
Trace-context Sensitive Performance Models from

Monitoring Data of Software Systems∗

Matthias Rohr, André van Hoorn, Simon Giesecke, Jasminka Matevska, and Wilhelm Hasselbring
Software Engineering Group

University of Oldenburg

Oldenburg, Germany

E-Mail: {Rohr | van.Hoorn | Giesecke | Matevska | Hasselbring}@Informatik.Uni-Oldenburg.DE

Abstract—Operation response times in software systems are
typically modeled by probability distributions. However, partic-
ularly in Java EE applications, operation response time distri-
butions are often of high variance or multi-modal. Such charac-
teristics reduce confidence or applicability in various statistical
evaluations. We observed that calling-context information, e.g.,
the complete call path within the system, is often connected to a
significant part of this variance and other undesired distribution
characteristics.

This paper introduces an approach to analyzing operation
response times in the context of the complete call trace. This
results in response time distributions that are specific to trace-
contexts. We present empirical results of a medium-size online
store demo application on the benefits of using trace-context
specific response time distributions. The results are compared
to the use of other or no calling-context information.

Empirical support is presented that trace-context analysis can
create response time distributions with lower variance compared
to using less or no calling-context information. Based on trace-
context analysis, multi-modal distributions could be replaced by
multiple unimodal distributions.

I. INTRODUCTION

Response time monitoring data is a valuable artifact for

software performance analysis of software systems, such as

enterprise information systems based on Java EE. For instance,

response time data from such systems is used for online perfor-

mance evaluation, such as performance optimization and fail-

ure diagnosis, and for offline performance evaluation, such as

performance tuning, benchmarking, profiling, and performance

prediction. Typically, not only end-to-end response times are

considered, but also response times of operations (alternatively

called methods, routines, procedures, or (sometimes) services),

i.e., software architecture entities that group statements to

larger blocks within a software system.

Enterprise software applications are usually deployed in

middleware environments that do not provide real-time prop-

erties and show non-trivial scheduling and queueing behav-

ior. These systems typically have to serve large numbers of

concurrent and heterogeneous user requests competing for

computational resources. Therefore, the timing behavior of

such systems usually shows high variance and follows complex

distributions. Unfortunately, many analytical and statistical

performance evaluation approaches may produce low quality

∗This work is supported by the German Research Foundation (DFG), grant
GRK 1076/1

results for such timing behavior or cannot handle complex

distribution families.

Operation executions show specific timing behavior for the

calling-context of an operation execution, which is given by

the call trace that corresponds to the execution of an operation.

We discovered that a significant part of undesired distribu-

tion characteristics result from calling-context specific timing

behavior of software operations. Therefore, we conclude that

using calling-context information can improve timing behavior

evaluations, such as those that depend on the variance of

response time distributions.

In this paper, we present our approach to including trace-

context information into software timing behavior models.

For this, trace-context specific response time distributions are

derived by combining response time monitoring to call trace

analysis. Each operation’s response times are partitioned using

trace analysis. This results in multiple, trace-context specific

response time distributions for each operation.

We contribute empirical data on trace-context specific tim-

ing behavior distributions in a non-trivial Java online store

demo application. A workload driver is used to simulate

probabilistic concurrent system usage. In the case study, trace-

context analysis is also compared to two other types of calling-

context types (stack-context, caller-context). Furthermore, it is

analyzed how many calling-contexts exist in dependence to the

number of monitoring points. Finally, we present quantitative

and qualitative data showing that trace-context analysis helps

to cope with operation response time distributions, which have

high variance or undesired properties, such as multi-modality.

The document is structured as follows. In Section II we

present the problem of calling-context dependence in software

timing behavior. Our approach to modeling timing behavior

in dependence to calling-contexts is presented in Section III.

The case study is presented in Section IV. A discussion

of the benefits and limitations of our approach is made in

Section V before the related work and the conclusions follow

in Section VI and VII.

II. CALLING-CONTEXT DEPENDENCE OF SOFTWARE

RESPONSE TIME DISTRIBUTIONS

A. Software Response Time Distribution Characteristics

The duration of an operation execution, including the time

spent in other operations that are invoked by the execution,



1
0

1
5

2
0

2
5

3
0

0 100 300 500

Observation

R
e

s
p

o
n

s
e

 t
im

e
 m

ill
is

e
c
s

(a)

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
15 20 25

Response time millisecs

D
e

n
s
it
y

(b)

Fig. 1. “Clusters” and multi-modality of software response time distributions.
(a) Response time scatter plot of an operation (writeStringOrNull) of
the Dacapo Eclipse Benchmark [5], (b) shows its probability density estimate.

is denoted its response time [12]. Software performance mod-

els typically describe operation response times by response

time sample values, probability distributions, or parametrized

standard distribution families.

