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ABSTRACT

Software behavior visualizations such as UML Sequence
Diagrams are valuable to continuous program comprehen-
sion and analysis. This paper introduces an approach and
implementation to the continuous monitoring and on de-
mand visualization of software behavior, with a focus on
multi-user Java Web applications. Our tool, called Kieker,
monitors response times and control-flow for selected oper-
ations of a software application. The monitoring overhead
is intended to be small enough to continuously monitor a
selection of operations during normal operation. Besides
monitoring, Kieker offers the reconstruction and visualiza-
tion of models of current or past software system behav-
ior in terms of UML Sequence Diagrams, Markov chains,
Component Dependency Graphs, Trace Timing Diagrams,
as well as Execution and Message trace models.

1 Introduction

Software is often considered a black box — it is usually
not visible what happens inside it during operation. Al-
though source code specifies dynamic behavior, the reading
of source code is not a fast way to program comprehension.
Software behavior visualizations are often more suitable to
achieve program comprehension than source code. Soft-
ware design documentation should contain software behav-
ior visualizations, but incomplete and outdated software
design documentation is common in practice. One strategy
to get up-to-date software behavior visualizations without
time-consuming manual reverse engineering is its genera-
tion from monitoring data.

Debuggers, profilers, and some reverse engineering
approaches (e.g. [2]) allow such a behavior analysis from
monitoring data, but often have a considerable impact on
the system performance, which is not suitable for continu-
ous application.

Monitoring data may be incomplete and not be repre-
sentative, because only parts of the system functionality are
covered during a monitoring period or the workload to the
system was not representative. However, software behavior
visualizations and models generated from monitoring data
can significantly reduce the time to get an understanding of
software behavior.

In this paper, we introduce our tool Kieker for the

continuous monitoring of software systems during regular
operation and on demand visualization of internal behav-
ior. Moreover, Kieker creates models of current or past
software system behavior in terms of UML Sequence Di-
agrams, Markov chains, Component Dependency Graphs,
Trace Timing Diagrams, and Message and Execution trace
models. This provides several different perspectives to sup-
port program comprehension, and analysis. Examples for
analysis tasks that benefit from runtime behavior observa-
tions are failure diagnosis, performance analysis, and auto-
matic system management.

We demonstrate the monitoring and visualization ca-
pabilities of Kieker in a running example that uses the
iBatis JPetStore!, a Java multi-user Web application that
represents an online shopping store.

The paper is structured as follows: Section 2 de-
scribes the conceptual models and visualizations that our
tool can synthesize from monitoring data. The general ar-
chitecture and monitoring strategy of Kieker is presented
in Section 3. Section 4 discusses related work, before the
conclusions follow in Section 5.

2 Modeling Software Behavior

This section presents the conceptual models and their visu-
alizations used to express and visualize software behavior.
Furthermore, our approach to mapping monitoring data to
these models is explained.

2.1 Conceptual Model

Figure 1 illustrates the entities of our conceptual model for
the behavior of software implemented using procedural or
object-oriented programming languages such as Java. It
includes the structural entity operation, its runtime instance
execution, the communication entity message, and traces,
which organize related executions or messages.

Operations A core concept of the above-mentioned pro-
gramming languages is to encapsulate and structure sets of
instructions into operations. The terms function and proce-
dure are often used as synonyms. According to UML 2.1.1
[9], we use the term operation.

Thttp://ibatis.apache.org/
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Figure 1. Conceptual model.

Executions An execution denotes the activity of an op-
eration triggered by a call during runtime. Executions
are in a one-to-many relationship to operations. An exe-
cution e is a tuple (o, 1, rt, st) consisting of an operation
o € OPERATIONS, a response time rt, a start time st,
and an identifier ¢, which is a number to distinguish exe-
cutions of the same operation (within the same trace). We
use the convention of writing o’ to relate to the entire ex-
ecution. The special execution $ denotes the caller of an
execution sequence (i.e., a user or another execution in or
out of the system). Therefore, the set of all executions is
EXECUTIONS := (OPERATIONS x N x N x N) U {$}. A
response time is the amount of time elapsed between the
start and end of an execution, e.g. measured in nanosec-
onds.

