
Analyzing and Implementing Peer-to-Peer Systems
with the PeerSE Experiment Environment

Ludger Bischofs
OFFIS

Institute for Information Technology
Oldenburg, Germany

Email: ludger.bischofs@offis.de

Wilhelm Hasselbring
Software Engineering Group

University of Kiel
Kiel, Germany

Email: wha@informatik.uni-kiel.de

Abstract—This paper introduces the PeerSE Experiment Envi-
ronment (EE) including concepts for a simulation-based analysis
and implementation of P2P systems. The PeerSE EE supports a
comparative analysis of P2P system models to identify models
fulfilling given requirements. In a next step, model components
are reused for implementing laboratory and real-world P2P sys-
tems. The integrated visualization for simulation and laboratory
experiment results helps developers to compare the behavior of
simulation models and laboratory systems. Thus, the PeerSE EE
allows a controlled transition of model components to laboratory
components. The applicability of the PeerSE EE is demonstrated
by exemplarily analyzing and implementing a P2P system.

I. INTRODUCTION

Peer-to-Peer (P2P) systems are distributed systems com-
posed of up to millions of functionally equivalent entities
(peers), which form P2P overlay networks on top of physical
networks to communicate. The functionality of a peer is
implemented by a P2P application which defines the behavior
of the whole P2P system. The equivalence of peers is realized
by providing client functionality as well as server functionality.

Implementing a P2P system with specified behavior is a
difficult task because the behavior depends on many factors,
such as the used P2P search methods and the underlying
physical network. Simulation can help to estimate the system
behavior in an early development phase based on system
models.

The main contribution of this paper is the PeerSE EE
including concepts for a controlled transition from P2P sim-
ulation models to laboratory and real-world P2P software
systems. “Controlled” means, that the behavior of P2P system
models and laboratory systems are compared based on the
same metrics. Further advantages of the PeerSE EE allow a
comparative analysis of P2P system models and the reuse of
model components for implementing laboratory and real-world
P2P systems.

This paper is organized as follows. Section II describes the
main features of the PeerSE EE. In Section III, the simulation
model of the PeerSE EE is specified. The applicability of
the PeerSE EE is demonstrated in Section IV by exemplarily
developing a P2P system. After presenting related work in
Section V we conclude and outline future work.

II. PEERSE EXPERIMENT ENVIRONMENT

The PeerSE EE is an open source tool (downloadable from
[1]) for developing P2P systems in Java. P2P system models
can be analyzed with the integrated discrete event system
simulator which implements the PeerSE Simulation Model
described in Section III. The PeerSE EE supports the reuse of
model components for performing laboratory experiments. In
laboratory experiments, P2P applications communicate over a
laboratory physical network in real time (instead of model time
in simulation experiments) and are controlled by user models.
Laboratory P2P applications can be reused for implementing
real-world P2P applications. In contrast to laboratory P2P
applications, real-world P2P applications are controlled by
real-world users, so that no model components are used
anymore.

Special graphs (so called PeerSE Graphs) are used for
initializing PeerSE Simulation Models and for visualizing the
initial system state of a P2P system model within the PeerSE
EE. The visualization of state changes is also possible, but has
not been integrated yet.

The PeerSE EE visualizes simulation and laboratory ex-
periment results based on the same metrics as charts. This
helps developers to compare the behavior of simulation models
and laboratory systems. The comparison of simulation and
laboratory experiment results allows a controlled transition of
model components to laboratory components. In simulation
experiments, results can be visualized already at experiment
runtime to allow fast testing and debugging during the model
development.

III. PEERSE SIMULATION MODEL

The PeerSE Simulation Model contains components for
modeling and simulating P2P systems (see Figure 1). In the
PeerSE Simulation Model, a P2P system is just an aggregation
of P2P applications, which communicate over a physical
network, often using an additional P2P overlay network on
top of it. Each P2P application is typically controlled by a
user, but it may also act stand-alone, e.g. for building and
managing P2P overlay networks.

