
Author / Computing, 2000, Vol. 0, Issue 0, 1-2

 1

The BIS-Grid Engine: An Orchestration as a Service Infrastructure

André Höing 1), Guido Scherp 2), Stefan Gudenkauf 2)

1) Technische Universität Berlin, Einsteinufer 17, 10587 Berlin, andre.hoeing@tu-berlin.de, http://www.cit.tu-berlin.de
2) OFFIS, Escherweg 2, 26121 Oldenburg, {guido.scherp, stefan.gudenkauf}@offis.de, http://www.offis.de

Abstract: The need for information system integration is typical for many companies including small and medium-sized
enterprises (SMEs). But especially for SMEs, the costs to run a full-fledged integration platform in-house are beyond
the available IT budget. This article describes the concept of Orchestration as a Service (OaaS), a specialization of the
Platform as a Service (PaaS) paradigm in the Cloud (computing) world. The goal of this paradigm is to provide a
workflow-based integration platform as a (Cloud) service focusing on so-called service orchestrations. We present the
BIS-Grid Engine as a core middleware for an OaaS infrastructure including a discussion about how our solution
addresses security requirements that are a key issue in Cloud technologies.

Keywords: Cloud, Grid, Orchestration, Service Oriented Architecture, Security, Orchestration as a Service, Platform
as a Service

1. INTRODUCTION

Over the last few years the Cloud computing
paradigm gained more and more momentum. Its
main characteristics are immediate scalability,
resources on demand provisioning and usage
optimization, virtualization, and a pay-per-use
model. Today, there is a consensus that categorizes
Cloud computing services into the layers
Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS)
(cp. [1, 2]). Web services turned out to be the key
technology to access services at each layer.

IaaS is the basic layer to allocate and use
virtualized compute and storage resources. Users are
completely free in designing their own computing
infrastructure. For example, providing customized
operation system images on virtual resources to
process data from storage services. Currently,
Amazon EC2 and S3 Cloud Services [17] are the
most famous examples for IaaS. PaaS, in contrast,
offers a platform where users can deploy and run
some kind of self-written software. Thereby, the
programming language depends on the platform
which is typically designed for scalability. One
example for PaaS is the Google Apps Engine [22].
Finally, SaaS represents the provision of a single
application to customers for on-demand use as a
service. Users have usually no or only very restricted
possibilities for customization. Normally, such a
software service can be accessed via standard web
browsers. Salesforce.com, for example, offers a

customer relationship management (CRM) software
as a service based on a pay-per-use model. In
summary, IaaS, PaaS, and SaaS are considered as
subsequent abstraction layers with an increasing
degree of abstraction to the executing infrastructure
[2]. Thereby, mechanisms to ensure security and
data privacy are crucial at each layer in a Cloud
environment.

Cloud computing has several properties that
make it very attractive for SMEs and start-up
enterprises. Most prominently, these are low entry
costs, high scalability, and the possibility to
outsource IT systems and services into Cloud
infrastructures that can guarantee a quality of
services that the original enterprises could not
provide on their own. Hence, enterprises can
concentrate on their core business without dealing
with complex IT infrastructures directly.

Besides running the various information systems
and services, their integration, referred to as
Enterprise Application Integration (EAI), is also a
critical issue for many enterprises. EAI provides
means to map business processes to the technical
system level. One very popular concept to achieve
this is service orchestration in service-oriented
architectures (SOA). Web service technologies are
commonly used to create SOA since they enable
service orchestration and hide the underlying
technical infrastructure.

Many small and medium enterprises (SMEs)
employ consultant services to identify their key
business processes and to build integrated IT

computing@computingonline.net
www.computingonline.net

ISSN 1727-6209
International Journal of Computing

Author / Computing, 2000, Vol. 0, Issue 0, 1-2

 2

environments by the deployment of in-house
integration platforms. But often, the maintenance
and operation of such platforms is cumbersome.
This brings up the idea of Orchestration as a Service
(OaaS), where an integration platform in the form of
a service orchestration engine is hosted and
maintained by a so-called Cloud provider. To
optimize resource utilization such an orchestration
engine should be designed as a multi-tenant
architecture, meaning that different users deploy und
run workflows on shared machines. In this context,
security and privacy of both the deployed workflows
and their data have to be considered as key issues.

