Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

Generating Probabilistic and Intensity-Varying
Workload for Web-Based Software Systems*

André van Hoorn, Matthias Rohr, and Wilhelm Hasselbring

Software Engineering Group, University of Oldenburg, Germany
E-Mail: {van.Hoorn,Rohr,Hasselbring}@Informatik.Uni-Oldenburg.DE

Abstract This paper presents an approach and a corresponding tool for
generating probabilistic and intensity-varying workload for Web-based
software systems. The workload to be generated is specified in two types
of models. An application model specifies the possible interactions with
the Web-based software system, as well as all required low-level protocol
details by means of a hierarchical finite state machine. Based on the ap-
plication model, the probabilistic usage is specified in corresponding user
behavior models by means of Markov chains. Our tool Markov4JMeter
implements our approach to probabilistic workload generation by extend-
ing the popular workload generation tool JMeter. A case study demon-
strates how probabilistic workload for a sample Web application can be
modeled and executed using Markov4JMeter.

1 Introduction

Web-based software systems, such as online shopping systems or auction sites,
are large-scale software systems which users access through an interface provided
by a Web server. These typically business-critical systems must satisfy contrac-
tually specified service level agreements, e.g., upper bounds on user-perceived
response times with respect to certain load conditions. In order to systematically
evaluate the performance, load tests are carried out: a software called workload
generator mimics user behavior by submitting requests to the Web server; the
performance of the software is monitored for later analysis [1]. Usually, such a
workload generator either replays requests from recorded real-world workload
or generates requests based on mathematical models [2]. In order to provide
meaningful results, a key requirement for load tests is that the simulated user
behavior is realistic, i.e., the virtual users behave like real users do.

The first part of this paper will present our approach for specifying and gen-
erating probabilistic workload for Web-based software systems based on mathe-
matical models. The main elements of the workload specification are two types
of models. An application model specifies the possible interactions with the Web-
based software system, as well as all required low-level protocol details by means

* This work is supported by the German Research Foundation (DFG), grant GRK
1076/1.

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

of a hierarchical finite state machine. By means of Markov chains, the probabilis-
tic usage is specified in user behavior models corresponding to the application
model. Moreover, our approach explicitly considers the specification of a varying
workload intensity, i.e., the number of concurrent virtual users, within a single
workload generation run. This allows to easily carry out long-term load tests with
realistic workload intensity profiles. We will present the conceptual architecture
of a workload generator which executes such specifications of probabilistic and
intensity-varying workload. Based on our approach, we implemented the cor-
responding workload generation tool Markov4JMeter. Markov4JMeter extends
the popular workload generator JMeter [3]. The resulting implementation and
integration into JMeter are demonstrated in the second part of this paper. The
case study of this paper illustrates how probabilistic workload for a sample Web
application can be specified using our approach and how this specification can
be executed with JMeter extended by Markov4JMeter.

The remainder of this paper starts with a summary of the background and
related work in Section 2. A description of our workload generation approach
including the workload specification and the conceptual workload generator is
given in Section 3. Section 4 presents the implementation of Markov4JMeter
and its integration into JMeter. As a case study, Section 5 demonstrates how
Markov4JMeter is used to generate workload for a sample Web application. Our
conclusions follow in Section 6.

2 Background and Related Work

Web-based software systems provide services through a Web interface using
protocols like the Hypertext Transfer Protocol (HTTP) [4]. Each service can
be considered a use case, e.g., signing on to the system or adding an item to
the shopping cart. Invoking such a service requires submitting one or more pa-
rameterized lower-level protocol-specific requests. For example, in order to sign
on, it is usually required to first request the corresponding HTML form and
to submit the completed form including username and password in a second
step. The HTTP request/response model is illustrated in Figure 1. A number of
users concurrently accesses a Web-based system by submitting HTTP requests
and waiting for the server response. Each user independently alternates between
submitting a request and waiting for a time period called think time after it has
received the server response. A session denotes the sequence of related request
or service invocations issued by the same user [5].

In their workload generation approach, Barford and Crovella [2] introduced
the ON/OFF model. Software processes called User Equivalents (UE) alternate
between the two states ON (submit request and wait for the response) and
OFF (think time period). We use the concept of UEs in our workload generation
approach presented in Section 3.2. The UE concept is denoted as user simulation
thread in this paper. A user simulation thread executes the workload model of
a single virtual user.

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

Users‘/CD\

HTTP request Web-based HTTP response
" System

Figure 1. Typical HTTP request/response model of a Web-based system that is con-
currently accessed by n users.

Markov chains are a common means for characterizing user behavior, e.g., for
Web-based software systems [5] or in statistical software testing [6]. A Markov
chain is a probabilistic finite state machine, i.e., each transition between two
states is weighted with a probability. Menascé et al. [5] used Markov chains to
model classes of user behavior within a session by so-called Customer Behavior
Model Graphs (CBMG). The states of a CBMG represent service invocations.
The CBMGs can be derived from Web server access logs using clustering algo-
rithms [5]. Lee and Tian [7] showed that Markov chains provide fairly accurate
models of Web usage. Ballocca et al. [8] derived user behavior in their workload
generator from CBMGs. Based on the CBMGs by Menascé et al., Markov chains
are the key elements of our user behavior models presented in Section 3.1.

