Extended Exceptions for Contingencies

Thorsten van Ellen
BTC AG
Business Unit Software Solutions
26121 Oldenburg, Germany

thorsten.van.ellen@btc-ag.com

ABSTRACT

We observed a general problem of sequential programs,
which often results in design and programming errors in in-
dustrial software engineering projects, and propose a solu-
tion approach. Telephone lines may be busy, banking ac-
counts may be overdrawn and disks may be full. These
things happen in the real world, causing the disruption and
non-fulfillment of an expected service. Ignoring these prob-
lems leads to violations of the postconditions of the caller
that depends on the service. The conditions are exactly
known and cannot always be avoided, but measures could
be taken afterwards. A good program should handle them as
part of the specification. As such they are not specification
violations and should not be regarded as errors. Unfortu-
nately, they usually can or shall not be handled immediately
within the direct caller, e.g., for information hiding reasons.
The problem is similar to the problem of error code han-
dling and handling them with exception mechanisms seems
reasonable, but the problem is even more complex. These
situations must not terminate the system suddenly, because
that also violates postconditions. Consequently, exceptions
for these situations must be distinguished from exceptions
for errors and are worth handling separately. Therefore, we
introduce the new concept contingency for such situations.
Since the conditions are defined, they are candidates for for-
ward recovery, but conventional exception mechanisms are
not appropriate for that purpose. Appropriate mechanisms
are presented in this paper. A systematic inspection and
handling of contingencies with these mechanisms before run-
time can diagnose and avoid subsets of specification viola-
tions effectively. An evaluation approach will be presented.

Categories and Subject Descriptors

D.3.3 [Programming Languages|: Language Constructs
and Features—control structures, Procedures, functions, and
subroutines

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SERENE 2008, November 17-19, 2008, Newcastle, UK.

Copyright 2008 ACM 978-1-60558-275-7/08/11...$5.00

Wilhelm Hasselbring
University of Kiel
Software Engineering Group
24118 Kiel, Germany
wha@informatik.uni-kiel.de

General Terms
Reliability, Languages

Keywords

contingency, exception, forward recovery, resumption, relia-
bility

1. INTRODUCTION

Telephone lines may be busy, banking accounts may be
overdrawn and disks may be full. These things happen in
the real world and cause the disruption and non-fulfillment
of an expected service. Ignoring them leads to violations
of the postconditions of the caller, since the caller depends
on the service. You know exactly what happened if you are
familiar with that implementation level. The conditions are
exactly known and cannot always be avoided, but measures
could be taken afterwards. A good program should handle
such special situations as part of its normal code, allowing
for them as part of the specification. As such they are not
a violation of the specification and should not be regarded
as errors.

A common recommendation is not to communicate such as
exceptions, since exceptions should only be used for specifi-
cation violations, i.e., if the pre- or postcondition is violated
[9]. Instead, it is recommended to declare them explicitly
within the interface [5, 3, 13] and redeclare them within the
interface of the caller if they have not been handled yet [5,
3]. It is not only recommended to redeclare them, but also to
adjust their abstraction to the current interface abstraction
[17]. Furthermore, when using exceptions, the termination
model for handling exceptions is preferred [8, 3, 16] over the
challenged resumption model [8, 3, 15]. All these recom-
mendations are challenged in this work for contingencies.

Section 2 explains some terms and introduces the term
contingency for these situations. Section 3 discusses con-
tingencies extensively and shows that they are very difficult
to handle and handling them within conventional program-
ming languages with exceptions is reasonable. Section 4
presents the objectives and added value of this work. Sec-
tion 5 clarifies important properties of contingencies. Sec-
tion 6 pinpoints some significant deficiencies of conventional
exception handling mechanisms for handling contingencies.
Accordingly, Section 7 proposes extended exception mech-
anisms. Section 8 discusses work and mechanisms related
to the solution approach proposed here. Finally, Section 9
describes further work.

2. TERMS

This section describes some essential terms.

Often, errors are defined as states, e.g., by [1], for example,
if a traffic light shows red and green at the same time, but
such a definition does not include erroneous state transitions,
e.g., if a traffic light changes directly from green to red where
no erroneous state is involved. Therefore, the term situation
is used instead of state here and is defined as follows:

Definition 1. Situation: A situation is a sequence of n
states with n > 0.

This definition includes states and transitions. A situation
can be a sequence consisting of a single state and for the sake
of simplicity situations can be illustrated as states.

Definition 2. Specification: A specification is a com-
plete, consistent description of all situations that are allowed
for a system.

Ezxample 1. A specification of a function can be composed
of a pre- and postcondition. The precondition for a traffic
light transition function describes the valid states:

pre : state = green V state = yellow V state = red,

the postcondition describes the valid transitions, starting
from the valid states:

post : (state = green A state’ = yellow)
V(state = yellow A state’ = red)
V(state = red A state’ = green).

The length of the regarded sequences of states (situations)
is arbitrarily determined by the specification, e.g., the length
of some regarded situations within example 1 is 2. Only
traffic light state transitions that conform to the described
situations in that specification are allowed, all other state
transitions are not allowed.

A specification is not only a mathematical set of states or
situations, because it has a structure, conditions and names.
A specification of a non-trivial system, e.g., with the spec-
ification languages B or Z, is usually modular, similar to
program code. A specification usually contains modules or
functions building upon or calling each other. A specifica-
tion contradicts itself and is not consistent if it allows a sit-
uation as a normal result within a postcondition of a callee
module, e.g., result LineBusy of module sendFax within ex-
ample 3, and forbids the same simultaneous situation at an-
other calling module, e.g., by preconditions of the following
operation.

Definition 3. Error: An error is a situation, the condi-
tions of which contradict the specification.

