
Workflow Service Extensions for UNICORE 6 -
Utilising a Standard WS-BPEL Engine for Grid

Service Orchestration

S. Gudenkauf1, W. Hasselbring1, A. Höing2, G. Scherp1, O. Kao2

1 OFFIS Institute for Information Technology, R&D-Division Business Information
Management, Escherweg 2, 26121 Oldenburg, Germany
email: [stefan.gudenkauf, guido.scherp]@offis.de,

hasselbring@informatik.uni-oldenburg.de
2 Technische Universität Berlin, Faculty IV - Electrical Engineering and Computer

Science, Dept. of Telecommunication Systems, Complex and Distributed IT Systems,
Einsteinufer 17, 10587 Berlin, Germany

email: [andre.hoeing, odej.kao]@tu-berlin.de

Abstract. The BIS-Grid project3, a BMBF-funded project in the con-
text of the German D-Grid initiative, focusses on realising Enterprise Ap-
plication Integration using Grid technologies to proof that Grid technolo-
gies are feasible for information systems integration. Small and medium
enterprises shall be enabled to integrate heterogeneous business infor-
mation systems and to use external Grid resources and services with
affordable effort.

In this paper, we describe service extensions to UNICORE 6 to use an
arbitrary WS-BPEL workflow engine and standard WS-BPEL to or-
chestrate stateful, WSRF-based Web Services, also called Grid Services.
Thereby, we focus on how to combine the arbitrary workflow engine with
UNICORE 6, and on how to access workflows and workflow instances.
The workflows itself are also provided as Grid Services, realised by a
Workflow Management Service that deploys Workflow Services within
UNICORE 6, each wrapping a WS-BPEL workflow that is deployed in
the arbitrary workflow engine.

1 Introduction

In order to map business processes to the technical system level the integration
of heterogeneous information systems - referred to as Enterprise Application
Integration (EAI) - is crucial. Thereby, integration is often achieved by service
orchestration in service-oriented architectures (SOA). A means commonly used
to create SOA are Web Services since they enable service orchestration and
hide the underlying technical infrastructure. Modern Grid middlewares such as

3 This work is supported by the German Federal Ministry of Education and Research
(BMBF) under grant No. 01IG07005 as part of the D-Grid initiative.



UNICORE 64 and Globus Toolkit 45 are based on the Web Service Resource
Framework (WSRF) [1], a standard that extends classical, stateless Web Services
to be stateful. Such WSRF-based Web Services, also called Grid Services, provide
a basis to build SOAs using Grid technologies.

In BIS-Grid we focus on realising EAI using Grid technologies. One major
objective is to proof that Grid technologies are feasible for information systems
integration. Small and medium enterprises (SMEs) shall be enabled to integrate
heterogeneous business information systems and to use external Grid resources
and services with affordable effort. To do so, we develop a workflow engine, the
BIS-Grid workflow engine, that is capable to integrate Grid Services. This engine
is based upon service extensions to the UNICORE 6 Grid middleware, using an
arbitrary WS-BPEL workflow engine and standard WS-BPEL to orchestrate
Grid Services. Also, it propagates service orchestrations as Grid Services. The
main reason that led us to the decision to use UNICORE 6 is that UNICORE 6 is
a pioneer in adopting Grid standards, since the support of standards is essential
for us, especially regarding security. The WS-BPEL workflow engine to be used is
ActiveBPEL6 since it exhaustively supports the WS-BPEL standard, and is well
accepted in the business domain as well as in the Grid domain. We refrain from
extending well-adopted standards and technologies as far as possible to increase
sustainability. Instead, we use service extensions to UNICORE 6 to conceal the
WS-BPEL engine by wrapping the message exchange between the engine and
Grid Services.

This paper presents a snapshot on our ongoing work and is organised as
follows. Related work is presented in Section 2. In Section 3, we present the
architecture of the BIS-Grid solution in detail, highlighting the service extensions
to UNICORE 6. Finally, in Section 4, we conclude the paper and briefly present
our future work.

