
Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

1

Trace-Context Sensitive Performance Profiling
for Enterprise Software Applications?

Matthias Rohr1, André van Hoorn1, Simon Giesecke2, Jasminka Matevska1,
Wilhelm Hasselbring1, and Sergej Alekseev3

1 Software Engineering Group, University of Oldenburg, Germany
2 OFFIS Institute for Information Technology, Oldenburg, Germany

3 Nokia Siemens Networks GmbH & Co KG, Berlin, Germany

Abstract. Software response time distributions can be of high variance
and multi-modal. Such characteristics reduce confidence or applicability
in various statistical evaluations.
We contribute an approach to correlating response times to their cor-
responding operation execution sequence. This provides calling-context
sensitive timing behavior models. The approach is based on three equiv-
alence relations: caller-context, stack-context, and trace-context equiva-
lence. To prevent model size explosion, a tree-based hierarchy provides
timing behavior models that provide a trade-off between timing behavior
model size and the amount of calling-context information considered.
In the case study, our approach provides response time distributions
with significantly lower standard deviation, compared to using less or no
calling-context information. An example from a performance analysis of
an industry system demonstrates that multi-modal distributions can be
replaced by multiple unimodal distributions using trace-context analysis.

1 Introduction

Response time monitoring data is a valuable artifact for software performance
analysis of software systems, such as enterprise information systems based on
Java EE. For instance, response time data from such systems is used for online
performance evaluation, such as performance optimization and failure diagno-
sis, and for offline performance evaluation, such as performance tuning, bench-
marking, profiling, and performance prediction. Typically, not only end-to-end
response times are considered, but also response times of operations (alterna-
tively called methods, routines, procedures, or sometimes services), i.e., software
architecture entities that group statements to larger blocks of software.

Enterprise software applications are usually deployed in middleware environ-
ments that do not provide real-time properties and show non-trivial scheduling
and queueing behavior. These systems typically have to serve large numbers
of concurrent and heterogeneous user requests competing for computational re-
sources. Therefore, the timing behavior of such systems tends to be of high
? This work is supported by the German Research Foundation (DFG), grant GRK

1076/1

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

2

variance and follows complex distributions. Unfortunately, many analytical and
statistical performance evaluation approaches may produce low quality results
for such timing behavior or cannot handle complex distribution families.

Operation executions show specific timing behavior for the calling-context of
an operation execution, which is given by the call trace that corresponds to the
execution of an operation. We discovered that a significant part of undesired dis-
tribution characteristics result from calling-context specific timing behavior of
software operations. Our approach is to derive calling-context specific response
time distributions by correlating response times to sequences of operation exe-
cutions (see also Rohr et al. [1]). The resulting timing behavior model consists of
multiple, calling-context specific response time distributions for each operation.

For large and dynamic systems, the number and size of traces might be
very large. To prevent model size explosion [2], a hierarchy of abstraction levels
for calling-context information is provided. Three abstraction levels are given
by three equivalence relations: caller-context, stack-context, and trace-context
equivalence. A tree-based hierarchy provides timing behavior models that pro-
vide a trade-off between timing behavior model size and the amount of calling-
context information considered.

We contribute new empirical data on trace-context specific timing behav-
ior distributions from a commercial telecommunication software system and a
detailed analysis for a non-trivial Java online store demo application. Trace-
context analysis is also compared to two other types of calling-context types
(stack-context, caller-context). Furthermore, it is analyzed how the number of
instrumented software operations relates to the calling-context analysis. Finally,
the case study provides quantitative data showing that trace-context informa-
tion is a major source of dispersion in response time distributions. In contrast to
our former results [1], the reduction of standard deviation is studied for a large
number of random instrumentations, to provide results that are independent
from the selection of monitoring points.

The document is structured as follows. Section 2 discusses calling-context
dependence in software timing behavior. Our approach to modeling timing be-
havior in dependence to calling-contexts is presented in Section 3 in combination
with an example based on monitoring data from an industry system. Section 4
presents a step to optimize the timing behavior model. The case study is pre-
sented in Section 5. A discussion of our approach is in Section 6 before the related
work and the conclusions follow in Section 7 and 8.

2 Calling-Context Dependence of Software Response
Time Distributions

2.1 Software Response Time Distribution Characteristics

In this paper, the duration between the start and the end of an operation ex-
ecution is denoted its response time [3]. This response time metric does not
distinguish CPU time for the operation execution from other times, such as I/O

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

3

processing time, resource waiting time, and response times of invoked operations
(sub-calls). Hence, this metric less accurately describes the resource demands
(e.g., CPU and I/O) than other timing metrics that do that distinction. The
advantage of this simple response time metric is that it can be efficiently moni-
tored and it does not require platform-specific monitoring functionality such as
hardware performance counters.

Response time distributions of operations in software systems, such as in
Java EE applications, often show high variance and do not follow simple dis-
tribution families, such as exponential or normal distributions. For instance, we
measured the software operation response times displayed in Figure 1(a) during
a performance evaluation of a large industry software system of Nokia Siemens
Networks. The system evaluated is one of the leading commercial software plat-
forms for implementing signaling services in telecommunication networks. The
shape of the response time distribution (Figure 1(b)) of this operation cannot
be accurately described by a single exponential or normal distribution.