Generally, Cloud computing offers are based on
Web service technologies, depending on the
provider. Furthermore, Grid computing middleware
– closely related to IaaS in Cloud computing and
mostly used in scientific environments – and service
orchestration middleware are nowadays as well
based on Web services. The idea to combine these in
order to create an OaaS infrastructure seems
promising. In the BIS-Grid project, our major
objective is to proof that Grid and Cloud
technologies are feasible for information systems
integration, especially when traversing enterprise
boundaries. Small and medium enterprises shall be
enabled to integrate heterogeneous business
information systems and to use external resources
and services with affordable effort, even across
company boundaries.

This article presents two major contributions: At
first, we describe our idea of a Cloud orchestration
service and list the requirements we identified
especially with respect to security. Secondly, we
introduce the BIS-Grid Engine as a standard-based
core middleware for such an OaaS infrastructure.
We focus on the architectural design and security
standards we adapted from the Grid domain to show
the appropriateness of this implementation.

2. ORCHESTRATION AS A SERVICE

Integration is a continuous challenge for both
industry and research in order to enable the seamless
interaction of (heterogeneous) IT systems and
services. Modern integration solutions adopted the
service-oriented architecture (SOA) design paradigm
in which the workflow-oriented representation of
business logic is an inherent part. This means that all
applications are encapsulated by enclosed, loosely
coupled, often low-level services which are
composed as service orchestrations to create
(executable) business processes.

The Web Services Business Process Execution

Language (WS-BPEL) [3] is an OASIS standard that
is able to orchestrate Web services as well as to offer
each orchestration itself as a Web service. This
enables the use of lower-level services and processes
to build complex services on a higher level, mapping
a value added chain partially or in whole to the
technical system level. In the course of time, WS-
BPEL turned out as the de-facto standard for service
orchestration with broad support from industry.

The use of loosely coupled services in SOA
allows to dynamically switch the location of invoked
services, for example to use services offered by an
external provider instead of local services. Thus,
SOA can be considered as an enabling technology to
outsource IT systems and corresponding services to
reduce IT costs. Most of today’s Cloud services
adopted the SOA paradigm that can be seen as the
basic requirement for Clouds.

Microsoft BizTalk Server and SAP XI are two
examples of commercial integration platforms
applicable to SOA integration, using WS-BPEL. In
order to run such platforms, costs such as licenses,
hardware, and system administrators have to be
considered. Many companies such as small and
medium enterprises (SMEs) are not able to operate
such infrastructures although they certainly have
needs for integration. Even freely available products
like Sun's OpenESB are hard to set-up and maintain
in a productive manner. Hence, the trusted
orchestration of services is a major concern in Cloud
computing.

Within the BIS-Grid project, one goal is to
combine WS-BPEL, the de facto standard for
service orchestration, and Grid technologies with its
comprehensive security mechanisms to provide a
secure integration platform as Orchestration as a
Service (OaaS), according to the “*-as a Service”
paradigm. Thereby, we define OaaS as a
specialization of PaaS, since process developers are
able to develop, deploy and manage custom business
processes which can be considered as a kind of self-
written software.

To successfully provide an orchestration engine
as a commercial Cloud service, the implementation
must address several requirements of the business
domain to prove that OaaS represents a cost-saving
and secure option for IT system integration. Hence,
besides the functionality to execute service
orchestrations denoted as workflows, there are
several non-functional requirements that must be
taken into account when developing an
implementation for OaaS.