An error or specification violation occurs, for example,
if the situation does not comply with the preconditions or
postconditions, as [9] states, e.g., if a traffic light changes
directly from green to red.

The new term contingency (coined by [13]) is defined (dif-
fering from [13]) as follows:

Definition 4. Contingency: A contingency is a situation
that is described within the specification of a module, and
represents a module result where the task or function, which
calling modules depend on, was not performed.

Usually contingencies are directly perceived as if they were
errors, e.g., violations of preconditions [9], but that is not a
correct perception.

Ezample 2. A method allocateMemory might expect a
parameter requiredAmount of type integer that should be
in the range of positive values. If the invoker passes neg-
ative values, it violates the precondition. Such a situation
is an error, but if the invoker passes positive values and the
condition availableMemory < requiredAmount evaluates to
true, the method returns OutOfMemory as specified and both
the invoker and the method are not doing anything wrong,
nevertheless both cannot perform their usual work. Out-
O0fMemory can be formally defined, often cannot be avoided
and should be specified. Such a situation is a contingency.

Ezxample 3. If a fax should be sent via a modem controlled
by software, the telephone line can be busy (LineBusy) or
the number might be gone (SIP_ERROR_410_NumberGone).
Usually, both are not avoidable, not even by changing the
program code of the software. Regardless of how sophis-
ticated the software is, at some implementation level the
contingency may occur. Nobody can buy and control the
whole telephone network and there is always the risk that
the unique end device that should be reached is not avail-
able. Even if there is a possibility to guarantee a solution
technically, it might be too expensive for a small applica-
tion, e.g., a dedicated line and end device. The same is true
for parallel access to database tables, files or other unique
entities or devices.

Contingencies are results of modules indicating that the
module could or should not fulfill its usual work. Such situa-
tions are not errors or specification violations, because they
are unavoidable or intentional behaviors and therefore can
be found within the specification. Contingencies are exactly
described within the specification and therefore are specifi-
cation compliant.

At the time the contingency is detected no damage oc-
curred, yet, the system still behaves as specified. Only if
the contingency is ignored and not handled specifically, will
damage inevitably occur. From the perspective of the de-
pendant module, contingencies are work refusals whose po-
tential appearance is known in advance, independently of
the abstraction level they represent. If no specific additional
measures are taken, the expectations of dependant modules
that do not regard the possible work refusal will not be ful-
filled and they cannot reach their postconditions. As a re-
sult, a specification violation (error) will appear. As will be
shown in the discussion in Section 3, there is no practicable
solution to regard every contingency at every call.

Contingencies differ from normal situations in that nor-
mal situations do not represent work refusals and without
additional specific measures do not necessarily run into spec-
ification violations (errors).

3. DISCUSSION

This section discusses language constructs to communi-
cate and handle contingencies. You might think that there
are only few such contingencies, but quite the contrary is
true if you are looking for them.

Ezample 4. A simple routine like openFile might
have up to 20 or more of them: Drive/Dir/File-
NotFound/Locked/NameInvalid, DiskNotInDrive,

DiskNotFormatted, DiskFull, EndOfFile, NoAvail-
ableFileHandles, NetworkDisconnected etc.

Usually, they are far from being systematically and com-
pletely documented or even declared within the interface,
but nevertheless they are always present. Such situations
are omnipresent. Their number is finite as is the imple-
mentation, but Oracle database routines and other complex
systems might return thousands of them (see Section 5).

Unfortunately, mostly contingencies can or shall not be
handled immediately as easily as other normal specified sit-
uations within the direct caller. The reason is that not all
required information is available or not all required compo-
nents for measures are accessible, because the required ele-
ments should be kept encapsulated in other call levels. For
example, the graphical user interface usually is not avail-
able within lower levels to inform or ask the user. Even if
immediate handling would be possible, full disks and other
contingencies may occur at several places and their solution
should not be implemented redundantly at several places. If
the contingency is not solved immediately, it must be com-
municated to the dependant caller by one means or another.

3.1 Avoiding Exceptions?

How should these contingencies be communicated to the
caller? Communicate contingencies to the caller not as ex-
ceptions as recommended by [9] and communicate them as
special values declared in the interface or its documentation?
That is reasonable if they do not disclose implementation
details, but declare about 20 or more contingencies in the
interface of the caller of openFile because the direct caller
cannot handle it immediately? And additionally, do it in
the interface of the caller of the caller and so on along the
whole caller chain until they are handled? The contingen-
cies of openFile are not the only contingencies that might
occur in the call graph of the call chain. All unhandled con-
tingencies would occur and accumulate within all interfaces
of all callers of the call graph until they are handled. This
accumulation of unhandled contingencies is unavoidable. At
the top level routine, e.g., main, all unhandled contingencies
of the whole system accumulate. Really manually declaring
them all explicitly might be incredible much work.

Disclose all these implementation details within the inter-
faces on all levels? If one day, someone decides to change
the implementation and the corresponding contingencies,
change all intermediary interfaces? This leads to an intoler-
able maintainability problem.

Solve the maintainability problem by abstracting the
implementation details of contingencies as usually recom-
mended, e.g., abstracting the implementation details File-
Locked and TableLocked of two different implementations
by ResourceLocked? This might be even more work. If
one day, someone decides to handle some of these contin-
gencies at another level, still again change all intermediary
interfaces? Additionally, how should DiskFull and other
contingencies of openFile and other implementation details
be abstracted to conform to the abstraction of the routine
commitTransaction?

Furthermore, the primary argument against abstracting
the implementation details is that indispensable implemen-
tation information gets lost along with options for forward
recovery, i.e., a specific handling, repairing and finally re-
sumption after a successful repairing. The valuable im-
plementation information should never get lost [12]. The

different contingencies cannot be distinguished and han-
dled separately and specifically anymore if they are ab-
stracted. Therefore, implementation specific measures can-
not be taken, e.g., measures for FileLocked probably oper-
ate on the operating system and measures for TableLocked
operate on the database.

