Architectural Styles for Early Goal-driven
Middleware Platform Selection

Simon Giesecke!, Matthias Rohr? and Wilhelm Hasselbring!-?

1 OFFIS Institute for Information Technology, Escherweg 2,
26121 Oldenburg (Oldb.), Germany,
simon.giesecke@offis.de
2 Carl von Ossietzky University of Oldenburg, Software Engineering Group,
26111 Oldenburg (Oldb.), Germany,
{rohr,hasselbring}@informatik.uni-oldenburg.de

Abstract. The selection of a middleware platform is an important task
in the development of complex business information systems. A system-
atic selection aims to ensure that the resulting system meets its specified
quality requirements. The selection must be made early, since it sig-
nificantly influences the software architecture and later changes to the
architecture are expensive. In our approach, middleware platforms are
explicitly described by architectural styles, which capture the design vo-
cabulary and structural constraints the platform imposes upon concrete
application architectures. This novel combination of architectural styles
and middleware platform selection has the benefit that the selected style
provides partial guidance for modelling the application architecture based
on the chosen middleware platform. We present the MidArch method for
systematic middleware platform selection exploiting a style repository
which stores results of architectural evaluations from applications of the
method. We present an example of applying the method in the develop-
ment of a web-based information system, in the context of a field case
study.

1 Introduction

The selection of suitable middleware products on top of which components are
implemented or heterogeneous subsystems are integrated, is one critical task
in the development process of current business applications. Besides functional
considerations, an application architect needs to make a selection that enables
the resulting system to meet given quality (or non-functional) requirements
concerning characteristics such as reliability, usability, efficiency, maintainability
or portability [1]. These requirements usually concern conflicting characteristics
that require a trade-off. For example, different distribution middleware products
impact the availability and the time efficiency of the application in different ways.

The selection task is critical because business information systems are middle-
ware-intensive software systems, i.e., systems whose structure and behaviour are
significantly influenced by the choice of middleware products [2]. Therefore, a

S-5-1

well-founded decision on using a middleware product should be made as early in
the development process as possible, i.e. at the architectural level. However, few
guidelines or specific techniques exist on how to select a middleware product in a
given project context, which often leads to ad-hoc selection decisions [3,4]. We
consider a wide definition of middleware, which includes not only distribution
middleware, but also application frameworks (cf. [5]).

The MidArch Design Method supports the systematic selection of a mid-
dleware platform best suited to attain given system quality requirements. A
middleware platform is defined by a specific mode of employment of a middleware
product. We describe middleware platforms formally by Middleware-oriented
Architectural Styles, or MidArch Styles in brief, which capture the vocabulary
of platform abstractions and structural constraints imposed upon application
architectures based on the corresponding platform. They can be notated using
the UML-based UML/MidArch approach.

When applying the MidArch Design Method, essentially two cases must be
distinguished: Either an existing MidArch Style is chosen from a style repository,
or, if no suitable style exists in the repository, a new MidArch Style is modelled.
In previous papers, we concentrated on the specification of new styles and style-
based architectures [6,7]. There, MidArch Styles are used to guide modelling
of a target application architecture: An application architecture based on the
corresponding platform uses the design vocabulary of a MidArch Style and is
required to formally conform to the rules of the style. In the course of one
application of the MidArch Design Method, candidate architectures are modelled
for several MidArch Styles and their quality is evaluated. The evaluation results
for the candidate architectures are then lifted, such that they can be related to
the MidArch Style and therefore to the middleware platform.

Initially, i.e. before the MidArch Method has been used in some project, the
MidArch Repository is empty and contains no style definitions nor evaluation
results. When the MidArch Method is applied at that point, no guidance is
provided to the architect in preselecting a MidArch Style to model and apply in
modelling an architecture. By acquiring more and more knowledge, guidance to
the architect is steadily increasing. For this paper, we consider the case that all
relevant MidArch Styles have already been specified and empirically evaluated
to some extent through earlier instances of the MidArch Design Method. We
demonstrate the reuse of the knowledge on the quality effects of styles in a
new development project that uses the MidArch Design Method for selecting
candidate MidArch Styles. The styles are chosen from a repository that stores
MidArch Styles that are hierarchically organised in a taxonomy together with
evaluation results. The focus and contribution of this paper are the method for
this selection task and the underlying concepts.

Overview The remainder of the paper is structured as follows: First, we introduce
foundations on software architecture and architectural styles in Section 2. Then,
an overview of the overall MidArch Design Method is given in Section 3. The
Style Selection Task of the MidArch Design Method is discussed in detail in

S-5-2

Section 4, which is the core contribution of this paper. In Section 5, related work
is discussed, before Section 6 concludes the paper.

2 Software Architecture and Styles

Software architectures are abstractions of individual software systems, which
can be organised in several layers (Section 2.1), whereas architectural styles
characterise families of software architectures and systems (Section 2.2). MidArch
Styles are a special form of architectural styles that describe middleware platforms
(Section 2.3).

2.1 Software Architecture and Layers

In conformance with the ISO/IEC DIS 25961 Standard [?] for architectural
description, we use the term “(software) architecture” to refer to the fundamental
organisation of an individual software system:

Software architecture is the “fundamental organization of a system em-
bodied in its components, their relationships to each other, and to the
environment, and the principles guiding its design and evolution.” [?]

System Sublayers Example Products
Business Layer B
Business REGIS Business Processes
Processes

Application Layer
Applications REGIS Applications

Infrastructure Layer Apache Cocoon

Middleware Apache Fortress
MySQL
Sun Java VM
Operating System Linux
Hardware
Server
Resources

Fig. 1. System layers with example products for each layer

Business information systems are usually divided into three major system
layers [8]: business process layer, application layer and infrastructure layer (see
Figure 1). The infrastructure layer can be split into the basic hardware resources
layer, a layer that consists of the hardware-specific operating systems, and a
middleware layer, which may consist of diverse middleware platform products.