Execution Traces The perspective of Execution traces
focuses on executions and does not make interactions
between the executions explicit. An Execution trace
E = (id,(e)};) =: (id(E),seq(E)) € N x
seq(EXECUTIONS) is a pair of a trace identifier and a finite
sequence (i.e., an ordered multi-set) of executions. A se-
quence can contain same executions multiple times. Addi-
tionally, the sequence of executions has to follow a particu-
lar order to satisfy the call-return semantics of synchronous
communication: the first occurrences of executions within
an Execution trace are ordered by start times and their last
occurrences by end times (st + rt). An example for an
Execution trace is:

(1,($,ActionServlet.doGet(..)* ,CatalogBean.viewItem(..)",
CatalogService.getltem(..)*,CatalogBean.viewItem(..)',
ActionServlet.doGet(..)",$))

Messages During runtime, operations are executed upon
call messages (CallOperationAction in the UML). In con-
trast to the UML, our conceptual model includes return
messages (messages with flag isCall:=false). The
UML distinguishes synchronous and asynchronous call ac-
tions [9]. The execution that is sender (caller) of a syn-
chronous call messages is blocked until the receiver (callee)
completes and has returned the result. The sender of an
asynchronous call message immediately proceeds without
waiting for return values. Asynchronous operation calls re-
sult in multiple concurrent execution sequences. The ap-
proach in this paper does not model asynchronous call mes-
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Figure 2. UML Sequence Diagrams of two traces.

sages, to avoid additional monitoring overhead. A message
is either a call or a return action between two executions.
The set of all messages is MESSAGES := {Call, Return} x
EXECUTIONS x EXECUTIONS. (Call, a’, b’) represents a’
calling ’ and (Return, b’, a’) represents b’ returning to a'.

Let m = (y,a’,b’) be a message. By type(m) := y
we refer to the message’s type, by snd(m) := a; to
its sender, by rcv(m) := b; to its receiver. We de-
fine the inverse —m = (—type(m),rcv(m),snd(m))
with —type(m) := Call if type(m) = Return, and
—type(m) := Return otherwise.

Message Traces Message traces describe dynamic be-
havior in terms of call and return messages between exe-
cutions within an Execution trace. Message traces have the
advantage of higher readability than Execution traces but
are less compact.

A Message trace M = (id,(m);) =
(id(M),seq(M)) € N x seq(MESSAGES) is a pair of a
trace identifier and a finite sequence of messages, which
must meet certain well formedness conditions:

1. There are no duplicate messages:
Vi<i,j<n:my=m; = i=]

2. A return must follow the corresponding call:
Vi < ¢ < n : type(m;) = Return =
(Vi < j <mn:mj#-m;)

The Message trace corresponding to the former Execution
trace example is:



(1,{(Call, $, ActionServlet.doGet(..)), (Call, Action-
Servlet.doGet(..), CatalogBean.viewltem(..)), (Call, Cata-
logBean.viewltem(..), CatalogService.getltem(..)), (Return,
CatalogService.getltem(..), CatalogBean.viewltem(..)), (Re-
turn, CatalogBean.viewltem(..), ActionServlet.doGet(..)),
(Return, ActionServlet.doGet(..), $)))

2.2 UML Sequence Diagrams

A widely used dynamic architectural viewpoint is given by
UML Sequence Diagrams, which allow to describe the in-
teractions within object-oriented software systems. A Se-
quence Diagram displays structural entities (e.g., objects,
or classes), their executions (ExecutionSpecifications in the
UML) on the lifelines below them, as well as call actions
and returns between execution blocks.