Response time distributions of operations in software sys-

tems, such as in Java EE applications, often show high

variance and do not follow simple distribution families, such

as exponential or normal distributions.

For instance, the response time distribution shown in

Figure 1 of an operation measured in the Dacapo Eclipse

Benchmark [5] cannot be accurately described by a single

exponential or normal distribution.

Another example of multi-modal timing behavior distribu-

tions is provided by Bulej et al. [7]. These authors reported

multi-modal response time distributions in different versions of

CORBA middleware and use the term “cluster” for each group

of similar response times. Bulej et al. [7] illustrate that clusters

in timing behavior measurements reduce the potential to detect

changes in the timing behavior of software. The authors expe-

rienced this problem in the context of performance regression

benchmarking, which aims at detecting regressions in software

performance between different versions of a software product.

High variance in response time distribution reduces the

confidence in various statistical evaluations. An example for

such an evaluation is the statistical hypothesis test that two

response time observation sets belong to the same distribution.

The confidence of this test usually decreases by increasing

standard deviation, or more samples are required to reach the

same confidence. Complex distributions, e.g. showing multi-

modality, are not usable in many performance evaluation ap-

proaches because of mathematical tractability. Approximating

complex distributions of response time measurements using

simple distribution families is an option to satisfy requirements

of performance evaluation approaches, but may lead to low

quality results.

B. Calling-context specific timing behavior

Different timing behavior can correspond to multiple

calling-contexts for the same software operation. Possible

reasons are that the contexts correspond to particular software

system states or operations show different timing behavior

when they are used in different types of service requests.

An example for the first is that a system provides different

levels of personalization depending on the current workload

intensity [3]; an example for the latter is that the response

time of a service might heavily depend on the type of the

request e.g., a watermarking service in an online media store

might show different response time distributions for different

media types that use individual watermarking techniques.

Calling-context is the set of circumstances or facts that

surround an operation call. Software operation executions are

embedded in sequences of interacting operation executions

that participate in answering external service requests (from

users or other systems). We consider three simplified models

of the general calling-context that consider different parts of

the execution sequence of an execution: caller-context, stack-

context, and trace-context. These models will be described in

more detail the next section.

Many aspects of the context of an operation execution are

relevant to performance analysis. A key activity of perfor-

mance modeling is the selection of the relevant aspects to

consider. Obviously, the more such aspects are included, the

higher precision can be expected from performance analysis.

Modeling all relevant aspects to timing behavior is usually

not an option, since the overall modeling and analysis effort

grows by increasing modeling detail. Additionally, in some

cases such as performance modeling during the early design

of a software system, relevant context information may be

unknown and it has to be decided whether unknown relevant

context information is estimated and included, or if it is

excluded from the performance model.

The fact that the response time distribution of an operation is

composed of response times made in different calling-contexts

is often responsible for a significant part of the distribution

variance or multi-modality. The use of relevant calling-context

information can improve timing behavior evaluations that are

sensible to high variance or multi-modality in response time

distributions, such as many anomaly detection approaches.

III. APPROACH TO CALLING-CONTEXT SENSITIVE TIMING

BEHAVIOR MODELING

In this section, we describe how calling-context information

can be used in timing behavior modeling. We present and

compare three different levels of calling-context information:

caller-context, stack-context, and trace-context. Caller-context

and stack-context information have been used in performance

evaluation before (see Ammons et al. [2] and Graham et al.

[11]).

Correlating the timing behavior of operation executions to

the complete context given by the trace, i.e., the sequence of

monitored execution events that are connected by synchronous

communication, has not been published before. It is our



A

a

C D E F

c

d

e

f

c

d

e

(a) UML Sequence Diagram.

A.a

C.c D.d E.e F.f

C.c D.d E.e

(b) Dynamic call tree.

Fig. 2. Two representations of the same trace.

conjecture that the complete “trace-shape” covers much more

information that can be used to explain timing behavior than

the caller- or stack-context information. In particular, trace-

context analysis includes information on sub-calls made by an

operation. Sub-call information is omitted by stack- and caller-

context analysis. Of course, for response time evaluation, it

is highly relevant whether and which sub-calls were made if

more than one scenario is possible.

