Model-based Runtime Reconfiguration
of Component-based Systems

Jasminka Matevska
Software Engineering Group
University of Oldenburg, Germany
jasminka.matevska@informatik.uni-oldenburg.de

ABSTRACT

Software systems evolve during their life cycle in order to
meet changing requirements or to improve quality proper-
ties. At the same time, maintaining continuous availability
of services is an issue of increasing importance especially for
business-critical systems. Runtime reconfiguration supports
evolution of systems while maintaining availability of ser-
vices they provide. This paper presents a model-based ap-
proach to runtime reconfiguration of component-based sys-
tems, which aims at minimising the interference caused by
the reconfiguration and thus maximising system responsive-
ness during reconfiguration.

1. INTRODUCTION

Runtime reconfiguration supports evolution of systems
while maintaining availability of services they provide. The
process of reconfiguration usually consists of the following
four steps: (1) initiation of a change, (2) identification of
affected components, (3) accomplishment of the reconfigu-
ration and (4) analysis/check of the consistency.

There exists a large variety of runtime reconfiguration ap-
proaches with different focus on a particular step and thus
aiming at different goals.

Safe redeployment approaches cover the technical aspects
of runtime reconfiguration. One of the oldest approaches to
managing a reconfiguration as a transaction is described by
Kramer and Magee [2].

Component-based approaches like SOFA/DCUP [8] con-
sider contractually defined components with behaviour spec-
ifying interfaces for checking consistency and interoperabil-
ity. Runtime dependencies are considered for ensuring con-
sistency, but not for maximising service responsiveness.

Architecture-based approaches following the route descri-
bed by Oreizy, Medvidovic and Taylor [7] define the runtime
reconfiguration basically as a replacement of a single compo-
nent at architectural level. Structural changes are performed
by checking and altering connector bindings.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission andfor a fee.

ICSE-WUP'09: The Warm-Up Workshop for ACM/IEEE ICSE 2010,
April 1-3, 2009, Strand, Cape Town, South Africa.

Copyright 2009 ACM 978-1-60558-563-9...$5.00.

33

Our research approach, called AVORR (Awailability Op-
timized Runtime Reconfiguration) [3] aims at maintaining
continuous availability while maximising service responsive-
ness during runtime reconfiguration of component-based sys-
tems. In order to achieve our goal, an additional analysis of
the running system becomes necessary. A model describing
only a static view of the system does not provide a sufficient
information. We propose an extension of the model defin-
ing the runtime view of the system. It supports dynamic
configurations and a dynamic component and system be-
haviour description in order to enable checking consistency
of the system at runtime. For determination and isolation
of the minimal set of affected components an appropriate
description of runtime dependencies among components is
necessary [5]. Furthermore, the approach defines a detailed
concept for the technical accomplishment of the reconfigu-
ration as a runtime redeployment transaction [6] in order to
provide full availability of the system during reconfiguration.
Finally, for minimising system interference and maximising
service responsiveness, a more differentiated analysis of run-
time dependency graphs [4] is included.

The reconfiguration process in AVORR consists of the fol-
lowing steps:

(1) Analysis of the reconfiguration request,
(2) Identification of a minimal set of affected components,

(3) Recognition of the appropriate point in time at run-
time for a reconfiguration start, and

(4) Execution of the requested reconfiguration as a run-
time redeployment transaction.

2. OUR C3 META MODEL

Our Component-Connector-Container (C3) Meta Model
illustrated in fig. 1 defines a component as a first-class entity
and derives static component for the static view and live
component for the dynamic view.

e Static (Structural) View: A static component in-
cluding primitive and composite components enables
building a hierarchical system architecture based on a
GoF-Pattern Composite [1].

e Dynamic (Runtime) View: A live component has
two specialisations primitive live component and con-
tainer component and presents the runtime view of the
system. The primitive component description instan-
tiates both specialisations of the primitive live com-
ponent: service component or connector component.