Author / Computing, 2000, Vol. 0, Issue 0, 1-2

 3

The major requirement is security, comprising
access control and activity monitoring as well as
data privacy. Typically, a workflow combines
services that are provided by several information
systems, and business-crucial or confidential
information is passed through the workflow engine.
This information must be secured from unauthorized
access. Therefore, business-applicable authentication
and authorization mechanisms that support role-
based and fine-grained access control mechanisms
are essential. Moreover, a detailed monitoring of
user activities on accessed information systems is
necessary, regarding that workflows may act on
behalf of users and a consistently access log is
required due to legal issues. Because Cloud
computing and information system integration
middleware are based on SOA, we require that OaaS
infrastructures must be seamlessly capable of being
integrated with SOA. Interfaces should be provided
as services including the deployed workflows.

For efficient resource utilization, we require that
OaaS infrastructures must be designed as multi-
tenant infrastructures, meaning that workflows of
several companies or users must be executable on
the same resource without affecting each other and
still guaranteeing data privacy and other relevant
qualities of services. Furthermore, workflow
deployment must be simple, and the execution of
workflows must be scalable and high-performing.
Finally, we require conformance to the WS-BPEL
specification, since WS-BPEL is the de facto
industry standard for service orchestrations.

Beside OaaS we considered further deployment
scenarios depending on the degree of Grid/Cloud
utilization of the involved components, see Figure 1.
This ranges from (a) a classical in-house scenario, in
which all components are deployed within one

organization, up to (d) a complete Grid/Cloud
scenario, in which all components except for the
client applications are outsourced to some Grid or
Cloud infrastructure. The scenario (b) is an
alternative to the OaaS scenario depicted in (c), in
which conventional components such as storage and
computing resources and the actual information
systems are outsourced partially or in whole.

The evaluation of the OaaS approach is based on
two scenarios with our industrial partners, both
SMEs. Currently, in these scenarios we regard the
in-house scenario (a) and the OaaS scenario (c).
Outsourcing information systems to a Grid or Cloud
provider is dismissed because of serious security
concerns. The overall philosophy is to keep all data
services in-house and relevant data for orchestration
and integration may leave the company on demand
under ensuring security, privacy and a trustworthy
relationship to the service provider.

3. ARCHITECTURE

The BIS-Grid Engine is our core middleware for
an OaaS infrastructure, based on widely-used
standards that are mostly adopted from the Grid
domain. The engine is designed to address most of
the above identified requirements.

Grid middleware usually provides access to
compute resources via stateful Web services, also
called Grid services, based on the Web Services
Resource Framework (WSRF) [4]. Grid middleware
also provides comprehensive security mechanisms to
enable authentication and authorization. UNICORE
6 (www.unicore.eu), for example, supports X.509
certificates for authentication and provides an
authorization mechanism that is based on the
distinguished name of the user certificate with only a

Fig. 1 – Application scenarios for workflow execution

Author / Computing, 2000, Vol. 0, Issue 0, 1-2

 4

very restricted role mapping. States of WSRF-based
Web services are represented by service instances
and stored in so called Resource Properties. Such
properties can be accessed or manipulated by
corresponding WSRF methods.

The BIS-Grid Engine is based on the UNICORE
6 middleware and provides service extensions for
workflow deployment and execution. Thus, our
service extensions make use of the security
mechanisms of UNICORE 6. Although this provides
an adequate basis to enable secure workflow
execution over the internet, more effort was needed
to fulfill the OaaS requirements we discuss in Sec. 4.
Figure 2 gives an overview of the architecture of the
BIS-Grid Engine. The key concept is to use an
arbitrary WS-BPEL engine for workflow execution
encapsulated by service extensions to UNICORE 6.
All communication must pass these services
resulting in a secured WS-BPEL engine that can
only be accessed with the UNICORE 6 layer. The
WS-BPEL engine is loosely coupled via standard
HTTP connections and can easily be exchanged if
the WS-BPEL standard changes or a newer version
of the engine is available. In general, the BIS-Grid
Engine enables the interoperability between WS-
BPEL and external services through the support of
(stateful) WSRF Web services and advanced
security mechanisms that are discussed separately in
Sec. 4.

