore be seen
as a meta model specifying the data model. Over time
a software system evolves and the inherent meta mod-
els tend to be unstable. Nevertheless, older formats
often have to be supported during transition peri-
ods. Previous data models, as being instances of the
old meta models, inevitably need to get converted
to be valid against the new meta model versions.
In this paper we present our approach of restructur-
ing EMF Ecore based meta models together with co-
evolving their instances which incorporates construct-
ing a meta model patch format.

1 Introduction

The motivation for meta model evolution and model
co-evolution is twofold: Using models to handle struc-
tured data and the requirement to continuously adapt
and improve an application. It is characteristic for
models that their structure definition is a model as
well, which makes it the meta model. Therefore, it
can be said that the model is an instance of the meta
model. Since models depend on their meta models,
they need to be co-evolved (migrated) when the meta
models evolve.

We take meta models into account, which them-
selves are instances of the popular EMF! Ecore, acting
as a meta meta model. The changes between differ-
ent versions of a model are described by our Epatch
format. An Epatch is derived from two available ver-
sions of a meta model. Applying an Epatch with our
Patcher tool allows automatically upgrading an old
version of a meta model to a new version and vice
versa.

The Metapatch format is based on the Epatch for-
mat and represents a solution to co-evolve models to-
wards their modified EMF Ecore based meta mod-
els. In contrast to regular model-to-model transfor-
mations, the Metapatch format’s complexity is pro-
portional to the number of changes in the meta model,

Thttp://www.eclipse.org/modeling/emf/

Soren Frey and Wilhelm Hasselbring
Software Engineering Group
University of Kiel, 24118 Kiel

{sfr|wha}@informatik.uni-kiel.de

not the overall size of the meta model. For simple
modifications the co-evolution of the corresponding
models can be performed automatically. More com-
plex changes require the meta-model engineer to de-
fine transformation instructions. Model-driven soft-
ware development [1] is an applicable field for meta
model evolution and furthermore an approach which
is applied itself to develop the Epatch and the Meta-
patch tools [2].

The remainder of the paper is structured as fol-
lows: Section 2 describes the process of how to create
model migration algorithms and how to execute them.
The Epatch and Metapatch formats are presented in
Section 3, before Section 4 concludes.

2 The Process

Figure 1 illustrates the Meta Model Evolution and
Model Co-Evolution process. It is an extended ver-
sion of the process suggested by [3]. On the left hand
side the process of the meta-model engineer can be
seen, who edits the meta model and creates a model
migration algorithm. Further on, [3] defines changes
to the meta model which preserve the models as valid
instances as non-breaking changes. Changes leading
to invalid instances which cannot be automatically re-
solved are called breaking changes, otherwise resolv-
able. The meta model engineer will have to specify the
migration algorithm’s behavior manually for breaking
changes.

On the right hand side of Figure 1 the process of
the model engineer is illustrated. This process de-
fines how an old model, which is an instance of meta
model version X, can be transformed to an instance
of meta model version Z by executing one or more
model migration algorithms. At the beginning, the
meta model version of the to-be-migrated model has
to be detected. Based on the version, an appropriate
model migration algorithm is chosen from a pool of al-
gorithms which has to be supplied by the meta model
engineer. By executing this algorithm the model is
transformed to be an instance of meta model version
Y. Depending on whether this version Y is the needed
version Z, this process has to be repeated until the
desired version is reached.

Meta Model Engineer's Model Engineer's

Process Process
meti‘n;lodel e:;‘F» meti.ngodej ‘ model v. X
()
N N S
detect :
ol iR
L J J N J]
g J S

s hﬁrﬁ
migration ly.. Choose -
algorithms algorithm} algoritim
classify ‘ execute
N J
¥ K| |
i “‘I
/ =
. ~ /
enrichment /

breaking
pe
; / —
T S
\)

Figure 1: The Meta Model Evolution and Model Co-
Evolution process

breaking resolvable

v

v)

S/
migration _— —
algorithm |~ version

3 The Epatch and Metapatch Format

Both formats constitute textual Domain Specific Lan-
guages (DSLs) [4], each one defined by its own Xtext?
grammar. They therefore provide a convenient IDE,
including e.g. code completion. Epatch is declarative,
self-contained, meta model agnostic, and not tied to
scenarios of meta model evolution. By being meta
model agnostic, the Epatch format does not require
the to-be-patched models to be instances of a certain
meta model. The differences between models are ex-
tracted by accomplishing a comparison. This compar-
ison is build on top of EMF Compare®, whose own
DiffModel has the disadvantage of having hard refer-
ences to both compared models and thereby cannot
be applied to just one model, since it requires both
to be available when loading the DiffModel. For the
dimension of a meta model, Epatch is able to specify
changes resulting from constructing, refactoring, or
destructing meta model elements. The Patcher tool
implemented in the context of our work applies the
Epatch while creating a copy of the model. This way
the source model is not modified and a mapping be-
tween elements in the source model and elements in
the target model can be created.

The Metapatch uses the Epatch in two ways: First,
the Metapatch format extends the Epatch format via
grammar inheritance: It additionally allows to include
instructions in Java or Xtend? to customize the model
migration algorithm and it restricts the Epatch to
meta models (EMF Ecore models). Second, the map-
ping of (meta) model elements, that is created when
an Epatch is applied, is an essential input for the

2http://www.xtext.org/
3http://wiki.eclipse.org/index.php/EMF_Compare/
4http://www.openarchitectureware.org/

migration algorithm. The implementation of the mi-
gration algorithm is the MetapatchMigrater, which is
an interpreter for Metapatches. With the mapping of
meta model elements as input, it is capable of migrat-
ing a model from one meta model to another. In cases
where the mapping is not present for certain types, or
does not lead to the expected results, the instructions
stored in the Metapatch specify the migration of the
corresponding model elements. This concept allows
the MetapatchMigrater to automatically migrate the
parts of a model that conform to meta model elements
which have been modified by non-breaking or break-
ing but resolvable changes or which have not been
modified at all. Breaking changes have to be covered
with instructions stored in the Metapatch.

4 Conclusion

We presented our approach for managing changes be-
tween different versions of EMF Ecore based meta
models and co-evolving corresponding model in-
stances. Therefore, the Epatch and Metapatch for-
mats were introduced which are capable of describing
the modifications and routines supporting the migra-
tion. The Epatch format is now part of EMF Com-
pare. The Metapatch format will be part of the Eclipse
Edapt project [5]. Furthermore, the overall process for
conducting the migration was described.

For migration scenarios of large meta models with
many changes, a concept to reduce complexity by de-
composing the task into sub-tasks is desirable. This
could be an interesting field for future research.

References

[1] T. Stahl and M. Voelter. Model-Driven Software
Development: Technology, Engineering, Manage-
ment. John Wiley & Sons, 2006.

[2] Moritz Eysholdt. EMF Ecore Based Meta Model
Evolution and Model Co-Evolution. Master’s the-
sis, University of Oldenburg, April 2009.

[3] Steffen Becker, Thomas Goldschmidt, et al. A Pro-
cess Model and Classification Scheme for Semi-
Automatic Meta-Model Evolution. In Proc. 1st
Workshop MDD, SOA wund IT-Management”
(MSI°07), pages 35-46. GI, GiTO-Verlag, 2007.

[4] M. Mernik, J. Heering, and A. M. Sloane. When
And How To Develop Domain-Specific Languages.
ACM Computing Surveys, Vol. 87, No. 4, pages
316-344, 2005.

[5] M. Herrmannsdorfer and M. Eysholdt. Eclipse
Edapt - Project Proposal. http://www.eclipse.
org/proposals/edapt/.