Declare an abstract return value class or exception class
on the interface for several contingencies and embed more
distinguishable information at runtime (nested or derived
objects or exceptions) like it is usually done in Java? Then
you never know before runtime what really can happen. If a
method may throw an I0Exception, is it a DiskFull, Fil-
eReadOnly or what else? The information is not available
within the interface at development time, but at runtime,
when it is too late to develop a handler. The complete in-
formation of the interface must be available at development
time before runtime!

3.2 Worse than Error Code Handling?

This problem is similar to the problem of error code han-
dling that has been found impracticable and has been re-
placed by exception handling. Exceptions surely are a part
of the solution, but the problem is even worse than error
code handling. Nobody is amazed if an error terminates the
system, but everybody is annoyed if the line is busy or the
disk is full and additionally the system crashes.

If an error already occurred, usually it is reasonable to
terminate the system with an exception, but if the system
is still in defined circumstances of the specification, sudden
termination is a violation of the specification and one of
the errors that should be avoided and therefore not a good
option. Forward recovery is the best option. At least in these
cases, all corresponding exceptions must be distinguished
and handled separately from exceptions representing errors.

3.3 Problem Statement

The discussed ideas cannot be a satisfying solution. There
seems to be no single approach regarding all of our discussed
arguments, especially at least one of the arguments about
accumulation, implementation dependence and abstraction
and their consequences is overlooked.

[5] describes a concept with declaration of exceptions
within the interface and compile time checking similar to
Java’s checked exceptions disregarding accumulation and
implementation dependence. Java has checked exceptions
that also disregard accumulation, but usually will be solved
by abstraction. [9] only allows the use of exceptions for
errors, all other situations must be declared within the in-
terface. [17] recommends to abstract. Nobody seems to
recognize the whole combination of problems or even acci-
dentally solves them. We have never seen real code that
consequently solved things like that. No one seems to do it
reliably. Until now, it is not possible to determine all con-
tingencies of all implementation levels at development time
with conventional languages. How can they ever be handled
reliably completely? They cannot at the first run! Usually,
they simply crash at the user.

We assume, there is no practical and general approach for
contingencies besides exceptions so far, caused by the de-
scribed accumulation and implementation dependence. This
might be one main reason for much of the confusion about
the nature of exceptions, because they are not only indis-
pensable for errors but also for contingencies.

In our perception there exist no satisfying solution to de-
clare/document contingencies at development time, commu-
nicate them at runtime and handle them without specifica-
tion violation so far. They are not even recognized sepa-
rately from specification violations and normal situations.
Nevertheless they are omnipresent and are worth to be re-
garded and handled separately. Therefore, we try to estab-
lish the new term contingency within Section 2 to separate
them from errors and normal situations.

Separating contingencies, surprisingly opens a new per-
spective providing new understandings and a plethora of in-
novative topics that makes this paper a bit crowded, which
is also reflected in the objectives in Section 4. Once you take
this perspective, some commonly made observations can be
explained, for example, the confusion about the nature of
exceptions and the seeming misuse, teething problems etc.

We feel like contingencies are a systematic source of er-
rors and might encompass much more than teething prob-
lems, e.g., diverse inconsistencies, missing requirements and
potentially catastrophes. Contingencies are a general and
systematic problem of sequential programs that needs to be
solved. We believe, this problem can be solved better and
many errors can be avoided systematically with appropriate
language mechanisms. Vice versa, as long as this problem is
not solved, this source of errors will continue to exist.

The space of errors is divided with the term contingency
to make the situations that are treatable, accessible for for-
ward recovery. Conventional exception handling is not able
to make this distinction and therefore appropriate handling
and resumption is not possible.

We intend to contribute to the discourse of errors, excep-
tions, handling and resumption.

4. OBJECTIVES AND ADDED VALUE

Contingencies must be handled in the sense of forward re-
covery if following specification violations should be avoided.
The objectives of our work and this paper are to

e distinguish contingencies from normal situations and
errors.

e enable a simple communication of errors and contin-
gencies between the call levels.

e determine contingencies automatically at development
time and always get a current and complete documen-
tation of all available contingencies of all levels. (This
is solved by alternative mechanisms, instead of declar-
ing them all manually within the interface.)

e determine the source of some potential errors directly
(not via symptoms) and before runtime, thereby re-
ducing time and effort to analyse errors and determine
the sources.

e enable forward recovery. This should generally be pos-
sible, i.e., rescue situations without database transac-
tion mechanisms, e.g., within cross-system interfaces,
and even for side effects like physical processes.

e keep information hiding as far as possible.

e avoid complications of conventional interfaces, cum-
bersome cleanups and partial repetitions.

e enable overriding any handling by outer context with
broader knowledge and component access.

e reduce redundant code, the total amount of code and
code complexity needed for communicating, handling,
repairing and resuming.

e show deficiencies of conventional exception handling
for these objectives.

Only sequential, imperative programs should be regarded,
even though we assume our approach might also be reason-
able for non-sequential programs and our thoughts might be
translated to event based systems and other programming
paradigms.

S. PROPERTIES OF CONTINGENCIES

The following section presents significant properties of
contingencies and describes why handling of contingencies
within conventional programming languages with exception
handling is reasonable.

5.1 Contingencies are Omnipresent

As shown in the discussion, contingencies can be very nu-
merous alone within one single function. They are littered
over many functions within the whole system and all levels.

The following example from the database domain illus-
trates how numerous contingencies actually are within ev-
eryday life. Presumably, contingencies are not less numerous
within operating systems or other complex environments like
enterprise resource planning (ERP) systems, e.g., SAP, only
less documented and apparent. This shows how important
it is to handle these situations explicitly.