The UNICORE 6 service extensions that are
mentioned above are the Workflow Management
Service and the Workflow Service that are both
realized as stateful services. The Workflow
Management Service is statically deployed and
provides methods for workflow management (i.e.

deployment, redeployment, and undeployment of
workflows). For deployment, a deployment package
with all necessary information is send to a service
instance. During the deployment process, a
specialized version of the generic Workflow Service
is created on-demand and hot-deployed into the
service container. Thus, each deployed workflow in
the WS-BPEL engine has a corresponding
Workflow Service, and therewith each workflow is
represented through an independent and separate
stateful service. Thereby, the Workflow Service
provides the same interface as its WS-BPEL
workflow counterpart. The progress of workflow
execution and additional configurations such as
security credentials (see Sec. 4) are exposed by the
corresponding Workflow Service instance as
resource properties according to the WSRF standard.
Since each workflow execution in the WS-BPEL
engine is also regarded as an instance, each
workflow execution is represented by two instances,
one Workflow Service instance in the UNICORE 6
service container and one workflow instance in the
WS-BPEL engine. Both instances are mapped to
each other automatically based on exchanged
messages [13, 14].

Message exchange for workflow execution is
based solely on SOAP messages and must pass the
services in both directions (ingoing and outgoing).
Outgoing messages that are initiated by the WS-
BPEL engine (i.e. the invocation of external
services) must be sent to a HTTP proxy that is
running in the UNICORE 6 container. It is ensured
that outgoing messages are forwarded to the correct
Workflow Service instance, which stores the
information that is necessary for service invocation.

Fig. 2 – BIS-Grid Engine Architecture

Author / Computing, 2000, Vol. 0, Issue 0, 1-2

 5

Then, the Workflow Service instance performs the
external service call. This is especially important
due to security concerns since certain credentials
may be used for specific service invocations. These
credentials can be configured both globally at design
time for one single workflow and locally at runtime
for one single Workflow Service instance.

For workflow management functions like
workflow (un)deployment or workflow monitoring
an engine-specific adapter is used. Each WS-BPEL
engine has its own engine adapter. Currently, the
ActiveBPEL workflow engine is supported. The
implementation of an adapter for the Java Business
Integration (JBI) Platform OpenESB that includes
the BPEL SE workflow engine is in progress.

4. SECURITY

Security is one of the most important issues
within Cloud environments. Communication
security, access control, and data privacy have to be
considered, especially when message are exchanged
over the internet. Grid security mechanisms can be
regarded as a basis for secure OaaS because of their
focus on modern security standards.

Grid security is based on personalized X.509
certificates issued by a Certificate Authority (CA) or
an associated Registration Authority (RA). Each
person that intends to participate in a Grid must trust
this CA. Access permissions are granted as the
membership in a so-called virtual organization (VO)
that is maintained in separate VO management
systems. This scenario is neither applicable for
Clouds nor the business domain. A company,
possibly having several hundred employees and high
employee fluctuation, cannot send each new
employee personally to a RA in order to get them a
personalized certificate. Furthermore, rights should
be bound to business roles from existing identity
management systems without introducing an
additional system for VO management. These facts
require a distributed identity management system
that recognizes local identity management systems
with the possibility to grant or revoke role-based
permissions in a short time for an OaaS scenario.

SAML [5] is a standard that is capable to encode
arbitrary attributes, such as roles and affiliations,
into a so-called assertion. Such assertions can be
issued by an identity management system. SAML
also provides the capability to express fine-grained
credential delegation rights, for example, to express
that an entity is allowed to process an activity on a
resource in a well defined time frame. This standard
is appropriate to transport enriched user information
from an identity management system to the OaaS
infrastructure.