1
0

0
3

0
0

5
0

0
7

0
0

Calendar time (hour:minute)

R
e

s
p

o
n

s
e

 t
im

e
 i
n

 m
ic

ro
s
e

c
o

n
d

s

14:18 14:20 14:22 14:24

(a) Response times measured for opera-
tion f .

0
.0

0
0

0
.0

0
4

0
.0

0
8

0 100 200 300 400 500 600

Response time in microseconds

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

(b) Probability density distribution for
operation f .

Fig. 1. “Clusters” and multi-modality in the software operation response times moni-
tored in an industry telecommunication signaling system.

Another example of multi-modal timing behavior distributions is provided by
Bulej et al. [4]. These authors reported multi-modal response time distributions
in different versions of CORBA middleware and use the term “cluster” for each
group of similar response times. Bulej et al. [4] illustrate that clusters in timing
behavior measurements reduce the potential to detect changes in the timing
behavior of software. The authors experienced this problem in the context of
performance regression benchmarking, which aims at detecting regressions in
software performance between different versions of a software product.

High variance in response time distribution reduces the confidence in var-
ious statistical evaluations. An example for such an evaluation is the statisti-
cal hypothesis test that two response time observation sets belong to the same
distribution. The confidence of this test usually decreases by increasing stan-
dard deviation, or more samples are required to reach the same confidence.

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

4

Complex distributions, e.g., showing multi-modality, are not usable in many
performance evaluation approaches because of mathematical tractability. Ap-
proximating complex distributions of response time measurements using simple
distribution families is an option to satisfy requirements of performance evalua-
tion approaches, but may lead to low quality results.

2.2 Calling-Context Specific Timing Behavior

Different timing behavior can correspond to multiple calling-contexts for the
same software operation. Possible reasons are that the contexts correspond to
particular software system states or operations show different timing behavior
when they are used in different types of service requests. An example for the
first is that a system provides different levels of personalization depending on the
current workload intensity [5]; an example for the latter is that the response time
of a service might heavily depend on the type of the request e.g., a watermarking
service in an online media store might show different response time distributions
for different media types that use individual watermarking techniques.

Calling-context is the set of circumstances or facts that surround an opera-
tion call. Software operation executions are embedded in sequences of interact-
ing operation executions that participate in answering external service requests
(from users or other systems). We consider three simplified models of the general
calling-context that take into account different parts of the execution sequence
of an execution: caller-context, stack-context, and trace-context. These models
will be described in more detail in the next section.

Many aspects of the context of an operation execution are relevant to per-
formance behavior. A key activity of performance modeling is the selection of
the relevant aspects to consider. Obviously, the more such aspects are included,
the higher precision can be expected from performance analysis. Modeling all
relevant aspects to timing behavior is usually not an option, since the overall
modeling and analysis effort grows by increasing modeling detail. Additionally,
in some cases such as performance modeling during the early design of a software
system, relevant context information may be unknown and it has to be decided,
whether unknown relevant context information is estimated and included, or if
it is excluded from the performance model.

The response time distribution of an operation is composed of response times
made in different calling-contexts. It is our hypothesis that this causes a signif-
icant part of the distribution variance or multi-modality. If this hypothesis is
true, it follows that including relevant calling-context information into timing
behavior modeling can improve timing behavior evaluation approaches that are
sensible to high variance or multi-modality in response time distributions, such
as many anomaly detection approaches.

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

5

3 Approach to Calling-context Sensitive Timing Behavior
Modeling

In this section, we describe how calling-context information can be used in tim-
ing behavior modeling. We compare three different types of calling-context in-
formation: caller-context, stack-context, and trace-context. Caller-context and
stack-context information have been used in performance evaluation before by
Ammons et al. [6] and Graham et al. [7].

3.1 Software Behavior and its Monitoring

We assume that software systems are composed of components. The components
provide operations that might be requested by other components, external users,
or systems.

Primary artifacts of runtime behavior are executions of the operations. We
define a monitored execution as a tuple (o, i, r, st) of an operation o, its response
time r, a start time st, and an identifier i, which is a number to distinguish
executions of the same operation. As described in Section 2.1, we define the
response time of an execution to be the number of time units (e.g., milliseconds)
between the start and the end of an execution.

A trace is a finite sequence of operation executions that results from a user
request or a request of an external system. We limit the scope to synchronous
communication between executions as defined in the UML [8]: the caller of an
operation is blocked and has to wait until the callee returns a result before it
continues its own execution. Figure 2 provides the UML Sequence Diagrams for
the running example.

Fig. 2. UML Sequence Diagrams from a module of a partially instrumented telecom-
munication signaling system of Nokia Siemens Networks derived from monitoring data.
(Operation names changed, operations omitted).

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

6

A trace can be represented by a dynamic call tree [6]. Each node of such
an ordered tree represents an operation execution by its operation name. An
edge from one node to another, i.e. their parent-child relation, corresponds to
the caller/callee relation within the trace. Figure 3 shows the four trees (three
consisting of one node only) that represent the traces shown in Figure 2.

Fig. 3. Tree representation of each of the traces illustrated in Figure 2.

3.2 Types of Calling-Context Equivalence

It is our goal to partition operation response times that are within equivalent
calling-contexts. In the following we specify three equivalence relations:

– Caller-context equivalence: Two executions of the same operation are caller-
context equivalent if they are called from operations with the same name.

– Stack-context equivalence: Two executions of the same operation are stack-
context equivalent if the paths from the corresponding nodes to their roots
are equal.