Ezample 5. Oracle maintains a documentation [10] of all
problem messages of the Oracle database. It encompasses
over 2000 pages, each with several messages. Hence, it doc-
uments several thousands of entries and mostly contains
detailed and specific (not abstracted) and therefore help-
ful hints for each single known situation that can occur at
runtime. Not all of these entries describe situations where
the database is within an unknown or undefined state (error)
that must be repaired and prevents the database to operate
correctly. Instead, substantial amounts of them are numer-
ous contingencies that are recognized, intercepted and com-
municated at runtime successfully and documented (quasi
specified) at development time of the caller. However, not
all of them can occur if the calling program is implemented
correctly, e.g., the message ORA-01747 (“invalid column”)
cannot occur if all data definition language (DDL) and data
manipulation language (DML) statements are consistent.

5.2 Contingencies are Unavoidable and Bet-
ter Treatable than Errors

Function results that represent contingencies (refusals to
work) usually will be avoided intuitively at system develop-
ment time if possible. The contingencies that remain are
unavoidable, but on the other hand their circumstances are
exactly known and their conditions are defined. Conditions
of errors contradict the specification and are not exactly de-
scribed within the specification. Handling contingencies is
therefore easier than handling errors.

5.3 Contingencies Disclose Implementation
Details and Must Not Be Abstracted

When passed to the callers in the caller hierarchy, con-
tingencies disclose implementation details, not immediately,
but usually after a few call levels when a class or group of
classes representing the same abstraction is left.

If different contingencies are mapped to one abstract
contingency, e.g., OutOfMemory and DiskFull to OutOfRe-
source, the different conditions of the different contingen-
cies cannot be distinguished anymore and specific handling
is no longer possible.

Example 6. A specific handling for OutOfMemory like
swapping is neither applicable for DiskFull nor for the ab-
straction of both OutOfResource.

Our unconventional recommendation is not to abstract
contingencies for information hiding reasons, because it
would map the contingency of the current implementation
and the potential contingencies of future implementations to
one abstracted situation for which a current handler might
not be appropriate. The implementation details might be in-
dispensable [12] for repairing at runtime. Since it is manda-
tory to handle contingencies specifically to avoid subsequent
specification violations, it must be assured that they remain
unambiguous and will not be abstracted.

6. DEFICIENCIES OF CONVENTIONAL
EXCEPTION MECHANISMS

This section outlines deficiencies of conventional exception
mechanisms to easily handle contingencies successfully and
continue execution afterwards.

Ascertaining contingencies before runtime.

To handle contingencies, they must be ascertainable at
development time. Conventional languages have no practi-
cable mechanisms to determine all exceptions that can occur
syntactically within a code fragment at development time,
although that should be not a complex problem.

Distinguishing contingencies and errors.

Unlike errors, contingencies are not allowed to terminate
and therefore must be distinguished from errors. Conven-
tional languages have no exception mechanism to distinguish
them.

Repairing lower level implementation details.

Repair measures can be taken in defined circumstances,
but they require access to the implementation details of the
lower call levels from the higher call levels by one means or
another. Conventional languages have no language mecha-
nisms to do so. In the following Java example 7 the lower
level method call of saveEditedData does not exist anymore
after throwing an exception, but even if the stack would not
be unwound, no language construct exist to easily manipu-
late the variable currentPath.

Ezample 7. The routine main with access to the graphical
user interface executes several tasks and handles all occur-
rences of DiskFull by asking the user for an alternative
path, but is not able to access and change the variable cur-
rentPath of the lower level:

void main(String[] args) { // GUI-access here
try {
doTasks (args) ;
} catch (DiskFull) {
String alterPath =
AskUserForAlternative.execute() .getAnswer();
// repair lower level with alterPath, but how?
}
}

// many call levels lower:
void saveEditedData(Data edited) { // No GUI here
if (getFree(currentPath) < edited.size()) {
throw new DiskFull(getFree(currentPath),
edited.size());

}

// ... writing data on disk
}
Resuming.

After a successful handling, the program should continue
execution to fulfill the postconditions, but how? Conven-
tional exception handling does not offer an easy mechanism
to continue execution. The termination model is not helpful
for continuing by any means, because the stack is always
unwounded and then important issues must be solved to
continue within defined conditions: abandon some work al-
ready done, undo or handle internal and external side effects
even irreversible physical effects, determine where and how
to continue, redo some work and loose performance.

Language mechanisms for resumption are the only known,
generally and easily applicable option to bypass the latter
hurdles.

Overriding handlings.

No known language offer a mechanism to override han-
dlers similar to polymorphy to exploit additional context
knowledge, components and access available in higher lev-
els. Therefore, the Java example 8 cannot override the han-
dling of the exception PaperJam within the method print
by the handling in the method printAdvanced and access
its additional hardware component advancedPaperEmitter.

Ezample 8. The routine print might be the implemen-
tation of a simple printer model, catches the exception Pa-
perJamDetected and handles it conventionally. The routine
printAdvnc might be the implementation of a sophisticated
printer model with an additional paper emitter hardware
component that reuses the routine print and tries to over-
ride the handling of PaperJamDetected, but that is not pos-
sible.

public void print(Object document, int fromPage) {
try {
// print ...
} catch (PaperJamDetected jamDetected) {
// Default handling: log and cancel
logger.error("Paper jam: aborting print.");
}
}

public void printAdvnc(Object doc, int fromPage) {
try {

print(document, fromPage);
} catch (PaperJamDetected jamDetected) {
// overriding for automatic repair impossible!
advancedPaperEmitter.removeJam() ;
printAdvanced(document, jamDetected.atPage());
}
}

7. AN APPROACH FOR EXTENDED EX-
CEPTION MECHANISMS

A common recommendation is to use exceptions only for
errors [9]. This is nearly impossible in non-trivial cases
caused by contingencies as we have shown in the discussion
section. Therefore, we unconventionally recommend to use
exceptions also for contingencies.