The PeerSE Simulation Model is initialized by means of
a special graph called PeerSE Graph. A PeerSE Graph is a
mixed pseudo graph, that may contain directed and undirected



PeerSEModel

PhysicalNetwork

P2PApplication

User

cd: PeerSE-Simulationsmodell

0..1

<< interact >>

<< communicate >>

*

*

Fig. 1. Model components of the PeerSE Simulation Model

n
1

n
2

neighbor

neighbor

c
2

c
1

overlies

connection

overliestype = computer
name = c1
ip = 192.168.0.1

type = computer
name = c2
ip = 192.168.0.2

type = node
name = n1
port = 5000
ttl = 5

type = node
name = n2
port = 5000
ttl = 3

Fig. 2. Visualization example of a PeerSE Graph

edges, loops and parallel edges (see [2]). Additional initial-
ization information like node or edge labels are represented
by attributes. Figure 2 exemplarily depicts a PeerSE Graph
containing the computers c1 and c2, that are connected with
an undirected edge. The nodes n1 and n2 represent nodes of
a P2P overlay network. Attributes of the nodes and edges are
visualized as node/edge labels and in special boxes. The shown
example is only one possibility for visualizing a PeerSE Graph
and its attributes. There may be better solutions depending on
the graph topology and attribute structure. In the following,
we specifiy a PeerSE Graph in Object-Z [3].

We first define the set of attributes as a base type because
its structure is not specified in detail at this point. An attribute
of a node or an edge can for instance be just a number or
perhaps a complex data structure (e.g. an XML document).

[ATTRIBUTE]

We call a node of a PeerSE Graph PeerSEVertex. A
PeerSEVertex contains a finite set of attributes and is specified
as an Object-Z schema:

PeerSEVertex
attributes : F ATTRIBUTE

Directed edges are called PeerSEArc and contain the nodes
from and to, which are connected via a directed edge.
PeerSEArc also contains a finite set of attributes of base type
ATTRIBUTE.

PeerSEArc
from, to : PeerSEVertex
attributes : F ATTRIBUTE

Undirected edges are specified as PeerSEEdge and include
two nodes v1 and v2. They also contain a finite set of attributes
of base type ATTRIBUTE.

PeerSEEdge
v1, v2 : PeerSEVertex
attributes : F ATTRIBUTE

A PeerSE Graph consists of a finite set vertices of nodes,
a finite set arcs of directed edges and a finite set edges of
undirected edges. A PeerSE Graph is specified as an Object-
Z class as follows:

PeerSEGraph

vertices : F PeerSEVertex
arcs : F PeerSEArc
edges : F PeerSEEdge

∀ a : arcs • (a.from ∈ vertices)
∀ a : arcs • (a.to ∈ vertices)
∀ e : edges • (e.v1 ∈ vertices)
∀ e : edges • (e.v2 ∈ vertices)

INIT

vertices = ∅
arcs = ∅
edges = ∅

AddPeerSEGraph
∆(vertices, arcs, edges)
g? : PeerSEGraph

vertices′ = vertices ∪ g?.vertices
arcs′ = arcs ∪ g?.arcs
edges′ = edges ∪ g?.edges

PeerSE Graphs can be composed of PeerSE Graphs. Thus,
it is possible to generate a physical and overlay network graph
separately to join these graphs in a further step. The procedure
AddPeerSEGraph of the class PeerSEGraph specifies such an
operation.

Figure 3 shows an example of a PeerSE Graph composed of
a physical network and a P2P overlay network. The concept of
PeerSE Graphs composition is supported by the PeerSE EE
for creating the initial PeerSE Graph needed for initializing
the PeerSE Simulation Model. This allows an independent
development of PeerSE Graph generators for several types
of physical and overlay networks. Overlay networks can be
mapped on physical networks in a further step, what allows a
high flexibility for creating initial PeerSE Graphs.

IV. EVALUATION OF THE PEERSE EXPERIMENT
ENVIRONMENT

The applicability of the PeerSE EE is shown in this Section
by describing the analysis and implementation of an exemplary
P2P system for distributed software development.

