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Abstract

Dependability models of distributed systems are of-
ten parameterised by the failure characteristics of the
nodes that form a system. For realistic results, these
parameters must be estimated accurately, for example,
based on evaluations of real-world systems. We em-
pirically evaluate over 400 globally distributed nodes of
the PlanetLab research cluster and estimate the popular
parameters mean-time-to-failure, mean-time-to-repair,
availability, and failure correlation coefficients. We fit
the resulting empirical distributions by simple theoreti-
cal distributions and find that the mean-time-to-failure,
the availability, and the failure correlation coefficient
correlate with the geographical distance between nodes.

1. Introduction

Popular parameters of dependability models for dis-
tributed systems are the availability, the time-to-failure
(TTF), and the time-to-repair (TTR) of the individual
nodes. Intuitively, the availability of a node gives the
fraction of time that the node operates as expected.
The TTF and TTR give the distributions of how long
a node operates as expected and how long it takes to
restore this mode of operation after the occurrence of a
failure. For realistic results, such parameters must be
estimated accurately, for example, by empirical evalu-
ations of real-world systems.

For reducing complexity, dependability models ab-
stract away details of real-world systems. For example,
the TTF and TTR are often assumed to be exponen-
tially distributed and summarised by their means, the
mean-time-to-failure (MTTF) and mean-time-to-repair
(MTTR). Further simplifications are that failures are
independent and that each node has the same MTTF
and MTTR. While such abstractions make models

∗This work is supported by the German Research Foundation
(DFG), grant GRK 1076/1.

more tractable, some accuracy is lost and results be-
come less realistic. For higher accuracy, less abstract
models are necessary that, for example, consider that
the MTTF and the MTTR are not single-valued but
follow certain distributions. For tractable models, con-
ceptually simple distributions are desirable raising the
challenge to find well-suited simple distributions.

If an assessment of a model reveals that the under-
lying assumptions of the model are not accurate, new
models with better abstractions must be found. For
example, the interest in models for dependent failures
raised when empirical evaluations indicated that fail-
ures are not independent in many distributed systems
[1, 3, 9]. Such models often rely on the failure correla-
tion coefficients as input parameters [2, 9] or explicitly
model the causes of dependent failures. For example,
the workload of nodes and shared resources were iden-
tified as causes for dependent failures and added as
model parameters. Such parameters may be abstract
in the sense that a single abstract cause models several
real-world causes of dependent failures.

In this paper, we make the following contributions.
We empirically estimate the popular model parame-
ters MTTF, MTTR, availability, and failure correlation
coefficient for a large number of globally distributed
nodes. We fit the resulting empirical distributions
against simple theoretical distributions and assess their
goodness-of-fit. We confirm previous findings that the
TTF and TTR distributions are unlikely to be expo-
nentially distributed and find more likely simple theo-
retical distributions. We also confirm that failures are
not independent and find that the geographical dis-
tance of nodes is a good candidate for an abstract cause
of dependent failures.

Our results are based on data provided by the
CoMon [7] monitoring system from the Network Sys-
tems Group of the Princeton University. CoMon con-
tinuously monitors all nodes running in PlanetLab [8],
a global cluster of currently more than 800 nodes that
are distributed over more than 35 countries.



2. Related Work

Numerous empirical studies have estimated basic
failure characteristics such as the MTTF and the
MTTR of nodes in distributed systems [1, 3, 6, 12]. For
example, Long et al. [6] evaluated about 1,100 Internet
hosts and found that, on average, a node has an MTTF
of 29.39 days and an MTTR of 3.88 days. Our estima-
tions of these characteristics are not conceptually new,
but are based on recent data, which is required for de-
pendability models of current systems. Furthermore,
we evaluate data from an observation period of two
years, which is significantly longer than the observation
periods of previous studies. Longer periods of observa-
tion bear the advantage of increased accuracy as, gen-
erally, estimations become better with more samples.
Additionally, we go beyond estimating failure charac-
teristics and fit the empirical distributions to simple
theoretical ones.

Different empirical studies have assessed the depen-
dence of failures [1, 3, 9, 12]. For example, Amir and
Wool [1] and Bakkaloglu et al. [2] studied globally dis-
tributed nodes and find that the correlation of their
failures is significant, which raised the interest in how
to model dependent failures [2, 9] and how to tolerate
them [1, 10, 11]. Many dependent failure models rely on
the failure correlation coefficient of nodes as input pa-
rameter or explicitly model the causes for dependent
failures. In this paper, we estimate the failure cor-
relation coefficient parameter, identify a new abstract
cause of dependent failures, the geographical distance
of nodes, and quantify its impact.