Silver
WUP 2009


Component

T

Static Component

il

Composite Static Comy Primitive Static Component

<< instantiates >>

Live Component

i

Primitive Live Comp it C iner C

T t

it Ci Ci

Service C

Figure 1: Our C3 Meta Model

The connector component is used to describe both uses
and interaction dependencies among live components.
Container components are essential extensions to es-
tablish modelling of deployment and runtime prop-
erties of the system. They host primitive live com-
ponents without considering hierarchical aspects. We
describe the component and system runtime behaviour
using automata.

3. COMPONENT BEHAVIOUR
SPECIFICATION

A service effect specification (SEFF) of a component con-
tains a set of descriptions on how each provided service of a
component calls its required services. A SEFF can be seen
as an abstraction of the control flow through the compo-
nent. It can be modelled as a finite state machine (FSM)
and can contain sequences, branches, and loops [9]. A Ser-
vice execution is a transition of a protocol state machine.
For each service provided by a component we can define an
appropriate SEFF. A set of all SEFFs for a component de-
fines its external behaviour. By analysing SEFFs we can
exclude past and late future dependencies for each compo-
nent. This can be used at runtime for recognition of the
convenient runtime state as a start point in time for the
requested reconfiguration.

4. SYSTEM BEHAVIOUR
SPECIFICATION

We describe the system behaviour as a set of finite au-
tomata. Each automata describes a use case of the system.
Each state sequence describes a possible execution sequence
of the use case. Each state transition of the SEFF induces
a state transition of the system automata. The frequency of
occurrence of each execution sequence depends on the busi-
ness logic of the system and the usage behaviour of system
users and is included in the usage model of the system.

5. USAGE MODEL

A software application is usually being developed to ful-
fil a particular mission. Therefore, a mission specific usage
model has to be considered as part of the requirements spec-
ification. In general, every usage model consists of different
usage scenarios. Each scenario defines a particular use case
of the system. For each use case there is at least one possi-
ble execution sequence. Each execution sequence is defined
through its behaviour and a set of participating components.
Currently, we model sequences with UML 2 sequence dia-
grams. An extension of the behaviour definition including
transition probabilities (e.g. as a Markov chain model [11])
is being used to achieve a weighting of sequences and thus
reducing the number of transition states considered as rele-
vant for the determination of minimal runtime dependencies
for a particular reconfiguration request. We omit analysis of
very improbable sequences, because waiting for them (even if
they would produce minimal runtime dependencies) would
delay the completion of the reconfiguration. This way we
speed up both the analysis and the reconfiguration.

6. RUNTIME DEPENDENCY GRAPHS

Each software system can be considered a composition of
communicating components. Each component can provide
some services while requiring external services. A compo-
nent A is dependent on component B, iff A uses/requires ser-
vices provided by B. Dependencies among components can
be described using weighted directed dependency graphs.
Each component is assigned a node and each dependency
relation an edge. The edge is directed from a component
using (calling) a particular service to the component pro-
viding that service. For the illustration, we extend UML
Component Diagrams by including labelled dependencies.
A static dependency graph contains all possible dependen-
cies among components within a system. The runtime de-
pendency graph can be considered as a subset of the static
dependency graph.

34



For each reconfiguration request there exists a set of af-
fected components (a transitive closure including compo-
nents to be exchanged and dependent ones) as a subgraph
of the static dependency graph. Considering the possibility
of having more than one instance of a component, we define
the weight of an edge. Furthermore, we have to consider
the number of requests on a service and its importance at a
particular point in time. Considering the set of affected com-
ponent, relevant scenarios based on the usage model can be
recognised [4]. During runtime a system executes different
scenarios and thus activates particular instances of compo-
nents. The runtime dependency graph among instances of
components at a particular runtime state during the corre-
sponding time period contains a subset of all possible depen-
dencies of a system. Considering the possibility of having
a multi-user system, we can observe a strong varying usage
and thus varying dependencies among instances of compo-
nents. Using SEFFs we can analyse the past and future be-
haviour of a component and its dependencies. For each sce-
nario being executed we can determine corresponding run-
time dependency graphs. Through additional analysis of
changing dependencies among instances of components dur-
ing runtime considering different scenarios from usage model
of the application, we can determine a minimal runtime de-
pendency graph for obtaining maximal possible responsive-
ness. Finally, we use the system behaviour model in order
to assign the determined minimal dependency graph to a
corresponding system runtime state [4]. After the analysis,
the running system is being rescanned in order to detect the
determined state. At that point in time the reconfiguration
is started. Performing the requested reconfiguration within
a time interval with minimal dependencies maximizes the
availability of the system.

