
Appeared in Nenad Medvidovic and Tetsuo Tamai (eds.), Proceedings of the 2nd ACM/IEEE
2010 ICSE Warm Up Workshop (WUP 2009), pages 37–40. ACM. April 2009.

1

An Adaptation Framework Enabling Resource-Efficient
Operation of Software Systems

André van Hoorn, Matthias Rohr, Asad Gul
Graduate School TrustSoft∗

University of Oldenburg
26111 Oldenburg, Germany

{van.Hoorn,Rohr,Gul}@informatik.uni-oldenburg.de

Wilhelm Hasselbring
Software Engineering Group

University of Kiel
24098 Kiel, Germany

wha@informatik.uni-kiel.de

ABSTRACT
This paper gives an overview about our current work on a
framework which aims at operating component-based soft-
ware systems more efficiently. Efficiency, in terms of the
number of allocated data center resources, is improved by ex-
ecuting architecture-level runtime adaptations based on cur-
rent workload situations. The proposed framework, called
SLAstic, is described and open questions to be answered in
future work are raised.

1. INTRODUCTION
Today’s enterprise applications are complex, business-
critical software systems. An important extra-functional
characteristic of these systems is performance, consisting of
timing behavior and resource utilization. Particularly in-
teractive software systems which are accessible through the
Internet are exposed to highly varying and bursty workloads,
e.g., in terms of the number of concurrent users. For exam-
ple, Figure 1 sketches the varying number of users which
we derived from monitoring data of an online portal. The
timing behavior of software systems is significantly influ-
enced by the workload conditions. In order to continuously
satisfy the contractually specified service level agreements
(SLAs), a continuous capacity management strategy is re-
quired. Based on the anticipated workload conditions, this
includes the provision of an appropriate computing and stor-
age infrastructure as well as the deployment of the software
components to this infrastructure.

Over the last years, capacity management was performed in
a static and overprovisioning manner, i.e., the software com-
ponents are deployed to a fixed infrastructure of application
and database servers which satisfy the needs for the antici-
pated worst-case workload conditions. Future infrastructure
demands are satisfied according to a “kill-it-with-iron” men-
tality: adding additional resources to the infrastructure or

∗This work is supported by the German Research Founda-
tion (DFG), grant GRK 1076/1.

Wednesday Thursday Friday Saturday Sunday

12:00 22:00 08:00 18:00 04:00 14:00 00:00 10:00 20:00 06:00 16:00

Figure 1: Varying workload intensity

replacing existing resources by more powerful ones. The
shortcoming of this approach is that during medium or low
workload periods, the allocated resources may be heavily un-
derutilized causing unnecessarily high operating costs due to
power consumption or infrastructure leases.

In this paper, we present our work in progress on a frame-
work called SLAstic (sI"læstIk) which aims at reducing op-
erating costs for application service provision by adapting
the architecture of distributed, component-based enterprise
systems including its deployment with respect to the current
and expected near-future workload situation while continu-
ously satisfying the SLAs. Considered runtime adaptation
operations are (1) the dynamic allocation and deallocation
of data center resources as well as component-level (2) mi-
gration and (3) load-(un)balancing.

The remainder of this paper is structured as follows. Sec-
tion 2 presents background and discusses related work. The
proposed framework is described in Section 3. In Section 4,
the conclusions are drawn and future work is discussed.

2. BACKGROUND AND RELATED WORK
The work presented in this paper is embedded into the re-
search fields of self-managed systems and software perfor-
mance engineering.

Self-managed or autonomous systems are those systems
which are able to adapt themselves accordingly to their en-
vironment. The term autonomic computing was first used
by IBM [6]. They proposed a reference model for autonomic
control loops called MAPE-K (Monitor, Analyze, Plan, Ex-
ecute, and Knowledge) [6]. More recently, Kramer and
Magee [7] proposed a software architecture for self managed



Appeared in Nenad Medvidovic and Tetsuo Tamai (eds.), Proceedings of the 2nd ACM/IEEE
2010 ICSE Warm Up Workshop (WUP 2009), pages 37–40. ACM. April 2009.

2

Figure 2:
Self-adaptation cycle [13]

systems consisting of the following three layers: component
control, change management, and goal management.