S-5-3

Schmidt et al. [5] consider four layers of middleware: domain-specific middleware
services, common middleware services, distribution middleware (e.g. CORBA),
and host infrastructure middleware such as a Java VM or a Common Language
Interface VM. The latter imposes few structural constraints, but it is the main
layer to attain the requirement of hardware portability.

We focus on application architectures on the application layer that build
upon concepts defined by the underlying middleware layers, which should be
reflected in the architectural description language used to describe middleware-in-
tensive systems. Middleware-oriented architectural styles are a means to represent
such middleware concepts. Before discussing specifics of middleware-oriented
architectural styles, we first introduce the general concept of architectural styles.

2.2 Architectural Styles

An architectural style characterises a family of related software architectures [9].
We assume the component-and-connector viewpoint [10, chapter 3] of software
architecture. From this viewpoint, an architectural style, such as the pipes-and-
filters or layered style, characterises a family of configurations of components
and connectors. A view from this viewpoint is principally described through such
a configuration. An entire software architecture description typically comprises
other views as well, which we do not focus on.

Common features of a family of related software architectures can be cap-
tured in architectural patterns or architectural styles®. These artefacts specify
constraints for component and connector types, and rules for the composition
of components and connectors into an architecture [12]. Architectural styles are
typically specified in a formal Architecture Description Language (ADL) such as
Acme [13], which allows the specification of both architectural styles and software
architectures. The formal specification allows to analyse specifications of software
architectures for their conformance to an architectural style.

An architectural style [14] consists of the definition of a vocabulary of com-
ponent and connector metatypes, and of composition rules for configurations.
Architectural styles can be used to guide the development of a software archi-
tecture, since they constrain the vast architectural design space through the
provision of the vocabulary and its associated rules. They summarise a set of
design decisions that are proven to fit together, and ease subsequent design
decisions.

Conformance to an architectural style ensures internal conceptual coher-
ence and consistency of an architecture. Moreover, specific quality properties
of the resulting system may be achieved through using an architectural style,
e.g. good scalability [15]. Thus, checking an architecture for conformance to some

3 Architectural patterns and styles are similar concepts. We use the term “architectural
style” as this is faithful to the tradition in the context of ADLs. Some authors,
e.g. [11], refer to these common features as “architectures” as opposed to our use of
that term, which may be confusing.

S-5-4

architectural style is an important architectural analysis*. To facilitate such a
style conformance check, formalisms are required that allow the specification of
both architectural styles and architectures. Several Architectural Description
Languages (ADLs) that offer this feature have been developed, including Acme,
Alfa, ArchWare and Wright.

Unfortunately, these formalisms are not well-known by practitioners, and even
in the overall software engineering research community. Moreover, it is difficult to
combine them with software modelling notations that are typically used to model
software, most importantly the Unified Modeling Language (UML). Therefore,
we have developed the UML/MidArch approach (see Section 2.3).

2.3 MidArch Styles

i, deciared by

Property
Declaration

0"

isCategory
<<enumeration>>

ConstraintCategory DataType

family of architectures
invariant

heuristic
observation

1..%
Port Component —| Connector
MetaType MetaType |1-* 8 MetaType *
e = MersType
[1 T

<<instanceOf>> RuleSet Platform
0..*| Component

<<instanceOf>>
1.*
Interface
Type

provided) required

<<instanceOf>>
T <<instanceOf>>

1.
Connector - Role
Type "| Declaration
specialises
<<instancef>>
Component Connector
Instance 1% 1% Instance
1%

Binding
%
Property ow

5] S

<<instanceOf>>

i

< ©Joimner Structure
-omponen! m Configuration
Type
1x

specialises

Port

Declaration <<instanceOf>>

single architecture Port Port 0.*

Fig. 2. Conceptual MidArch Style Metamodel

We give an overview of the MidArch Style Metamodel in Figure 2. It is
partitioned by a dashed horizontal line, which separates the concepts concerning
the family of architectures level (above the line) from the concepts concerning the

4 Performing conformance checks is a distinguishing property of architectural styles

in comparison with design patterns [16], which embody the same concepts but are
defined archetypally only.

S-5-5

individual architecture level (below the line), from the component-and-connector
viewpoint.

Architecture Family Level A MidArch Style, which is called RuleSet in the
metamodel, is at the core of the style modelling level. Most importantly, it
contains the following elements:

— ComponentMetaTypes, PortMetaTypes, ConnectorMetaTypes and RoleMeta-
Types, which define the style vocabulary. PortMetaTypes are associated with
ComponentMetaTypes, while RoleMetaTypes are associated with Connector-
MetaTypes. These only serve as a coarse classification of elements, and do
not specify detailed interfaces, which are assumed to be application-specific.

— Constraints restrict the valid system level compositions of the elements based
on that vocabulary.

Individual Architecture Level Application-specific types of components and
connectors for a single architecture are specified and instantiated on the system
level. Compositions of components, connectors, and their subordinate ports and
roles can only be specified on the system level. Interfaces, i.e., lists of operation
signatures, may be specified for ports, and components’ ports are bound to
connectors’ roles.

UML/MidArch Notation While the metamodel above is at the conceptual
level and does not prescribe a specific notation for architectural styles, we
also developed a UML-based approach for modelling component-and-connector
views, which has the additional benefit of easy integration with models for other
architectural views, such as behavioural aspects, within a single notation. While
the UML does not natively provide a modelling construct for architectural styles,
we use UML Profiles to define an architectural style in the UML/MidArch
modelling approach [?]. A UML Model that conforms to a style profile then
describes an architecture.