For describing rights, the BIS-Grid Engine uses

XACML Policies [6] that are very flexible and
allows fine-grained access control. Access decisions
are described as rules that define the applicability of
a rule by means of the user, targeted resource, and
the desired action. Furthermore, conditions can be
added that express dependencies between these
elements. The result of a rule is to either deny or
grant access to the resource. Users are identified by
the sum of all attributes included in a SAML
assertion or/and via additional attributes requested
during the authorization process. Hence, the policy
designer must be aware of the organizational
structures and roles of the enterprise to describe the
access rights correctly.

As a recommendation for an appropriate
distributed identity management system with low
maintenance costs and the capability to integrate
different identity management systems such as
Active Directory or OpenLDAP we suggest
Shibboleth [23]. In combination with Grid-Shib the
system is able to automatically issue short-lived
certificates (SLC) together with a SAML assertion
that includes the user's business roles. Welch et al.
describes such an architecture in more detail [7] and
a Short Lived Credential Service (SLCS) that issues
SLC is presented by SWITCH [16].

The major advantage in this security architecture
is the seamless integration of existing identity
management systems with the Shibboleth system,
also providing Grid compatibility based on SLC
with GridShib. An internally hosted and maintained
identity management system can obtain and check
credentials as well as supply attributes, so-called
campus attributes. An SLC usually has a short
lifetime of at most one million seconds (approx. 11
days), so that all roles and the connected rights are
invalid after this period. It is technically also
possible to reduce the lifetime of an SLC, for
example, to one day. This guarantees that roles and
permissions are only valid for a short time and must
be renewed every workday, which is especially
important since a mechanism to revoke invalid SLCs
is missing in this architecture.

Fig. 3 depicts the authentication and
authorization process of the BIS-Grid Engine. The
certificate is used to establish an SSL connection
between the user and the BIS-Grid Engine so that
transport layer security as well as user authentication
is guaranteed. All requests must pass the Policy
Enforcement Point (PEP) before reaching the actual
service. The PEP asks the Policy Decision Point
(PDP) for a decision that is based on the inserted
XACML rules. The attributes that are included in the
attached SAML assertion are used to authorize the
user. Only when access is granted, the request
reaches the service instance.

Hot-deployment of the Workflow Service also

Author / Computing, 2000, Vol. 0, Issue 0, 1-2

 6

demands hot-deployment of security policies. We
established such a hot-deployment mechanism for
XACML policies by adding new rules to the PDP.
However, the possibility to add new policies also
brings up the threat of misuse, for example, by
adding policies that affect other services. Hence, we
limit newly inserted XACML rules so that the
according rule set can only affect the corresponding
Workflow Service.

After discussing authentication and authorization,
we have to consider privacy, too. If several
companies work with the same OaaS infrastructure,
it must be ensured that only authorized users can see
what workflows are deployed or what workflows are
currently running. Authorized, in this case, does not
only mean that the user must have the right to
deploy a workflow. The system has also to
distinguish between affiliations or even departments
during information retrieval operations for deployed
workflows or for running workflow instances.
XACML policies are not applicable for this issue
since they restrict service method invocations but
not the content of an invocation result. We
established means to filter information according to
the authentication attributes when discovery
operations are used. Therefore, we store enriched
information about the creator of an instance in the
instances itself. As an example, instances of the
Workflow Management Service store the creator's
distinguished name, his affiliation, and his business
role. When someone else queries for deployed
workflows, the BIS-Grid Engine will only show
workflows matching the same affiliation and
business role. Both must be included in the signed
SAML assertion the user presents with his SLC. A
similar filter also guarantees privacy for searching
for instances of a Workflow Service.

In addition we have to regard how to configure
security for invoking Web, Grid, and Cloud services
from the BIS-Grid Engine. At the moment, we
support the invocation of standard Web services

without advanced security, UNICORE 6 services
with certificate-based authentication and SAML-
based authorization, as well as Globus Toolkit 4
(GT4) services that are secured via proxy certificates
and Web services security standards like WS-Trust
or WS-Secure Conversation. For each used service,
security credentials can be configured separately.
We can use Credential Delegation via Proxy
Certificates (GT4) or SAML assertions
(UNICORE), invoke services with a BIS-Grid
Engine certificate or another previously provided
certificate, or just username and password. Since
most Cloud services use proprietary security
mechanisms, possibly some customizing will be
necessary, if a new Cloud service should be
supported.