Our evaluations are based on monitoring data from
a single observer node and, therefore, yield failure char-
acteristics as perceived by the observer node. Such an
approach does not mask failures of the communication
infrastructure, but attributes them to the nodes that
are affected. A similar approach has been taken, for ex-
ample, by Bakkaloglu et al. [2], who monitored about
100 web servers by a central node that periodically re-
trieved web pages from each server. Other approaches
as, for example, followed by Long et al. [6] rely on dis-
tributed monitoring systems, which mask some com-
munication failures. Their estimations for a node are,
therefore, more close to the real values, but possibly
differ significantly from what is perceived by a node
in the system. Which approach is favourable depends
on the dependability model, whose parameters are es-
timated.

3. Interpretation of Monitoring Entries

PlanetLab is a globally distributed research clus-
ter that is used as a testbed for deploying and eval-
uating large-scale distributed systems. Its nodes are

monitored by the CoMon [7] monitoring system. Each
node runs a node-centric daemon that measures node-
specific metrics such as the current CPU and memory
utilisation. A central node, the data collector, queries
all node-centric daemons once every 5 minutes in par-
allel. Most daemons respond within a second or do not
respond at all; successful queries with response times
of more than twenty seconds are rare [7].

The data collector records each query to a node-
centric daemon by a monitoring entry that contains
information about the query itself (e.g., the start time
of the query and the name of the queried node) as well
as the results from the node-centric daemon. If a query
fails, the data collector records an entry only containing
information about the failed query (e.g., the start time
of the query and the name of the queried node).

As CoMon is a non-trivial system, it is not com-
pletely free of faults. Unfortunately, some faults man-
ifest themselves in faulty monitoring entries. We do
not try to repair the faulty entries, but reject them
from further evaluation, because many of them are
too crippled to deduce valid information even by man-
ual inspection. We evaluate the monitoring entries
from the period of July 2005 to July 2007 with overall
143,750,690 entries of which 19,860 entries are faulty
(i.e., < 0.014%).

Based on the monitoring entries, we consider a node
as available if the data collector is able to successfully
query the node’s node-centric daemon. More precisely,
we interpolate between query times and consider a node
available at a time t iff (if and only if) the most recent
query of the node before t was successful. We say that
a node fails at time t iff the most recent query before t
was successful, but the query at time t failed. Analo-
gously, a node is repaired at time t iff the most recent
query before t failed, but the query at time t was suc-
cessful. As the PlanetLab cluster is not a completely
static system, we additionally need to decide when a
node joins and leaves the system. We say that a node
n joined the system at time t iff n was queried for the
first time at t. It left the system at time t iff n was
queried the last time at t.

4. Estimation of Dependability Metrics

With the interpretation of the monitoring entries,
we determine the state of each queried node over time.
Figure 1 shows the number of nodes being monitored
and being available over time. Overall, 979 nodes have
been queried at least once by the data collector during
the observation period. The number of nodes being
monitored grows from 556 at observation start time to
794 nodes at the end of the observation period. More
precisely, 423 nodes joined the system after the obser-



0
20

0
60

0
10

00

Time

N
um

be
r 

of
 N

od
es

2005−07−01 2006−01−01 2006−07−01 2007−01−01 2007−07−01

Figure 1: Number of monitored nodes (top) and avail-
able nodes (bottom) over time.

vation started, 185 left before it ended, and 90 nodes
joined the system after start and left before the end.
On average, more than one third of all nodes moni-
tored in a query period were not available in the query
period. For some query periods, no node was available
at all. These “anomalies” are probably caused by fail-
ures of the communication infrastructure near the data
collector. Nevertheless, we attribute these failures to
the monitored nodes to obtain the dependability char-
acteristics as perceived by the data collector.