Ezxample: Apache Cocoon Framework Apache Cocoon is a “a web development
framework built around the concepts of separation of concerns and component-
based web development” [17]. Cocoon is designed as a Java Servlet. Requests are
processed in a pipeline in which several components (filters) are hooked together,
i.e. it uses a variant of the pipe-and-filter architectural style. Within the pipeline,
filters communicate via a stream of SAX events. The entry to the pipelined
processing is a generator followed by an arbitrary number of transformers and
finalised by a serialiser which typically serialises the SAX events into an HTML
output.

Figure 3 shows a fragment of the description of the basic Cocoon style in the
UML/MidArch approach. Port and role metatypes as well as connection rules
are omitted, only the defined component and connector metatypes are shown. It
references two packages of the UML2 Superstructure [18] (Collaborations and

S-5-6

<<metaclass>> <<stereotype>> <<stereotype>>
Collaborations:: [« MidArchBaseProfile:: K—— PipeAndFilter:: K}—— <<&§i’§§¥?§:>
Collaboration {required} MidArchConnector Pipe
<<metaclass>> <<stereotype>> <<stereotype>>
BasicComponents:: |« MidArchBaseProfile:: K PipeAndFilter: <t— <f;s;§$1t;¥ﬁt?r>
Component {required} | MidArchComponent Filter
V
<<stereotype>> <<stereotype>> <<stereotype>> <<stereotype>>
Generator XSLT Processor Data Source Query Serialiser
<<stereotype>> <<stereotype>>
XSP Processor HTML Formatter

Fig. 3. Component and Connector Metatypes of the Cocoon Style in UML/Mid-
Arch

BasicComponents), the basic profile that underlies all style definitions in the
UML/MidArch approach (MidArchBaseProfile) and a profile for the generic pipe-
and-filter style (PipeAndFilter), which is extended by the Middleware-specific
Cocoon style shown. Component metatypes are represented by stereotypes for the
Component metaclass, while connector metatypes are represented by stereotypes
for the Collaboration metaclass®.

3 MidArch Design Method

In this section, we describe the overall MidArch Design Method, before we present
its style selection task in detail (see Section 4). First, we discuss the rationale
of the method (Section 3.1). Then we present the activities of the method
(Section 3.2), and introduce the running example for this paper (Section 3.3).

3.1 Rationale

We already discussed in Section 1 that middleware selection is a critical task in the
development of complex business information systems. Most current development
projects do not start from scratch but are confronted with a set of existing
applications. These applications must be modified on the basis of middleware
products that are already used, integrated with newly developed components
using some middleware product, or the existing applications should be migrated
towards a new underlying middleware product. We assume that the middleware
product itself already exists.

The selection of a middleware product must be complemented with the
determination of a specific approach to employing the middleware product

5 The reason for using Collaborations rather than Connectors are intricate [?].

S-5-7

consistently, as most middleware products allow different modes of employment
(cf. [19]). These modes correspond to design alternatives that may influence the
structure and behaviour of the application to the same extent as do different
products. We refer to such a combination of a middleware product and its usage as
a middleware platform. An application architect must choose between a set of such
middleware platforms, not between products on the first hand. For example, Java
Enterprise Edition applications can choose to use message-based communication
(Message-driven Beans) rather than call-and-return communication (RPC). If
different modes of employment must be combined, it is essential to use a well-
defined combination to avoid architectural mismatches, which in turn ensures
understandability and maintainability of the system.

The MidArch Approach consists of the MidArch Design Method, which
uses MidArch Styles and a MidArch Taxonomy for the systematic selection of
middleware platforms and for guiding the specification of software architectures.

MidArch Styles® capture the structural constraints imposed by a middleware
platform. A MidArch Style characterises the family of software architectures that
can be implemented on the associated middleware platform. It acts as a guidance
for the process of modelling a software architecture for a specific system.

We consider MidArch Styles as a language-independent concept, but define
mappings to the ADL Acme [6] and to UML Component Diagrams [?]. All known
MidArch Styles are organised within a MidArch Taxonomy, which identifies
specialisation and other relationships among the MidArch Styles.

Within the MidArch Design Method, a MidArch Taxonomy provides the basis
for the stepwise selection of a suitable middleware platform. An architect specifies
software architectures according to a MidArch Style and evaluates them against
given quality requirements. The evaluation results are stored as annotations to
the related MidArch Style in the MidArch Taxonomy. These annotations can be
used in later middleware platform selections to improve the selection process.
The knowledge base on MidArch Styles continuously accumulates knowledge with
each application.

For modern complex middleware products, it is non-trivial to extract the
architectural rules that are necessary for an effective use of the middleware
product, as various software development projects have shown [3,7,22]. Even
when these rules are known, they must still be applied consistently in the design
of the architecture and in the actual implementation. The MidArch Approach
ensures the consistent application of these rules within the architecture, and also
supports their enforcement in the implementation.