To sum up, the BIS-Grid Engine provides high-
level security on all layers as required in Sec. 2.
Besides the technical and organizational issues
discussed in this article, this topic also involves legal
issues to be addressed which are not part of the BIS-
Grid project.

Due to simplicity of the exemplary evaluation,
we decided not to set up a complete Shibboleth
environment for our OaaS prototype. We use a
similar solution that also supports SAML assertions
but lacks in using a federated identity management
system. The UNICORE Virtual Organisations
System (UVOS) allows the administration of user
identities combined with arbitrary attributes for each
identity. Additionally, hierarchical organizations can
be mapped to hierarchically organized groups and
attributes can be attached to groups and therewith to
all members of a group. Groups or sub-group
members and attributes can be managed by different
administrators. All UVOS-managed information can
be queried by SAML2-compatible applications [8].
Responding to such a query, UVOS answers with a
signed SAML assertion including all attributes
(group affiliations, group attributes, and global
attributes). The combination of UVOS and
UNICORE 6 is fully integrated and well-tested in
the Chemomentum project, in which UVOS was
developed originally.

5. RELATED WORK

There are several upcoming and new projects
regarding service orchestration in Cloud
environments, proving the relevance of the OaaS
paradigm. Unfortunately, these are all new projects
and aim at commercial issues and hence the
infrastructures are not described in detail. In the
following, we present some of these commercial
projects but also regard related work concerning
service orchestration in Grid environments.

Microsoft recently started to provide the .NET

Fig. 3 – Security Architecture Overview

Author / Computing, 2000, Vol. 0, Issue 0, 1-2

 7

Workflow Service as part of the .Net Services of the
Azure Services Platform [18] in order to execute
user-defined declarative workflows as lightweight
service orchestrations. These services facilitate the
idea of an Internet Service Bus that addresses the
need for cross-enterprise service orchestration,
supporting both the SaaS paradigm as well as
Microsoft's Software-plus-Services strategy. The
provided services can also be regarded as OaaS, thus
highlighting our efforts to be relevant in commercial
contexts.

CSC [19] recently announced Cloud
Orchestration Services and Trusted Cloud Services
promising various features such as service level
management, remote monitoring, reporting, data
transparency, and security while ensuring industry-
specific compliance and auditing services. Thereby,
Business Process as a Service (BPaaS) is named as
one category of their Trusted Cloud Services brand.
Unfortunately, there is very little information about
the concrete services, their realization, and the
offered service level agreements.

Cordys [20] also promotes Cloud-based service
orchestration, called Enterprise Cloud
Orchestration. Thereby, they emphasize the still-
traditional nature of the SaaS distribution model in
contrast to the Cloud idea as a federation of different
Clouds that may range from general-purpose Clouds
to specialized Clouds in the future. Fundamentally
this requires an orchestration layer in the Cloud to
enable enterprises developing new business models
and facilitate Application Service Provisioning.

The Chemomentum [21] project provides
workflow extensions for UNICORE 6, consisting of
two UNICORE 6 service containers. The first
container represents a workflow engine that
processes workflows on a logical level. The second
container represents a service orchestrator that
transforms so-called Work Assignments into jobs,
given in the Job Submission Description Language
(JSDL) [12]. Both, this UNICORE 6 workflow
system and the BIS-Grid Engine are implemented as
service extensions to the UNICORE 6 service
container. However, the UNICORE 6 workflow
system does not support the integration of a WS-
BPEL workflow engine well-adopted in industry.