For further evaluation, we exclude all nodes that
were not queried for the whole observation period. This
restriction allows us to base each estimation on the data
for a complete two-years period and, therefore, to im-
prove the accuracy of the estimations. It also eases
the evaluation of relationships among failure charac-
teristics. For example, computing failure correlation
coefficients between nodes is only reasonable for peri-
ods in which both nodes are queried. For the 461 per-
manently queried nodes, 123,306 failures and 123,193
repairs have been observed. Hence, on average, each
node failed 267.5 time and was repaired 267.2 times.
For 15 nodes, we cannot derive any sensible failure or
repair data as these were not queried successfully at
all. We additionally exclude these 15 nodes from fur-
ther evaluation and only consider the 446 nodes that
were queried for the whole observation period and were
queried successfully at least once.

The estimation of the MTTF of a node is based on
all observed periods between a failure and a subsequent
repair of the node. We additionally assume that a node
is repaired (fails) at observation start if the node is
(not) available at observation start. We point estimate
the actual MTTF of a node by the sample mean Θ̂
of the observed periods. As the point estimates rarely
coincide with the actual values, we assess the quality
of the estimation by the confidence interval meaning:
we compute ε such that the actual MTTF value is in
the interval (Θ̂− ε, Θ̂ + ε) with a probability of 0.95.

Figure 2a gives the cumulative distribution func-
tion of the estimated MTTF values and a summary
of the results. The lowest MTTF found for a node
is ca. 5 minutes, which is approximately the smallest
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Figure 2: Estimated parameters for nodes

value that can be observed due to the query frequency.
The highest MTTF found is 16.37 days. On average, a
node has an MTTF of 3.8 days, but half of the nodes
have an MTTF below 3.16 days. Overall, the values
are rather widespread with a standard deviation of 2.9
days. Computing the confidence intervals reveals that,
although we have a long observation period of two years
and a high query frequency of 1/5 min−1, Θ̂ is a rather
rough estimation of the actual value: on average, ε is
1.42 days. In particular, ε grows with an increasing
MTTF. For example, ε is 11.2 days for the node with
the maximum MTTF of 16.4 days.

The MTTR values are estimated analogously to the
MTTF values. As summarised in Fig. 2b, the lowest
MTTR found is 15 minutes and the average one 3.58
days, but half of the nodes have an MTTR below 16.3



hours. The highest MTTR found is 469.7 days, i.e.,
for at least one node, it took the data collector over
a year between two successful queries. Clearly, such
extreme values can be considered as outliers. When
omitting the top 5 % of the values, the mean shrinks to
1.21 days, the median to 14.4 hours, and the standard
deviation to 1.61 days. Note that the MTTR estima-
tions are only based on the data of 444 instead of 446
nodes as two nodes failed once and were not repaired
at all during the observation period. The estimation of
MTTF values is even less accurate than the estimation
of the MTTR values: on average, ε is 4.1 days.

The (limiting) availability A of a node can be
computed from its MTTF and MTTR by A =
MTTF/(MTTF + MTTR). However, as some nodes
were not repaired during the observation period and
due to the accuracy issues of the MTTF and MTTR
estimations, we take a different approach and deter-
mine the estimated availability Â of a node by the ex-
pectation value of the random variable that denotes
whether a node is available over time. The results are
summarised in Fig. 2c. The node with the minimum
availability is hardly available at all (Â < 0.00005); the
most available one has Â = 0.9925; that is, the most
available node operated correctly 362 days per year.
Just like the MTTF and the MTTR, the availability
values are widespread: with a standard deviation of
0.26, a node has Â = 0.65 on average, but half of the
nodes have an availability above 0.72. Compared to the
estimation of the MTTF and the MTTR, the accuracy
of the estimated availability is better: on average, ε is
below 0.0017 and even the maximum ε is below 0.0022.

With an increasing MTTF, a node generally be-
comes more available as the node is able to contin-
uously provide service for longer periods without a
failure. Availability also improves with a decreasing
MTTR as the node then sooner continues to provide
service after a failure. Hence, a node with high MTTF
and low MTTR has a high availability. But does the
reverse also hold, has a node with a high availability
a high MTTF and a low MTTR? Evaluating the re-
lationship among availability, MTTF, and MTTR re-
veals that availability correlates with the MTTF and
the MTTR with coefficients of 0.27 and −0.25, respec-
tively. Interestingly, the MTTF and the MTTR only
correlate with a coefficient of −0.04, i.e., good MTTF
and good MTTR values are rather independent.