Since conventional exception handling is deficient for for-
ward recovery of contingencies and resumption, we sketch
extended exception mechanisms that offer appropriate han-
dling and resumption. Mainly concepts of the language
Common Lisp are sketched for the language Java. They
should also be transferable to other languages.

After giving an overview, the elements of our approach
are presented in more detail. Afterwards, an example illus-
trating the extended mechanisms follows.

7.1 Origins and Overview

Significant ideas are coined by the language Common Lisp
[11].

One important concept of Common Lisp (and our ap-
proach) is to refine the conventional twofold separation of
problem detection (throw) and problem handling (catch)
into a threefold separation of problem detection, problem
handling and optional problem solution. The problem so-
lution resumes the execution at any implementation level
that is appropriate for the repair and will be called from the
handling by name. Common Lisp calls them restart, we call
them offer. The problem handling is also called decision.
The resumption model of our approach is exactly carried
over from Common Lisp, especially multiple, named offers
including parameters on multiple, arbitrary levels.

The only important difference is the reversal of the search
direction for decisions and offers that is explained in more
detail in Section 7.2. Additionally to the concepts of Com-
mon Lisp, our approach distinguishes errors from contin-
gencies by different keywords, ascertains all contingencies at
development time with the help of the development environ-
ment and let the developer interactively choose the contin-
gency to handle and insert the corresponding code into the
program.

7.2 Elements of the Approach

All deficiencies of conventional exception handling that
have been mentioned within Section 6 are solved by the fol-
lowing elements of the approach.

Distinguishing contingencies.

A new keyword is introduced into the language to distin-
guish contingencies from errors. Contingencies are marked
and thrown with the new keyword signal and distinguished
from errors that are thrown with the known keyword throw.
For backward compatibility, the conventional behavior of
throw should not be changed, the stack will be unwound

by throw and resuming is not possible anymore, but signal
should behave differently. It should not unwind the stack
immediately. Selecting the appropriate keyword determines
whether the exception is resumable or not.

As a result, all contingencies occurring syntactically
within a code fragment, including all called levels, can be
distinguished from errors by keyword and before runtime.

Ascertaining contingencies automatically before run-
time and choosing interactively.

It should be possible to handle arbitrary contingencies at
arbitrary places, but determining all possible contingencies
is very difficult with conventional mechanisms. The need
to ascertain all exceptions at development time should not
be satisfied by declaring all of them within the interface ex-
plicitly and manually. Therefore, we suggest an alternative
tool supported approach by automatically ascertaining all of
them at development time and presenting them within a di-
alog. Due to the expected huge amount of contingencies (see
Section 5) only an interactive choice of the contingencies that
should be handled seems reasonable. This requires a coop-
eration of all corresponding parser or compiler respectively
and development environments. The dialog should offer a
sorting and filtering by diverse criteria, e.g., by type, class
hierarchy, location, call chain, frequency, already registered
occurrence, the existence of a decision for the contingency,
personal settings, name pattern matching etc. After the de-
veloper has chosen the contingency that should be handled,
appropriate code is inserted into the program.

Overriding by reversal of search direction.

All conventional languages and also Common Lisp search
for handlers (decisions) and restarts (offers) from the lowest
levels to the highest bottom-up. In contrast to the con-
ventional search direction, our approach searches in reverse
direction top-down. By reversing the search direction, it be-
comes possible to override existing handlers by higher levels
as it was intended by the example 8. It is a dynamic bind-
ing similar to object oriented polymorphism, but it does
not search along a class inheritance path, instead it searches
along the call stack.

Distinguish handling with and without possibility of re-
sumption.

If an exception is thrown and the stack is unwound, it
can be catched with catch, but it cannot be resumed any-
more. The behavior of catch should not be changed for
backward compatibility, because existing handlers assume
that the stack is already unwound, resources have already
been cleaned etc. These existing correct assumptions should
not be violated. Therefore, a resumable exception must not
occur at existing catch handlers. Hence, a new keyword
is required to distinguish and handle exceptions that are re-
sumable. The new keyword decide should be used to handle
signaled and resumable contingencies. If multiple call levels
of the call chain exist that can handle the contingency, the
decision that is the topmost in the call chain is executed
due to the reversed search direction. In this way, any deci-
sion can be overridden quasi polymorphically along the call
chain.

Repairing lower level implementation details by offers
for resumption.

In different situations different measures are needed to re-
pair the implementation details of the same level. Therefore,
multiple different possibilities for resumption of contingen-
cies can be defined at every arbitrary level with separate
name and parameters. These resumption possibilities are
introduced with the new keyword offer, which is followed
by a name and formal parameter declarations with usual no-
tation. These offers are side entrances into the interrupted
methods that are still on the stack. They are like proce-
dures (without result value), because they should resume
and not return. Offers can access all implementation details
of that implementation level. They are additional interfaces
and can keep the information hiding principle as conven-
tional interfaces. Offers can only be called by a decision of
a contingency.

Resuming.

The new keyword resume is used to call offers from deci-
sions, followed by the name and the required actual param-
eters with usual notation. If multiple offers with the same
name and parameters on different call levels exist, the top-
most offer is chosen due to the reversed search direction. For
this reason, the resumption is not always fixed to the level
where the contingency is signaled originally. In this way, of-
fers can be overridden quasi polymorphically along the call
chain. When the offer and its level is chosen, the stack will
be unwound (lately) till there.

Repairing by cooperation of levels.

The approach presented here enables the cooperation
of the involved levels, e.g., to use the context knowledge
(advancedPaperEmitter of the decision level of example 8
or the user interface of the example 7) and also to repair
the implementation (currentPath of example 7) on the of-
fer level without violating its information hiding.