7. RECONFIGURATION TRANSACTION

The completion of the reconfiguration as a runtime rede-
ployment transaction is enabled under the assumption that
each component adheres to the life cycle protocol illustrated
in fig. 2. A component is free (not active and not used)
after it has been deployed. A component is active and not
used if there are instances of it executing some services. A
component is passive and used if another component has an
active reference to it. It is possible that a component is ac-
tive and used at the same time. To ensure the consistency of
the system, a component can be changed only if it is in the
state blocked/ready to change, which means it is suspended
and all incoming invocations are queued. Only passive (free
or passive and used) components can be blocked. The cor-
responding protocol on system level can be found in fig. 3.

To avoid inconsistency caused by deviation among anal-
ysed and actual runtime dependencies, a redeployment set
as a transitive closure of all currently referenced components
is dynamically determined and a synchronisation barrier is
established. All outstanding invocations can be completed,
while new invocations are suspended and have to wait on
this synchronization barrier. The affected components are
transferred into a blocked state and the changes are applied.
After the change transaction is being performed, all blocked
components are transferred back into a free or passive and
used state respectively, and the synchronization barrier is
released so that suspended invocations can continue execu-
tion.

35

restoring
[maxTryCount
[redeployment [redeployment not exceeded]
succeeded] failed]
[maxTryCount
[change exceeded]
completed]
redep oying
requests no requests
t t
queued] queued]
blocked / ready to change
[no requests
queued] [requests
[change queued]
request [change
accepted] request not
accepted]
deployed
[change [change requested]
.7 requested] / queue service requests
[service requested]

/| passive and used

1 free |/

[service no longer
requested]

[execution
started]

[execution
finished)]

[execution
started]

[execution
finished)]

[service requested]

active and not used active and used

[service no longer
requested]

Figure 2: Component Life Cycle Protocol

8. EVALUATION

Java EE-based Implementation.

The proposed architecture of our basic system called Plat-
form Independent Reconfiguration Manager PIRMA consists
of the following four top-level components: Reconfiguration
Analyser, Dependency Manager, Transaction Manager and
Reconfigurator.

The Reconfiguration Analyser takes a reconfiguration re-
quest, analyses and classifies the requested change. The
components directly concerned with the request are iden-
tified. The Dependency Manager acts according to the Ob-
server GoF-Pattern [1]. It monitors the runtime dependen-
cies among components, determines a minimal set of change-
affected components as a transitive closure of all currently
referenced components and sends a change request for each
involved component to the Reconfigurator. The Transac-
tion Manager and the Reconfigurator build the Redeploy-
ment Subsystem. They realise the reconfiguration as a de-
pendent change transaction [2].

As a proof of our theoretical concept an Eclipse Applica-
tion, based on J2EE and using the JBoss Application Server
was developed and ported to Java EE [6].

Scenario-based Dependency Analysis.

The evaluation of our dependency analysis follows our
scenario-based approach. For generating and analysing the
monitoring data the Java-based monitoring and visualiza-



)

running

[reconfiguration request received]
to be reconfigured
[tryCount

< = maxTryCount]

i

[tryCount
> maxTryCount]

[reconfiguration request declined]

[reconfiguration request accepted]
/tryCount = 1,
passivate and isolate subsystem

ready to reconfigure

/ start reconfiguration

reconfiguring

[reconfiguration done]

4

[rollback completed]
/tryCount ++,
free and activate subsystem

restoring

[reconfiguration failed]
/ start rollback

[reconfiguration successful]
/ commit reconfiguration,
free and activate subsystem

Figure 3: System Life Cycle Protocol

tion tool Kieker [10] was used and extended. As an exam-
ple application the iBatis JPetStore!, a Java-implemented
multi-user Web application that represents an online shop-
ping store was used. For simulating probabilistic system us-
age based on Markov chains, an extension of Apache JMeter,
Markov4JMeter? was used. As a second step, we used the
results of the dependency analysis at rescanning of the run-
ning system in order to recognise the optimal point in time
for a reconfiguration start.