3.2 Activities

In Figure 4, the four activities of the overall MidArch Design Method and their
constituent tasks are shown. The activities and tasks are not strictly sequential.
In the Definition activity, the scope of the project, i.e. the systems involved,

6 MidArch Styles follow the line of research on architectural styles as represented
by [9,14,20,21].

S-5-8

Activity 1: Activity 2: Activity 3: Activity 4:

Definition Preparation Exploration Implementation
1A 2A 3A an
Define Project Compose Specify New Select MidArch

Scope Project-Specific MidArch Style Style and Target
Quality Model Y Architecture
Det;r?nine 2B B 48
Target Specify Current Select MidArch Adopt Target
Requi 9 Architecture Style Candidate Architecture
equirements
—
3C
Specify
Candidate
Architectures
S
3D
Evaluate
Candidate

Architectures

3E
Assess
Evaluation
Results

Fig. 4. The Activities and Tasks of the overall MidArch Design Method

and the goals to be achieved are defined. In the Preparation activity, a project-
specific quality model (in the sense of a goal/question/metric quality model [23])
is developed on the basis of partial quality model profiles, and the current
application architecture is modelled if a legacy system already exists, but an
architecture description is not available in a suitable form. Next is the Ezploration
activity, which is central to the proposed method and is assumed to consume the
majority of the effort required. It involves the preselection of MidArch Styles,
modelling of candidate architectures that conform to the selected styles, and the
evaluation of the resulting architectures. For evaluation, existing architecture
evaluation methods (such as ATAM [24]) are used. Finally, the evaluation results
are assessed to decide whether an architecture candidate (or a set of such) that
allows to achieve the stated goals has been found. On this basis, the architecture
to be implemented is developed in the Implementation activity, which might
involve combining multiple candidate architectures, which is then implemented.

We illustrate the tasks of the MidArch Design Method using an example
application of the method. This also serves as a running example for Section 4,
where Tasks 3B and 3D (highlighted in Figure 4) are discussed in more detail.

S-5-9

2A

-~ X A . Develop 3B. " 4A
Define Project 4 Project-Specific Select MidArch »| Refine Target
L/ - h)
Scope ; Quality Model ; Architecture
— | —
1 4 ! 1
1 N -7 ! 1
I tad ! I
[prs ! 1
v el \ Ve LY ! ¥
1B N 3C 3C ! 4B
Determine AT - | Specify Specify ! |mplement
Target SN 1 Cocoon A Style Cocoon Style B 1 A plication
Requirements N\ 1| Target Architecture Target Architecture H PP
\ I 1 —
Voo \ ! |
i
Lo \ |
i \ |
I ' |
1 \ 3D |
H . . Evaluate /
1 Tt Candidate !
H Architectures /
'. ——
| I
\ | .
! Y L
\ 3E
\ . Assess ‘
S -7 Evaluation
Results

Fig. 5. An Example Application of the MidArch Design Method

3.3 Running Example

Figure 5 shows a simple example application of the MidArch Design Method,
which also depicts the dependencies between the tasks. The dependency arrows
have a completion (finish-to-finish) semantics, i.e., the target task cannot be
completed before the source task is completed. However, for simplicity, we discuss
the process as if the tasks were performed sequentially.

First, the project scope is defined in Task 1A, which is the development of
a new web-based information system. In Task 1B concrete target requirements
are identified. The goals covered by these target requirements are refined into a
detailed quality model in Task 2A. An excerpt of the simple quality model for
this example is later shown in the top part of Figure 10. In a real application of
the MidArch Design Method, a full-fledged goal/question/metric quality model
should be used.

In general, a quality model in the MidArch Design Method may exhibit a
wide range of metrics, ranging from expert judgements to formal prediction
techniques. The degree of detail of the architecture models significantly impacts
the accuracy of the results but also the cost of modelling and evaluation. Our
research does not provide an original contribution to architecture evaluation
techniques. Therefore, we in order to keep the evaluation simple in this paper, we
use the following example: the quality characteristics maintainability, scalability
and availability are each judged by an expert on a simple ordinal 5-level scale.
The experts are free in their judgment, so the result is obviously subjective, while
can be made more reproducible by using some guideline for the judgment. In

S-5-10

addition, intersubjectivity can be achieved by including multiple experts in the
judgment process.

In Task 3B, the target requirements—stated in terms of the quality model—
are matched against the evaluation results for the styles contained in the MidArch
Repository. We assume that several styles have already been added to the MidArch
Repository and evaluation results for these styles have been obtained in previous
MidArch instances.

The matching procedure yields two candidate styles termed Cocoon A and
Cocoon B. Both of these styles are based on the Cocoon Basic Pipeline Style, but
they differ in the realisation of database accesses: Cocoon A requires all database
accesses to be encapsulated within one filter of the pipeline, while Cocoon B
does not. More details on this task are discussed in Section 4.4. For both of these
styles, candidate architectures are modelled in the two occurrences of Task 3C.

Task 3D then applies an architecture evaluation method to both candidate
architectures. The results are compared and added to the MidArch Repository,
as explained in Section 4.3. In Task 3E, an overall assessment of the evaluation
results is done, which evaluates the results against the requirements and ranks
the candidate architectures.

In Task 4A, the final target architecture is determined and a mapping to the
implementation level artefacts is defined. The implementation is finally carried
out in Task 4B.

4 Evaluation and Selection of Middleware-oriented
Architectural Style

In this section, we elaborate the style selection task (Task 3B in Figure 4) and
its prerequisite, the evaluation of style-based architectures (Task 3D). In the
MidArch approach, the evaluation of MidArch Styles is performed indirectly and
comparatively.

First, the evaluation is indirect, i.e. the evaluation is not applied directly to
the style descriptions, but to artefacts that conform to the styles. An indirect
evaluation can either use scenarios that are considered typical for that style, or
architectures from concrete real projects. In the MidArch Design Method, we
chose the second possibility. In our opinion, a direct evaluation of styles is not
feasible, i.e., applying some evaluation technique to style descriptions only, i.e.,
without considering other input, would not return meaningful results.

Second, the evaluation is comparative, i.e.:

1. Multiple (at least) two candidate architectures for the same system specifica-
tion need to be modelled, which conforming to different MidArch Styles each
(Task 3C),

2. These candidate architectures are then evaluated (Task 3D), which yields
evaluation results for each architecture. The metrics defined by the quality
model are thus only applied to a single architecture description at once.