In [9] Amnuaykanjanasin and Nupairoj present a
solution to orchestrate Globus Toolkit services
secured with the Grid Security Infrastructure (GSI).
A proxy implementation is generated automatically
for each Grid service when the user requests one. To
support GSI, Proxy Certificates are requested
dynamically from a MyProxy implementation. This
architecture aims on scientific workflows without
considering role-based access control or providing
the workflow itself securely.

Many other paper present the possibility to model

and execute workflows in Grid environments but
without using the industrial de-facto standard WS-
BPEL nor addressing the new Cloud computing
paradigm (e.g., see [10, 11]).

6. CONCLUSION

We discussed our Orchestration as a Service
paradigm (Oaas) as a specialized form of Platform
as a Service (PaaS). OaaS decreases the start-up
costs to apply information system integration by
outsourcing the operation and maintenance of a
workflow engine to an OaaS provider. Such a
provider possesses both the know-how and the
resources to provide orchestration services with the
corresponding quality of services with lower costs
than small or medium enterprises can provide on
their own. Additionally, we presented four scenarios
with different degrees of outsourcing services to a
Grid or Cloud infrastructure.

We also presented the BIS-Grid Engine as an
example of a technical core system of an OaaS
infrastructure that considers most of the necessary
requirements especially with respect to security.
Building on well-accepted standards from industry
and scientific computing (namely Web service
technologies, WS-BPEL for service orchestration,
and security standards such as X.509 certificates,
Short Lived Certificates, SAML, and XACML for
authentication and authorization), we constructed a
multi-tenant, OaaS-capable workflow engine that
supports role-based access control.

An open issue is to investigate the scalability of
the system. In Clouds, architectures must scale for
several thousand users and workflows at the same
time. In [15], we present some ideas about load
balancing with an early version of the presented
engine. In general, the loose coupling of the WSRF
Proxy of the architecture and the WS-BPEL engine
offers various possibilities for load balancing
approaches. However, concrete evaluation is future
work.

The BIS-Grid Engine and the engine’s
documentation can be found on Sourceforge at
http://bis-grid.sourceforge.net. The project
deliverables (partly in German) are available on
http://bisgrid.de.

7. ACKNOLEDGEMENT

This work is supported by the German Federal
Ministry of Education and Research (BMBF) under
grant No. 01IG07005 as part of the D-Grid initiative.

8. REFERENCES

[1] L. Youseff, M. Butrico, D.S. Da Silva. Toward
a Unified Ontology of Cloud Computing.

Author / Computing, 2000, Vol. 0, Issue 0, 1-2

 8

Proceedings of Grid Computing Environments
Workshop (GCE '08), 2008

[2] Luis Vaquero, Luis Rodero-Merino, Juan
Caceres, Maik Lindner. A Break in the Clouds:
Towards a Cloud Definition, SIGCOMM
Computi,. Commun. Rev. 39 (2009). pp 50-55.

[3] OASIS WS-BPEL Technical Committee. Web
Services Business Process Execution Language
(WS-BPEL) Primer. http://www.oasis-
open.org/committees/download.php/23974/wsb
pel-v2.0-primer.pdf

[4] OASIS WSRF Technical Committee. Web
Services Resource Framework – Primer v1.2.
http://docs.oasis-open.org/wsrf/wsrf-primer-
1.2-primer-cd-02.pdf

[5] N. Ragouzis, J. Hughes, R. Philpott , E. Maler,
P. Madsen, T. Scavo. Security Assertion
Markup Language (SAML) V2.0 Technical
Overview. http://www.oasis-
open.org/committees/download.php/22553/sstc-
saml-tech-overview-2%200-draft-13.pdf,
Working Draft. 2007

[6] Tim Moses. eXtensible Access Control Markup
Language (XACML) Version 2.0. 2005

[7] V. Welch, T. Barton, K. Keahey, F. Siebenlist.
Attributes, Anonymity, and Access: Shibboleth
and Globus Integration to Facilitate Grid
Colloboration, Proceedings of the 4th Annual
PKI R&D Workshop.2005