According to Krishnamurthy et al. [9], we consider the class of session-based
systems. In these systems, inter-requests dependencies exist, meaning that some
requests within a session depend on requests submitted earlier during the same
session. For example, a user must not submit an order without having added
a single item to the shopping cart (and must not have removed all items from
the cart later). Shams et al. [10] used so-called Extended Finite State Machines
(EFSM) to model valid sequences of interactions with the application using con-
ditional transitions between states and by explicitly considering the parameters
to be passed with a submitted request. The application models defined in Sec-
tion 3.1, specifying allowed sequences of service invocations within a session, were
inspired by this work. However, they do differ from Shams et al.’s EF'SMs in that
the application model is separated into a logic session layer and an underlying
technical protocol layer for abstraction purposes.

Pena-Ortiz et al. [11] provide an overview of outstanding and historical work-
load generators including an evaluation in terms of their features and capabilities.
We explicitly modeled the workload generator on a conceptual level including
the execution semantics and implemented the resulting tool Markov4JMeter as
an extension for the popular workload generator JMeter [3].

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

H Workload Specification |.—

S D

Application Model |

User Behavior Model

| User Behavior Mix | | Workload Intensity

| Occurence |

Figure 2. Class diagram of the workload specification elements and their relations.

3 Owur Workload Generation Approach

Section 3.1 defines the workload specification including the probabilistic work-
load model. The conceptual architecture of the workload generation tool execut-
ing this workload specification is presented in Section 3.2.

3.1 Workload Specification

The workload specification for our probabilistic workload generation approach
consists of the four elements listed below.

— An application model, specified as a hierarchical finite state machine.

— A number of corresponding user behavior models, each one specified as a
Markov chain.

— A user behavior mizx, specified as probabilities for the individual user behavior
models to occur during workload generation.

— A definition of the workload intensity, specified as the (possibly varying)
number of users to simulate during the experiment.

The application model defines the allowed sequences of service invocations
submitted within a user session and contains all protocol-level details required
to generate valid requests. The actual order of service invocations is derived
from probabilistic user behavior models corresponding to the application model.
The workload generator combines the application model and the user behavior
models into probabilistic session models based on which the requests are executed
for each virtual user. This is described in Section 3.2. The user behavior miz
defines with which probability each user behavior model occurs during workload
generation. The workload intensity is a specification of the number of users to
simulate during the experiment, given as a mathematical formula of the elapsed
experiment time.

These elements are described in detail in the remainder of this section. Fig-
ure 2 illustrates their multiplicities and relations among each other in a UML
Class Diagram.

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

/a.shtml

S2
~\
[g.shtml

/b.shtml

[b!=0] / b=1

Session Layer

Protocol Layer

Figure 3. Sample application model illustrating the separation into session layer and
protocol layer.

Application Model An application model is a two-layered hierarchical finite
state machine. It consists of a session layer modeling the valid sequences of
service invocations within a user session and a protocol layer specifying the
related protocol details. Figure 3 displays the illustrating example used in this
section.

Session Layer Each node on the session layer, called application state, corre-
sponds to a service provided by the application. An edge between two states,
called application transition, represents a valid sequence of service invocations
within a session. Thus, our session layer corresponds to UML Protocol State
Machines as they were introduced into version 2 of the UML standard [12].

Application transitions can be labeled with guards and actions. A guard is a
boolean expression stating that a transition can only be taken if the expression
evaluates to true. An action is a list of statements, such as variable assignments
or function calls executed when a transition is taken.

The session layer in Figure 3 contains the states S0, S1, and S2 using the
variables a, b, and ¢ in the guards and actions. For example, a transition from
state S2 to S0 is only possible if b! = 0 evaluates to true. When this transition
fires, the variable b is assigned the value 1.

For the Web-based shopping system described in Section 5, we will demon-
strate how variables, guards, and actions can be used in the application model
to store additional state information during workload generation. For example,
the session layer specifies that a customer must not submit a purchase request
when no items are in the shopping cart. Whether an item has been added to the
cart, is maintained in a dedicated variable.

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

Protocol Layer Each application state has an associated finite state machine on
the protocol layer. A state machine is executed when the related application state
is entered. It models the sequence of protocol-level requests to be invoked. Anal-
ogous to the session layer, transitions may be labeled with guards and actions.
Particularly, variables and functions can be used to assign request parameter
values dynamically.

The state machine related to the application state S0 in Figure 3 contains the
three protocol states a.shtml, b.shtml, and c.shtml which in this case correspond
to URIs for HTTP requests. After the request for a.shtml has been submitted,
the next state depends on the result of the evaluation of the expression a > 0 in
the guard.

User Behavior Model In addition to an application model, our workload
specification requires the definition of one or more corresponding user behavior
models. A user behavior model constitutes a probabilistic model of service invo-
cation sequences within simulated user sessions, i.e., given the last application
service invoked by a user, what is the probability for each service to be invoked
next by this user. A class of similarly behaving users can be represented by a
single user behavior model. Additionally, such model contains a specification of
the think time, i.e., the time period between two consecutive protocol layer re-
quests of the same user. For each virtual user, the workload generator submits
requests based on a probabilistic session model which is a composition of the ap-
plication model and one corresponding user behavior model. Section 3.2 explains
the semantics of this composition in detail.