2 Related Work

Orchestrating stateful Grid Services is in the focus of many German and in-
ternational projects, for example, the German D-Grid projects Text-Grid7 and
InGrid8, and the European projects A-WARE9, Chemomentum10, and EGEE11.
Orchestrating Grid Services is also in the focus of several papers. Leymann [8]
describes the appropriateness of using BPEL4WS as a basis for Grid Service
orchestration since it already fulfils many requirements of the WSRF standard.
He concludes that a Grid-specific extension of BPEL4WS is more appropriate

4 http://www.unicore.eu
5 http://www.globus.org/toolkit/
6 http://www.activevos.com/community-open-source.php
7 http://www.textgrid.de/
8 http://www.ingrid-info.de/
9 http://www.a-ware-project.eu/

10 http://www.chemomentum.org
11 http://www.eu-egee.org/



than creating new Grid-specific standards. The appropriateness of BPEL4WS for
Grid Service orchestration is also examined and confirmed in [5], [10], [2], and [6].
In [4], Dörnemann et al. discuss composing Grid Services by using BPEL4WS.
They present a solution that is based on extending the BPEL4WS specifica-
tion. Emmerich et al. [5] describe the evaluation of reliability, performance, and
scalability issues of the open source workflow engine ActiveBPEL on executing
a complex scientific Grid workflow. As a preparatory work to this paper, we
describe the requirements that apply to a Grid-enabled workflow system in [6].

UNICORE itself provides a workflow system extension for an existing UNI-
CORE 6 installation, originating from the Chemomentum project. This system
consists of two UNICORE/X service containers: a workflow engine, processing
workflows on a logical level, and a service orchestration layers that concerns
the invocation of Grid Services. The workflow engine utilises pluggable domain-
specific language (DSL) modules and a generic workflow language internally.
It also includes a resource brokering component. Both the UNICORE 6 work-
flow system and the BIS-Grid workflow engine have in common that they are
realised as service extensions to the UNICORE/X service container. However,
the UNICORE 6 workflow system does not feature the integration nor the ex-
changeability of an arbitrary WS-BPEL workflow engine and is therefore less
sustainable.

The works presented in the preceding paragraphs mainly focus on scientific
workflows instead of business workflows relevant to BIS-Grid. Concerning the
use of BPEL (BPEL4WS or WS-BPEL), it is primarily relied on extending
or adapting the language, thus creating BPEL dialects. The A-WARE project
is one project that addresses business workflows in Grid environments. In [3],
the project presents the orchestration of UNICORE 6 services with the help
of a standard BPEL engine, relying on a Service Bus that supports adapters to
submit jobs to UNICORE. However, workflows are not provided as Grid Services.

When regarding business workflows, another important aspect is choreogra-
phy. Choreography regards the interaction and cooperation of multiple work-
flows, potentially traversing organisational borders. Choreography is relevant to
Grid environments since Grid-based Virtual Organisations (VOs) may require
workflow cooperation. The TrustCoM12 project, for example, provides a trust
management framework for the definition and enactment of collaborative busi-
ness processes within VOs. BIS-Grid instead focusses on orchestration. It regards
itself as a a door opener for SMEs, allowing them to integrate their information
systems with technologies that are Grid-compatible, also allowing them to in-
tegrate external Web and Grid Services. Nevertheless, this does not prohibit to
consider choreography in future.

3 UNICORE 6 Service Extensions

Our UNICORE 6 service extensions mainly consists of two WSRF service types,
Workflow Management Service and Workflow Service, and an arbitrary standard
12 http://www.eu-trustcom.com/



WS-BPEL workflow engine. In our case this is the open source workflow engine
ActiveBPEL. Together, the service extensions and the arbitrary WS-BPEL en-
gine represent the BIS-Grid workflow engine. The service extensions are realised
as Grid Services within UNICORE 6’s service container, the UNICORE/X com-
ponent. For each workflow deployed with the Workflow Management Service
one Workflow Service will be created using a hot deployment mechanism with-
out restarting UNICORE/X. These services manage and access ActiveBPEL. As
a standard WS-BPEL workflow engine, it typically orchestrates stateless Web
Services and supports only basic security mechanisms, e.g. username-based and
password-based authentication. Therefore, advanced security concepts must be
provided by the service extensions in the UNICORE/X service container. In [7]
we illustrate some considerations on security within the BIS-Grid solution.