A. Software Behavior and its Monitoring

We assume that software systems are composed of com-

ponents. The components provide operations that might be

requested by other components, external users, or systems.

Primary artifacts of runtime behavior are executions of

the operations. We define a monitored execution as tuple

(o, i, r, st) of an operation o, its response time r, a start time

st, and an identifier i to distinguish executions of the same

operation. The response time of an execution is the number of

time units (e.g., milliseconds) between the start and the end of

an execution, i.e., it includes the time spent waiting for returns

from other executions that are invoked by the callee.

A trace is a finite sequence of operation executions that

results from a user request or request of an external system.

We limit the scope to synchronous communication between

executions (cp. UML 2.1.1 [14]): the caller of an operation

is blocked and has to wait until the callee returns a result

before it continues its own execution. As an example, Figure 2

illustrates two traces as UML Sequence Diagram.

A trace can be represented by a dynamic call tree [2]. Each

node of such an ordered tree represents an operation execution

by its operation name. An edge from one node to another,

i.e. their parent-child relation, corresponds to the caller/callee

relation within the trace. Figure 2(b) shows the dynamic call

tree that corresponds to the trace shown in Figure 2(a).

A.a

C.c D.d E.e B.b

C.c D.d E.e

B.b F.f

B.b

Fig. 3. Dynamic call tree.

B. Types of Calling-context Equivalence Classes

It is our goal to partition operation response times that are

within equivalent calling-contexts. In the following we specify

three equivalence relations:

• Caller-context equivalence: Two executions of the same

operation are caller-context equivalent if they are called

from operations with the same name.

• Stack-context equivalence: Two executions of the same

operation are stack-context equivalent if the paths from

the corresponding nodes to its root are equal.

• Trace-context equivalence: Two executions of the same

operation are trace-context equivalent if the correspond-

ing trees are equal and the both executions correspond

to dynamic call tree nodes with the same position within

the tree.

Trace-context equivalence implies stack-context equivalence

and stack-context equivalence implies caller-context equiva-

lence. If the monitoring data for a system consists only of

traces conforming to the trace representations illustrated in

Figure 3. Calling-context analysis would discover 7 caller-

contexts, 10 stack-contexts (the 2nd and 3rd B.b are stack-

context equivalent), and 11 trace-contexts.

Each of the three equivalence relations specifies a partition-

ing of the monitored executions and its response times into

equivalence classes. In the following, we use the terms caller-

, stack-, and trace-context to refer to an equivalence class of

executions that are caller-, stack-, and trace-context equivalent

respectively. The term calling-context refers to any of those

three equivalence classes.

In general, the number of distinct calling-contexts tends

to grow by the number of monitoring points. Adding a new

monitoring point to an existing instrumentation also increases

the number of trace-contexts and stack-contexts. Adding a

monitoring point usually also increases the number of caller-

contexts, but in some cases it may reduce it. An example from

this is provided by Figure 2(b) and 3: Both trees are from the

same system, but operation B.b was not instrumented during

the monitoring for Figure 2(b). Trace analysis would identify

8 caller-contexts for the system corresponding to Figure 2(b),

while 7 caller-contexts are identified when B.b is instrumented.

The fact that an instrumentation with n monitoring points

has m calling-contexts does not imply that a second instru-

mentation with n′ > n monitoring points has more than m

calling-contexts (in the same software system and for the same

workload), since different monitoring points can increase the

same numbers of calling-contexts differently.



IV. CASE STUDY

The case study evaluates how many calling-contexts exist in

a typical software application, and how much variance of the

operation response time distributions results from not distin-

guishing calling-contexts. Additionally, it is explored how the

selection of monitoring points relates to the number of calling-

contexts. The software system analyzed in the case study is

the iBATIS JPetStore1, which is a demo Java Web-application

implementing an online store scenario. The instrumentation

to monitor response times of the internal operations of the

JPetStore is given by the software instrumentation package

Kieker [15].

A. Evaluation Goals

The goals of the case study are (1) to explore the relation

between the number of monitoring points and the number

of resulting calling-contexts, (2) to support the hypothesis

that multi-modality can arise from operations with different

calling-context specific timing behavior, and (3) to compare

the calling-context specific response time distributions to the

response time distributions without calling-context analysis.