The key element of a user behavior model is a Markov chain, which can
be considered a probabilistic finite state machine with a dedicated entry and
a dedicated exit state. Each transition between two states is weighted with a
probability. The sum of probabilities associated with all outgoing transitions of
each state must be 1. Aside from the additional exit state, each state in our
user behavior model’s Markov chain corresponds to one application state on the
session layer of the application model.

Formally, we define a user behavior model B4 ; for an application model A
as a tuple (S U {Exit}, P, zo, fi+). S denotes the set of states contained in the
Markov chain with entry state zg € S. The state Exit is the dedicated exit state
which has no corresponding application state. P denotes the matrix containing
the transition probabilities. The transition matrix of a Markov chain with n
states s ...S,—1 is usually represented by an n x n matrix P = [p; ;|. A value
pi,; in the 7th row and the jth column of the matrix P represents the transition
probability from state s; to s;. The think time is specified as a probability
distribution f;;. For example when f; is assigned N(300,200%), the think time
is modeled according to the normal distribution N (u,0?) with mean pu = 300 ms
and standard deviation o = 200 ms.

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

Figure 4 shows the Markov chains of two possible user behavior models
Bao and Ba,1 corresponding to the application model with application states
S0...52 shown in Figure 3. Both user behavior models B and By 1 solely
differ in their transition probabilities.

(a) Ba,o- (b) Ba...

Figure 4. Markov chains of two user behavior models corresponding to the application
model in Figure 3.

User Behavior Mix The user behavior mix specifies with which probability
each user behavior model included in the workload specification occurs during
workload generation. For example, let one user behavior model represent a class
of users which mainly browse through the product catalog of an online shopping
store without buying anything, and let a second user behavior model represent
a class of users which actually buy products during their visit. These two classes
of users do not necessarily occur with the same probability in real workloads.

Formally, a user behavior mix for an application A is a set {(Ba,0,P0);-- -,
(Ba,n—1,pn—1)} assigning probabilities p; to user behavior models B4 ;. A tu-
ple (Ba,p;) states that user sessions based on the user behavior model Ba ;
occur with the probability p; € [0, 1] during workload generation. The sum of
probabilities must be 1.

Workload Intensity The workload intensity for an experiment is specified in
terms of the number of active sessions, i.e., the number of virtual users being
simulated concurrently. A generated session is considered active while the work-
load generator submits requests based on the corresponding probabilistic session
model (the exit state of the Markov chain has not been reached). A function
n: R>o — N specifies this number n(t) of active sessions relative to the elapsed
experiment time t. Particularly, this allows for generating a varying workload
intensity profile, e.g., based on measured workload data. Figure 5 shows the
curve of a varying workload intensity specification for a workload generation
experiment.

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

150
|

100
L

Active sessions
50
1

0
L

T T T T T T T
0 5 10) 15) 20 25 30
Experiment time (minutes)

Figure 5. Curve of a varying workload intensity specification for a workload generation

experiment.
1 includes >
. o
Engine 1 includes >
o
' 4§
user behavior model 1
assigned by > . .
initializes and controls p Behavior Mix Controller
v
0..* 0.x
0.* 1 1
User Simulation Thread - Session Arrival Controller [—
session entrance

scheduled by >

Figure 6. Architecture of the conceptual workload generator.

3.2 Workload Generation

This section describes the conceptual architecture of our workload generator. It
consists of the following four components: a workload generation engine, a be-
havior mix controller, a session arrival controller, and a pool of user simulation
threads. The workload generation engine initializes and controls the other com-
ponents based on a workload specification as defined in the previous Section 3.1.
Each user simulation thread periodically simulates a single user session based
on probabilistic session models. The behavior mix controller assigns the user
behavior models to the user simulation threads each time a new virtual user is
to be simulated. The session arrival controller controls the number of active ses-
sions according to the specified workload intensity. A more detailed description
of the components, as well as the composition of the probabilistic session model
and its execution, are given in the remainder of this section. Figure 6 shows the
architecture including the four components and their relations as a UML Class
Diagram.

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

User Simulation Threads As described above, the workload generator con-
tains a pool of user simulation threads, which are the executing entities during
the workload generation. Each user simulation thread consecutively simulates
users based on the specified application model and a corresponding user behav-
ior model by executing the following steps in each iteration:

(1) Request a user behavior model from the behavior mix controller.

(2) Request the session arrival controller for a permission to execute a session.

(3) Execute the probabilistic session model which is a composition of the appli-
cation model and the assigned user behavior model.

Behavior Mix Controller The behavior mix controller controls the assign-
ment of user behavior models to user simulation threads. Before starting the
simulation of a new session, in step (1) listed above, a user simulation thread
is assigned the user behavior model based on which the user simulation thread
generates the workload. The probability of assigning each of the user behavior
models is based on the user behavior mix which is part of the workload specifi-
cation.