7.3 Illustrating Example

In the following example, that was coined by [14] and
slightly extended, the concepts of Common Lisp are sketched
for the language Java. The example shows all syntactic ex-
tended mechanisms in conjunction. It will be presented as
source code within example 9.

Within the example, multiple log-files should be read.
Within the log-files are multiple lines that should be checked
for whether they are well-formed. For this purpose, two
nested loops are used. The first loop iterates over the files.
The second loop iterates over the entries of one file. Both
loops are implemented within two separated methods anal-
yseLogs and parseFile, of which the first calls the second.
For each line of the files a third method parseEntry will be
called that checks whether the line is well-formed. If not, it
signals the contingency MalformedLine by the new keyword
signal. Both loops offer an option to resume the abstrac-
tion of which corresponds to the according implementation
level, i.e., the loop within analyseLogs offers skipFile and
the loop within parseFile offers skipEntry, each without
parameters. The offers are introduced by the new keyword
offer. Furthermore, both loops decide what should happen
in the case that a line is not well-formed (MalformedLine).
For the choice of the contingency that should be handled,
the new keyword decide is used. Within the handler (de-

cision) of the chosen contingency the choice of the repair
and resumption offer is done with the new keyword resume.
Within the method parseFile the repair offer returnEntry
is called and the element defaultEntry is passed as param-
eter, which only exists there. This way both involved levels
can cooperate using their specific implementation details.
Two possibilities exist within the example on two different
call levels to decide or handle the contingency Malformed-
Line. The higher level method overrides the decision of the
lower level method, therefore the decision with resumption
of skipEntry is chosen.

Ezample 9.

void analyzeLogs(Files openFiles) {
for (File file: openFiles) {
try {
use(parseFile(file));
} offer skipFile() {
continue; // nothing else to do
} decide (MalformedLine x) {
if (x.firstStackFrame().startsWith("mylib"))
resume skipEntry();
}
}
}

Entries parseFile(File openFile) {
Entry defaultEntry = new Entry();
Entries result;
while (!openFile.EOF()) {

Entry entry = null;
try {
String logTxt = openFile.line();
entry = parseEntry(logTxt);
} offer skipEntry() {
// entry = null;
} decide (MalformedLine) {
// entry = null;
resume returnEntry(defaultEntry);
}
if (entry != null)
result.add(entry);
}
return result;

}

Entry parseEntry(String logTxt) {
if (entryIsWellFormed(logTxt)) {
return new Entry(logTxt);
} else {
signal new MalformedLine(logTxt);
}
}

8. RELATED WORK

This section covers an account of prior related work, lan-
guages and mechanisms, explaining why this has not solved
the problem. Related languages and mechanisms are sum-
marized within Table 1. The rows of the table list the fea-
tures of the presented approach. The columns show which
features are supported by the related languages and mecha-
nisms.

Features Common | Smalltalk | Eiffel | Callbacks | (Closures)| (Conti- AOP
Lisp [6] nuations)
Distinction of contingencies - - - - - R -
Ascertaining contingencies before runtime || - - - - - - -
Interactive choice - - - - - - Z
Reverse conventional search direction - - - - - - -
Access to decision level after recognition X X X - (x) (x) -
Resumption X X - X (x) (x) -
Resumption at arbitrary level X - - - - - -
Multiple offers at the same level X - - _ - - _
Repair of offer level X X X X (x) - -
Parametrizing of offer /repair X - - x (x) - -

Table 1: Comparison of alternative languages and mechanisms (x = possible, (...) = probably, but not proved,

- = not possible)

8.1 Distinction of Errors and Contingencies

The idea for the english term contingency was coined by
[13], but he defines contingencies partially different. He de-
fines that contingencies are “expected conditions” (could be
called specified) “demanding an alternative response” (but
need not be work refusals) that “can be expressed in terms
of the method’s intended purpose” (or abstraction). Con-
sequently contingencies that are only expressed in terms of
the lower levels method’s intended purpose are no contin-
gencies anymore at higher levels. Therefore, our contingen-
cies of lower levels that disclose implementation details are
Ruzek’s faults, “that cannot be described without reference
to the method’s internal implementation” [13].

Although [5] recommends to use exceptions not only for
domain or range failures or violations of pre- or postcondi-
tions respectively but also for other kinds of situations and
to support resumption, he does not distinguish contingencies
from other situations.

[9] outlines situations like Overflow, OutOfMemory, spe-
cial I/O cases incompletely as hardware or operating system
signals or as abnormal conditions. He speaks of implicit pre-
conditions that are impractical or impossible to formulate.
This is not correct. Often they are easy to formulate and
must not be excluded by preconditions because these situ-
ations often are unavoidable and the system usually should
not behave arbitrarily, e.g., when FileLocked or LineBusy
occurs. The system should handle them in a defined way.
Therefore, they should be handled separately as part of the
postconditions of the higher levels. Probably it is no acci-
dent that Meyer mentions the need to distinguish different
exceptions exactly in those cases and examples where the
task or function is not fulfilled, circumstances are defined
and specific measures are reasonable (contingencies).

[3] divides the specification of a currently considered pro-
gram level into a standard service specification and an ex-
ceptional service specification. The exceptional service spec-
ification does only contain the behavior of the lower level ex-
ceptions if they have been redeclared for the considered level.
He divides the set of all input states of a program into 4 dif-
ferent domains determined by the relation of the program
result and its correct prediction by the specification. Our
contingencies fall into all domains. The unanticipated in-
put domain is also called specification failure and implicitly
includes some of our contingencies and his lower level ex-
ceptional service specifications. Since we do not recommend

abstraction and manual redeclaration of those contingencies
we are unlucky with the term specification failure for those.