S-5-11

3. Now, the evaluation results are compared to determine the commonalities and
significant differences between them. These differences are then associated
with the MidArch Styles the candidate architectures conform to.

and the significant differences between the evaluation results are determined
through comparison.

Section 4.1 discusses the role of the style selection task in the MidArch Design
Method in detail on the levels of tasks. The relationship of MidArch Styles
to Middleware products and platforms is analysed in Section 4.2. Section 4.3
explains how the evaluation results are obtained and annotated to style within
a MidArch Taxonomy. Finally, section 4.4 discusses the use of these evaluation
results in selecting a style from a MidArch Taxonomy.

4.1 Role within the MidArch Design Method

A EV:IEate
Specg)t/ ';g'sdAmh Candidate
Y Architecture

Previous MidArch Application \ ’

Same MidArch Application \ ’

2A N\ /
Develop NS
Project-Specific | ~~.
Quality Model AN 3C
Select3|\5|;idArch ---------- Specify Style-
e based Target
- Styles -
- Architecture
1B -
Specify Target

Requirements

Fig. 6. Dependencies of Style Selection Task

Figure 6 illustrates the dependencies of the style selection task (Task 3B)
to other tasks of the MidArch Design Method. These dependencies must be
distinguished into those within the same MidArch application, and those across
MidArch applications. Indirect dependencies that exist through other tasks are
not shown here.

Dependencies and reuse across MidArch applications To consider a style for
selection, it must have been specified first, and its effects on the quality of
conforming architectures must be known to some extent. The style selection
task depends on both the style specification task (Task 3A) and the architecture
evaluation task (Task 3D). Task 3D is typically performed many times for a style,

S-5-12

however it must occur at least once per style. Task 3A, on the other hand, can
be considered to occur exactly once for each style. If a style needs to be revised
later, the evaluation results that have been acquired so far could be invalidated.
Therefore, task 3A is critical and should be performed with great care.

Dependencies within the same MidArch application Within the same MidArch
application, there exists a dependency on the specification of the target require-
ments (Task 1B) and development of the quality model (Task 2A). The target
requirements need to be stated in terms of that quality model to serve as an
input for matching against the comparative evaluation results.

A dependency in the other direction, i.e. a dependency on Task 3B, is that
the specification of a candidate architecture based on a certain style (Task 3C)
depends on the selection of that style.

4.2 Relationship of MidArch Styles, Middleware Platforms, and
Middleware Products

Application
Component-
and-Connector
View

1
conforms to

1

Middleware | 1-* 1-*] Middleware | 0.1 i
Product Platform MidArch Style
7 T
0.* 0.
combines

specialises

Fig. 7. Relationship of MidArch Styles and Middleware Platforms and Products

Figure 7 shows the relationships among middleware products, middleware
platforms and MidArch Styles at class level: The relationship of middleware
products and middleware platforms is not restricted. There can be many mid-
dleware products that are considered equivalent, e.g., different Java Enterprise
Edition Application Servers’. On the other hand, there can be many modes of
employment for a single middleware product. In addition, a middleware platform
may be a combination of multiple constituent platforms that correspond to a

7 Of course, different application servers may show subtle, but important functional
differences, which may be considered important by a software architect. However, for
simplicity we assume here that this is not the case.

S-5-13

combination of different products, e.g., a Java Enterprise Edition application
using Hibernate.

While the relationship of middleware products and platforms is very flexible,
we assume a one-to-one relationship of middleware platforms and (concrete)
MidArch Styles, i.e., a (concrete) MidArch Style describes exactly one middleware
platform. A MidArch Style may specialise other styles, but this relationships is
much more restricted than the combination of middleware products, as a style
is a formal artefact, for which a well-defined relationship is defined. Also, an
application architecture’s component-and-connector view is specified to conform
to exactly one MidArch Style®. Thereby we relieve our theory from the need
to provide a calculus of style combinations at the application architecture level,
which we do not deem feasible.

Style

Middleware Description Concrete MidArch Abstract & Concrete
Product Style MidArch Styles
Generic :
Style
Description
WebSphere eGate : egta EZ : \Al\jl%)sgt]elf
MQ : Product Product e : Sty Message-based
Description Description Style : Style
Description
éZEE.f Iattf.omf Tomcat : JSZtEF : Toé?clat ; JoEE/Sun AS ©

pecification : Product yle yle eGate : WebSphere Style

Product Description Description Style MQ : Style Description

Di iption Description
Sun c i Sun Cocoon Var. A

Application p?ggﬁg(Application : Style

Server : Server : Description Pipe-and-filter Tomoat :

Product Style : Style Style

Description Cocoon Var. Description Description
B: Style
Description

Cocoon Var. B
: Style
Description

Cocoon Var. A
: Style
Description

Fig. 8. Relationship of MidArch Styles and Middleware Platforms and Products:
Example

Figure 8 shows example middleware products and the MidArch Styles modelled
for them. We deliberately left out the corresponding platforms from the figure,
because of the one-to-one relationship between platforms and styles. The rightmost
area shows an organisation of the styles into a taxonomy. For the purpose
of defining the taxonomy, additional styles have been introduced, which are
considered abstract since they do not correspond immediately to a platform.

8 Component-and-connector views that do not conform to any style at all are out of
the scope of our current discussion. A view may accidentally conform to other styles
that are not explicitly declared, but we do not consider such implicit relationships
further either.