Session Arrival Controller The session arrival controller controls the cur-
rently allowed number of active user sessions, i.e., the specified workload inten-
sity, throughout the experiment. The controller provides a session entrance and
exit protocol for the user simulation threads which is similar to the concept of
synchronizing processes using semaphores [13].

— The blocking operation enterSession() must be called by a user simulation
thread when starting the simulation of a session for a new virtual user, i.e., in
the above-listed step (2). The operation returns immediately if the current
number of active sessions is lower than the current maximum number of
active sessions specified in the workload intensity function. Otherwise, the
user simulation thread gets blocked in a waiting queue until the number of
active sessions falls below the specified number.

— The non-blocking operation ezitSession() must be called by a user simu-
lation threads when the simulation of the probabilistic session model ends,
i.e., after step (3). Thus, the number of active sessions is decremented by 1.

Probabilistic Session Model As explained in Section 3.1, the application
model defines the allowed sequences of service invocations submitted within a
user session and contains all protocol-level details required to generate valid re-
quests; the actual order of service invocations and the think times between two
consecutive requests are specified in the user behavior models corresponding to
the application model. An application model and a corresponding user behavior
model are directly related by the application states and the states of the Markov
chain. We mentioned, that the actual requests to the Web-based software sys-
tem are generated by the user simulation threads which periodically execute a

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

composition of the application model and a corresponding user behavior model
— denoted a probabilistic session model. Now, we will define the semantics of this
composition.

The composition of the application model and a user behavior model into a
single probabilistic session model executed by a user simulation thread is per-
formed straightforward by enriching the application transitions with the proba-
bilities contained in the Markov chain of the user behavior model. Starting with
the entry state zg defined in the user behavior model, a probabilistic session
model is executed as follows. Given a current state, the next state is determined
by first evaluating the guards of the outgoing transitions related to the current
state. One of the transitions whose guards evaluate to true is randomly selected
based on their assigned probabilities. The action of the selected transition is
executed and the requests towards the application are submitted by traversing
the deterministic state machine of the state within the protocol layer of the ap-
plication model. A session ends when the determined transition leads to the Exit
state of the user behavior model.

4 Tool for Generating Probabilistic and Intensity-Varying
Workload

Based on the conceptual approach for generating probabilistic and intensity-
varying workload presented in Section 3, we implemented a workload generation
tool. Implementing such a tool from scratch would have required us to imple-
ment a bunch of low-level functionalities which do already exist in a number of
workload generation tools (cf. [11] for an overview of existing tools). Instead,
we integrated our approach into the popular open source workload generator
Apache JMeter [3], and could thus focus on the implementation of those func-
tionalities specific to our approach. Our extension, called Markov4JMeter, is
freely available [14] under an open source license. The following Section 4.1 gives
an overview of JMeter including relevant parts of its architecture. Section 4.2 de-
scribes the implementation of Markov4JMeter and the integration into JMeter.
It is demonstrated how the sample workload specification used as the running
example in Section 3 is defined in our workload generation tool.

4.1 Apache JMeter

Apache JMeter [3] is a Java-implemented workload generation tool for testing
Web applications particularly in terms of performance. The workload is specified
graphically in a so-called Test Plan which is a tree of Test Elements. The core
Test Elements are Logic Controllers and Samplers. Logic Controllers, e.g., If
and While Controllers, group Test Elements and define the control flow of a Test
Plan when being executed. Samplers, such as HTTP Request or FTP Request,
are located at the leafs of the tree and send the actual protocol-level requests.
A test run can both be started by means of the graphical user interface (GUI)
and from the command line using the non-GUI mode.

10

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

start and stop
GUI A Engine
Non-GUI
initial Session Behavior
initializes . .
and Arrival Mix —
controls| | Controller | | Controller |7
reads
configuration
from Thread Group
contains
number of
Thread ©
creates S
and instance l executes B
modifies of g,
Test Plan Test Plan S
(configuration) (instance) 8
2
c
L Q
o £ .
%0 [control.gut] [control]
S| \ \ Sampl \
Rl config.gui] [config]
ﬁ [assertions.gui] [assertions]
) 1
] - N A '
' markov4jmeter.control.gui markov4jmeter.control 1
o
: 9 2 MarkovSessionControllerGui MarkovSessionController : £
1 @ % extends AbstractControllerGui extends GenericController] g
:;) IS SessionArrivalFormulaPanel SessionArrivalFormula : @9
|§ K} BehaviorMixPanel BehaviorMix NI %
g ' 3
X B MarkovStateGui MarkovState ! £
: g ﬁ extends AbstractControllerGui extends GenericController ' _g
' ' &
'
: ' 8
e - 5
stored as | refers to 2
5 @
Test Plan Behavior K
File Files e
(IMX) (CSV)

Figure 7. Integration of Markov4JMeter into the architecture of JMeter. The gray
elements are Markov4JMeter components.