– Trace-context equivalence: Two executions of the same operation are trace-
context equivalent if the corresponding trees are equal and both executions
correspond to dynamic call tree nodes with the same position within the
tree.

Trace-context equivalence implies stack-context equivalence and stack-context
equivalence implies caller-context equivalence.

Each of the three equivalence relations specifies a partitioning of the moni-
tored executions and its response times into equivalence classes. In the following,
we use the terms caller-, stack-, and trace-context to refer to an equivalence class
of executions that are caller-, stack-, and trace-context equivalent respectively.
The term calling-context refers to any of those three equivalence classes.

3.3 Example: Trace-Context Analysis

As presented in Section 2.1, operation f has a multi-modal response time distri-
bution (Figure 1(b), page 3). Applying calling-context analysis to the monitor-
ing data and corresponding traces, shown as trees in Figure 3, identifies sets of

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

7

calling-contexts. This set is consists of three trace-contexts, two stack-contexts
(d(), a(), f() and f()), and two caller-contexts ($(), denoting the external caller,
and a()). The stack-contexts and caller-contexts are identical for this operation.
Therefore, stack-context information does not allow one to distinguish more
calling-context than using caller-context information in this case.

Stack-Context Analysis and Caller-Context Analysis Figure 4 shows the corre-
sponding probability density distributions that would result from stack-context
analysis and caller-context analysis for this operation. The first stack-context
still shows a multi-modal distribution (Figure 4(a)).

The standard deviation of all response times for that operation is 136.47,
the standard deviation corresponding to stack-context 1 is 155.54 and for stack-
context 2 it is 49.74. The average standard deviation for the stack-context sen-
sitive model, weighted by the observed calling frequency, is 120.13. This means
that 11.97% of the standard deviation for the monitoring data of this operation
can be removed using stack-context information.

Response time microseconds

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

0
.0

0
0

0
.0

0
4

0
.0

0
8

0 100 200 300 400 500

(a) Probability density distribution for
stack-context 1.

Response time in microseconds

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

0
.0

0
0

0
.0

0
4

0
.0

0
8

200 250 300 350 400 450

(b) Probability density distribution for
stack-context 2.

Fig. 4. Stack-context analysis identifies two stack-contexts for operation f .

Trace-context Analysis Trace-context analysis allows one to distinguish three
response time distributions as illustrated in Figure 5. These trace-contexts cor-
respond to different calls of operation f shown in the UML Sequence Diagrams
in Figure 2 on page 5: Trace-context 1 (solid line in Figure 5(a)) corresponds to
the first call of f() in SD1, trace-context 2 (Figure 5(b)) to the second call of
f() in SD1, and trace-context 3 (dashed line in Figure 5(a)) to the call of f() in
SD4.

The three probability distributions for these trace-context are not multi-
modal. This demonstrates that a multi-modal response time distribution can be
replaced by multiple unimodal distributions using trace-context analysis, in an
industrial software system. Caller-context analysis or stack-context analysis is
not able to resolve multi-modality in this case.

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

8

Response time in microseconds

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

0
.0

0
0

0
.0

0
4

0
.0

0
8

0
.0

1
2

200 300 400 500

Trace−context 1

Trace−context 3

(a) Probability density distribution for
trace-context 1 and 3.

Response time in microseconds

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

0
.0

0
0

.1
0

0
.2

0

65 70 75

(b) Probability density distribution for
trace-context 2.

Fig. 5. Trace-context analysis identified three trace-contexts for operation f .

The standard deviation corresponding to trace-context 1 is 53.83, for trace-
context 2 it is 2.20, and for stack-context 2 it is 49.74. Weighted by the calling
frequency of the monitoring data, the average standard deviation for a trace-
context sensitive model is 35.94. This means that 73.66% of the standard devia-
tion for the monitoring data of this operation can be removed using stack-context
information. Hence, most of the dispersion in the response time distribution of
this particular operation can be removed by making trace-context dependence
explicit.

In this case, the benefit in terms of removing standard deviation, is much
higher for trace-context analysis than for stack- or caller-context analysis. To
study this for all operations of a software system, Section 5 presents a quan-
titative analysis on how much standard deviation of operation response time
distributions depends on which type of calling-context information for random
partial instrumentations.

4 The Calling-context Tree

Using the same calling-context analysis detail for all operations of a system
may uncover some undesired model properties (see Section 4.1). To overcome
this, we present an additional step to find a more adequate context-sensitive
timing behavior model than trace-context analysis alone would provide. This step
consists of the representation of the results from caller-, stack-, and trace-context
analysis in a tree (Section 4.2) and the application of tree modification operators
(see Section 4.3). The application of these operators reduces the resulting number
of calling-contexts and amount of calling-context information used to model the
timing behavior of a system. -

4.1 Undesired Calling-Context Analysis Results

The analysis presented in Section 3 may produce results with undesired proper-
ties:

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

9

– Too many calling-contexts: The efficiency and feasibility of performance anal-
ysis methods may depend on the size of the timing behavior model.

– Calling-contexts with an insufficient number of measurements: Many basic
statistical methods require a minimum number of observations in order to
provide robust results.

– Calling-contexts may be distinguished that do not differ in their timing be-
havior distributions.

– Trace-context analysis may be used in cases for that the computationally
cheaper stack- or caller-contexts would produce an equal result.