B. Setting

The software application analyzed in the case study is the

iBATIS JPetStore 5 Web-application. It is deployed in the

Apache Tomcat Servlet container (version 5.5.23) running

on a desktop computer equipped with an Intel Pentium 4

3.00 GHz hyper-threaded CPU and 1 GB physical memory

and Linux 2.6.17.13. The application server software employs

Sun Java SE 1.6.0_03. JPetStore uses a database management

system (MySQL 5.0.18) for storing business data running on

a GNU/Linux 2.6.15 system with two Intel Xeon 3.00 GHz

CPUs and 2 GB of physical memory. The application server

and the database backend are connected via 100 Mbit Ethernet.

A workload generator runs on a separate desktop computer

being identically equipped and configured as the application

server node above.

The workload for the JPetStore is generated by the work-

load driver Apache JMeter 2.2 extended by our probabilistic

workload driver Markov4JMeter2. Markov4JMeter allows to

emulate users based on an application model and a mix of

corresponding probabilistic user behavior models. The think

time between user requests is configured to be normally

distributed. The experiment runs last 20 minutes; the first 3

minutes are considered the warm-up period and are ignored in

the evaluation. The number of concurrent users is set to 10,

which can be handled without any problems by the system

under monitoring.

Three instrumentation scenarios are used:

E1 Partial instrumentation: 18 manually selected mon-

itoring points from a previous case study [16] on

scalability (response times vs. workload intensity)

1http://ibatis.apache.org/
2http://markov4jmeter.sourceforge.net/

TABLE I
SUMMARY OF THE INSTRUMENTATION SCENARIOS AND NUMBERS OF

DISTINCT CALLING-CONTEXTS.

Instrumentation Partial (E1) Full (E2) Random (E3)

# Instrumented operations 18 199 2–198
# Monitored executions 121.323 2.032.573 2–2.032.572
# Traces 36.190 36.036 1–36.036
# Caller-contexts 20 290 2–312
# Stack-contexts 21 368 2–368
# Trace-contexts 31 7021 2–7021

E2 Full instrumentation: All operations and application

entry points are monitored resulting in 199 different

instrumented operations

E3 Random instrumentation: 1500 random instrumenta-

tions having 2 to 198 monitoring points. The traces

for these 1500 instrumentations are generated from

the monitoring run of the full instrumentation by

ignoring random subsets of monitoring points.

C. Results

a) Total number of calling-contexts in relation to the

number of monitoring points: As shown in Table I, 31

trace-contexts exist for the partial instrumentation with 18

monitoring points. 7021 trace-contexts exist in total for the

full instrumentation scenario using 199 monitoring points.

Table I indicates that the number of trace-contexts, caller-

contexts and stack-contexts grows by the number of moni-

toring points, and that the number of trace-contexts increases

faster with the number of monitoring points than both other

calling-contexts.

Figure 4 shows in more detail that the number of trace-

contexts can be relatively high for a significant part of the

operations: 25% of the operations have more than 25 trace-

contexts, 50% of the operations have more than 13 trace-

contexts, and 75% of the operations have more than 3 trace-

contexts. 39 operations (about 20% from 80% to 100% in the

graph) have one trace-context. The average number of trace-

contexts per operation is 35.3 in this instrumentation scenario.

Instrumentation scenario E3 allows to study the relation

between the number of monitoring points and calling-contexts

for the software system in general. The number of resulting

calling-contexts from 1500 random instrumentation scenarios

is illustrated in Figure 5 in dependence to the number of

monitoring points. In the sample application, the number of

stack-contexts and caller-contexts both grow linearly with a

similar rate by the number of monitoring points, as shown

in Figure 5(a). For 81.7% of the evaluated instrumentation

scenarios, the number of stack-contexts was larger than the

number of caller-contexts for the same instrumentation.

In contrast to the number of distinct stack and trace-

contexts, the number of caller-contexts is not at its maximum

for full instrumentation. This demonstrates that adding moni-

toring points can reduce the number of caller-contexts.

Figure 5(b) visualizes the numbers of trace-contexts re-

sulting from the 1500 random instrumentation scenarios. The



y
 :

=
 n

u
m

b
e

r 
o

f 
tr

a
c
e

 c
o

n
te

x
t 

c
la

s
s
e

s

Number of operations with at least
y trace context classes

0 50 100 150 200

1

2

3

5

10

25

50

100

250

500

0 10 30 50 70 90

least y trace context classes

Percent observations with at

1000

Fig. 4. Full instrumentation scenario: A significant number of observations
each has a high number of trace-contexts. The diagram shows how many
operations have more than a particular number of trace-contexts y. For
example, 50% of the operations each has at least 13 trace-contexts.