[8] K. Benedyczak. UNICORE Virtual
Organisations Service Overview. TechReport.
2007

[9] Pichet Amnuaykanjanasin, Natawut Nupairoj.
The BPEL Orchestrating Framework for
Proceedings of “Secured Grid Services.
International Conference on Information
Technology: Coding and Computing”, Los
Alamitos, USA 2005, pp. 348-353

[10] Andreas Hoheisel. User tools and languages for
graph-based Grid workflows: Research
Articles. Concurr. Comput. : Pract. Exper. 18
(10) (2006). P. 1101-1113.

[11] Jia Yu, Rajkumar Buyya. A Novel Architecture
for Realizing Grid Workflow using Tuple
Spaces. Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing.
Washington D.C., USA 2004, pp 119-128

[12] Job Submission Description Language (JSDL)
Specification, Version 1.0
http://www.gridforum.org/documents/GFD.56.
pdf. 2005

[13] A. Brinkmann, S. Gudenkauf, W. Hasselbring
A. Höing, O. Kao, H. Karl, H. Nitsche, G.
Scherp. Employing WS-BPEL Design Patterns
for Grid Service Orchestration using a Standard
WS-BPEL Engine and a Grid Middleware In
“The 8th Cracow Grid Workshop”, Cracow,

Poland 2009 pp. 103-110
[14] S. Gudenkauf, A. Höing, G. Scherp. Catalogue

of WS-BPEL Design Pattern. Techreport.
https://bi.offis.de/bisgrid/tiki-
download_file.php?fileId=269 2008

[15] S. Gudenkauf, W. Hasselbring, F. Heine, A.
Höing, G. Scherp. O. Kao, Bis-Grid: Business
Workflows for the Grid In “The 7th Cracow
Grid Workshop” Cracow, Poland 2008 pp. 86-
93

[16] Short Lived Credential Service (SLCS).
http://www.switch.ch/grid/slcs/ [23.10.2009]

[17] Amazon Web Services LLC, Amazon Web
Services. http://aws.amazon.com

[18] Microsoft Azure Homepage
http://www.microsoft.com/azure

[19] Computer Science Cooperation, Cloud
Orchestration Services,
http://www.csc.com/cloud/ds/27357-
cloud_orchestration_services

[20] Cordys Hompage, Enterprise Cloud
Orchestration,
http://www.cordys.com/cordyscms_com/enterp
rise_cloud_orchestration.php

[21] Chemomentum: Grid-Services based
Environment for enabling Innovative Research,
http://chemomentum.org

[22] Google App Engine Homepage,
code.google.com/appengine

[23] S. Cantor, Tom Scavo. Shibboleth Architecture.
Techreport. http://open-
systems.ufl.edu/files/draft-mace-shibboleth-
tech-overview-latest.pdf

Author / Computing, 2000, Vol. 0, Issue 0, 1-2

 9

 André Höing is a research
assistant at the Technische
Universität Berlin. He is a
member of the workgroup
“Complex and Distributed IT-
Systems” since 2007. Before
this he was employed at the
Paderborn Center for Parallel
Computing for about 6
months. He got this Diploma
degree in computer science

from the University of Paderborn in 2006.
He is currently working in the field of distributed
service computing and service orchestration with
WS-BPEL. Furthermore, he is interested in Cloud
Computing technologies.

Guido Scherp is a research
assistant at the OFFIS
Institute for Information
Technlogy in Oldenburg,
Germany. He received his
diploma degree in computer
science from the University of
Oldenburg in 2005. His
research interests include
Grid and Cloud computing,
scientific and business

workflows, and model driven development.

Stefan Gudenkauf is a
research assistant at the
OFFIS Institute for Information
Technology in Oldenburg,
Germany. He received his
diploma degree in computer
science from the University of
Oldenburg in 2006. His
research interests include
Business workflows and

coordination models, parallel programming and
model driven development.