UNICORE 6

compute jobs / file transfers
UNICORE Atomic Services

BIS-Grid-specific services

other UNICORE 6 services

uses

uses

workflow deployment / execution

ActiveBPEL

other UNICORE 6 services

W
S-B

P
E

L
w

orkflow
engine

Fig. 1. Overview on the Architecture of the BIS-Grid solution

Figure 1 presents an overview on the architecture of the BIS-Grid workflow en-
gine. Within UNICORE/X, the BIS-Grid service extensions are placed beside
so-called UNICORE Atomic Services which provide basic functionalities to sup-
port Grid computing, and beside other Grid Services that, e.g. may provide
access to information systems. One important design decision was to neither
extend the WS-BPEL standard nor to modify ActiveBPEL for Grid Service or-
chestration, although the WS-BPEL 2.0 specification provides an extensibility
mechanism that allows to integrate additional functionality without declining
the standard. However, the use of proprietary extensions would conclude in a
solution that may not be interoperable with future versions of the standard as
well as with the engine.

Leaving the WS-BPEL standard and the engine untouched ensures sustain-
ability and flexibility, and allows to exchange the WS-BPEL engine by any other
WS-BPEL engine. Figure 1 shows that the ActiveBPEL engine is located behind
UNICORE 6. Hence, it can be deployed separately on backend nodes to support
load balancing. In [7] we also present our considerations on load balancing the
BIS-Grid solution.



Besides all this advantages also some problems arise when using such a de-
coupled architecture without WS-BPEL extensions. The BPEL code, that is
necessary to call a Grid Service is more complex as if we would introduce new
grid-specific activities. Even, if a WSRF-resource of a Grid Service is only used
for a single call, we have to explicitly create and destroy it using BPEL invoke
activities. We tackle this problems by hiding the complexity from the user and
the as far as possible from the workflow designer. We plan to extend an existing
BPEL editor by introducing new “Grid Activities” that automatically generates
the BPEL code. Furthermore, we need some additional BPEL code to solve a
mapping problem, that is described in more detail in Section 3.3. The mapping
problem will be hidden completely in the Workflow Management Service, that
will do some processing steps before the deployment of the BPEL code to the
WS-BPEL workflow.

deploy workflow

undeploy workflow

redeploy workflow

retrieve workflow
Workflow Designer

(a) Workflow Management Service

create workflow instance

execute workflow

get current status

change configuration
Workflow User

(b) Workflow Service

Fig. 2. Use Cases

3.1 Workflow Management

Important workflow management functionalities are workflow deployment, rede-
ployment, undeployment, and retrieval (see Figure 2(a)). These functionalities
are realised as a Grid Service, the Workflow Management Service, whereas an
instance of the service manages exactly one workflow. Workflow Management
Service instances are created by a factory that is realised as a standard Web
Service within the UNICORE/X service container. This factory offers the fol-
lowing functions:

– create: The method creates a new (empty) service instance and returns the
corresponding endpoint reference.

– search: The method returns a set of endpoint references pointing to service
instances that represent workflows accessible to the user. Search patterns
can be used to limit the result list.

A Workflow Management Service instance provides the following functions:



– deploy: The method deploys a workflow by requiring a BIS-Grid Workflow
Deployment Package. This package contains a WS-BPEL workflow descrip-
tion and additional resources, e.g. deployment descriptors. Since each Work-
flow Management Service instance manages only one workflow this method
is blocked after deployment until the undeploy method has been called. To
modify a deployed workflow the method redeploy must be used.

– undeploy: This method undeploys a workflow previously deployed with the
same Workflow Management Service instance, and destroys the correspond-
ing Workflow Service.

– redeploy: This method redeploys a workflow previously deployed with the
same Workflow Management Service instance. The effect is regarded the
same as if the methods undeploy and deploy are called consecutively.

– retrieve: This method returns the corresponding deployment package of a
workflow previously deployed with the same Workflow Management Service
instance.