Self-adaptation can be described as a cycle of three logical
phases [13]: Observation, analysis, and adaptation (Figure
2). The observation phase is concerned with monitoring
(e.g., system behavior or system usage). Monitoring ap-
proaches have to deal with the trade-off between information
quality (detail and timeliness) and performance overhead re-
sulting from data transport and analysis.
The analysis phase detects triggers for adaptation and se-
lects suitable adaptation operations, if adaptation is re-
quired. A straightforward means to implement this analysis
are rules consisting of conditions and adaptation operations
(e.g., “if disconnected, then reconnect”). A promising ap-
proach for defining rule sets for self-adaptive software sys-
tems was presented by Garlan et al. [5]: Conditions are spec-
ified not directly on architectural elements of the software
system but on architectural styles. Specifying conditions on
the higher abstraction level of architectural styles reduces
the complexity of the analysis and allows one to develop
general rules that may be reused in other software systems.
During the adaptation phase, the selected adaptation op-
erations are executed. Typical concrete adaptation oper-
ations for component-based software architectures are, for
instance, component microreboot [3], and the replacement
of components by alternative variants depending on current
execution conditions [4]. Architectural runtime reconfigu-
ration concepts (e.g., [9] and [12]) address the challenge to
change a system without requiring a system restart.

Software engineering activities directed to meeting perfor-
mance requirements are the subject of research in software
performance engineering [14]. The state of the art is that
architectural design models of the software architecture are
annotated with performance information. Performance indi-
cators like response times are computed by first transforming
these high-level models into the well-known and mature per-
formance analysis models like queueing models or stochas-
tic Petri nets and then solving these models analytically or
by simulation [1]. The SPT/MARTE profiles [10, 11] can
be used to annotate UML diagrams. The Palladio approach
for performance prediction of component-based software sys-
tems [2] uses UML-like models. Different approaches for
adapting the software architecture for performance reasons
through the use of self-adaptation exist (e.g., [4, 8]).

3. OUR SLAstic APPROACH
With SLAstic we propose an approach for reducing the op-
erating costs of software systems by architecture-based run-

SLAstic Controller

M

M

M
M

M
M

M

M
M

M M
M

SLAstic Middleware

...

M

Adaptable Software System

N1 N2 Nm

Figure 3: Integration of the SLAstic framework

SLAstic Middleware

...

SLAstic Middleware

...N1 N2 Nm N1 N2 Nm Nm+1

(a) Node allocation & deallocation

C1

C2

C3

SLAstic Middleware

ExecEnv2

C1 C3

SLAstic Middleware

C2

ExecEnv1
ExecEnv2ExecEnv1

(b) Software component migration

C1 C3

SLAstic Middleware

C2

C1 C3

SLAstic Middleware

C2 C2

ExecEnv2ExecEnv1 ExecEnv2ExecEnv1

(c) Component-level load-(un)balancing

Figure 4: The three SLAstic adaptation operations

time adaptation for the resource-efficient operation while
continuously satisfying the SLAs. The approach covers the
complete software lifecycle, particularly design time mod-
els of the architecture are used during runtime for system
adaptations through reconfigurations of the software archi-
tecture. Under increasing workload conditions adaptation
operations are executed in order to fulfill the SLAs. Under
decreasing workload conditions adaptation operations are
executed in order to avoid resource underutilization.

Figure 3 illustrates how the SLAstic framework is integrated
into a software system. The SLAstic middleware provides the
instrumentation infrastructure and executes the adaptation
operations triggered by the SLAstic controller. The SLAstic
controller executes a control loop which is based on the self-
adaptation cycle described in Section 2.

The following sections describe the proposed adaptation op-
erations (Section 3.1), discuss architecture-level aspects and
policies to be modeled (Section 3.2), and sketch the activi-
ties executed within the control loop of the SLAstic controller
(Section 3.3).

3.1 Adaptation Operations
1. Node Allocation & Deallocation. This system-level
operation consists of the allocation or deallocation of a server
node. In case of an allocation, this includes the installa-
tion of an execution environment but it does not involve
any (un)deployment operation of software components. Fig-



Appeared in Nenad Medvidovic and Tetsuo Tamai (eds.), Proceedings of the 2nd ACM/IEEE
2010 ICSE Warm Up Workshop (WUP 2009), pages 37–40. ACM. April 2009.

3

ure 4(a) illustrates this adaptation operation: Node Nm+1

is allocated or deallocated, respectively.

2. Software Component Migration. This application-
level operation consists of the migration of a software compo-
nent, i.e., the undeployment from one execution context and
the deployment into another. As an example, Figure 4(b)
shows the migration of component C2 between the execution
environments ExecEnv1 and ExecEnv2.

3. Component-level Load-(un)balancing. This appli-
cation-level operation consists of the duplication of a soft-
ware component and its deployment into an execution con-
text (as well as the reverse direction). Future requests to
the component are distributed between the two component
instances. Figure 4(c) illustrates the application of this op-
eration to the component C2.