[17] distinguishes conditions (as used in the Common Lisp
community) and errors. He recommends to use Common
Lisp’s conditions for “unusual outcomes” and defines them
as follows: “The contract of a function specifies, among
other things, the possible “outcomes” of calling the func-
tion. There is always one “usual” or “straight-line” kind of
outcome, and then there can be zero or more “unusual” out-
comes” ([17]). He does not define them as work refusals, but
work refusals might be part of unusual outcomes. He recom-
mends to always adjust the abstraction of unusual outcomes
to the abstraction of each caller interface. We do not recom-
mend this, since it makes a specific handling and resumption
afterwards impossible.

8.2 Resumption Model, Threefold Separation
and Dynamic Binding

Often, safety critical systems must not terminate after an
error occurred, but usually termination and failing fast is
recommended. The preference for the termination model
[7, 4] is reasonable for errors, but if the goal is forward
recovery, there is no better alternative to the resumption
model. The termination model is not sufficient as explained
within Section 3.2. Callbacks or closures are recommended
as substitute [7, 16], but they do not allow access to the
implementation details of the signaling level and the higher
level at the same time the contingency occurred, thereby ob-
structing cooperation of the levels, repairing and reasonable
resumption.

Eiffel [9] offers a retry semantics [2], but no resumption
model as proposed here.

Smalltalk offers termination, retry, resumption and noti-
fication. Resumption always immediately starts behind the
signaling point. The exception determines on a case-by-
case basis whether resumption is allowed. The signaler can
influence this by choosing an appropriate exception. The
handler can determine whether the exception is resumable
and decide whether the execution should be resumed. In the
case of resumption the signaling statement may even return
a value that was delivered by the handler, thereby passing
data from the handler to the signaler, but it is not possi-
ble to offer multiple resumption possibilities with different
names and multiple, named parameters on different call or
implementation levels.

Common Lisp offers termination, resumption and notifi-

cation. Common Lisp is the first known approach that prac-
tices a threefold separation (see Section 7.1). The resump-
tion model proposed here was directly carried over from
Common Lisp. Our offers correspond to restarts and our
decisions correspond to handlers. An equivalent mechanism
for notification is not intended in our work. The main dif-
ference of our approach and Common Lisp are some addi-
tions named within Section 7.1 and the reversal of the search
direction to enable overriding handlers and restarts (deci-
sions and offers), and thereby a kind of polymorphy. Within
all mechanisms known before, the reaction of the system is
prompted from the lower levels to the higher levels even in
Common Lisp [14] and by [5]. As soon as a reaction takes
place, all remaining upper levels no longer have a chance
to react anymore even if they hold some reactions that can
judge the application context better.

[6] also offers a threefold separation and multiple resump-
tion possibilities with different parameters within Java but
only within the signaling level without names by overload-
ing, thereby preventing multiple resumption possibilities
with equal parameters. Resumption is internally imple-
mented with callback mechanisms that can not access the
implementation details of the handler level exactly at the
time the contingency occurred.

Continuations may enable access to the implementation
details of the higher levels and resumption afterwards, but
lack other features.

AQP join points for throw statements are unknown within
all known AOP frameworks, therefore it cannot be avoided
that the stack is unwound, hence, resumption is not possible.

8.3 Summary: Difference from Prior Work

So the differences of this work from prior work is that prior
work does not distinguish and regard contingencies espe-
cially of lower levels, their implementation dependence and
relevance, their accumulation and do not solve the problems
arising from them, e.g., specification violations. We distin-
guish contingencies from errors, and thereby situations that
can be handled within defined conditions from situations
within undefined conditions.

We recognize and solve the problems arising from declar-
ing contingencies explicitly within the interface, e.g., by
checked exceptions. We provide explanations for the con-
fusion about exceptions that are no errors.

We recommend forward recovery and resumption for con-
tingencies and to enable specific handling do not recommend
abstraction of contingencies. We provide mechanisms to
support forward recovery by the developer at development
time including mechanisms to override existing error han-
dlings.

9. FUTURE WORK

This section describes the next steps in our research. The
main steps are an empirical research and a proposal for the
Java standard.

Formalization and implementation.

To clearly state what contingencies are, a set based for-
malization will be developed similar to [3]. An initial imple-
mentation of the extended exception mechanisms for Java
will be build. This includes the extension of the syntax,
compiler and possibly the JVM. It will be build by using
the open source implementation of Sun. The implementa-

tion of the extended mechanisms itself will be open source.
Comrades are welcomed.

Evaluation approach: empirical research.

Empirical research about the benefits of the proposed ap-
proach will be performed. Controlled experiments as well as
industrial research might be possible. For the arrangement
and analysis of the empirical research the GQM approach
(Goal, Question, Metric) will be used, i.e., develop objec-
tives, questions, corresponding hypothesis, metrics, mea-
surements and evaluations in this order. Possible objectives
are mentioned in Section 4.

Controlled experiments with conventional and extended
mechanisms can be applied within a student software prac-
tical. It must be ensured that students with knowledge of
the extended mechanisms must not influence students with-
out that knowledge, e.g., by performing the corresponding
experiments successively. A briefing should provide an un-
derstanding of contingencies.

In the first step, the students will be provided with the
task to develop a solution for a problem including solutions
for as many contingencies as possible without prior knowl-
edge of concrete contingencies and without extended mech-
anisms. Additionally, a task will be assigned to adjust the
implementation, e.g., from a file based variant to a database
variant. We will explicitly point out that the students have
to fulfill this special task exactly three times under different
conditions and should try to optimize this task. Automatic
tests checking the expected postconditions, but not provok-
ing contingencies will be provided with source code. The
results of the first step will be archived for the third step.