0
1
0
0

2
0
0

3
0
0

0 50 100 150 200

Number of monitoring points

N
u

m
b

e
r 

o
f 

c
o

n
te

x
ts

Stack−contexts

Caller−contexts

(a)

0
2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

0 50 100 150 200

Number of monitoring points

N
u

m
b

e
r 

o
f 

c
o

n
te

x
ts

Trace−contexts

Stack− and Caller−contexts

(b)

Fig. 5. The number of monitoring points in relation to the number of contexts.

number of trace-contexts increases much faster than the num-

ber of stack-contexts and caller-contexts does.

b) Number of calling-contexts per operation: For instru-

mentation E1, most operations (12 of 18) had only one trace-

context, six had two trace-contexts, and one operation had

seven trace-contexts. This results in an average number of

1.6 trace-contexts per operation. For instrumentation E2, the

number of trace-contexts per observation varies between one

trace-context (39 of 199 operations) and 1123 trace-contexts

for one operation.

c) Number of response times per calling-context: 1344

of the 7200 trace-contexts had only one response time in

the monitoring data. This mainly resulted from traces that

contained initialization methods which were only executed

once during an experiment run. Statistical analyzes, such as the

determination of standard deviation and the approximation of

density distributions, may not produce meaningful results for

calling-contexts with an unsufficient number of observations.

. A possible solution to this problem is to characterize the

timing behavior of such a calling-context by all response times

of the corresponding operation. This means that in this case

calling-context information is omitted.

d) Multi-modal distributions in calling-context analy-

sis: For the instrumentation scenario E1, the operation

newOrder() follows the multi-modal response time distri-

bution shown in Figure 6(a). Trace analysis reveals that two

trace-context, one stack-context, and one caller-context exist

for this operation.

Trace-context analysis distinguishes two cases: In the first

case, newOrder(..) does not make any monitored sub-

calls to other operations, as shown in the Sequence Dia-

gram in Figure 6(b). In the second case, there is a sub-call

insertOrder(..), as illustrated in Figure 6(c).

Only trace-context analysis allows one to differentiate the

response times of this operation into two equivalence classes.

The response times for each trace-context are displayed in

Figure 7(a) and its corresponding distributions are shown in

Figure 6(b) and (c). In this example, caller-context equivalence

and stack-context equivalence are unable to distinguish both

calling-contexts, since caller- and stack-context information do

ignore sub-calls.

e) Response time distribution variance related to calling-

context information: We use the standard deviation as the

metric to study the impact of calling-context analysis to

the response time distributions. The standard deviation is a

common metric to characterize the dispersion of data and

to quantify the (root mean square) error in the context of

prediction or estimation. The sample variance is the square-

root of the statistical variance; therefore its values are in the

scale of the measurements (i.e., milliseconds in the case study).

To compare the calling-context analyses to using no calling-

context information, the standard deviation of all calling-

contexts that correspond to an operation has to be aggregated.

For this, we computed the average standard deviation of all

calling-contexts for each operation, multiplied by their relative

frequency in the monitoring data.

To quantify the benefit from calling-context analysis, the

average standard deviation of using no calling-context infor-

mation is compared to the average standard deviations from the

calling-context sensitive response time distributions. Table II,

shows the percentual decrease in average standard deviation

from using calling-context analysis.

For E1, the decrease of standard deviation is only small in

average for all calling-context types. This may be surprising,

since the calling-context analysis was very effective for op-

eration newOrder() (see Figure 6). In fact, the decrease

of the standard deviation for this operation is at 38.73%,

but this operation has a low relative call frequency (1,748

of 121,323). The boxplot in Figure 8(a) shows of 38.73% is

only an exceptionally high decrease. Most operations show

only low or no benefits from calling-context analysis for this



Response time in milliseconds

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

0 5 10 15 20 25 30

0
.0

0
0

.0
5

0
.1

0
0

.1
5 All trace−contexts 

newOrder()

(a) Multi-modal response time distribution.

Response time in milliseconds

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

0.00 0.02 0.04 0.06

0
5

0
1

0
0

1
5

0

Trace−context 
newOrder()1

(b) Response time distribution for trace-
context newOrder()1.

5 10 15 20 25 30 35 40

0
.0

0
0

.0
2

0
.0

4

Response time in milliseconds

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y

Trace−context 
newOrder()2

(c) Response time distribution for trace-context
newOrder()2.

Fig. 6. Density distribution for (a) all response times of operation newOrder(), and (b,c) for each of the two trace-contexts.

