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A system developed for benchmarking multi-processor Numerical Weather Prediction applications
deployed on D-Grid resources is presented. The system currently serves to perform functional and non-
functional software tests of the Weather Research and Forecasting (WRF) model used in the project
WISENT. The resulting performance data and the input configurations are automatically published
through a web portal to enable third-party comparisons with other, existing WRF deployments. The
developed system relies on a self-contained, domain-independent software module for running MPI and
other multi-processor Grid (Globus Toolkit 4) jobs that require a user-defined synchronized initialization
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1. Introduction

In the national research project WISENT [ 1] computer scientists,
physicists and meteorologists work together in an effort to
optimize the cooperation of scientific organizations in the field of
energy meteorology. The main objective of energy meteorology is
obtaining the information needed to characterize the fluctuating
generation of solar and wind energy. One of the main research
tools in energy meteorology are Numerical Weather Prediction
(NWP) models. To cope with the heavy computational and storage
requirements of numerical weather prediction, WISENT relies on
the distributed computing resources provided by the German
Grid [2].

This paper begins with an introduction to the Weather
Research & Forecasting (WRF) model and its run-time characteris-
tics (Sections 2 and 3). Section 4 addresses the challenges involved
in executing multi-processor Grid jobs. The proposed approach
for submitting multi-processor Globus jobs with an initializa-
tion and cleanup phase, although motivated by WRF, could be
transferred readily to other Grid projects, even with non-MPI
applications. Section 5 covers the WISENT Performance Bench-
marking System, which successfully employs the proposed job

* Corresponding author.
E-mail address: jan.ploski@offis.de (J. Ploski).

0167-739X/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.05.003

submission approach. Section 6 discusses performance measure-
ments obtained within the system. Section 7 concludes and out-
lines future work.

2. Weather Research & Forecasting model

The Weather Research and Forecasting (WRF) model [3] is
a mesoscale NWP model, suitable for research and operational
forecasting. The currently installed version makes use of the ARW
(Advanced Research WRF) solver, which is composed of several
initialization programs for idealized and real-data simulations, and
a numerical integration program.

The WRF is fully compressible, Euler non-hydrostatic with
a run-time hydrostatic option available and it is conservative
for scalar variables. Its prognostic variables are: the velocity
components u and v in Cartesian coordinates, the vertical velocity
w, the perturbation potential temperature, the perturbation
geopotential, and the perturbation surface pressure of dry air.
Optionally, the turbulent kinetic energy and any number of scalars
such as water vapor mixing ratio, rain/snow mixing ratio, and cloud
water/ice mixing ratio can be also predicted.

From a more technical viewpoint, WRF is a complex software
system which has been developed by multiple research institu-
tions and designed for running on a wide range of hardware from
individual PCs (for educational use) through Linux clusters to ded-
icated supercomputers (for research and operational forecasting).
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3. Compile and run-time requirements of WRF

Like most of today’s scientific applications, WRF does not
provide any specific support for execution in a heterogenous
Grid environment [4]. In particular, the compiled binary code is
not portable across clusters. Thus, the effort of deploying WRF
“on the Grid” is equivalent to deploying it multiple times, in
multiple independent clusters. Unfortunately, the “compile once,
run anywhere” or “interpreted script” approaches suitable for
simple Grid applications do not apply to WRF due to its compile-
time and run-time dependencies on libraries that implement the
MPI standard. Similarly, if the OpenMP parallelization option is
used, it is necessary to compile WRF with one of the supported
optimizing compilers and use a run-time support library provided
by the (commercial) compiler vendor. Additionally, the supporting
NetCDF library and, in some cases, parallel libraries such as MPICH,
must be built with the same compiler as WREF itself. In research
contexts, user-defined modules also exist that must be compiled
together with the rest of the WRF code. All these requirements
call for careful, coordinated configuration management to support
convenient access of multiple users to multiple model variants
deployed in multiple clusters. Uploading and compiling WRF as
part of each job is not viable because of interactive configuration
steps, the amount of required master data (over 10 GB if
preprocessing support is included), and long build time (20 min
on current hardware).

Before running a compiled version of WRF, a working directory
with the following items must be set up:

e a namelist.input file with various configuration parameters,

e anumber of specifically named master data files (or appropriate
symbolic links to a central installation directory),

e input file set referenced from namelist.input.