4.2 Construction of the Calling-context Tree

To form a timing behavior model free of the undesired properties presented
above, the results of all three calling-context analyses are connected within a
tree, denoted calling-context tree (CCT). Moreover, the implication relationship
between the three equivalence relations allows to organize the calling-contexts
into a tree, denoted . An example of an CCT is illustrated in Figure 6. A calling-
context tree is constructed as follows:

– The root of the calling-context tree is given by all observations monitored.
– The nodes of the first level of the CCT represent calling-contexts for the

observations corresponding to the software operation with the same name.
– The nodes of the second level of the CCT represent the caller-contexts. Based

on the callee’s operation name, each second level node is connected to its
corresponding first level node.

– The third CCT level is defined by stack-context equivalence. Each third level
node is connected to its corresponding second level node.

– The fourth level of the CCT is the partitioning defined by trace-context
equivalence. Each trace-context node has an edge to its corresponding stack-
context node.

A complete timing behavior model consists of any node subset of the CCT
that is a complete partitioning of all monitored observations. For instance, each
subset of all tree nodes that resulted from the same type of calling-context anal-
ysis is a complete partitioning, and hence, is a complete timing behavior model.
A set of tree operators, described next, is applied to the tree to identify the node
subset that both considers as much calling-context information as possible and
is free of the undesired properties.

4.3 Modification of the Calling-context Tree

The maximum level of calling-context information would be included in the
timing behavior model given by the nodes of the fourth layer of the CCT, i.e.,
the trace-contexts. However, this timing behavior model may have the undesired
properties described in Section 4.1. We define three operators to the CCT tree
leafs to remove the undesired properties:

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

10

Monitored response times
of all instrumented

software operations

RT = [...]

Partitioning based
on operation name equality

Partitioning based
on caller−context equivalence

Partitioning based
on stack−context equivalence

Partitioning based
on trace−context equivalence

Fig. 6. The monitored operation response times of a system are partitioned according
to their calling-contexts. The calling-context equivalence relations organize the moni-
tored observations into a tree.

Leaf nodes with similar distribution

characteristics are merged

Leaf nodes without a sufficient

amount of observations are

linked to an ancestor node

Leaf nodes without

siblings are removed

Fig. 7. Node merging, removing, and linking to reduce the number of calling-contexts,
avoid unrequired trace evaluations, and to have leaf nodes corresponding to a sufficient
number of observations.

1. Leaf nodes that have no siblings are removed from the tree. The removal of
leaf nodes reduces the size and computational costs for applying the calling-
context tree as performance model in some evaluations, e.g., when it is used
as a reference model in anomaly detection or regression benchmarking. For
instance, a trace-context node that has no siblings is removed, since it makes
no sense to compute and evaluate the complete trace for trace-context anal-
ysis, while stack-context analysis already provide the same response time
distributions for the corresponding operation calls.

2. Leaf nodes having similar response time distribution characteristics and that
are siblings may be merged. Merging is performed until some stop criterion,

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

11

such as that the number of leafs in the tree is equal or below a user-specified
maximum number of timing behavior model entities. An alternative stop
criterion is the absence of additional sufficiently similar merging candidates.
Similarity is defined based on a user-defined similarity metric for probabil-
ity distributions. Only nodes are merged that have enough observations to
robustly determine the distribution similarity.

3. Nodes in the CCT without a sufficient number of observations are linked to
an ancestor node that has a sufficient number of observations. The linking
semantics is that all corresponding executions and response times of the
linked node are used for the node that links to it. How many observations
are sufficient depends on two aspects: the underlying probability distribution
for the sample observations [9], and the statistical analysis that is to be
performed in the subsequent performance evaluation.

These three operators are repeatedly applied in random order to the CCT
until no further applications of operator 1 and 3 are possible and a user-defined
stop criterion for operator 2 is satisfied. An example for the application of the
three operators is illustrated in Figure 7. The final context sensitive timing
behavior model is given by the leaf nodes of the CCT.

A detailed discussion of similarity metrics between response timing distribu-
tions is out of the scope of this paper. We used a distance metric based on inter-
quartile-range and distribution median. These two metrics are considered more
robust to characterize a distribution than the more common sample mean and
standard variation, which are sensitive to extreme outliers. We experienced that
few extremely large response times are not uncommon, especially for small soft-
ware operations. This confirms to models that use log-normal distributions for
response time data, which is for instance suggested by the research of Mielke [10]
for end-to-end response times in Enterprise Resource Planning (ERP) systems.

5 Case Study

This case study explores the relation between the number of monitoring points
and the number of resulting calling-contexts, and compares the calling-context
specific response time distributions to the response time distributions without
calling-context analysis. The most important empirical result of this analysis
is that trace-context information is responsible for a significant part (20% to
40%) of the average standard deviation for the large majority of random partial
instrumentations. Trace-context analysis outperforms stack-context and caller-
context analysis that show relatively similar results.

5.1 Setting

The software system analyzed in the case study is the iBATIS JPetStore4, which
is a demo Java Web application implementing an online store scenario. The in-
4 http://ibatis.apache.org/

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

12

strumentation to monitor response times of the internal operations of the JPet-
Store is given by the software instrumentation package Kieker [11].

The evaluation abstracts from the problem selecting monitoring points by
evaluating more than 95,000 random partial instrumentations of the 2199 pos-
sible partial instrumentations. The traces and response times are taken from
several fully instrumented experiment runs of 20 minutes. The first 3 minutes
are considered the warm-up period and are ignored in the evaluation.