The internal architecture of JMeter including the core components and their
relations is illustrated in Figure 7 (the non-gray elements). The Engine is re-
sponsible for controlling the workload generation run. It initializes the Thread
Group including the specified number of Threads (Java threads). Each Thread,
represents a virtual user and executes an instance of the Test Plan. A Test Plan
is internally represented by a tree of Test Element classes (Java classes) corre-
sponding to the respective Test Elements in the Test Plan. Each Test Element
class contains the implementation of the Test Element’s behavior. Also, it has
a corresponding GUI class providing the configuration dialog for the Test Ele-
ment. Moreover, the GUI class is responsible for creating and modifying the Test
Element classes. Test Plans including the configuration of the Test Elements are
stored in JMX files, a JMeter-specific XML format.

11

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

4.2 Markov4JMeter

This section presents our JMeter extension called Markov4dJMeter which allows
for using JMeter to define and execute a workload specification according to
the approach described in Section 3. A probabilistic workload specification as
defined in Section 3.1 can be integrated into a JMeter Test Plan using the two ad-
ditional Logic Controllers, Markov Session Controller and Markov State, added
by Markov4JMeter. Moreover, Markov4JMeter includes a Session Arrival Con-
troller and a Behavior Mix Controller corresponding to the components of the
conceptual workload generator presented in Section 3.2. The remaining two com-
ponents, workload generation engine and the pool of user simulation threads,
could be mapped to the JMeter components Engine and Thread Group includ-
ing the JMeter Threads. The Markov chains of the user behavior models are
read from external comma-separated value (CSV) files. Figure 7 illustrates how
the Markov4JMeter components are integrated into JMeter.

Session Controller This Logic Controller constitutes the root of a probabilistic
session model within a Test Plan. According to the JMeter Test Elements, the
Markov Session Controller is divided into a Test Element class and a GUI class
including the configuration dialog.

The Test Element class contains the implementation of the session model
composition and execution as described in Section 3.2. In each iteration, i.e.,
each time a new session is to be simulated, the Markov Session Controller re-
quests a behavior from the Behavior Mix Controller and requests the Session
Arrival Controller to start the execution of this session. An iteration ends when
the exit state of the behavior model is reached. The configuration dialog allows
the definition of the behavior mix and the configuration of the Session Arrival
Controller. A screenshot is shown in Figure 8(a). The behavior mix is defined
by selecting the respective behavior files and specifying the desired probabili-
ties. The formula defining the number of allowed active sessions during the test
execution must evaluate to a positive integer.

Markov State Markov State Test Elements are added directly underneath
the Markov Session Controller. Each of these Logic Controllers represents an
application state. Any subtree of JMeter Test Elements can be added to a Markov
State representing the related deterministic state machine on the protocol layer of
the application model. As the implementation of the Markov Session Controller,
the Markov State is divided into a Test Element class and a GUI class.

The application transitions are configured within the configuration dialogs
of the Markov States. Figure 8(b) shows the configuration of the application
transitions starting in state S2 of the application model in Figure 3. The config-
uration dialog of the Test Element allows the definition of the state transitions
with guards and actions using JMeter’s variables and functions. The Markov
State S2 in Figure 8(b) contains the HTTP Samplers f.shtml and g.shtml which
are executed in this order according to the application model in Figure 3.

12

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

» simple.jmx (homejvoorn/simple.jmx) - Apache JMeter
File Edit Run ©Options Help
0/0 [

=

T @ Test Plan
¢ E‘ Thread Group
ﬂg HTTP Cookie Manager

Markov Session Controller

Mame: [Markoy Model |

¢ 8 Markov Model Comments:
s '/ 50 Comments:
o i =1
o @ sz
/’ f.shtml Eehavior Mix
/’ g.html MHarme: Felative frequenc Filename
WarkBench Eehaviord 0,2 [behwl. cov
Behaviorl 0,7 |bebwl cew
‘ Add | | Delete | | Generate Template

[1Session Arrival Controller

Markovd JMeter version: 1.0.20080306

(a) Probabilistic Test Plan and configuration dialog of the Markov Session Controller
including the definition of the user behavior mix.

File Edit Run Options Help

- simple.jmx /home/voorn/simple.jmx) - Apache JMeter

0/0

7 & TestFlan
? g‘ Thread Group

Markov State

i HTTP Cookie Manager Mame: [52 |
b's 9 Markow Model Comments:
o s Comments:
o 51
¢ &z
/’ f.shtml State Transitions
/’ g.html Destinatio...|_Disahled: Guard: Actian:
wiorkBench | 50 L f{by=0 b=1
| 1 [
| |5z vl

Markowv4 |Meter version: 1.0.20080306

(b) Probabilistic Test Plan and configuration dialog of the Markov State S2. Disabling
a transition is equivalent to a non-existing transition or to assigning a guard the
value false.

Figure 8. Screenshots showing the probabilistic Test Plan and configuration dialogs of
the Markov Session Controller and a Markov State. The Test Plan corresponds to the
example from Section 3.

13

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

Session Arrival Controller According to Section 3.2, the Session Arrival Con-
troller provides the methods enterSession() and ezitSession() which are called
by the Markov Session Controller before starting to execute a new session. De-
pending on the current number of active sessions and the configured workload
intensity, a thread might get blocked until the session entrance is granted. The
active sessions function is specified as a Java expression (using BeanShell') which
evaluates to an integer value. Markov4JMeter provides a variable for the elapsed
experiment time. BeanShell scripts in external files can be used as well.