S-5-14

4.3 Comparative Evaluation of MidArch Styles

Cocoon Basic
Style

S

Cocoon A Style

N

1

conforms to

Cocoon B Style

)

conforms to

2 E Candidate Candidate E
® E Architecture Architecture » E
] : Arch_A Arch_B 2
E] - - E |
® . Q|
'8 £
E g Evaluation Evaluation ® E
' ® Results for Results for !
| Arch_A \ [/ Arch_B |
' Differences i
R e LEE TR Cocoon A/ b
Cocoon B
TTTTTTTTTTTTTmmoommmome s Commonalities
Cocoon
Fig. 9. Comparative Evaluation Process of MidArch Styles

Figure 9 gives an overview of the pairwise comparative evaluation process of
MidArch Styles. The figure clearly separates the entities that are on the style
level, which are shown with a dark background, and those on the architecture
level, which are shown with a white background.

The three elements at the top represent a fragment of a MidArch Taxonomy,
which contains the three MidArch Styles discussed in Section 3.3.

In the row below, the two candidate architectures resulting from the two
occurrences of Task 3C (cf. Section 3.3) are shown, which conform to the respective
MidArch Style. These architectures are evaluated, which yields the evaluation
results in the row below the architectures. The evaluation results are still at the
architecture level.

The evaluation results are raised to the style level by comparison. They are
separated into a part containing measurements that are significantly different
between the architecture evaluations (differences), and a part containing the
identical or very similar measurements (commonalities). These parts need not
cover all evaluation results, i.e., metrics that are neither significantly different
nor similar for all evaluated architecture may be dropped.

S-5-15

The differences and the commonalities for the evaluation results for the two
candidate architecture for the current system are shown at the bottom of Figure 9.

Goal: Improve
Customer
Satisfaction

Goal: Improve
Maintainability

Simple scale:

very good, good, Maintainability Scalability Reliability
average, poor, Expert Expert Expert
very poor Judgment Judgment Judgment
T T T
____________ measures T T T T TT """ "measures T T """ " "measures TT T TTTTTTTTTT
A: good . .
B: poor all: good all: average

Differen -
erences Commonalities
Cocoon A vs. O
Cocoon B

Fig. 10. Comparative Result of the Evaluation of Two MidArch Styles

Figure 10 illustrates their contents. In the top of the figure, above the dashed
line, the metrics level of the quality model resulting from Task 2A is shown. Below
the dashed line, the measurements of the architectures for the given metrics are
shown and associated to either the differences or the commonalities.

4.4 Taxonomy-based MidArch Style Selection

Based on the evaluation described in Section 4.3, the selection of a suitable
style from a MidArch Taxonomy can be performed. Figure 11 shows a MidArch
Taxonomy, which contains the styles (depicted as rectangles) that will finally be
selected as discussed above in Section 3.3 and in addition the abstract MidArch
Styles Blackboard and Pipe & Filter. Evaluation results that are annotated to
the styles are shown (depicted as ellipses). These are distinguished into those
obtained directly by architectural evaluations as described in Section 4.3, and
those that are derived indirectly from differences and commonalities of other
evaluations.

The selection process then matches the requirements (depicted as rounded
rectangles) stated in terms of the quality model against these evaluation results.
The matching starts at the top of the MidArch Taxonomy and proceeds along
the specialisations down to its leaves.

The algorithm shown in Figure 12 describes how the selection process works.
The procedure “form clusters” can use different clustering algorithms, for example

S-5-16

<<abstract>> <<abstract>>
Blackboard Requirements Pipe & Filter S RIS derivation

Style Style

Difference Se!
P&F/ Jererrereefree
Blackboard

O <——— evaluation annotation

Common Set
P&F
: Requirements

X match!!!
Common Set
Cocoon

Cocoon Basic Evaluation Evaluation
Common Set Style Results Results
Blackboard 4 Cocoon A Cocoon B

variant>>

Cocoon A Style Cocoon B Style

“Difference
Set Cocoon
A/B

match??? @

Fig. 11. Incremental Style Selection from a MidArch Taxonomy

SelectStyle(MidArchTaxonomy ¢, Requirements r) returns set of MidArchStyle
current < {root node of ¢}

while s € current : substyles(s in t) # () do
next « ()
for all s € current do
current < substyles(s in t)
form clusters of current by matchCommonalities(q, 7, s, t)
order current first by the cluster and second within each cluster

using the partial order induced by matchDifferences(q, r, s1, s2,t)
next — nextU (first n styles from current)
end for

{perhaps sort out styles below a certain commonality match threshold value}
end while

{now all styles in current are leaf nodes in the taxonomy ¢}

{propose current as candidates for modelling architectural candidates}
return current

Fig. 12. Algorithm for Selecting a Style from a MidArch Repository

S-5-17

forming buckets of a fixed number of elements, or buckets with fixed match value
interval.

Ezample In the example, the selection process proceeds as follows (the step
numbers refer to the small ellipses in the figure):

1. The requirements are matched against the difference set of the abstract
pipe-and-filter style and the abstract blackboard style. The result is that the
pipe-and-filter style better achieves the requirements.

2. The only substyle of the pipe-and-filter style is the Cocoon Basic Style, which
matches the requirements. Since this is already a concrete style, the matching
could stop here, however we assume that the variants are also considered.

3. The matching process thus continues with the difference set of the Cocoon A
& B variants. However, the result does not clearly suggest one or the other
of the variants, so both are used to construct candidate architectures for
subsequent evaluations in Task 3D (see Figurey 5).

5 Related Work

The methods we presented can be understood from two viewpoints, depending on
whether one focuses on the first phase of acquiring the data, i.e. the evaluation of
styles, or the second phase of using this data for making a decision on the selection
of a middleware platform. The first phase constitutes an architectural evaluation
method, and can thus be compared to other such methods. The second phase is a
special case of the general problem of technology or COTS component acquisition.
We discuss related work in these two areas in Sections 5.1 and 5.2. The distinction
between the two aspects is not sharp, since any architecture evaluation method is
aims making a decision, and any technology selection procedure should consider
architectural issues. Finally, we discuss topics that are adjacent to our research,
but not directly comparable in Section 5.3.