The JPetStore is deployed in the Apache Tomcat Servlet container (ver-
sion 5.5.23) running on a desktop computer equipped with an Intel Pentium 4
3.00GHz hyper-threaded CPU and 1 GB physical memory and Linux 2.6.17.13.
The application server software employs Sun Java SE 1.6.0 03. JPetStore uses a
database management system (MySQL 5.0.18) for storing business data running
on a GNU/Linux 2.6.15 system with two Intel Xeon 3.00GHz CPUs and 2GB
of physical memory. The application server and the database back-end are con-
nected via 100 Mbit Ethernet. A workload generator runs on a separate desktop
computer being identically equipped and configured as the application server
node above.

The workload for the JPetStore is generated by the workload driver Apache
JMeter 2.2 extended by our probabilistic workload driver Markov4JMeter [12].
This tool allows to emulate users based on an application model and a mix of
corresponding probabilistic user behavior models. The think time between user
requests is configured to be normally distributed. The number of concurrent
users is set to 10, which can be handled without any problems by the system
under monitoring. A detailed description of the workload can be found in van
Hoorn et al. [12].

5.2 Results

Table 1 outlines characteristics of the monitoring data collected during the ex-
periment runs and the range of the number of caller-, stack-, and trace-contexts
resulting from calling-context analysis.

Table 1. Summary of case study characteristics

Instrumentation Full (199 mon.pts.) Random

Instrumented Operations 199 1–198
Monitored Executions 2,032,573 1–2,032,572
Traces 36,036 1–36,036
Caller-contexts 290 1–312
Stack-contexts 368 1–368
Trace-contexts 7021 1–7021

The number of resulting calling-contexts is illustrated in Figure 8 (1,500 sam-
ples of 95,000 plotted) in dependence to the number of monitoring points. The

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

13

0
1

0
0

2
0

0
3

0
0

0 50 100 150 200

Number of monitoring points

N
u
m

b
e
r

o
f
c
o
n
te

x
ts

Stack−contexts

Caller−contexts

(a)

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0

0 50 100 150 200

Number of monitoring points

N
u
m

b
e
r

o
f
c
o
n
te

x
ts

Trace−contexts

Stack− and Caller−contexts

(b)

Fig. 8. The number of monitoring points in relation to the number of contexts.

number of stack-contexts and caller-contexts both grow linearly with similar
rates by the number of monitoring points, as shown in Figure 8(a). In most of
the instrumentation scenarios (80%), the number of stack-contexts was larger
than the number of caller-contexts for the same instrumentation. In contrast to
the number of distinct stack- and trace-contexts, the number of caller-contexts
is not at its maximum for full instrumentation. This demonstrates that adding
monitoring points can reduce the number of caller-contexts. Figure 8(b) visual-
izes the numbers of trace-contexts resulting from the random instrumentation
scenarios. The number of trace-contexts increases much faster than the number
of stack-contexts and caller-contexts does.

In general, the number of distinct calling-contexts tends to grow with the
number of monitoring points. Adding a new monitoring point to an existing
instrumentation also increases the number of trace-contexts and stack-contexts,
while adding a monitoring point may reduce the number of caller-contexts. How-
ever, the fact that an instrumentation with n monitoring points has m calling-
contexts does not imply that a second instrumentation with n′ > n monitoring
points has more than m calling-contexts (in the same software system and for the
same workload), since different monitoring points can increase the same numbers
of calling-contexts differently.

Response Time Distribution Variance Related to Calling-Context Information
Figures 9(a) – 9(c) show the average standard deviation reduction in the timing
behavior model resulting from caller-, stack-, and trace-context analysis. These
diagrams show the distribution of this metric as boxplotted for bins of numbers
of monitoring points.

Figure 9(a) reveals that caller-context information corresponds to about 6.8%
of average standard deviation of all response times in a fully instrumented ex-
periment run. For less monitoring points, there is a larger uncertainty on how
much average standard deviation could be removed by caller-context analysis.
If half of the operations are instrumented, 75% of the instrumentations result in
an average standard deviation isolation of more than 6.2%. For smaller numbers

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

14

Mean

0
1

0
2
0

3
0

4
0

10 30 50 70 90 110 130 150 170 190

Number of monitoring points

A
v
e
ra

g
e
 r

e
la

ti
v
e
 s

t.
d
e
v
.
d
e
c
re

a
s
e
 i
n
 %

(a) Caller-context analysis.

Mean

0
1

0
2
0

3
0

4
0

10 30 50 70 90 110 130 150 170 190

Number of monitoring points

A
v
e
ra

g
e
 r

e
la

ti
v
e
 s

t.
d
e
v
.
d
e
c
re

a
s
e
 i
n
 %

(b) Stack-context analysis.

Mean0
2

0
4

0
6

0
8

0

10 30 50 70 90 110 130 150 170 190

Number of monitoring points

A
v
e
ra

g
e
 r

e
la

ti
v
e
 s

t.
d
e
v
.
d
e
c
re

a
s
e
 i
n
 %

(c) Trace-context analysis.