For workflow deployment and undeployment, the Workflow Management Ser-
vice has to communicate with the WS-BPEL engine and with the UNICORE/X
service container to create or remove Workflow Services (see Section 3.2). There-
fore, the deployment and undeployment processes can be subdivided into several
steps. If one step fails the complete deployment or undeployment process must
fail, too, and the preceding steps must be rolled back (if required and possible).
The deployment process is as follows:

1. The BIS-Grid Workflow Deployment Package is stored to a previously spec-
ified local file space and is unpacked.

2. The deployment package, containing the workflow description and a corre-
sponding deployment descriptor, is checked for correctness and completeness.

3. The WS-BPEL workflow description is modified to solve a UNICORE 6/WS-
BPEL workflow engine mapping problem. Details about this problem and
the solution are described in Section 3.3.

4. The workflow is deployed to the WS-BPEL workflow engine. This is done
by transferring the WS-BPEL workflow description and the corresponding
deployment descriptor to the WS-BPEL engine by an appropriate adapter,
in our case an ActiveBPEL adapter.

5. The corresponding Workflow Service (see Section 3.2) is created and regis-
tered to the UNICORE/X service container.

Subsequently, undeployment is executed as follows:

1. The factory service of the corresponding Workflow Service (see Section 3.2)
is deregistered and removed from the UNICORE/X service container to pre-
vent the creation of new Workflow Service instances.

2. The undeployment process waits for the termination of active workflow in-
stances. The initiator of undeployment may decide whether these instances
shall terminate normally (expiration date is infinite), instantly (expiration
date is 0 ), or at a specific date (expiration date is specified either explic-
itly or by a grace time). Except for normal termination, Workflow Service



UNICORE 6

Workflow Service

ActiveBPEL

BIS-Grid-specific services

Proxy

receive

invoke

reply

1

2

3

4

5

6workflow user

other UNICORE 6 services

Fig. 3. Workflow Service Architecture and Example Usage

instance termination is enforced by the undeployment process at the given
expiration date. By default, the normal termination strategy is used.

3. The actual Workflow Service (see Section 3.2) is deregistered and removed
from the UNICORE/X service container.

4. The WS-BPEL workflow is undeployed from the WS-BPEL workflow engine
by using an appropriate adapter (ActiveBPEL). It has to be ensured that
all data concerning the WS-BPEL workflow to be undeployed is removed.

5. The BIS-Grid Workflow Deployment Package and all related data are re-
moved from the respective local file space.

Beside the functionalities described in this section, WS-BPEL engine manage-
ment, and high-level monitoring and auditing of Workflow Service instances can
also be seen as a part of workflow management. Appropriate services are already
envisioned in our architecture but are not part of this work.

3.2 Workflow Service

A Workflow Service represents the execution of a specific deployed workflow. It
is a WSRF service which instances are created through a corresponding factory
service. Each instance is mapped directly to one workflow instance in the Ac-
tiveBPEL workflow engine. The Workflow Service must fulfil the use case shown
in Figure 2(b): workflow instance creation, workflow execution, status informa-
tion providing, and online configuration modification.

Figure 3 shows a more detailed view on a Workflow Service (note that the
factory service is omitted). We assume a simple workflow that calls an external
service and sends the response back to the user. Only relevant WS-BPEL activ-
ities are shown in the ActiveBPEL engine. Before the execution starts, the user
has to create a new Workflow Service instance via the corresponding factory
service.

The WSDL interface of this Workflow Service is a combination of two inter-
faces: The first one is the Workflow Service interface that offers BIS-Grid-specific



operations, e.g. requesting information on workflow progress, changing/adding
security tokens, or modifying the security policy. The second interface is the
original workflow interface provided by the WS-BPEL engine integrated in the
combined WSDL so that all service calls can be done on the Workflow Service.