5.1 Architecture Evaluation

Besides the various general architecture evaluation methods, such as ATAM [24],
ALMA [25], or several others [26], the middleware-specific architecture evaluation
method MEMS has been developed by Liu et al. [19]. MEMS does not address
exactly the same goal as MidArch, as the evaluation is not bound to specific
projects, but to architectural scenarios that are considered typical for using the
middleware product. The scope of MEMS ends with the creation of evaluation
results. The valuation of these results in making a decision is expressly not
covered.

Liu et al. argue that the general architecture evaluation methods do not
readily address the problems raised by middleware. MEMS can essentially be
understood as a middleware-specific parametrisation of some phases of the ATAM
method. MidArch, however, is more Middleware-specific than MEMS in that it

S-5-18

involves explicit models of the structural aspects imposed by the Middleware
platform as formal artefacts, i.e. MidArch Styles.

Zarras [27] discusses an application-independent comparison framework for
middleware platforms, which also uses the notion of the architectural style
imposed by the platform. However, they also subsume features that are not
formally modelled under the notion of style.

5.2 Middleware Selection

Middleware selection is a special case of COTS component or technology selec-
tion/acquisition. Techniques for supporting this process can be distinguished
into more business-oriented methods that focus on costs and benefits, and more
technical methods that focus on quality characteristics. Business-oriented meth-
ods often view the selection as a decision in terms of decision analysis, e.g., [28].
Strategic and enterprise-wide considerations are only approached by business-
oriented methods, while structural and behavioural details of the considered
technologies are only considered by the technically-oriented methods.

Liu et al. [29] propose the i-Mate method for selecting middleware, which
is similar to our approach, in that it involves the identification of candidate
platforms from a knowledge base, and matches them against application-specific
weighted requirements. In addition, they consider generic, application-indepen-
dent requirements. The evaluation process consists of multiple steps of increasing
depth, starting with coarse-grained scenarios for a greater number of candidates,
towards prototyping for a shortlist of candidates. Methods similar to i-Mate
include [30] and [31].

Goedicke and Zdun [32] perform a feature-based evaluation of several mid-
dleware platforms, which is aimed at the enterprise level rather than a single
project level, and thus does not consider application-specific concerns.

5.3 Adjacent Topics

We are concerned with the choice among multiple middleware products that
differ not only in their implementation, but in the structural constraints they
impose on applications. If two middleware products impose the same constraints
upon applications, they support the same middleware platforms and are thus
considered equivalent in our approach, e.g., multiple Java Enterprise Edition
Application Server products. The task of making a choice between multiple such
products is addressed by middleware benchmarks (e.g., [33]).

Classifications concerning specific functional features or non-functional char-
acteristics are not considered here (e.g., [34]). These results may be used as
additional sources for the knowledge stored in the MidArch Repository (similar
to [29]). However, in this paper, we are concerned with the underlying method
that is not specific to any particular architectural characteristic.

S-5-19

6 Conclusions

In the paper, we have discussed some aspects of the MidArch Design Method for
selecting middleware platforms based on middleware-oriented architectural styles
(MidArch Styles). We focused on two tasks of the MidArch Design Method:
1. The comparative evaluation of MidArch Styles which is performed indirectly
through the evaluation of style-based architectures, and
2. the selection of a suitable middleware platform through a stepwise selection
process from a MidArch Repository, which stores evaluation results and

MidArch Styles that are organised hierarchically in a taxonomy.

We demonstrated the applicability of these tasks using an example which builds
upon an earlier industrial case study [7].

The current practise of middleware selection rarely uses systematic decision
procedures: Existing methods for architecture evaluation are not employed,
probably because they do not adapt well to the specifics of middleware. The
MidArch Design Method specifically addresses middleware-specific concerns, since
it is based on explicitly modelling the design vocabulary and structural constraints
imposed upon applications by architectural styles. It thus offers the potential of
improving the state of the practise. The MidArch Design Method has already
been partially validated in a case study using an industrial application [6,7]. A
further contribution is the novel combination of the fields of architectural styles
and middleware platform selection, which has the benefit that the selected style
provides partial guidance for modelling the application architecture on the chosen
middleware platform.

The evaluation results on the quality properties of middleware platforms
obtained by the MidArch Design Method could be used to improve the design
of future middleware technologies that adapt well to the requirements of actual
applications.

The approach of lifting evaluation results for individual architectures to the
style level builds upon the assumption that the influence of the architectural style
on the quality of architectures is not overshadowed by variations between different
system purposes. This will only be valid for systems that are sufficiently similar,
e.g. regarding the application domains. Classifying the evaluation results for such
classes of systems could improve the accuracy of the selection. However, the
identification of system classes is an unsolved challenge of software engineering
in general.

References

1. ISO/IEC JTC 1/SC 7: ISO/IEC 9126-1: Software Engineering — Product Quality —
Part 1: Quality Model. (June 2001) Published standard.