A common assumption of many dependability mod-
els is that failures of different nodes are independent.
However, there has been empirical evidence that this
assumption does not hold in many real-world systems
[1–3, 9, 12]. We confirm these results by computing the
(Pearson) correlation coefficient, which also is an input
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Figure 3: Geographical distance

parameter for many dependent failure models. More
precisely, we compute the coefficient for random vari-
ables that are defined for each node as being 1 for a
query period if the node fails in the query period and
0 otherwise. If failures of different nodes are indepen-
dent, then the correlation coefficient is approximately
0. If two nodes have a high failure correlation coeffi-
cient, the assumption that their failures are indepen-
dent can be safely rejected. Figure 2d shows the corre-
lation coefficients for each pair of different nodes. The
average correlation coefficient is 0.06 with an approxi-
mately equal standard deviation of 0.06. One quarter
of the node pairs have a coefficient above 0.09. The
maximum coefficient was above 0.92.

When investigating high failure correlations more
closely, we found that nodes with high correlation co-
efficients are generally physically co-located (judging
from their domain names). This result motivated us to
investigate the relationship between dependability met-
rics and geographical distance. With the geo-lookup
service http://hostip.info/, we were able to deter-
mine the geographical location of 222 of the evaluated
nodes. Figure 3a shows the results of computing the
distance between pairs of nodes. On average, two nodes
have a distance of 5,203 km; half of the nodes have a
distance less than 4,119 km. The maximal distance
is 19,271 km, which approximately equals the largest
distance possible on Earth. We found that the geo-
graphical distance between a pair of nodes and their
failure correlation coefficient correlates with a coeffi-
cient of −0.23 (i.e., this correlation has approximately
the same absolute coefficient as the correlation between
availability and MTTF / MTTR).



While PlanetLab is a globally distributed system,
CoMon operates in a centralised manner with one data
collector statically deployed at a single node. The more
distant a node is from the collector, the more likely
querying the node fails as, generally, more communi-
cation infrastructure is involved to query more distant
nodes. We quantify this effect by relating the depend-
ability metrics of a node to its geographical distance
from the data collector. Figure 3b summarises the
distances between the monitored nodes and the data
collector. The maximal distance of a node from the
collector is 16,610 km, the average one 3,825 km. The
MTTF values for the nodes and their distance to the
data collector considerably correlate with a coefficient
of −0.2. The MTTR is only weakly correlated with a
coefficient of −0.01. The availability exhibits a higher
correlation with a coefficient of −0.27.

5. Fitting to Theoretical Distributions

Empirical distributions, as presented so far, are
rather inconvenient for dependability models. Simple
theoretical distributions (e.g., the exponential distri-
bution) are more easy to handle and often allow sim-
plifications resulting in more tractable models. We
try to find well-fitting simple theoretical distributions
and perform goodness-of-fit tests by computing the
Kolmogorov-Smirnov (KS) statistic against the empir-
ical distributions. We assume that a theoretical distri-
bution with a lower KS statistic fits better than another
distribution with a higher KS statistic.

For the empirical distributions of the MTTF,
MTTR, node availability, and failure correlation co-
efficient values, we estimate the parameters for dif-
ferent simple distribution families (e.g., Exponential,
Weibull, Log-Normal, Gaussian, and Gamma) by maxi-
mum likelihood estimations summarised in Tab. 1. The
MTTF and availability values are best approximated
by Weibull distributions, while MTTR and failure cor-
relation values are best fitted by Log-Normal Distri-
butions. While the KS statistic is low for the MTTF,
MTTR, and availability distributions, it is rather high
for the failure correlation coefficient. Unfortunately,
the failure correlation coefficient is not well approx-
imated by a simple theoretical distribution such that
dependent failure models must either rely on more com-
plex distributions or accept potential accuracy issues.

The TTF and the TTR of an individual node are
often assumed to be exponentially distributed. We try
to verify this assumption by a goodness-of-fit test for
each node. More precisely, we conduct a KS test for
the TTF and TTR of each node and the exponential
distribution with unknown mean, a level of significance
α = 0.01, and critical values taken from Lilliefors [4].