Internally, the UNICORE/X service container contains an XFire SOAP en-
gine13 that processes incoming messages through an XFire Handler Pipeline.
The last handler of the incoming pipeline is the so-called Invoker that manages
the Java method invocation on the actual UNICORE/X service. The Invoker of
a Workflow Service instance differentiates between BIS-Grid-specific service calls
and service calls specific to workflow execution. Regarding the latter, the Invoker
forwards the message to a general method. Grid-specific information such as se-
curity credentials or accounting and billing information is removed in a second
configurable handler pipeline, thus converting the message to a standard mes-
sage used in Web Service calls (see Figure 3

�� ��1 ). This will be realised using a
separate handler pipeline. The BPEL workflow engine works up the message

�� ��2 .
Vice versa, messages sent from the WS-BPEL workflow to invoke external

services
�� ��3 are caught by a proxy also located in UNICORE/X. The proxy

reads an identifier consisting of the name of the workflow and the id of the cor-
responding Workflow Service instance (cp. Section 3.3) into the message header,
and forwards the message to the correct Workflow Service instance for fur-
ther processing. By using another handler pipeline that depends on the current
configuration of the Workflow Service instance, Grid-specific XML fragments -
e.g. SAML assertions [9] - are added to the message and then forwarded through
a certificate-secured SSL channel. In case of a synchronous service call the an-
swer is subsequently processed in reverse, removing and processing Grid-specific
XML fragments and forwarding it to the WS-BPEL engine through the connec-
tion held by the proxy

�� ��4 . Regarding asynchronous service calls the connection
will be closed after the message is sent.

The response message from the external service is also worked up by the
BPEL engine

�� ��5 and the answer is send back to the user
�� ��6 .

ActiveBPEL runs in a separate environment. It is not possible to access the
engine without using the BIS-Grid-specific services of a UNICORE 6 installa-
tion. This is crucial for Grid workflow execution security since workflow access
is controlled by UNICORE 6 security mechanisms using Grid credentials. All
message transfers are performed using certificate-secured SSL channels.

3.3 UNICORE 6/WS-BPEL Engine Mapping

Using an arbitrary WS-BPEL engine, we have to deal with two different in-
stances of the same workflow: a regular workflow instance in the actual WS-
BPEL engine, and the WSRF Workflow Service instance in the UNICORE/X
service container. It is the task of the UNICORE/X service extensions to check
incoming and outgoing messages and to prepare them for Grid utilisation. To
do so, it is necessary to map messages from the WS-BPEL engine to the correct
13 http://xfire.codehaus.org/



WSRF instances and vice versa. In UNICORE 6, a Workflow Service instance
is identified by a resource id which is also contained in its endpoint reference.
Unfortunately, there is no identification information in the SOAP messages that
are sent between UNICORE/X and the WS-BPEL engine which enables to con-
clude the original WS-BPEL instance. Such information is necessary for both
synchronous and asynchronous external service invocations, e.g. since appropri-
ate security credentials must be assigned to outgoing messages.

This problem is solved by modifying the WS-BPEL workflow description so
that the resource identifier used by UNICORE/X is known to the WS-BPEL
workflow and used in external message communication (cp. Section 3.1). There-
fore, we stipulate that a WS-BPEL workflow expects the resource id of a corre-
sponding Workflow Service instance to be attached to incoming messages that
create workflow instances. Second, we stipulate an assign operation before each
external service invocation within the WS-BPEL workflow description. This
assign operation inserts the resource id into the message. All in all, the follow-
ing requirements (RQ) must be met: For all start-messages14 the corresponding
XML schema must be extended by an extra variable for the resource id iden-
tifying the UNICORE/X Workflow Service instance (RQ1). There must be a
dedicated process variable within the workflow to store the resource id during
the whole process execution (RQ2). There must be an assign activity after each
instance-creating activity which copies the resource id from the message into the
process variable (RQ3). All outgoing message schemas, i.e. reply or invoke,
must be extended by an extra variable to carry the resource id (RQ4). There
must be an assign activity that copies the resource id from the dedicated pro-
cess variable into the corresponding message variable before each activity that
causes an outgoing message (RQ5). We developed WS-BPEL patterns that meet
these requirements. They will be part of a WS-BPEL pattern catalogue that also
contains patterns for Grid utilisation with standard WS-BPEL, for example.