0
1

0
2

0
3

0
4

0
5

0

Calendar time (minutes:seconds)

R
e
s
p
o
n
s
e
 t
im

e
 i
n
 m

ill
is

e
c
o
n
d
s

44:00 45:00 46:00 47:00

Trace−context newOrder()1

Trace−context newOrder()2

(a)

$ ActionServlet OrderBean

process(..)

newOrder()

(b) Trace corresponding to trace-context newOrder()1

$ ActionServlet OrderBean OrderService

process(..)

newOrder()

insertOrder(..)

(c) Trace corresponding to trace-context newOrder()2

Fig. 7. Trace-context dependent timing behavior; instrumentation scenario
E1: Response times for operation newOrder() show different distributions
depending on whether corresponding to the trace-context(b) newOrder()1 or
(c) newOrder()2.

TABLE II
STANDARD DEVIATION RELATED TO CALLING-CONTEXT ANALYSIS.

Average st.dev. decrease in %

E1 (18 mon.pts.) E2 (199 mon.pts.)

Caller-context analysis 0.2 6.8
Stack-context analysis 0.6 11.0
Trace-context analysis 3.3 42.2

0
1
0

2
0

3
0

4
0

Caller Stack Trace

D
e

c
re

a
s
e

 o
f 

s
td

e
v
 i
n

 %

Calling−context type

(a) E1

0
2
0

4
0

6
0

8
0

Caller Stack Trace

D
e

c
re

a
s
e

 o
f 

s
td

e
v
 i
n

 %

Calling−context type

(b) E2

Fig. 8. Average decrease in standard deviation from using calling-context
information compared to standard deviation using no calling-context informa-
tion. Standard deviation decreases are boxplotted per operation.

instrumentation.

The data for instrumentation scenario E2, shows a much

different picture than the data of E1: Trace-context analysis

leads to 42.2% lower average standard deviation in the trace-

context sensitive response time distributions than using no

calling-context information. Trace-context analysis also clearly

shows better results than stack-context analysis and caller-

context analysis. The boxplot in Figure 8(b) indicates that

for most instrumentations, trace-context analysis results in re-

duced standard deviation for more than 75% of the operations.

In some cases the reduction was even above 80%.

V. DISCUSSION AND LIMITATIONS

A. Monitoring overhead

As discussed in the introduction, typical application scenar-

ios are runtime performance management and failure diagnosis

based on anomaly detection, such as the work by Duzbayev

and Poernomo [9], Diaconescu et al. [8], Agarwal et al. [1].

This requires continuous monitoring during regular operation



of the software system. Therefore, the monitoring overhead

should be reasonably low, for instance by imposing less than

15% overhead on response times and throughput.

A detailed discussion on monitoring overhead is beyond

the scope of this paper. However, in the case studies we use

our instrumentation tools Kieker3. The overhead of Kieker

was estimated to be below 20% overhead on response times

in the case study with full instrumentation. An overhead of

about 10% was reported for the monitoring framework In-

fraRED [10], which uses similar aspect-oriented programming

technology as Kieker does.

B. Distributed systems

Our monitoring infrastructure does not allow us to track

execution traces through multiple execution environments.

Therefore, a single execution path may be split into multiple

execution traces, which results in a performance model that

cannot address correlations between timing behavior and the

execution traces characteristics that are not within the same

environment. This limitation can be overcome by using an

alternative monitoring approach, such as Briand et al. [6], that

allows to monitor remote communication.

C. Representativeness and completeness of monitoring data

In our approach, timing behavior distributions and calling-

contexts result from monitoring data. This results in the two

major risks that the monitoring data is not representative for

normal behavior and that not all calling-contexts are detected.

For instance, calling-contexts are missing if possible execution

sequences were not activated during the monitoring period,

which depends on the system usage. These risks can be

minimized by using a sufficient amount of monitoring data

from real system usage. For instance, for a typical online store,

we consider a few weeks of monitoring data to be sufficient

for timing behavior anomaly detection. For the identification

of calling-contexts, static (source code) analysis provides

an alternative to monitoring data analysis, since it doesn’t

depend on system workload. Since the performance behavior

of a software system changes over time (e.g., improving of

algorithms, changes in user behavior, changes in hardware),

it may be required to update software performance models

regularly.

VI. RELATED WORK

Related work comes from the domains of profiling, perfor-

mance evaluation, online failure diagnosis, and performance

prediction.