In Kieker, a particular UML Sequence Diagram cor-
responds to the class of well formed Message or equivalent
Execution traces (also called scenario in other literature)
that have the same “shape” — Message or Execution traces
that only differ in response and start times but share the
same sequence of interactions result in the same Sequence
Diagram. Figure 2 displays two UML Sequence Diagrams
generated by our tool based on monitoring data from the
JPetStore. Figure 2(a) visualizes both the Execution trace
and Message trace example.

2.3 Markov Chains

Markov chains provide a common stochastic means to de-
scribe dynamic system behavior of multiple scenarios. For
example, Markov chains are used in intrusion detection to
describe interactions between system components, and in
reliability or performance analysis to characterize the uti-
lization of components during service processing. A (first
order) Markov chain is a probabilistic finite state machine
with a dedicated entry and a dedicated exit state. Each tran-
sition is weighted with a probability. The sum of probabil-
ities of outgoing transitions of a state must be 1. Given
the current state, the next state is randomly selected solely
based on the probabilities associated with the outgoing
transitions.

As illustrated in Figure 3, Kieker can generate
Markov chains from monitoring data, where the states rep-
resent a creation of a message within a trace and the edges
connect following messages. The edges are labeled with
the relative frequencies that messages follow each other.
A missing edge between two messages expresses that the
monitoring data analyzed contains no trace with a sub-
sequence containing only these two messages.

2.4 Component Dependency Graphs

Each software system can be considered a composition of
communicating components. Each component can pro-
vide some services while requiring external services. A
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Figure 3. Markov chain for the two Message traces illus-
trated in Figure 2.

component A is dependent on component B, iff A uses/re-
quires services provided by B. Dependencies among com-
ponents can be described using weighted directed depen-
dency graphs. Each component is assigned a node and each
dependency relation an edge. The edge is directed from a
component using (calling) a particular service to the com-
ponent providing that service. For the illustration, we ex-
tend UML Component Diagrams by including labeled de-
pendencies (see examples in Figure 4). The weight of an
edge denotes the amount of requests for any service pro-
vided by the called component.

During runtime a system executes different scenarios
and thus activates particular instances of components. The
runtime dependency graph among instances of components
at a particular point in time contains a subset of all possible
dependencies of a system. Considering the possibility of
having a multi-user system, we can observe a strong vary-
ing usage and thus varying dependencies among instances
of components. It is feasible to also determine the static
dependency graph for the system as a sum graph from all
possible execution scenarios.

Dependency graphs are required by some approaches
to runtime reconfiguration[7], and root-cause analysis.

2.5 Trace Timing Diagrams

A Trace Timing Diagram is a bar chart providing a tim-
ing view on an Execution trace. The x-axis represents
the elapsed time relative to the trace start time. Bars are
drawn for each execution grouped by the related operations
aligned to the y-axis. For an Execution trace F, an op-
eration o is added iff 3i,rt,st : (o,i,7t,st) € E. Let
e = (o,i,rt,st) € E. Abox of length rt is drawn starting
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Figure 4. Component Dependency Graphs: 4(a)
viewItem, 4(b) addItemToCart, and 4(c) for both
scenarios together.

at time st. The operations are ordered descendingly by the
start time of their first execution.

Figure 5 shows Trace Timing Diagrams for two mon-
itored traces of the scenarios viewItem and addItem,
the UML Sequence Diagrams of which were given in Fig-
ure 2. In contrast to a Sequence Diagram, messages be-
tween called and calling executions are only given implic-
itly by their start and end times (indicated by the vertical
dashed lines). The boxes are labeled with the response
times.

3 Architecture

The architecture of Kieker is displayed in Figure 6. Tp-
mon monitors the software under analysis (SUA) and stores
monitoring data into a database. TpmonControl allows to
configure during runtime, e.g enable/disable monitoring.
Tpan and its plugins analyze and visualize monitoring data
on demand. In the following, we briefly discuss the moni-
toring and instrumentation strategy of Tpmon, describe the
monitoring overhead, and outline how Tpan analyzes and
visualizes the monitoring data.