The input file set for the working directory is pre-defined and
specific to a benchmark case. For real (non-benchmark) model
runs, these items would have to be supplied along with the user’s
job.They originate from an earlier (preprocessing) stage of the WRF
workflow, which we do not discuss in this paper. The master data
files, on the other hand, are a part of the installed variant of WRF
and do not usually need user-specific modifications.

If compiled to use MPI, the WRF executable is started using a
system-specific MPI startup program (such as mpirun, mpiexec,
etc.), which spawns one or more processes per allocated execution
node. If compiled to use OpenMP, each WRF process spawns
multiple threads. The parallelism options can be combined as well.

A single model run produces a variable number of output
files in the NetCDF format, depending on the number of domains
defined in namelist.input and other parameters. When running
benchmarks, we are less interested in the actual output files
(whose expected contents are known) and more in the measured
execution times.

4. Running multiprocessor jobs using Globus Toolkit 4

The specific run-time requirements of the WRF can be
rephrased into a general use case: submit jobs comprised of the
following steps (Fig. 1):

(1) Prepare a working directory.

(2) Run an MPI-based computation on multiple processors.

(3) Before stage-out, post-process files produced by the MPI
executable.

While this use case is not exotic, it is impossible for end users
without sophisticated programming skills to implement it using
Globus Toolkit 4. Specifically, the WS GRAM service supports jobs
of types single, multiple, and mpi, none of which satisfy the above
requirements:

Slave Process 1 Master Process Slave Process n

pre(pare
working dir.)

main (MPI main (MPI main (MPI
computation) computation) computation)

post(process
results and
clean up)

Fig. 1. A multi-processor job with a synchronized initialization and cleanup phase.

(1) Jobs of the type single are handled by allocating one or more
processors through the resource manager and starting a user-
specified executable on the first allocated processor. This job
type is suitable for the initialization and cleanup phases, but
not for the main MPI-based computation. In theory, it is pos-
sible to allocate several nodes using the hostCount parameter
and invoke the cluster-specific MPI startup program from a
user-provided script. In practice, this solution falls short due
to both design and implementation constraints. First, it breaks
abstraction by requiring the user to deal with the implemen-
tation details of the MPI startup mechanism — and accord-
ingly to keep track of the different MPI implementations across
Grid sites. Second, it fails because the job execution environ-
ment does not provide sufficient information to control the
MPI startup program. Specifically, it is difficult to determine
from a job which particular nodes were allocated to it.

(2) Jobs of the type multiple are handled by allocating multiple
processors through the resource manager and starting a user-
specified executable on each of the allocated processors. This
job type is unsuitable for MPI for the same reasons provided
above.

(3) Jobs of the type mpi are handled similarly to those of type multi-
ple. However, the user-specified executable is started using the
MPI startup program. This is perfect for running an executable
compiled with MPI support, but it does not offer an option for
the required intialization/cleanup steps—unless one hardcodes
them into the executable itself.

The most obvious solution for the problem described would be to
submit and coordinate three Globus jobs, the first one of type single
to set up the working directory, then an mpi job to run the actual
application, and finally another single job to perform cleanup and
stage-out. Obviously, this solution, which requires client-side coor-
dination and separates the three phases that logically form a single,
atomic job, does not appeal to users. Likewise, treating the three
steps as elements of a “Grid workflow” which requires a heavy-
weight execution engine as support would not be appropriate.
For these reasons, we developed an alternate solution which
is quite portable, lightweight and easily explained to end users
with just basic scripting skills. The approach consists of submit-
ting a job of type mpi, whose executable is not the actual MPI
executable, but a script responsible for process synchronization,
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including the single-processor initialization, the multi-processor
MPI run, and the single-processor cleanup phase. This user-defined
script, implemented in the universally available Perl [5] language,
is launched by the MPI startup program on each allocated pro-
cessor. It implements three procedures: pre, main and post, corre-
sponding to the execution phases shown in Fig. 1. The procedures
are invoked on user’s behalf at appropriate times by the Perl mod-
ule MultiJob, developed in WISENT for this purpose. Our module
relies on a locking mechanism based on atomic hard linking of files
across NFS [6].