Behavior Mix Controller As mentioned above, the Behavior Mix Controller
assigns user behavior models to the Markov Session Controller based on the con-
figured behavior mix. The models are read from the behavior files and converted
into an internal representation which is passed to the Markov Session Controller.
Figure 8(a) show a Behavior Mix Controller configuration with two user behavior
models.

Behavior Files The Markov chain of each user behavior model is stored in
a comma-separated value (CSV) file which can be edited with any spreadsheet
application. It contains the names of all Markov States underneath a Markov
Session Controller. The configuration dialog of the Markov Session Controller
allows to generate valid behavior templates for the current Test Plan. Figure 9
shows the behavior file of the user behavior model in Figure 4(a). Valid be-
havior file templates can be generated through the Markov Session Controller
configuration dialog (see Figure 8(a)).

, SO , S1 , S2 ., §
S0 , 0.00 , 0.70 , 0.10 , 0.20
S1 , 0.00 , 0.50 , 0.10 , 0.40
S2 , 0.10 , 0.50 , 0.00 , 0.40

Figure 9. User behavior model of Figure 4(a) stored in CSV file format. The entry
state of the model is marked with an asterisk (at most one). The column labeled with
$ represents the transition probability towards the exit state.

5 Case Study

This section demonstrates how probabilistic and intensity-varying workload for
the iBATIS? JPetStore Web application can be specified using our approach and

! nttp://www.beanshell.org/
2 http://ibatis.apache.org/

14

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

the corresponding tool Markov4JMeter, which have been presented in the pre-
vious Sections 3 and 4. Section 5.1 provides a basic overview of the JPetStore
application. The workload specification following our approach presented in Sec-
tion 3.1 is described in Section 5.2. Section 5.3 demonstrates how Markov4JMeter
is used to create a JMeter Test Plan corresponding to this specification. Sec-
tion 5.4 provides some interesting measurement results of workload generation
runs which demonstrate the usefulness of our approach.

5.1 JPetStore

The iBATIS? JPetStore is a Java Web application which represents an online
shopping store that offers pets. An HTML Web interface provides access to the
application. The product catalog is hierarchically structured into categories, e.g.,
“Dogs” and “Cats”. Categories contain products such as a “Bulldog”. Products
contain the actual items, e.g., “Male Adult Bulldog”, which can be added to the
virtual shopping cart, the content of which can later be ordered after having
signed on to the application and having provided the required personal data,
such as the shipping address and the credit card number.

5.2 Workload Specification

In order to define an application model including the session layer and the pro-
tocol layer underneath (cf. Section 3.1), we identified 29 protocol request types
provided by JPetStore on the HTTP protocol level. These request types were
categorized into 15 application services. We selected a subset of 9 services and
the corresponding 13 request types considered part of a “typical” user session.
The application transitions of the application model’s session layer were defined
based on the hyperlinks being present on the Web pages of the JPetStore. For
example, by entering the application state Home, the server would return the
JPetStore index page. This page provides hyperlinks to the product categories,
to the shopping cart, to the index page itself, and allows to sign on or off.

Figure 10(a) shows the session layer of the application model which contains
the 9 application states. The variables signedOn and itemInCart are used to store
additional state information. A user can only sign on and sign off if the value of
the variable signedOn is false or true, respectively. The variable itemInCart is
assigned the value true when an item is added to the shopping cart. A transition
to the state Purchase can only be selected when a user has signed on and has
added at least one item in the shopping cart.

The protocol layer is specified based on the 13 considered HTTP request
types. For each request type we determined its required HTTP request method,
the URI, and parameters to be passed on an invocation. The protocol state
machines corresponding to the application states Sign On and Purchase are
shown in Figure 10(b). In order to sign on, a user first invokes an HT'TP request
of type signonForm using the HTTP protocol method GET. The server returns a

3 http://ibatis.apache.org/

15

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

[signedOny/
signedOn:=false

View
Category
[signedOn]/
signedOn:=false | @
O

[signedOn &&
itemInCart)/
iteminCart:=false

View
Product

[!signedOn}/
signedOn:=true,

[weoulwan]

O
} { [!signedOn}/signedOn:=true

(a) Session layer of the application model. The junction connector () is
used to combine a set of transitions from multiple states to the same
destination state (label considered label of all transitions in this set).

/ Sign On N\ / Purchase N\
]]
signonForm C checkout)
req.method="GET"
req.uri="/jpetstore/shop/signon.shtml" l
req.header=<"..">
req.body=<> T C newQrderForm)
signon l
req.me(hgd:"POST" . C newOrderData)
req.uri="/jpetstore/shop/signon.shtml"
req.header=<"..."> l
req.body=<username=${userld},
password=${password},
submit="Login"> newOrderConfirm

N N N T

(b) Protocol state machines for two application states.

View
Category

(c¢) Markov chains of the user behavior models Browser (left) and Buyer.

Figure 10. The application model (the session layer displayed in (a); two of the nine

protocol-layer state machines displayed in (b)) and the two user behavior models (c)
specified for the JPetStore.