3.2 Architectural Models & Adaptation
Policies

The approach requires the explicit modeling of relevant as-
pects of the software architecture in design models. During
runtime, these models are refined, kept synchronized with
the runtime architecture and used for the analysis activities
as described in Section 3.3. Another important purpose of
the models is to automatically derive the instrumentation
probes in order to obtain measurements of the modeled pa-
rameters which are used to calibrate and update the model.
The following paragraphs give an overview of the aspects of
the software architecture to be modeled.

Components and Assembly. The aspects to be modeled
for each software component include component interfaces
(required and provided) and performance-relevant concerns
like estimates of calling frequencies for required interfaces,
or the allocation and deallocation of software and hardware
resources. For the application, the component assembly, i.e.,
the connection of components among each other through
their interfaces, must be modeled. The components to which
adaptation operations can be applied need to be labeled,
e.g., using UML stereotypes.

Deployment Environment. The infrastructure on which
the application will be deployed needs to be modeled. This
requires the modeling of hardware and software resources
on different levels of granularity as well as multiplicities and
performance-relevant characteristics. Examples for hard-
ware resources are server nodes and their interconnection
(e.g., network links), CPUs and harddisks. Examples for
software resources are execution environments (e.g., JBoss
application server), and thread pools.

Component Deployment. This consists of the (initial) as-
signment of software components to execution environments.
At runtime, the deployment model is affected by structural
changes, caused by executed adaptation operations.

Performance Requirements. This includes the system-
level specification of SLAs to be satisfied as well as internal
performance specifications at the level of software compo-
nent interfaces.

Performance 

Analysis

Workload

Analysis

Performance

Prediction

Adaptation

Analysis

Figure 5: Activity diagram of the analysis phase

Adaptation Policies. The approach requires the definition
of policies which specify under which circumstances, i.e.
when, an evaluation of possible adaptations shall be per-
formed. An example would be that such an analysis is to be
performed in case the SLAs are expected to be violated in
near future.

3.3 Control Loop
The SLAstic controller continuously navigates through the
self-adaptation cycle described in Section 2. Thus, it pe-
riodically executes the phases Observation, Analysis, and
Adaptation. The activities performed in these phases are
outlined in the following Sections 3.3.1–3.3.3.

3.3.1 Observation
The software system is continuously monitored, as described
before. During the Observation phase, the measurement
data which is relevant for the elapsed period is extracted
and preprocessed for the subsequent phases of the control
loop. The preprocessing includes the mapping of lower level
measurement data to the architectural entities.

3.3.2 Analysis
The Analysis phase is the core phase of the control loop. It
results in the decision whether or not an adaptation is per-
formed during the following Adaptation phase. The runtime
models are updated and used for the evaluation of perfor-
mance and adaptation alternatives. Figure 5 shows an ac-
tivity diagram of the Analysis phase including the activities
described in the following paragraphs.

Performance Analysis. The performance of the current
system architecture is evaluated. Particularly, this includes
whether or not the internal and external performance re-
quirements are satisfied. Moreover, the performance param-
eters of the runtime models are updated and calibrated.

Workload Analysis. The workload of the elapsed observa-
tion period is determined and the near-future trends of the
workload are estimated. This includes the analysis of the
external (system interface) and internal (component inter-
faces) workload conditions.

Performance Prediction. Based on the performance and
workload analysis activities of the previous activities, the
performance of the current architectural configuration for
the next observation period is predicted. Performance analy-
sis models, which are derived from the architectural runtime
models, are used to perform these predictions. An important
result of this activity is a prediction of whether the SLAs are
expected to be satisfied during the next observation period.



Appeared in Nenad Medvidovic and Tetsuo Tamai (eds.), Proceedings of the 2nd ACM/IEEE
2010 ICSE Warm Up Workshop (WUP 2009), pages 37–40. ACM. April 2009.

4

Adaptation Analysis. Based on the specified adaptation
policies, this activity is only executed in case an adaptation
shall be performed. The first step within this activity is a
thorough performance evaluation, e.g., involving the iden-
tification of over- or underutilized resources and software
components. The effect of possible adaptations on the per-
formance is evaluated using similar techniques as they were
used during the performance prediction activity. The result
is a selection of adaptation operations to be executed during
the subsequent Adaptation phase.