A tutorial experiment within the course software system
engineering at the University of Oldenburg in winter semester



n
1

n
2

n
3

n
4

s
1

c
2

c
3

c
4

c
1

∪∪

n
1

n
2

n
3

n
4

c
2

c
3

c
4

c
1

n
1

n
2

n
3

n
4

s
1

c
2

c
3

c
4

c
1

=

Physical Network P2P Overlay Network

Overlay Mapping Composite Graph

Fig. 3. Composition of a PeerSE Graph containing a physical network and
an overlay network

2005 already indicated the applicability. The computer science
students were able to develop and analyze P2P search methods
in Java using the eaSim simulator [4], a previous prototype
of the PeerSE EE. eaSim does not offer functionality for
further developing the simulation model to a laboratory P2P
system, wherefore the implemented search method have not
been executed in a laboratory experiment setting. The further
development of P2P system models to real-world P2P systems
and the combined execution of model and real-world compo-
nents have been demonstrated with the RealPeer framework
[5] within the scope of this work.

In this Section, we show the applicability of the PeerSE EE
by modeling and implementing a P2P system. We focus on the
controlled transition of a P2P application model component
to a laboratory P2P application. Accordingly, we take a look
at the reuse of model components and the comparison of
simulation and laboratory experiment results.

We assume that a P2P system shall be implemented which
supports the self-organization of FLOSS (Free/Libre and Open
Source Software) developers into projects. To this end, a
method for searching for developers and projects is required.
Additional requirements are that the P2P system must be
resource efficient and that search queries must be answered
as fast as possible.

A. Simulation Experiments

We use simulation experiments for a comparative analysis
of different P2P application model components to find the one
which best fulfills the requirements. The model components
User, P2PApplication and PhysicalNetwork are required for
executing simulation experiments. The PeerSE EE also re-
quires an experiment configuration file, PeerSE Graph gen-
erators and event list generators for initializing the simulation
experiments (see Figure 4).

In our case, four PeerSE Graph generators have been
developed. The first one generates a simple physical network
graph used for initializing the physical network model con-
sisting of connected computers. The second one generates
a FLOSS overlay network graph [6], the third one a pure
unstructured P2P overlay network graph, and the fourth one
a Chord overlay network graph (Chord ring) [7]. Simulation
experiments have been designed and executed to compare

<< component >>

EventListGenerator

<< component >>

GraphGenerator

<< artifact >>

EventListGenerator

<< artifact >>

GraphGenerator

<< component >>

PhysicalNetwork

<< component >>

P2PApplication

<< component >>

User

<< artifact >>

PhysicalNetwork

<< artifact >>

P2PApplication

<< artifact >>

User

<< artifact >>

ExperimentConfiguration << device >>

developerPC:PC

<< executionEnvironment >>

PeerSE

dd: Simulationsexperiment

<< deploy >>

<< deploy >>
<< deploy >> << deploy >>

<< manifest >> << manifest >> << manifest >>

<< deploy >>

<< deploy >>

<< manifest >>

<< manifest >>

Fig. 4. Deployment diagram of a simulation experiment
Tabelle1

Seite 1

FLOSS_P2P_40 60000 ms 10 ● ● ● ○ P2P 40 100 - 59000 ms
FLOSS_Chord_40 60000 ms 10 ● ● ○ ● 40 100 - 59000 ms
FLOSS_P2P_40_Dynamic 60000 ms 10 ● ● ● ○ P2P 40 100 8 59000 ms
FLOSS_Chord_40_Dynamic 60000 ms 10 ● ● ○ ● 40 100 8 59000 ms
Abbreviations: ● = yes, ○ = no

Breadth-First-Search
Chord Chord

Breadth-First-Search pdf export dummy
Chord Chord

ex
peri

men
t n

am
e

ex
peri

men
t d

urat
ion

ex
peri

men
t r

uns

phys
ica

l n
etw

ork

FLOSS ove
rla

y n
etw

ork 
(FLOSS)