Note that the execution mechanism of job described does not
require modifications or extensions to the Globus middleware.
The basic requirement of the described job execution mechanism
is that the home directory is shared across the worker nodes in
a cluster. This is the case for the D-Grid reference installation
and recommended for D-Grid sites [7]. Another limitation, which
did not become evident until testing, is that the MPI startup
program must not proactively Kkill its children right after the
final MPI message exchange. If this happens, as in the JuGGLE
cluster [8], then the post subroutine will not run and errors during
file stage-out will occur. Some MPI startup programs employ the
kill mechanism to ensure that their distributed child processes are
terminated in all cases. A possible solution (which, however, is
specific to the resource manager and has to be implemented by
the MPI tools vendor) is to use the PBS APIs rather than rsh/ssh to
create child processes, and then to rely on the resource manager or
a periodically running script to terminate run-away processes.

5. The WRF benchmarking system

Even though WRF is a widely deployed model, little data
exist concerning the recommended software and hardware
configurations. Users have to learn by guessing or stay with
an initially compiled, suboptimal (but working) configuration.
Likewise, because WRF supports both MPI and OpenMP, the
IT decision makers responsible for purchasing hardware miss
recommendations on whether to invest in a fast network
interconnect, prefer more nodes with a slower network, or
maybe fewer, more powerful multi-processor nodes. Benchmark
results provided by WRF developers concentrate on high-end
supercomputing hardware. The benchmarking system developed
in WISENT provides better guidance for users of Linux clusters,
similar to those found at many D-Grid sites.

Another motivation for developing a WRF benchmarking
system is that it is capable of executing typical test cases, thus
establishing the appropriateness of the available D-Grid resources
for our application. Benchmark cases that obtain expected results
with acceptable performance clear the way to running more
complicated, real-world models in D-Grid. Users cannot be
compelled to use the Grid by scalability arguments alone. They
expect that Grid jobs execute at least as fast and reliably as local
jobs and are reluctant to move their jobs to the Grid if tradeoffs in
service quality are involved.

Fig. 2 illustrates the overall architecture and the main workflow
steps involved in using the WRF Benchmarking System. The
operator starts a backend script to request the execution of
multiple benchmark run jobs (1). Each job is addressed explicitly to
a target Grid site, references a desired benchmark case, the model
variant to use (e.g., a version of WRF compiled with MVAPICH) and
the number of processors. The information about the availability of
model variants and benchmark cases at Grid sites is retrieved from
the configuration database (2). The job is submitted to a central
Condor-G [9] queue, from which it is forwarded using WS GRAM
to the target Globus Toolkit 4 site (3). The job scripts, including
the supporting module described in Section 4, are staged in and
the benchmark case is run at the target site. After the execution

6 7
/> Web Frontend | —»

PostgreSQL

CDB +
Results

% 1/.> [Job submission] [Postprocessing}

Condor-G

NN

GT4

GT:

‘FF" ‘FH 5 §a98

%

Fig. 2. The WRF benchmarking system developed in WISENT.

completes, an XML file describing the individual run is staged
out (4). A periodic post-processing job inserts data from the XML
file into the results database (5). The data are retrieved upon an
external user’s request by the web frontend (6) and presented
either as a raw CSV file or in form of graphical plots. The user
may also view and download the configuration details of the
employed WREF variants and benchmarks. In this way, our optimal
configurations can spread to benefit researchers and forecasters
working with WRF outside of the WISENT project.

6. Performance measurements

This section presents sample results obtained by running the
WRF benchmarks within our system. Additional data (updated as
new benchmarks and model variants are added and executed) as
well as past results for the existing benchmark cases are available
online through the WISENT web site [10].

The key characteristics of an individual benchmark case that
obviously affect WRF execution times are

e Horizontal grid sizes — derived from the extents of the
geographical region over which the simulation is performed
and the requested spatial resolution. For each of the grid points,
the value of every WRF variable (such as temperature, wind
velocity) is simulated over time. The bigger the region and
resolution, the more points are needed in the geographical grid,
and the higher the computational requirements.

e Time step — the interval between the subsequent steps of
the simulation; the smaller the time step, the higher the
computational requirements.

e Number of (nested) domains — WRF supports nested runs in
which a geographical region is subdivided into subregions with
a higher spatial resolution and a smaller time step.

What is less evident is the influence of some additional
parameters such as the different possible combinations of physics
options, the choice of the parallelization mechanism (MPI, OpenMP
or hybrid), the particular implementation of that mechanism, and
hardware. Our benchmarks collect empirical data to improve the
understanding of these relationships.