16

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

P JPetStore.jmx (fhome/voorn/JPetStore.jmx) - Apache JMeter
File Edit Run Options Help
0/0
9 L TestPlan
? B oread cruppe Markov State
it HTTP Cookie Manager Name: [Purchase |
i HTTP Request Defaults Comments:
i User Defined variables Comments:
i Clobalvariables
[user Parameters
¢ () Markow Madel State Transitions
o) Home Destinatio... | Disabled Guard Action
o i sign On Horne
o ‘ isw Caregary Sign On v |${zignedon} signeddn=true
- (Wiew Cate...
o= () viewProduct iew Prod =
o i Viewltem iew Itermn v]
o (i Addto Cart lAdd to Cart ¥] iterninCart =true
o) view Can [Wiew Cart L]
9 .. E— Purchasze (¥ ${signedOn} && ${iteminCart} itemninCart=false
" Sign Off signedCn=false
47 checkour
47 neworderfarm
A7 newrdernata
@ /7 newordercontirm
[} Response Assertion
o) sign off
TU Gaussian Randam Timer
Error Writer
Assertion Results
WiewResults Tree
workgench Markov JMeter version: 1.0.20080306

Figure 11. Probabilistic Test Plan for the JPetStore (corresponding to the underlying
formal workload specification displayed in Figure 10) and the transition configuration
of the Markov State Purchase.

form asking for a username and a password. In a subsequent invocation, the user
passes the filled in data of the completed form by invoking the HTTP request
type signon. The variables userld and password are used as placeholders for
the username and password. The protocol state machine of the application state
Purchase shows the sequence of HT'TP requests to be executed when purchasing.
‘We omitted the HTTP protocol details for this state.

We defined one user behavior model representing users solely browsing through
the JPetStore and a second one where users tend to actually buy items from the
store. The Markov chains of both models are displayed in Figure 10(c). For both
models we specified a think time distribution f;; = N(300,2002%) which is a
parameterized normal distribution with mean g = 300 and standard deviation
o = 200, both values given in milliseconds.

5.3 Test Plan

As explained in Section 4.2, we created a probabilistic Test Plan for the JPetStore
application model and the two user behavior models presented in the previous
Section 5.2 using the additional Markov4JMeter Logic Controllers, Markov Ses-
sion Controller and Session Arrival Controller. The Test Plan, as well as the
configuration dialog of the Markov State Purchase including the definition of
the application transitions, are shown in Figure 11. The active sessions function

17

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

150
I

100
I

Active sessions
50
I

0
I

T T T T T
0 5 10 15 20 25 30

Experiment time (minutes)

Figure 12. Measured number of active sessions during a probabilistic and intensity-
varying workload generation run. The workload intensity was specified according to
the curve shown in Figure 5.

—~t
(2 © oo § o® @ o 00 <
8 o o o
EdH e %% o%ooéb 858 Fow 0o © //\
22 4 oL 00, "o o & 8000 o |
£ 0 620 B® > 089 ° O o® Q088 2°
b © 2o |
7 © - 8 S
C
~ A ~
2 S
n N
& o . O‘('DC o © O,GLDO Q0 @ O . o 8 1 ‘A —— J ‘I\IIHHII\I\ AT RITHINTHTTD "
40 45 5.0 55 6.0 0 5 10 15
Experiment time (minutes) Response time (ms)
(2) (b)

Figure 13. Scatter plot (a) and probability density plot (b) of method response times
measured during a workload generation run with probabilistic workload and a constant
workload intensity.

is configured to be read from an external BeanShell script. A Random Timer
Test Element provides the think time.

Identifiers for categories, products, and items are randomly selected using a
dedicated Markov4JMeter function before the respective request is submitted.
Assertions are inserted to detect application errors which are not reflected in
HTTP error codes. The server response of some requests is parsed for specific
text strings in order to make sure that the requests have been processed correctly
by the JPetStore. For example, after having signed on, the returned Web page
must contain the string “Welcome” as well as a hyperlink labeled “Sign Out”.
“Thank you, your order has been submitted” must appear after having confirmed
the order.

5.4 Measurement Results

Markov4JMeter has been used in a large number of workload generation ex-
periments with the JPetStore and the workload specification described in the
previous sections for the experimental evaluation of our research in the domains
of performance evaluation [15], anomaly detection and automatic fault localiza-
tion [16], as well as runtime reconfiguration of component-based software sys-

18

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

tems [17]. In this section we give two interesting measurement results of separate
workload generation runs to demonstrate the usefulness of our approach.

Figure 12 displays a curve of the measured number of active sessions during a
30-minute workload generation run. The workload intensity was specified accord-
ing to the curve shown in Figure 5. The number of active sessions was extracted
from the Web server access logs. Markov4dJMeter shows the expected behavior
and varies the workload intensity following the input specification. The jitter is
caused by the measurement granularity (1 ms) and the queueing implementation
in the Session Arrival Controller.