P2P
 ove

rla
y n

etw
ork 

(P
2P

)

Chord
 ove

rla
y n

etw
ork 

(C
hord

)

P2P
 se

arc
h m

eth
od

se
arc

hed
 ove

rla
y n

etw
ork

number 
of c

omputer
s

number 
of s

ea
rch

 queri
es

node s
tat

e c
han

ges
 (o

ffli
ne/o

nlin
e)

max
. e

ve
nt ti

me

Fig. 5. Experiment settings with 40 computers

different P2P architectures generated with these PeerSE Graph
generators.

Figure 5 lists the experiment settings described in this paper.
Two different kinds of PeerSE Graphs are generated. The
first one consists of a physical network, a pure unstructured
P2P overlay network, and a FLOSS overlay network, and
the second one contains a Chord overlay network instead
of a pure unstructured P2P overlay network. Breadth-first-
search is used for searching within the pure unstructured P2P
overlay network and Chord is used for searching within the
Chord overlay network. There are ten experiment runs for
each experiment with a duration of 60000 ms. Events are
processed within the first 59000 ms of the experiment runs,
so that answers have time to arrive within the last second.

Several metrics have been used to compare the P2P system
models. The simulation experiment results show, that search
queries can be answered comparable fast in both systems.
Chord is a much more efficient search strategy than breadth-
first search, because it needs much fewer messages to answer
queries. This is the reason, why we chose the Chord-based
architecture as candidate for the controlled transition into a
laboratory system.

B. Laboratory Experiments

Figure 6 explains the concept of executing laboratory ex-
periments in a distributed environment on a physical network.



<< component >>

P2PApplication

<< component >>

User

<< artifact >>

ExperimentConfigurationPC1

<< artifact >>

ExperimentConfigurationPC2

<< artifact >>

User

<< artifact >>

P2PApplication

<< device >>

laborPC2:PC

<< executionEnvironment >>

:PeerSE

<< device >>

laborPC1:PC

<< executionEnvironment >>

:PeerSE

dd: Laborexperiment

<< ethernet >>

<< deploy >>
<< deploy >> << deploy >>

<< deploy >>
<< deploy >><< deploy >>

<< manifest >> << manifest >>

Fig. 6. Deployment diagram of an exemplary laboratory experiment

It contains a deployment diagram of an exemplary labora-
tory experiment running on two computers, which can be
easily extended to more computers. For executing laboratory
experiments, the model of the P2P application is extended
for running on a laboratory network. Therefore, the Physi-
calNetwork model component is not needed anymore. Each
P2P application gets an individual configuration file with
initialization information and an individual event list. The
event lists of the simulation experiments are reused, so that the
same events occur in laboratory experiments. In the following
section, we describe some laboratory experiment results and
compare them with the simulation results.

C. Simulation vs. Laboratory Experiment Results

During the simulation and laboratory experiment runs, the
same metrics are used for measurements to allow a direct
comparison of experiment results. For example, Figure 7
depicts the accumulated number of sent and received mes-
sages during a simulation experiment run, whereas Figure 8
depicts the corresponding laboratory experiment results. Even
though the same initial event list of the simulation experiment
has been reused for the laboratory experiment, we observe
slightly differing experiment results. In the figured laboratory
experiment results for instance, one more message has been
sent than in the corresponding simulation experiment. Another
difference is that the number of received messages is smaller
than the number of sent messages in the laboratory experiment.
Five messages have not been received and not been registered
as sending errors. These messages must get lost during the
data transfer.