As an example, the results for the conus12km_2001 case are
shown in Fig. 3. This benchmark case was originally constructed
by the WRF developers at NCAR. However, since the introduction of
WREFv2.2 no performance results for this case have been published.
This single-domain case covers the continental USA area with
12 kmresolution (distance between adjacent grid points), forecast-
ing 3 h from an original 48 h model run. The geographical grid size
is 425 x 300 x 35 points with a corresponding time step of 72 s.

The conus12km_2001 case has been executed in Oldenburg
and Jiilich D-Grid clusters. WRF has been built with the same
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WRF benchmark results for "conus12km_2001" (min time; 750 total runs)
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Fig. 3. Benchmark results for the conus12km_2001 case: Serial — a non-
parallel run for baseline performance. OpenMP — shared-memory OpenMP
parallelization with up to 8 2.2 GHz AMD Opteron processors. MPICH — distributed
memory parallelization using MPICH over Gigabit Ethernet. InfiniBand —
distributed memory parallelization using MVAPICH over InfiniBand [11] in
Oldenburg. InfiniPath — distributed memory parallelization using MVAPICH
over InfiniPath [12] in Jilich.

compiler, but with different parallelization mechanisms. The
reported metric is the best speedup observed during a total of
750 runs. This metric, measured in multiple runs with the same
number of processors performed at different times of day, provides
a reliable impression of WRF's scalability, reducing the possibility
of obtaining results skewed by other temporary activity in the
cluster (such as other users’ applications executing on the same
nodes or accessing the common NFS-mounted file system).

The results for conus12km_2001 reveal the following informa-
tion, which may aid decisions about the number of processors re-
quired for real cases:

e OpenMP variants of WRF scale very poorly. This confirms
anecdotal evidence from the WRF user forum. However, the
speedups are so bad that a further investigation of the causes
is needed.

e WREF's scalability clearly benefits from the reduced latency and
increased bandwidth of the InfiniBand interconnect, compared
to Gigabit Ethernet, which scales very poorly beyond 8
processors. Therefore, WRF users should seek to deploy their
models in InfiniBand equipped clusters.

e There is no noticeable difference between the scalability of the
InfiniBand and InfiniPath based solutions. InfiniPath’s expected
superior performance due to tighter hardware integration did
not become apparent in the benchmark.

e The curves contain irregularities which cannot be explained by
the change in the number of processors or by environmental
factors (e.g., between 94 and 96 processors for model variant
19). Awareness of this characteristic is helpful to avoid a mis-
take of assuming that adding further processors would not im-
prove performance upon observing a first “performance slip”.

7. Conclusions and future work

We have discussed the inherent difficulties of running multi-
processor jobs that require an initialization and cleanup phase
using Globus Toolkit 4. While many Grid workflow description
languages exist that can solve the described synchronization
problem in principle, the scenario is common enough to be
addressed more directly without specialized middleware. The
presented approach can be also applied to reduce the overhead
when submitting a large number of small jobs by packaging them
into a few multi-processor jobs and scheduling at the target site.

Our goal was to collect application-specific performance mea-
surements by taking advantage of the heterogeneity inherent in a
Grid environment. We took the shortest route toward this target by
developing our own benchmarking solution bound to the WRF. The
collected data can serve to develop a run-time performance model
for this particular application. Such a model would allow predic-
tions of the execution time based on the parameters of a specific
WREF job, which would serve both users and schedulers.

While it is appropriate for benchmarks to require the exact
specification of a target execution site, site selection should ideally
be automatic in case of real-world models run by end-users. To
achieve this automation, we intend to employ a meta-scheduler
that utilizes properties such as site configuration, the availability
of input data and the number of free CPUs for target site selection.

Currently, we are evaluating two meta-schedulers: Grid-
Way [13] and Condor-G [9]. GridWay is an open source Grid
middleware which builds upon Globus Toolkit 4 and offers a work-
load manager for meta-scheduling. It is used in Grid infrastructures
based on Globus Toolkit in which jobs can be submitted via the
interfaces pre-WS-GRAM (Globus Toolkit 2) or WS-GRAM (Globus
Toolkit 4). The Grid adapter Condor-G in its most basic configura-
tion submits a job to an explicitly named Grid site. However, Con-
dor’s native ClassAds match-making mechanism [14] can be used
to select a site dynamically according to user-defined criteria.
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