3.3.3 Adaptation
In case the Analysis phase resulted in the decision to per-
form an adaptation, the SLAstic middleware is triggered to
execute the selected operations. Changes of the architecture
which are due to the adaptation will be reflected in the run-
time models as soon as the execution of the adaptation has
been committed by the middleware. These changes include
structural changes in the interconnection of components but
also the resetting and adjustment of model parameter val-
ues which are no longer valid for the changed context. For
example, after a component has been migrated to another
execution environment, the response times corresponding to
its operations are no longer meaningful.

4. CONCLUSIONS AND FUTURE WORK
In this paper we presented the design of our adaptation
framework SLAstic which aims at operating software sys-
tems more efficiently. Efficiency, in terms of the number
of allocated data center resources, is improved by execut-
ing architecture-level runtime adaptations based on current
workload situations. Future work regarding the approach
can be divided into four parts:

1. The three adaptation operations need to be formally
specified and implemented as a proof-of-concept. Sim-
ulations shall be executed to examine whether they are
a valuable means for improving the resource-efficiency.

2. The activities involved in the three phases described
in Section 3.3 as well as the models used for the evalu-
ation tasks have to be detailed. This includes to deter-
mine which aspects and runtime data of the software
architecture need to be known for the analyses, which
analysis models are usable for runtime evaluations, and
what is a feasible time-granularity for the adaptation.

3. A language for modeling the relevant architectural as-
pects as well as the adaptation policies has to be spec-
ified.

4. An evaluation of the overall approach needs to be per-
formed in order to examine whether it is both valuable
and feasible for realistic applications. We plan to per-
form an evaluation by simulation in the first place be-
fore setting up a case study with a realistic application
in the lab.

5. REFERENCES
[1] S. Balsamo, A. Di Marco, P. Inverardi, and

M. Simeoni. Model-based performance prediction in
software development: A survey. IEEE Transactions
on Software Engineering, 30(5):295–310, 2004.

[2] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. Journal of Systems and Software,
82(1):3–22, 2009.

[3] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot – A technique for cheap recovery.
In 7th Symposium on Operating Systems Design and
Implementation (OSDI’04), pages 31–44, 2004.

[4] A. Diaconescu and J. Murphy. Automating the
performance management of component-based
enterprise systems through the use of redundancy. In
Proceedings of the 2005 International Conference on
Automated Software Engineering (ASE ’05), pages
44–53. ACM, 2005.

[5] D. Garlan, S.-W. Cheng, and B. Schmerl. Increasing
system dependability through architecture-based
self-repair. In Architecting Dependable Systems,
volume 2677 of Lecture Notes in Computer Science,
pages 23–46. Springer, 2003.

[6] J. Kephart and D. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, Jan. 2003.

[7] J. Kramer and J. Magee. Self-managed systems: an
architectural challenge. In 2007 Future of Software
Engineering (FOSE ’07), pages 259–268. IEEE, 2007.

[8] Y. Liu and I. Gorton. Implementing adaptive
performance management in server applications. In
Proceedings of the 2007 International Workshop on
Software Engineering for Adaptive and Self-Managing
Systems (SEAMS ’07), pages 12–21. IEEE, 2007.

[9] J. Matevska and W. Hasselbring. A scenario-based
approach to increasing service availability at runtime
reconfiguration of component-based systems. In
Proceedings of the 33rd Euromicro Conference on
Software Engineering and Advanced Applications
(SEAA ’07), pages 137–144. IEEE, Aug. 2007.

[10] Object Management Group. UML Profile for
Schedulability, Performance, and Time. http:
//www.omg.org/cgi-bin/doc?formal/2005-01-02,
Jan. 2005.

[11] Object Management Group. UML Profile for Modeling
and Analysis of Real-time and Embedded Systems
(MARTE), Beta 1. OMG Adopted Specification
ptc/07-08-04. http://www.omg.org/cgi-bin/apps/
doc?ptc/07-08-04.pdf, Aug. 2007.

[12] P. Oreizy, N. Medvidovic, and R. N. Taylor.
Architecture-based runtime software evolution. In
Proceedings of the 20th International Conference on
Software Engineering (ICSE ’98), pages 177–186.
IEEE, 1998.

[13] M. Rohr, S. Giesecke, W. Hasselbring, M. Hiel, W.-J.
van den Heuvel, and H. Weigand. A classification
scheme for self-adaptation research. In Proceedings of
the International Conference on Self-Organization and
Autonomous Systems In Computing and
Communications (SOAS’2006), Sept. 2006.

[14] M. Woodside, G. Franks, and D. C. Petriu. The future
of software performance engineering. In 2007 Future of
Software Engineering (FOSE ’07), pages 171–187.
IEEE, 2007.