Several further metrics have been used during the evalu-
ation of PeerSE EE and most compared results are similar.
Deviations have been measured using the metric Time to First
Answer. The results of the laboratory experiment have been
measured on a cluster with busy and idle computers. The
major part of the time values on idle computers lay between
0 and 50 milliseconds and therefore under the time values of
the simulation experiment. In comparison with the simulation

Accumulated Number of Sent and Received Messages

Number of Sent Messages Number of Received Messages Number of Not Arrived Messages

Number of Sending Errors

0 5.000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 55.000 60.000

Simulation Time in Milliseconds

0

50

100

150

200

250

300

N
um

be
r 

of
 M

es
sa

ge
s

Fig. 7. Accumulated number of sent and received messages in a simulation
experiment with a Chord overlay network

Accumulated Number of Sent and Received Messages

Number of Sent Messages Number of Received Messages Number of Not Arrived Messages

Number of Sending Errors

0 5.000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 55.000 60.000

Simulation Time in Milliseconds

0

50

100

150

200

250

300

350

N
um

be
r 

of
 M

es
sa

ge
s

Fig. 8. Accumulated number of sent and received messages in a laboratory
experiment with a Chord overlay network

experiment, there have been some outliers in the laboratory
experiments. The maximal time to answer on an idle cluster
has been above 270 milliseconds. On a busy cluster, the
measured values have been much bigger and outliers could
be measured with delays of more than 2000 milliseconds.
The CPU usage and network traffic have not been modelled
in the simulation model, so that these values can not be
recreated in a simulation experiment without extending the
simulation model. The actual simple physical network model
uses a pseudo-random transmission time in milliseconds in the
interval of (15, 20] for sending a message from one computer
to another.

D. Real-World Experiments

In the completion phase, the laboratory P2P application is
extended to a real-world P2P application by simply adding a
main method. A simple GUI has already been implemented
as part of the simulation model to control a P2P application
during a simulation experiment for test purposes. Figure 22
shows the screenshots of three P2P applications, that are
running on different computers in a local network and are
controlled by a real user. The P2P applications use a Chord
overlay network on top of a TCP/IP based physical network
for answering user queries.



The comparison of simulation and laboratory experiment
results with experiment results of real-world P2P systems with
real-world users is out of the scope of the PeerSE EE, but
such a comparison is possible by using the same metrics. The
challenge would be to implement large experiment settings
with real-world computers and real-world users.

V. RELATED WORK

In the course of developing the PeerSE EE, we reviewed
37 P2P system simulators and many other tools that can
be used for analyzing or implementing P2P systems. Most
P2P simulators focus on special P2P architectures, are not
designed for a reuse of simulation models for implementing
real-world P2P systems, and do not support a validation within
a laboratory network. In the following, we present tools that
are comparable with the PeerSE EE because they allow the
simulation of P2P systems and their execution on physical
networks.

Neko [8] is a platform for the design and performance
evaluation of distributed algorithms. The same implementation
can be simulated and executed on a physical network. In
contrast to the PeerSE EE, Neko does not include a GUI, a
simulation model for P2P systems comparable with the PeerSE
Simulation Model, and concepts for comparing experiment
results from simulated and executed experiments.

MACEDON [9] is a method for specifying distributed
algorithms in a compact domain-specific language which is
used for generating code that can be deployed in evaluation
infrastructures and in physical networks. In contrast to the
PeerSE EE, a direct comparison of simulation and laboratory
experiment results is not supported and the visualization of
experiment settings and results is not part of the MACEDON
method.

Jones and Dunagan report their experience with the devel-
opment of running P2P systems within the Herald project [10].
Simulation and real-world experiments have been executed
during the development of a P2P system. The same code base
has been used for the simulation model and the real-world
system. A comparative analysis of P2P architectures, a GUI
for visualizing topologies or experiment results, and a direct
comparison of simulation and laboratory experiment results
are not described.

WiDS (WiDS implements Distributed System) [11] is an
integrated toolkit for the development of distributed systems.
It supports the execution of the same code within simulation
experiments and as a real-world system. In contrast to this
work, WiDS does not contain a GUI, nor does it support com-
parative analysis or a comparison of simulation and laboratory
experiment results for a controlled transition from simulation
models to laboratory systems.