9. CURRENT STATUS

The actual implementation of our reconfiguration man-
ager confirmed the feasibility of our project using existing
component technologies. The analysis of monitored data
showed that for every component reconfiguration request it
is possible to find a point in time with a minimal runtime
dependency graph, even if a system has many concurrently
active users. However, with increasing amount of active
users the duration of the detected convenient time periods
decreases. Having a limited waiting period from a reconfigu-
ration request arrival to a reconfiguration execution, it gets
more difficult to hit one of them. This makes a more differen-
tiated analysis of runtime dependency graphs, as followed by
this approach, necessary [4]. Currently, we are working on
integration of the scenario-based dependency analysis into
our reconfiguration manager system in order to evaluate the
complete approach through a reasonable amount of exper-
iments. As an example Java EE based system, we use the
Sun Duke’s Bank Application 2.

Thttp://ibatis.apache.org/
Zhttp://markov4jmeter.sourceforge.net /
Shttp://java.sun.com/javaee/5/docs/tutorial /

36

10. REFERENCES

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns Elements of Reusable Object-Oriented
Software. Object-Oriented Technology.
Addison-Wesley, 1995.

[2] J. Kramer and J. Magee. The Evolving Philosophers
Problem: Dynamic Change Management. IEEE Trans.
on Software Engineering, 16(11):1293-1306, 1990.

[3] J. Matevska. An optimised Runtime Reconfiguration
of component-based Software Systems. In Proc. of the
32nd Annual IEEE International Computer Software
and Applications Conference (COMPSAC 2008),
pages 499-501. IEEE, 2008.

[4] J. Matevska and W. Hasselbring. A Scenario-based
Approach to Increasing Service Availability at
Runtime Reconfiguration of Component-based
Systems. In Proc. of 33rd Euromicro Conference on
Software Engineering and Advanced Applications
(SEAA’07), pages 137-144. IEEE, 2007.

[5] J. Matevska-Meyer, W. Hasselbring, and R. Reussner.
Software Architecture Description supporting
Component Deployment and System Runtime
Reconfiguration. In Proc. of Workshop on
Component-Oriented Programmaing (WCOP’04), 2004.

[6] J. Matevska-Meyer, S. Olliges, and W. Hasselbring.
Runtime Reconfiguration of J2EE Applications. In
Proc. of the 1st French Conference on Software
Deployment and (Re) Configuration (DECOR’04),
pages 77-84. Net Print, Eybens, 2004.

[7] P. Oreizy, N. Medvidovic, and R. N. Taylor.
Architecture-Based Runtime Software Evolution. In
Proc. of the International Conference on Software
Engineering 1998 (ICSE’98), pages 177-186. ACM,
1998.

[8] F. Plasil, D. Balek, and R. Janecek. SOFA /DCUP:
Architecture for Component Trading and Dynamic
Updating. In Proc. of International Conference on
Configurable Distributed Systems, pages 35—42. IEEE,
1998.

[9] R. H. Reussner. Automatic Component Protocol

Adaptation with the CoCoNut Tool Suite. Future

Generation Computer Systems, 19(5):627-639, 2003.

M. Rohr, A. van Hoorn, J. Matevska, L. Stoever,

N. Sommer, S. Giesecke, and W. Hasselbring. Kieker:

Continuous Monitoring and on demand Visualization

of Java Software Behavior. In Proc. of the IASTED

International Conference on Software Engineering.

ACTA Press, 2008.

A. van Hoorn, M. Rohr, and W. Hasselbring.

Generating Probabilistic and Intensity-varying

Workload for Web-based Software Systems. In SPEC

International Performance Evaluation Workshop

(SIPEW ’08), volume 5119 of Lecture Notes in

Computer Science (LNCS), pages 124-143. Springer,

2008.

(11]