When conducting the tests, the hypothesis of exponen-
tially distributed TTF is rejected for 419 out of 446
nodes. For the TTR, the hypothesis is rejected for
442 out of 444 nodes. When fitting the empirical dis-
tributions of TTF and TTR to different distribution
families, we find that their distributions are best ap-
proximated by distributions of the log-normal distri-
bution family with an average KS statistic of 0.1489
for the TTF and 0.27 for the TTR. Although the fit by
log-normal distributions is better than the fit by expo-
nential distributions, the assumption that the TTF /
TTR are log-normal distributed must unfortunately be
rejected for most nodes. Overall, we find that TTF /
TTR are not well-approximated by distributions from
a single simple distribution family, but either require
distributions from a single complex distribution family
or from different families. For example, as the assump-
tion of exponentially distributed TTF was accepted for
27 nodes, there is no pressing need to find another dis-
tribution family for these nodes.

6. Conclusion

A model that relies on inaccurate assumptions or
parameters is unlikely to yield realistic results. Empir-
ical evaluations are essential for dependability models
of distributed systems as they allow to accurately assess
a model’s parameters and assumptions. In this paper,
we empirically evaluated popular model assumptions
and parameters for more than 400 globally distributed
nodes based on long-term monitoring data as perceived
by a central observer node. As one result, we found
that the nodes are very heterogeneous w.r.t. their fail-
ure characteristics (e.g., the standard deviations are
relatively high for all characteristics). This indicates
that dependability models should, for example, not as-
sume the same MTTF for all nodes, but model the
MTTF value by a distribution function. We tried to
fit the identified empirical distributions by simple the-
oretical ones that are favourable for tractable models.

The evaluated nodes have surprisingly bad failure
characteristics with, for example, an availability of 0.65
on average. In contrast, Long et al. [6] conducted a re-
lated study in 1995 and found significantly better fail-
ure characteristics with, for example, an average avail-
ability of 0.88. The differences are partially explained
by the different approach of monitoring. While Long
et al. relied on decentralised monitoring, which masks
failures of the communication infrastructure, we relied
on centralised monitoring and attributed all commu-
nication failures to the affected nodes, which seemed
to have a significant impact. This indicates that such
failures should be considered in future dependability
models and empirical evaluations.



Table 1: Summary of distribution fitting
Metric Distr. Family Parameter KS-Statistic

MTTF Weibull shape = 1.2864, scale = 4.1027 0.0323

MTTR Log-normal mean = -0.4822, std. dev. = 1.6366 (log scale) 0.0406

Availability Weibull shape = 1.2976, scale = 0.3797 0.0425

Fail. Cor. Coeff. Log-Normal mean = 0.0599, std. dev. = 0.0559 (log scale) 0.1321

Another likely reason for the bad failure character-
istics is that PlanetLab is a research cluster with low
requirements on high availability or reliability. For ex-
ample, Peterson et al. [8] document that PlanetLab
weakly isolates resources for the sake of efficiency such
that projects with low-quality implementations may
cause node failures. As the individual nodes are of
low criticality, their repair often has no priority. This
raises the question of how representative our evalua-
tion is for other kinds of systems. On the one hand,
PlanetLab is likely to have worse failure characteristics
than, for example, clusters that are critical for com-
mercial revenue. On the other hand, it probably has
better characteristics than, for example, many peer-to-
peer networks with high churn-rates. Unfortunately,
these differences can hardly be quantified without fur-
ther empirical evaluations of other systems.

While our assessment of independent failures and
exponentially distributed TTF and TTR confirm pre-
vious results, the finding of correlation between failure
characteristics and geographical distance in large-scale
distributed systems has not received attention so far.
Our evaluation reveals that the distance of a node to
the observer node correlates with the MTTF and the
availability of the node, but hardly with its MTTR.
Likely reasons are that more communication infras-
tructure is involved to communicate with a more dis-
tant nodes. This means that there are more possible
sources of failure, which overall decrease the time-to-
failure and availability. As each component is restored
independently, this hardly affects the repair process.

Likewise, the failure correlation coefficient of node
pairs correlates with the distance between the nodes.
A possible reason is that co-located nodes are con-
nected to the Internet via the same communication
infrastructure and administrated by the same person-
nel. If the communication infrastructure at the physi-
cal location of co-located nodes fails or an administra-
tor mis-configures co-located nodes at the same time,
the nodes jointly fail. While correlations between dis-
tance and failure characteristics have been considered
for embedded systems [5], they seem to also occur in
large-scale distributed systems. Future research on de-
pendability models of such systems may address the
question of how to consider geographical distance for
more accurate models.
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