VI. CONCLUSION AND FUTURE WORK

We presented the PeerSE EE for analyzing and implement-
ing P2P systems based on simulation. The PeerSE EE includes
the PeerSE Simulation Model which can be initialized and
visualized via PeerSE Graphs. We showed that the PeerSE EE

allows a comparative analysis of P2P system models based on
different P2P architectures. The best fitting P2P application
model component has been be reused for implementing a lab-
oratory P2P application which can be used for laboratory ex-
periments on a laboratory network with distributed computers.
Experiment results of simulation and laboratory experiments
have been comparable directly because the same event lists
and metrics have been used. In the evaluation example, only
small behaviour discrepancies of the simulated P2P system
and the laboratory P2P system occured. Therefore, we speak
of a controlled transition of the simulation component of a
P2P application to a laboratory P2P application. A transition
to a real-world P2P application is also possible and has been
implemented, but the execution of experiments with real-world
P2P applications controlled by real users on a real physical
network may be a complex task.

The use of existing laboratory networks like PlanetLab [12]
can be useful for testing P2P systems on a large physical
network. We have to consider that the model component of
the physical network should model the laboratory network for
a direct comparison of simulation and laboratory experiment
results.

REFERENCES

[1] “PeerSE - Analysing and Developing Peer-to-Peer Systems with
PeerSE.” [Online]. Available: http://www.peerse.eu/

[2] G. Chartrand and O. R. Oellermann, Applied and Algorithmic Graph
Theory, ser. International Series in Pure and Applied Mathematics.
McGraw-Hill, 1993.

[3] G. Smith, The Object-Z Specification Language. Norwell, MA, USA:
Kluwer Academic Publishers, 2000.

[4] “easim.” [Online]. Available: http://sourceforge.net/projects/easim/
[5] D. Hildebrandt, L. Bischofs, and W. Hasselbring, “RealPeer - A Frame-

work for Simulation-based Development of Peer-to-Peer Systems,” in
Proceedings of the 15th Euromicro International Conference on Parallel,
Distributed and Network-based Processing (PDP 2007), Naples, Italy,
7.-9. Februar. Los Alamitos, CA, USA: IEEE, 2007, pp. 490–497.

[6] L. Bischofs and W. Hasselbring, “Generating and Visualising Organi-
sational Structures of Free/Libre and Open Source Software Projects,
Proceedings of the Third International Conference on Open Source
Systems, Limerick, Ireland, 11-14 June, 2007,” in Open Source Devel-
opment, Adoption and Innovation, J. Feller, B. Fitzgerald, W. Scacchi,
and A. Sillitti, Eds. Springer, 2007, p. 392, poster.

[7] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord - A Scalable Peer-to-peer Lookup Service for Internet Applica-
tions,” in Proceedings of the 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications,
San Diego, California, USA. ACM Press, 2001, pp. 149–160.

[8] P. Urbán, X. Défago, and A. Schiper, “Neko: A Single Environment to
Simulate and Prototype Distributed Algorithms,” Journal of Information
Science and Engineering, vol. 17, no. 6, Nov. 2002.

[9] A. Rodriguez, C. Killian, S. Bhat, D. Kostić, and A. Vahdat, “MACE-
DON - Methodology for Automatically Creating, Evaluating, and De-
signing Overlay Networks,” in NSDI’04: Proceedings of the 1st confer-
ence on Symposium on Networked Systems Design and Implementation.
Berkeley, CA, USA: USENIX Association, 2004, pp. 20–20.

[10] M. B. Jones and J. Dunagan, “Engineering realities of building a working
peer-to-peer system,” Microsoft Research, Tech. Rep. MSR-TR-2004-54,
2004.

[11] S. Lin, A. Pan, Z. Zhang, R. Guo, and Z. Guo, “WiDS: an integrated
toolkit for distributed system development,” in HOTOS’05: Proceedings
of the 10th conference on Hot Topics in Operating Systems. Berkeley,
CA, USA: USENIX Association, 2005, pp. 17–17.

[12] “PlanetLab - An open platform for developing, deploying, and accessing
planetray-scale services.” [Online]. Available: http://www.planet-lab.org/