Trace−context analysis
Stack−context analysis
Caller−context analysis
1st and 3rd quartile

2
5

1
0

2
0

5
0

0 50 100 150 200

Number of monitoring points

A
v
e
ra

g
e
 r

e
la

ti
v
e
 s

t.
d
e
v
.
d
e
c
re

a
s
e
 i
n
 %

(d) Comparison of median, 1st and 3rd
quartile curves for each calling-context
analysis type. (Window size 10 mon.pts.,
step-size 10 mon pts).

Fig. 9. Average decrease in standard deviation for different numbers of monitoring
points using calling-context information compared to standard deviation using no
calling-context information.

of monitoring points, a majority of instrumentations results in below 2% but
the boxplot also shows a large number of outliers (observations above an upper
whisker in a boxplot [13]) representing cases in which up to 45% percent of stan-
dard deviation can be removed. In summary, cases exist where caller-context
analysis is very effective. The benefit of caller-context analysis to average stan-
dard deviation reduction is in most cases below 7%.

Stack-context analysis (see Figure 9(b)) shows slightly more benefits than
using caller-context analysis. For instance, for higher numbers of instrumented
operations approx. 11% of the average standard deviation can be removed.

Figure 9(c) shows that much more average standard deviation is connected
to trace-context information than to the other calling-context types. For full
instrumentation, trace-context analysis leads results in about 42% less average
standard deviation in the trace-context sensitive response time distributions than
using no calling-context information. For more than the half of the evaluated

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

15

instrumentations with around 40 monitoring points, 40% of average standard
deviation could be removed and only few instrumentations of that size were in
the results that had less than 10% of average standard deviation reduction.

This shows that a large part of the standard deviation of the monitored and
evaluated scenarios is related to trace-context information.

Figure 9(d) compares the amount of average standard deviation that can be
removed by each of the calling-context types. It underlines that stack-context
analysis performs slightly better than caller-context analysis, and that trace-
context analysis outperforms stack-context analysis and caller-context analysis.
Trace-context analysis removes for most instrumentation scenarios, in particular
for those with more than 25 monitoring points, more than 10% of the standard
deviation. For most instrumentation scenarios with more than 50 monitoring
points, more than 40% standard deviation decrease was observed.

Figure 10 presents how much standard deviation is connected to the calling-
contexts in dependence of the number of calling-contexts. Figure 10 reveals that
trace-context information is connected to more calling-context information than
the other two calling-context types. This means that it does not “just” provide
more different equivalence classes for each monitoring point, but also defines
calling-contexts that are connected to more average standard deviation than
using caller-, or stack-context analysis.

Trace−context analysis
Stack−context analysis
Caller−context analysis
1st and 3rd quartile

2
5

1
0

2
0

5
0

0 50 100 150 200 250

Number of calling contexts

A
v
e
ra

g
e
 r

e
la

ti
v
e
 s

t.
d
e
v
.
d
e
c
re

a
s
e
 i
n
 %

Fig. 10. Average decrease in standard deviation for different numbers of calling-
contexts using calling-context information compared to standard deviation using no
calling-context information. Comparison of Median, 1st and 3rd quartile curves for
caller-, stack-, trace-context analysis. (Window size 10 contexts, step size 2 contexts).

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

16

6 Discussion and Limitations

In the following, application issues and limitations related to continuous runtime
behavior monitoring during regular operation in distributed software applica-
tions are discussed.

6.1 Monitoring Overhead

As discussed in the introduction, typical application scenarios are runtime QoS
management and failure diagnosis based on anomaly detection, such as [14–16].
This requires continuous monitoring during regular operation of the software
system. Therefore, the monitoring overhead should be reasonably low. It is our
experience that imposing less than 20% overhead on response times and through-
put is accepted by the industry in exchange for monitoring and supervision.

A detailed discussion on monitoring overhead is not part of this paper. In the
case studies using our instrumentation prototype Kieker, we observed an over-
head on response times of below 15% for systems that consist of one execution
environment. For distributed software systems, an additional overhead exists for
remote communication. This results from the absence of a distributed clock that
could be used to order executions within a sequence, and from the requirement
to pass unique trace identifiers together with remote methods calls in order to
distinguish multiple concurrent executions within the system.

Kieker uses aspect-oriented programming (AOP), similar to the monitoring
framework InfraRED, for which an overhead of about 10% was reported [17].

6.2 Distributed Software Systems

Our monitoring infrastructure allows to trace execution paths through multiple
execution environments for certain types of remote communication such as the
Hessian Web Service protocol5, which is for instance supported by the Spring
Java EE application framework. Support for other remote communication meth-
ods, such as Remote Method Invocation, may be future work. The context-
dependent profiling technique presented in this paper is limited to synchronous
communication, i.e. a caller is blocked and waits until the callee returns a re-
sult. Traces with parallel asynchronous communication, are automatically split
into multiple execution traces that only contain synchronous communication.
Therefore, the calling-context analysis cannot benefit from correlations between
timing behavior and the execution traces characteristics that are not within the
sequence of synchronous communication. This limitation could be resolved by
using an alternative monitoring approach, such as Briand et al. [18].

6.3 Representativeness and Completeness of Monitoring Data

In our approach, timing behavior distributions and calling-contexts result from
monitoring data. This results in the two major risks that the monitoring data is
5 http://hessian.caucho.com/

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

17

not representative for normal behavior and that not all calling-contexts are de-
tected. For instance, calling-contexts are missing if possible execution sequences
were not activated during the monitoring period, which depends on the system
workload. These risks can be minimized by using a sufficient amount of monitor-
ing data from real system usage. For instance, for a typical online store, we con-
sider few weeks of monitoring data to be sufficient for timing behavior anomaly
detection. For the identification of calling-contexts, static (source code) analysis
provides an alternative to monitoring data analysis, since it does not depend on
system workload. Since the performance behavior of a software system changes
over time (e.g., improving of algorithms, changes in user behavior, changes in
hardware), it is required to update software performance models regularly.