Some literature in the domain of software profiling ad-

dresses to connect response time behavior to method calls

and context information. Graham et al. [11] introduced the

profiler gprof. Gprof provides caller-context information (i.e.,

it makes caller-callee relations explicit). The trace-context

concept, introduced in this paper, is an extension of the concept

of caller-contexts. Most modern profiling tools, such as In-

tel’s VTune Performance Analyzer follow gprof by providing

3http://kieker.sourceforge.org

caller-context information (see Xie and Notkin [17]). The work

of Ammons et al. [2] goes beyond the caller-callee relationship

and introduces what we denoted stack-context equivalence.

We extend the stack-context by using the complete sequence

of operations as criteria for equivalence. These authors do

not discuss the timing behavior distributions resulting from

calling-context analysis, which is a major focus of our paper.

In the timing behavior evaluation of Bulej et al. [7], clusters

in timing behavior of a software system have been observed

and analyzed. The authors report timing behavior clusters

for a CORBA implementation in the context of comparing

timing behavior of different software versions. The k-means

clustering approach is used to identify clusters in timing

behavior measurements. In contrast to our approach, this

does not require trace data, therefore, the requirements on

the monitoring infrastructure are lower than in our approach.

However, our approach uses additional relevant information,

which allows the precise distinction of timing behavior classes,

while the k-means clustering approach is a heuristic that only

performs well if the correct number of clusters is known in

advance and the values within the clusters are well separated.

Various approaches have been presented to use timing

behavior monitoring data of software systems in order to

implement preemptive quality of service management. For

instance, in the Magpie project [4] it has been motivated

to correlate monitored events for specific requests to timing

behavior measurements to identify anomalies and perform

failure diagnosis. The Magpie approach shares the general

idea of correlating monitored events within a request to timing

behavior with our approach, but details on the correlation or

empirical data have not been presented, so far.

The performance modeling approach of Koziolek et al. [13]

considers parameter values as part of usage profiles in order

to increase performance prediction precision. Parameter values

can also be considered calling-context information. However,

the three calling-context types described in this paper are

not part of Koziolek et al.’s software performance model. A

difference of this and other performance prediction approaches

is the focus on the early design period, while our focus is on

the evaluation of detailed monitoring data that is usually only

available for deployed software systems.

VII. CONCLUSIONS

A. Summary

In this paper, we presented our approach to analyzing

operation response time measurements in dependence to

their calling-contexts. We introduced trace-context equiva-

lence, which extends the concepts of caller-contexts and stack-

contexts.

The case study using a Java Web-application, evaluated how

much variance in software response time distributions can

be associated to calling-context information. Furthermore, we

evaluated how the number of different calling-contexts relates

to the number of monitoring points.

The evaluation results show that using calling-context infor-

mation produces response time distributions with significantly



lower variance. The response time distributions based on trace-

context analysis had much lower variance in average than those

from stack-context analysis or caller-context analysis. Some

operations in the evaluation system show a large number of

trace-context dependent response time distributions.

Additionally, it was demonstrated that it was possible to

replace a multi-modal response time distribution by two uni-

modal response time distributions using trace-context infor-

mation. Both high variance and multi-modality are threats to

many timing behavior analysis approaches.

B. Future work

Currently, the approach requires the complete trace to be

recorded and evaluated before the corresponding trace-context

specific response time distribution can be identified. This

“postdiction” can be used in failure diagnosis approaches,

such as anomaly detection. However, for other performance

evaluations it can be desirable to predict the expected response

time for an operation before its execution. In that case, only

a part of the full trace, e.g., the prefix, could be used.

This information could be valuable to coordinate execution

environment elements, such as the scheduler or the garbage

collection.

A major design decision for monitoring is the selection

of monitoring points. For field systems, a trade-off between

monitoring overhead, and monitoring granularity has to be

satisfied. The full instrumentation of all operations is usually

computationally too expensive. Thus, monitoring points have

to be selected. Trace-context analysis could be used to deter-

mine additional monitoring points for manually-defined set of

monitoring points. From data of a fully instrumented execution

period, it is possible to estimate, which additional monitoring

point would be optimal for trace-context analysis.
Other next steps are to evaluate trace-context analysis in

large industry systems, and to evaluate its efficiency. The
efficiency evaluation would relate the benefits of trace-context
analysis to the costs imposed by monitoring.

REFERENCES

[1] Manoj K. Agarwal, Karen Appleby, Manish Gupta, Gautam
Kar, Anindya Neogi, and Anca Sailer. Problem determination
using dependency graphs and run-time behavior models. In
15th IFIP/IEEE International Workshop on Distributed Systems:
Operations and Management (DSOM’04), volume 3278 of
Lecture Notes in Computer Science, pages 171–182. Springer,
2004. doi: 10.1007/b102082.