3.4 Implementation Status

A first prototype of the BIS-Grid workflow engine is expected to be released in
August 2008. The prototype and the WS-BPEL pattern catalogue mentioned in
Section 3.3 will be made available on the BIS-Grid web site (www.bisgrid.de).

4 Conclusion and Future Work

We presented an overview on the architecture of the BIS-Grid workflow engine. It
mainly consists of two Grid Services working together with the WS-BPEL engine
ActiveBPEL. Instances of a Workflow Management Service hot-deploy Workflow
Services that encapsulate workflows in the WS-BPEL engine, and propagate
them as WSRF-compliant Grid Services. Within this architecture, neither the

14 I.e. messages which are addressed to receive or pick activities with the
createInstance attribute set to yes.



WS-BPEL engine nor the WS-BPEL 2.0 standard have to be adapted. The
WS-BPEL engine is therefore exchangeable through any WS-BPEL-compliant
engine. Also, the architecture offers further possibilities to easily adopt future
features, e.g. by modifying handler pipelines.

This paper presents a snapshot on our ongoing work. We recently started with
the implementation, focussing on the basic functionalities, e.g. piping messages
through the Workflow Service and on security issues. We will subsequently ad-
dress human interaction in worflows, and consider an adequate workflow design
tool in our future work.

References

1. Tim Banks. Web Services Resource Framework (WSRF) - Primer v1.2.
http://docs.oasis-open.org/wsrf/wsrf-primer-1.2-primer-cd-02.pdf, May 2006.

2. Kuo-Ming Chao, Muhammad Younas, Nathan Griffiths, Irfan Awan, Rachid
Anane, and C-F Tsai. Analysis of Grid Service Composition with BPEL4WS.
In Proceedings of the 18th International Conference on Advanced Information Net-
working and Application (AINA’04), volume 01, page 284, Los Alamitos, CA, USA,
2004. IEEE Computer Society.

3. L. Clementi, C. Cacciari, M. Melato, R. Menday, and B. Hagemeier. A Business-
Oriented Grid Workflow Management System. In Euro-Par 2007 Workshops: Par-
allel Processing HPPC 2007, UNICORE Summit 2007, and VHPC 2007, pages
131–140, Rennes, 2007.

4. Tim Dörnemann, Thomas Friese, Sergej Herdt, Ernst Juhnke, and Bernd
Freisleben. Grid Workflow Modelling Using Grid-Specific BPEL Extensions. 2007.

5. Wolfgang Emmerich, Ben Butchard, Liang Chen, Sarah L. Price, and Bruno
Wassermann. Grid Service Orchestration Using the Business Process Execution
Language (BPEL). In Journal of Grid Computing (2006), pages 283–304. Springer,
2006.

6. Stefan Gudenkauf, Wilhelm Hasselbring, Felix Heine, André Höing, Odej Kao, and
Guido Scherp. A Software Architecture for Grid Utilisation in Business Workflows.
In MKWI. GITO-Verlag, Berlin, 2008.

7. Stefan Gudenkauf, Wilhelm Hasselbring, Felix Heine, André Höing, Guido Scherp,
and Odej Kao. Bis-Grid: Business Workflows for the Grid. In CGW’07 Proceedings,
pages 86–94, Krakow, Poland, 2008. ACC CYFRONET AGH.

8. Frank Leymann. Choreography for the Grid: towards fitting BPEL to the resource
framework: Research Articles. Concurr. Comput. : Pract. Exper., 18(10):1201–
1217, 2006.

9. Nick Ragouzis, John Hughes, Rob Philpott, Eve Maler, Paul Madsen, and
Tom Scavo. Security Assertion Markup Language (SAML) V2.0 Techni-
cal Overview. http://www.oasis-open.org/committees/download.php/22553/

sstc-saml-tech-overview-2%200-draft-13.pdf, February 2007. Working Draft.
10. Aleksander Slomiski. On using BPEL extensibility to implement OGSI and WSRF

Grid workflows: Research Articles. Concurr. Comput. : Pract. Exper., 18(10):1229–
1241, 2006.