6.4 Considering other Types of Calling-Context Information

This paper explored the correlation between operation response time distribu-
tions and operation execution sequences, represented as dynamic call trees. The
results showed that especially trace-context information can be strongly con-
nected to response time distribution characteristics.

As mentioned before, trace-, stack- and caller-context analysis only consider
a part of the calling-context, i.e. the set of circumstances or facts that surround
an operation call. It has been suggested to also consider parameter values [19]
or workload intensity [20] in timing behavior modeling. Additionally, the infor-
mation provided on lower system layers, such as performance counter metrics on
cache hits and on the number of context switches, are also often correlate to tim-
ing behavior. In this paper, these other types of calling-context information were
not studied. It is not known, to what extend these are beneficial for considering
in the analysis of response times in enterprise software systems. Furthermore,
we did not address whether multiple object instances of the same class show
different timing behavior.

Considering these other types of calling-context information may be benefi-
cial as well, and should be subject to future research.

7 Related Work

Related work comes from the domains of profiling and trace analysis, perfor-
mance evaluation, online failure diagnosis, and performance prediction.

There is much literature in the domain of software profiling that addresses
to connect response time behavior to method calls and context information.
Graham et al. [7] introduced the profiler gprof. Gprof provides caller-context
information (i.e., makes caller-callee relations explicit). The trace-context anal-
ysis studied in this paper is an extension of the concept of caller-contexts. Most
modern profiling tools, such as Intel’s VTune Performance Analyzer follow gprof
by providing caller-context information (see Xie and Notkin [21]). Ammons et
al. [6] go beyond the caller-callee relationship and introduces what we call stack-
context equivalence. We extend the concept of stack-context equivalence by us-
ing the complete sequence of operations for the definition of equivalence. These

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

18

authors do not discuss the timing behavior distributions resulting from calling-
context analysis, which is a major focus of our paper. A more recent approach
to evaluating runtime behavior in the context of execution traces is given by the
work on monitoring trace representation of Hamou-Lhadj [22]. This approach
and other trace analysis approaches, such as those surveyed by Hamou-Lhadj
and Lethbridge [2], apply high levels of abstraction in order to achieve compact
models for very large traces. The amount of preserved calling-context informa-
tion of such trace models are at stack-context level or below (e.g., caller-context).
Those techniques do not focus on combining trace-context analysis with timing
behavior evaluation.

Bulej et al. [4], report and analyze timing behavior clusters for two CORBA
implementations in the context of regression benchmarking of different software
versions. The k-means clustering approach is used to identify clusters in timing
behavior measurements. In contrast to our approach, this does not require to
connect single execution observations to traces, therefore the requirements on the
monitoring infrastructure are lower than in our approach. Our approach uses the
trace information as additional information, which allows the precise distinction
of timing behavior classes (if there are correlations to the trace-contexts). The k-
means clustering approach is a heuristic that performs well, if the correct number
of clusters is known in advance and the values of the clusters are well separated.

Various approaches have been presented to use timing behavior monitoring
data of software systems in order to implement preemptive quality of service
management. For instance, in the Magpie project by Barham et al. [23] it has
been motivated to correlate monitored events for specific requests to timing
behavior measurements to identify anomalies and perform failure diagnosis. The
Magpie approach shares the general idea of correlating monitored events within
a request to timing behavior with our approach, but details on the correlation
or empirical data have not been presented, so far.

The performance modeling approach of Koziolek et al. [19] considers param-
eter values as part of usage profiles in order to increase performance prediction
precision. Parameter values can also be considered calling-context information.
The three calling-context types described in this paper are not part of Koziolek
et al. [19]’s software performance model.

8 Conclusions

Summary This paper presents empirical data from a lab case study and from
monitoring data of an industry system that both show that a large part of the
standard deviation in software response time distributions can be related to
calling-context information. This allows to conclude that using calling-context
information can significantly improve timing behavior evaluations, such as those
that depend on the variance of response time distributions.

In this paper, we presented our approach to evaluating operation response
time measurements in dependence to their calling-contexts. Our approach creates
a trace-context sensitive timing behavior model from monitoring data. We in-

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

19

troduced trace-context equivalence, which extends the concepts of caller-context
equivalence and stack-context equivalence. In a second step, our approach orga-
nizes equivalence classes of monitored observations in a tree-structure to reduce
the number of resulting calling-contexts and to remove unrequired distinctions
of calling-contexts.

Additionally, we demonstrated for monitoring data of a commercial telecom-
munication signaling system that multi-modal distributions can be removed from
timing behavior models by trace-context analysis.

Future work Currently, the approach requires the complete trace to be recorded
before an estimation of a response time for an execution within the trace is
possible. This is not necessarily a problem in failure diagnosis approaches such
as anomaly detection, but in some cases it can be desirable to estimate the
expected response times of a method before its execution. In that case, only a
part of the full trace for that request is recorded. In contrast to using the full
trace, a prefix could be used to estimate the future response time of the method
currently executed. This information could be useful to organize scheduling in
multi-user systems.