2. Sutton, Jr., S.M.: Middleware selection. [35] 2-7

3. Ploski, J., Giesecke, S.: When small outgrows beautiful — experiences from a
development project. In: Net.ObjectDays 2005, tranSIT (2005) 367-380

4. Di Nitto, E., Rosenblum, D.S.: On the role of style in selecting middleware and
underwear. In Emmerich, W., Gruhn, V., eds.: Proceedings of ICSE Workshop on
Engineering Distributed Objects (EDO99). (1999) 78-83

S-5-20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Schmidt, D.C., Buschmann, F.: Patterns, frameworks, and middleware: their

synergistic relationships. In: ICSE ’'03: Proceedings of the 25th International
Conference on Software Engineering, IEEE Computer Society (2003) 694-704

. Giesecke, S., Bornhold, J., Hasselbring, W.: Middleware-induced architectural

style modelling for architecture exploration. In: Working IEEE/IFIP Conference
on Software Architecture (WICSA 2007), January 2007, Mumbai, India, IEEE
Computer Society Press (2007)

. Giesecke, S., Bornhold, J.: Style-based architectural analysis for migrating a web-

based regional trade information system. In Trentini, A., Marchetto, A., Bellettini,
C., eds.: First International Workshop on Web Maintenance and Reengineering
(WMR 2006). Volume 193 of CEUR Workshop Proceedings. (2006) 15-23

. Hasselbring, W.: Information system integration. Commun. ACM 43(6) (2000)

32-38

. Garlan, D.: What is style? In Garlan, D., ed.: Software architectures. Volume 106

of Dagstuhl-Seminar-Report., Saarbriicken, Germany (February 1995) Proceedings
of the Dagstuhl Workshop on Software Architecture.

Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers, J., Little, R.:
Documenting Software Architectures: Views and Beyond. Pearson Education
(2002)

Jones, C.: Economics of software reuse. Computer 27(7) (1994) 106-107

Shaw, M., Garlan, D.: Software architecture: perspectives on an emerging discipline.
Prentice-Hall, Inc. (1996)

Garlan, D., Monroe, R.T., Wile, D.: Acme: architectural description of component-
based systems. In: Foundations of component-based systems. Cambridge University
Press, New York, NY, USA (2000) 47-67

Monroe, R.T., Kompanek, A., Melton, R., Garlan, D.: Architectural styles, design
patterns, and objects. IEEE Software 14(1) (January 1997) 43-52

Klein, M., Kazman, R.: Attribute-based architectural styles. Technical Report
CMU/SEI-99-TR~022, Software Engineering Institute, Carnegie Mellon University
(1999)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.
(1995)

Apache Foundation: Apache Cocoon. http://cocoon.apache.org/ (2006)
Object Management Group: UML 2.0 Superstructure Specification. (2005) OMG
Specification formal/05-07-04.

Liu, Y., Gorton, 1., Bass, L., Hoan, C., Abanmi, S.: Mems: A method for evaluating
middleware architectures. In: Second International Conference on the Quality of
Software Architectures (QoSA 2006). Volume 4214 of Lecture Notes in Computer
Science. (2006) 9-26

Kim, J.S., Garlan, D.: Analyzing architectural styles with Alloy. In: ROSATEA
’06: Proceedings of the ISSTA 2006 workshop on Role of software architecture for
testing and analysis, New York, NY, USA, ACM Press (2006) 70-80

Clements, P., Garlan, D., Little, R., Nord, R., Stafford, J.: Documenting software
architectures: views and beyond. In: Proceedings of the 25th international conference
on Software engineering, IEEE Computer Society (2003) 740-741

Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch or why it’s hard
to build systems out of existing parts. In: Proceedings of the 17th international
conference on Software engineering, ACM Press (1995) 179-185

S-5-21

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Basili, V., Caldiera, G., Rombach, D.: Goal question metric paradigm. In Marciniak,
J.J., ed.: Encyclopedia of Software Engineering, Volume I. John Wiley & Sons
(1994) 528-532

Kazman, R., Klein, M., Clements, P.: ATAM: A method for architecture evaluation.
Technical Report CMU /SEI-2000-TR-004, Software Engineering Institute, Carnegie
Mellon University (2000)

Bengtsson, P., Lassing, N.H., Bosch, J., van Vliet, H.: Architecture-level modifiability
analysis (ALMA). Journal of Systems and Software 69(1-2) (2004) 129-147
Dobrica, L., Niemela, E.: A survey on software architecture analysis methods. IEEE
Trans. Softw. Eng. 28(7) (2002) 638-653

Zarras, A.: A comparison framework for middleware infrastructures. Journal of
Object Technology 3(5) (2004) 103-123

Kazman, R., Asundi, J., Klein, M.: Quantifying the costs and benefits of architec-
tural decisions. In: ICSE ’01: Proceedings of the 23rd International Conference on
Software Engineering, IEEE Computer Society (2001) 297-306

Liu, A., Gorton, I.: Accelerating COTS middleware acquisition: The i-Mate process.
IEEE Softw. 20(2) (2003) 72-79

Comella-Dorda, S., Dean, J.C., Morris, E.J., Oberndorf, P.A.: A process for COTS
software product evaluation. In Dean, J.C., Gravel, A., eds.: ICCBSS 2002. Volume
2255 of Lecture Notes in Computer Science., Springer (2002) 86-96

Kontio, J.: A case study in applying a systematic method for COTS selection. In:
ICSE ’96: Proceedings of the 18th international conference on Software engineering,
IEEE Computer Society (1996) 201-209

Goedicke, M., Zdun, U.: A key technology evaluation case study: Applying a new
middleware architecture on the enterprise scale. [35] 8-26

Ran, S., Palmer, D., Brebner, P., Chen, S., Gorton, 1., Gosper, J., Hu, L., Liu, A.,
Tran, P.: J2EE technology performance evaluation methodology. In: Distributed
Objects and Applications 2002 (DOA’02), Proceedings (addendum). (2002) 13-16
Maheshwari, P., Pang, M.: Benchmarking message-oriented middleware: TIB/RV
versus SonicMQ. Concurr. Comput. : Pract. Exper. 17(12) (2005) 15071526
Emmerich, W., Tai, S., eds.: Second International Workshop on Engineering
Distributed Objects (EDO 2000), Revised Papers. Volume 1999 of Lecture Notes
in Computer Science. Springer (2001)

S-5-22