For another experiment, Figure 13 shows the response time scatter plot and
the corresponding probability density plots of the Java method addltemToCart.
A constant workload intensity of 55 active sessions was specified for the entire
run. As indicated by its name, the method addltemToCart is always executed
when a users adds an item to the virtual shopping cart. The plots show that
sporadically significantly lower response times for method executions occur. We
found out that these low response times occur when a user adds an item with
the same identifier to the cart more than once within the same session. This only
requires a counter to be incremented. It is very likely that these low response
times would not have been uncovered without our probabilistic workload and
the random selection of item identifiers as described in Section 5.3.

6 Conclusions

This paper demonstrated our approach for specifying and generating probabilis-
tic and intensity-varying workload for Web-based software systems. The work-
load specification provides a clean separation between application-specific details
including the specification of allowed sequences of service invocations and all
protocol-level details required to generate valid requests with the required tech-
nical details, as well as the corresponding models of probabilistic usage based on
Markov chains. We presented a conceptual workload generator which generates
workload based on the described specification. By including the specification
of the (possibly varying) workload intensity, long-term load tests with realistic
workload intensity profiles can be performed.

The corresponding workload generation tool Markov4JMeter has been im-
plemented as an extension for the popular workload generator Apache JMeter.
By being based on JMeter, probabilistic workload specifications for any protocol
supported by JMeter can be executed. In a case study, we applied the work-
load generation technique to the JPetStore Web application by first specifying
the underlying workload model and then creating the Test Plan executable by
JMeter extended by Markov4JMeter.

Markov4JMeter is freely available at [14]. It is being used to generate prob-
abilistic and intensity-varying workload for the evaluation of research in the
domain of software timing behavior evaluation, anomaly detection and auto-
matic fault localization, as well as runtime reconfiguration of component-based
software systems.

19

Appeared in S. Kounev, |. Gorton, and K. Sachs (eds.), Performance Evaluation - Metrics,
Models and Benchmarks: Proceedings of the SPEC International Performance Evaluation
Workshop 2008 (SIPEW ’08), volume 5119 of Lecture Notes in Computer Science, pa-
ges 124-143, Heidelberg. Springer. June 2008.

The original publication is available at www.springerlink.com

References

1. Menascé, D.A.: Load testing of web sites. IEEE Internet Computing 6(4) (2002)
70-74

2. Barford, P., Crovella, M.: Generating representative web workloads for network
and server performance evaluation. In: Proceedings of the ACM SIGMETRICS,
ACM (1998) 151-160

3. Apache Software Foundation: JMeter. http://jakarta.apache.org/jmeter/

4. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Request for comment (RFC) 2616: Hypertext Transfer Protocol - HTTP
(1999)

5. Menascé, D.A., Almeida, V.A.F., Fonseca, R., Mendes, M.A.: A methodology
for workload characterization of e-commerce sites. In: Proceedings of the ACM
Conference on Electronic Commerce (EC '99), ACM (1999) 119-128

6. Whittaker, J.A., Thomason, M.G.: A markov chain model for statistical software
testing. IEEE Transactions on Software Engineering 20(10) (1994) 812-824

7. Li, Z., Tian, J.: Testing the suitability of markov chains as web usage models.
In: Proceedings of the 27th International Conference on Computer Software and
Applications (COMPSAC ’03), IEEE (2003) 356-361

8. Ballocca, G., Politi, R., Ruffo, G., Russo, V.: Benchmarking a site with realistic
workload. In: Proceedings of the 5th IEEE International Workshop on Workload
Characterization (WWC-5), IEEE (2002) 14-22

9. Krishnamurthy, D., Rolia, J.A., Majumdar, S.: A synthetic workload generation
technique for stress testing session-based systems. IEEE Transactions on Software
Engineering 32(11) (2006) 868-882

10. Shams, M., Krishnamurthy, D., Far, B.: A model-based approach for testing the
performance of web applications. In: Proceedings of the International Workshop
on Software Quality Assurance (SOQUA ’06), ACM (2006) 5461

11. Pena-Ortiz, R., Sahuquillo, J., Pont, A., Gil, J.A.: Modeling continuous changes of
the user’s dynamic behavior in the WWW. In: Proceedings of the 5th International
Workshop on Software and Performance (WOSP ’05), ACM (2005) 175-180

12. Arlow, J., Neustadt, I.: UML 2 and the Unified Process: Practical Object-Oriented
Analysis and Design (2nd Edition). Addison-Wesley (2005)

13. Dijkstra, E.W.: Cooperating sequential processes. In Genuys, F., ed.: Programming
Languages. Academic Press (1965)

14. van Hoorn, A.: Markov4JMeter. http://markov4jmeter.sourceforge.net/

15. van Hoorn, A.: Workload-sensitive timing behavior anomaly detection in large
software systems (September 2007) Master’s thesis (Diplomarbeit), Department of
Computing Science, University of Oldenburg, Germany.

16. Rohr, M.: Workload-sensitive Timing Behavior Anomaly Detection for Automatic
Software Fault Localization. PhD thesis, Department for Computing Science, Uni-
versity of Oldenburg, Oldenburg, Germany (2008) work in progress.

17. Matevska, J., Hasselbring, W.: A scenario-based approach to increasing service
availability at runtime reconfiguration of component-based systems. In: Proceed-
ings of the 33rd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), IEEE (2007) 137-144

20