[2] Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting
hardware performance counters with flow and context sensitive
profiling. In Proceedings of the Conference on Programming
language design and implementation (PLDI’97), pages 85–96.
ACM, 1997. doi: 10.1145/258915.258924.

[3] Martin F. Arlitt, Diwakar Krishnamurthy, and Jerry Rolia.
Characterizing the scalability of a large web-based shopping
system. ACM Transactions on Internet Technology, 1(1):44–69,
2001. doi: 10.1145/383034.383036.

[4] Paul Barham, Rebecca Isaacs, Richard Mortier, and Dushyanth
Narayanan. Magpie: online modelling and performance-aware
systems. In Proceedings of the 9th conference on Hot Topics
in Operating Systems (HOTOS’03), pages 15–15. USENIX
Association, 2003.

[5] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo Benchmarks:
Java benchmarking development and analysis. In Proceedings of
the 21st Conference on Object-Oriented Programing, Systems,
Languages, and Applications (OOPSLA’06). ACM, October
2006.

[6] Lionel C. Briand, Yvan Labiche, and Johanne Leduc. To-
ward the reverse engineering of UML sequence diagrams for
distributed Java software. IEEE Transactions on Software
Engineering, 32(9):642–663, September 2006. doi: 10.1109/
TSE.2006.96.

[7] Lubomír Bulej, Tomáš Kalibera, and Petr Tůma. Repeated
results analysis for middleware regression benchmarking. Per-
formance Evaluation, 60(1-4):345–358, 2005. doi: 10.1016/j.
peva.2004.10.013.

[8] Ada Diaconescu, Adrian Mos, and John Murphy. Automatic
performance management in component based software sys-
tems. In Proceedings of the First International Conference on
Autonomic Computing (ICAC’04), pages 214–221. IEEE, 2004.
doi: 10.1109/ICAC.2004.15.

[9] Nurzhan Duzbayev and Iman Poernomo. Runtime prediction
of queued behaviour. In Christine Hofmeister, Ivica Crnkovic,
and Ralf Reussner, editors, Proceedings of the 2nd International
Conference on the Quality of Software Architectures (QoSA’06),
volume 4214 of Lecture Notes in Computer Science, pages 78–
94. Springer, 2006. doi: 10.1007/11921998\_10.

[10] Kamal Govindraj, Srinivasa Narayanan, Binil Thomas, Prashant
Nair, and Subin P. On using AOP for Application Performance
Management. In Matt Chapman, Alexandre Vasseur, and Günter
Kniesel, editors, AOSD 2006 - Industry Track Proceedings
(Technical Report IAI-TR-2006-3, University of Bonn), pages
18–30, March 2006.

[11] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick.
gprof: a call graph execution profiler. In SIGPLAN Notes,
volume 17, pages 120–126. ACM, 1982. doi: 10.1145/872726.
806987.

[12] Raj Jain. The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation,
and Modeling. John Wiley & Sons, first edition, April 1991.

[13] Heiko Koziolek, Steffen Becker, and Jens Happe. Predicting the
Performance of Component-based Software Architectures with
different Usage Profiles. In Proc. 3rd International Conference
on the Quality of Software Architectures (QoSA’07), volume
4880 of LNCS, pages 145–163. Springer, 2008. doi: 10.1007/
978-3-540-77619-2.

[14] Object Management Group (OMG). Unified Modeling Lan-
guage: Superstructure Version 2.1.1, February 2007.

[15] Matthias Rohr, André van Hoorn, Jasminka Matevska, Nils
Sommer, Lena Stoever, Simon Giesecke, and Wilhelm Hassel-
bring. Kieker: Continuous monitoring and on demand visualiza-
tion of Java software behavior. In Proceedings of the IASTED
International Conference on Software Engineering 2008, pages
80–85. ACTA Press, February 2008.

[16] André van Hoorn. Workload sensitive timing behavior anomaly
detection in large software systems. Master’s thesis, (Diplo-
marbeit) University of Oldenburg, Software Engineering Group,
Department of Computing Science, 2007.

[17] Tao Xie and David Notkin. An empirical study of Java dynamic
call graph extractors. Technical Report UW-CSE-02-12-03,
University of Washington Department of Computer Science and
Engineering, Seattle, WA, USA, December 2002.