Acknowledgement

We would like to acknowledge Nokia Siemens Networks Berlin, Business Service
Solution for supporting this project.

References

1. Rohr, M., van Hoorn, A., Giesecke, S., Matevska, J., Hasselbring, W.: Trace-
context sensitive performance models from monitoring data of software-intensive
systems. In: Workshop on Tools Infrastructures and Methodologies for the Eval-
uation of Research Systems (TIMERS’08) at IEEE International Symposium on
Performance Analysis of Systems and Software. (April 2008)

2. Hamou-Lhadj, A., Lethbridge, T.C.: A survey of trace exploration tools and tech-
niques. In: Conference of the Centre for Advanced Studies on Collaborative re-
search CASCON’04, IBM Press (2004) 42–55

3. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. 1st edn. John
Wiley & Sons (April 1991)

4. Bulej, L., Kalibera, T., Tůma, P.: Repeated results analysis for middleware regres-
sion benchmarking. Performance Evaluation 60(1-4) (2005) 345–358

5. Arlitt, M.F., Krishnamurthy, D., Rolia, J.: Characterizing the scalability of a
large web-based shopping system. ACM Transactions on Internet Technology 1(1)
(2001) 44–69

6. Ammons, G., Ball, T., Larus, J.R.: Exploiting hardware performance counters with
flow and context sensitive profiling. In: Conference on Programming Language
Design and Implementation (PLDI’97), ACM (1997) 85–96

7. Graham, S.L., Kessler, P.B., McKusick, M.K.: gprof: a call graph execution profiler.
SIGPLAN Notes 17(6) (1982) 120–126

Appeared in S. Kounev, I. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 283–302, Heidelberg. Springer. June 2008.
The original publication is available at www.springerlink.com

20

8. Object Management Group (OMG): Unified Modeling Language: Superstructure
Version 2.1.1 (February 2007)

9. Barrett, J.P., Goldsmith, L.: When is n sufficiently large? The American Statisti-
cian 30(2) (May 1976) 67–70

10. Mielke, A.: Elements for response-time statistics in ERP transaction systems.
Performance Evaluation 63(7) (July 2006) 635–653

11. Rohr, M., van Hoorn, A., Matevska, J., Sommer, N., Stoever, L., Giesecke, S., Has-
selbring, W.: Kieker: Continuous monitoring and on demand visualization of Java
software behavior. In: IASTED International Conference on Software Engineering
2008, ACTA Press (February 2008) 80–85

12. van Hoorn, A., Rohr, M., Hasselbring, W.: Generating probabilistic and intensity-
varying workload for web-based software systems. In: SPEC International Perfor-
mance Evaluation Workshop (SIPEW’08). Volume 5119 of LNCS., Springer (2008)

13. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers.
3rd edn. John Wiley & Sons, Inc. (2003)

14. Duzbayev, N., Poernomo, I.: Runtime prediction of queued behaviour. In: 2nd
International Conference on the Quality of Software Architectures (QoSA’06). Vol-
ume 4214 of LNCS., Springer (2006) 78–94

15. Diaconescu, A., Mos, A., Murphy, J.: Automatic performance management in com-
ponent based software systems. In: First International Conference on Autonomic
Computing (ICAC’04), IEEE (2004) 214–221

16. Agarwal, M.K., Appleby, K., Gupta, M., Kar, G., Neogi, A., Sailer, A.: Prob-
lem determination using dependency graphs and run-time behavior models. In:
15th IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management (DSOM’04). Volume 3278 of LNCS., Springer (2004) 171–182

17. Govindraj, K., Narayanan, S., Thomas, B., Nair, P., P, S.: On using AOP for Ap-
plication Performance Management. In: AOSD 2006 - Industry Track Proceedings
(Technical Report IAI-TR-2006-3, University of Bonn). (March 2006) 18–30

18. Briand, L.C., Labiche, Y., Leduc, J.: Toward the reverse engineering of UML
sequence diagrams for distributed Java software. IEEE Transactions on Software
Engineering 32(9) (September 2006) 642–663

19. Koziolek, H., Becker, S., Happe, J.: Predicting the Performance of Component-
based Software Architectures with different Usage Profiles. In: 3rd International
Conference on the Quality of Software Architectures (QoSA’07). Volume 4880 of
LNCS., Springer (2008) 145–163

20. Rohr, M., Giesecke, S., Hasselbring, W.: Timing Behavior Anomaly Detection in
Enterprise Information Systems. In: 9th International Conference on Enterprise
Information Systems (ICEIS’07). INSTICC Press (June 2007) 494–497

21. Xie, T., Notkin, D.: An empirical study of Java dynamic call graph extractors.
Technical Report UW-CSE-02-12-03, University of Washington Department of
Computer Science and Engineering, Seattle, WA, USA (December 2002)

22. Hamou-Lhadj, A.: Techniques to Simplify the Analysis of Execution Traces for
Program Comprehension. PhD thesis, Ottawa-Carleton Institute for Computer
Science, School of Information Technology and Engineering (SITE), University of
Ottawa (2005)

23. Barham, P., Isaacs, R., Mortier, R., Narayanan, D.: Magpie: online modelling
and performance-aware systems. In: 9th Conference on Hot Topics in Operating
Systems (HOTOS’03), USENIX Association (2003) 15–15