In the second step, automatic tests provoking contingen-
cies for the first implementation, e.g., file based variant, will
be provided without source code. The task of the students
will be to solve the failing tests without extended mecha-
nisms. Afterwards the implementation should be migrated
the second time. Automatic tests provoking contingencies
for the second implementation variant will be provided with-
out source code and must be solved again. Additionally, a
task to override existing handlers will be provided.

In the third step, the students will be provided with ex-
tended exception mechanisms and the task to repeat the
second step on the basis of the archived results of the first
step.

The solutions will be measured regarding the objectives.
Criteria can be

e the number of failing tests (errors) found and provoked
by contingencies or the number of contingencies solved
without prior knowledge of them in the different steps,

e the time needed to solve contingencies or the number
of contingencies solved in a limited time frame,

e the amount of code of the implementations or their
complexity,

e the amount of implementation details occurring within
the interfaces,

e the effort needed to adjust the implementation,

e the effort needed to analyse errors and to find the caus-
ing contingencies,

e the number of builds and iterations to solve contingen-
cies,

e the effective solution of contingencies without runtime
tests,

e answers of interviews about the subjective experience
and opinion of the students about the extended excep-
tion mechanisms.

Proposal for the Java standard.

Additionally, the solution approach is proposed for the
Java standard. It will be submitted by a Java Specification
Request (JSR) and be implemented corresponding to the
process defined by Sun, i.e., by constituting an expert group
and developing a draft. Comrades for the expert group are
welcomed. This might additionally require an extension of
the Java specification, Java standard library and a test suite
for the JSR.

10. CONCLUSIONS

Contingencies are undesired results of routines but speci-
fied as well as the desired results within the specification. In
this light, contingencies are the situations that really can be
handled and where forward recovery and resumption is rea-
sonable. Hence, contingencies may unclose the hopes that
initially have been associated with error and exception han-
dling.

[8] is often cited as argument against the resumption
model and has the opinion that a more complex mechanism
can be justified only if the additional expressive power it pro-
vides is frequently needed. As we have shown, resumption
is needed frequently for forward recovery of contingencies.
Some may fear the additional complexity of resumption, but
we do not see any other appropriate solution. No alterna-
tive approaches than resumption to solve contingencies are
known. Additionally, our impression is that the presented
concepts are simple and less complex than other already es-
tablished concepts from other domains, e.g., event oriented
systems.

A systematic inspection and handling of contingencies
with these mechanisms before runtime can diagnose and
avoid subsets of specification violations effectively. Further-
more, such errors are not detected by symptoms, but on the
basis of their sources. Therefore, partially extensive analy-
ses to draw conclusions from the symptoms to the sources
are not necessary.

We assume that the systematic handling of contingencies
has positive effects for the production readiness in the first
iteration. Potentially fewer teething problems occur in first
product versions, but even if the presented mechanisms are
helpful, they will not solve thousands of contingencies within
one single system immediately. Contingencies will still lead
to numerous errors further on. We hope that over time in-
creasingly more frameworks, libraries, programs and systems
find reasonable algorithms for forward recovery and solve
their contingencies.

Especially for safety critical applications the proposed ex-
tended exception mechanisms might be very helpful imme-
diately.

11.
1]

2]

3]

[4]

[6]

[7]
8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

REFERENCES

A. Avizienis, J.-C. Laprie, B. Randell, and C. E.
Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans.
Dependable Sec. Comput., 1(1):11-33, 2004.

P. A. Buhr and W. Y. R. Mok. Advanced exception
handling mechanisms. Software Engineering,
26(9):820-836, 2000.

F. Cristian. Exception handling and tolerance of
software faults. In M. R. Lyu, editor, Software Fault
Tolerance, pages 81-107. John Wiley & sons, 1995.
A. F. Garcia, C. M. F. Rubira, A. Romanovsky, and
J. Xu. A comparative study of exception handling
mechanisms for building dependable object-oriented
software. The Journal of Systems and Software,
59(2):197-222, 2001.

J. B. Goodenough. Exception handling: issues and a
proposed notation. Commun. ACM, 18(12):683-696,
1975.

A. Gruler and C. Heinlein. Exception handling with
resumption: Design and implementation in Java. In
PLC; pages 165-171, 2005.

B. Liskov. A history of CLU. SIGPLAN Not.,
28(3):133-147, 1993.

B. H. Liskov and A. Snyder. Exception handling in
CLU. IEEE Trans. Softw. Eng., 5(6):546-558, 1979.
B. Meyer. Object-Oriented Software Construction.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1988.

Oracle. Oracle9 i database error messages, release 2
(9.2) part no. a96525-01. 2002.
http://download.oracle.com/docs/cd/B10501_01/
server.920/a96525 . pdf.

K. M. Pitman. Exceptional situations in Lisp. In
Proceedings for the First European Conference on the
Practical Application of Lisp (EUROPAL’90),
Cambridge, UK, 1990.

M. Raento. What should exceptions look like? Mika
Raento’s Blog, July 2006. http:
//wwu.errorhandling.org/wordpress/7page_id=100.
B. Ruzek. Effective java exceptions. dev2dev.bea.com,
January 2007.
http://www.oracle.com/technology/pub/articles/
dev2arch/2006/11/effective-exceptions.html.

P. Seibel. Practical Common Lisp. Apress, September
2004. PDF at http://wuw.apress.com/resource/
freeebook/9781590592397 and HTML at
http://gigamonkeys.com/book/.

B. Stroustrup. The Design and Evolution of C++.
Addison-Wesley Longman, April 1994. ISBN
0201543303.

B. Stroustrup. Bjarne stroustrup’s C++ style and
technique FAQ. May 2008.
http://www.research.att.com/ bs/bs_faq2.html.
D. Weinreb. What conditions (exceptions) are really
about. Dan Weinreb’s Weblog, March 2008.
http://danweinreb.org/blog/
what-conditions-exceptions—-are-really-about.