3.1 Monitoring and Instrumentation Strategy

The instrumentation strategy aims to be non-intrusive and
to realize monitoring that imposes acceptable overhead,
say less than 10%, for continuous operation. Tpmon re-
alizes non-intrusive instrumentation by using Aspect Ori-
ented Programing (AOP) [6] in order to avoid mixing of
SUA’s source code with monitoring logic. The idea of AOP
is to isolate so-called crosscutting concerns, i.e. application
logic that is used in many places in a software system.

We use the AOP framework Aspect] in a particular
way that requires small source code modifications (Java
Annotations) to set monitoring points, as illustrated in List-
ing 1. If the Aspect] agent is activated in the Java Virtual
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(a) Scenario viewItem.
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Figure 5. Example Trace Timing Diagrams.

Machine that executes the SUA then the monitoring logic
will automatically instrument Java methods if they are pre-
ceded by the annotation shown in Line 2 of Listing 1. As-
pect] also allows instrumentation without annotations, but
source code annotations have the advantage that the devel-
opers can see and modify the monitoring instrumentation
in the source code of the SUA.

Listing 1. Line 2 annotates addItemToCart ().

@TpmonMonitoringProbe ()
public String addItemToCart () {

Tpmon directly transfers monitoring data into a database.
The measurement points record timestamps at the begin-
ning and at the end of executions of annotated operations.
Trace identifiers connect executions belonging to the se-
quence of related executions (e.g., a user request). The
complete data analysis is performed by Tpan on a machine
different from those of the SUA. This keeps the monitoring
instrumentation and its overhead relatively small.

The database schema of the monitoring data is dis-
played in the Entity-relationship Diagram (Figure 7). Each
entry in the database, called monitoring record, contains
two timestamps (tin and tout) that denote the start time
and end time of an execution, and attributes that describe a
context of the measurement (experimentid, operation, ses-
sionid, traceid, vmid). The attribute “operation” names the
operation that corresponds to the execution monitored, and
“traceid” is unique for executions of the same trace. Java
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Figure 7. Database schema for the monitoring data

Web application technology provides the concept of ses-
sions (monitored as “sessionid”) that connect single user
requests. The “vmid” allows to distinguish different Java
Virtual Machines.

3.2 Monitoring Overhead

In order to evaluate a possible overhead induced by Tpmon,
we determined and instrumented 20 operations of the JPet-
Store.The workload, generated by the load test tool JMe-
ter? extended by Markov4JMeter’, was increased during
30 minute experiments up to 80 concurrent users. We re-
peated this experiment several times both with Tpmon en-
abled and Tpmon disabled. The median performance over-
head to the server-side response times was 9.3% (average
over all request types).

3.3 Analysis and Visualization

The component Tpan computes Execution and Message
traces from the monitoring data. The assumption of Java
call-return semantics for synchronous communication al-
lows the unambiguous reconstruction of the entities of our
conceptual model (Figure 1). The Execution and Message
traces are the input for plugins that visualize or analyze the
monitoring data. So far, plugins exist to create Markov
Chains and Component Dependency Graphs from one or
more traces and to create UML Sequence Diagrams and
Trace Timing Diagrams from single traces. Kieker uses
open source frameworks such as UMLGraph[12], GNU
plotutils*, Graphviz[3], and R5.

Zhttp://jakarta.apache.org/jmeter/
3http://markov4jmeter.sourceforge.net/
“http://www.gnu.org/software/plotutils/
Shttp://www.r-project.org/

4 Related Work

Related work covers approaches for reconstructing dy-
namic behavior diagrams through monitoring; for instance
in the domains of reverse engineering [2, 8, 13], profiling
and debugging [4, 10, 5], and monitoring [1].

Briand et al. [2] present an approach for reverse en-
gineering of distributed Java software. Similar to our ap-
proach, an AOP instrumentation is used to monitor runtime
behavior and generate UML Sequence Diagrams. How-
ever, the Sequence Diagrams are more detailed: all op-
erations are instrumented, objects are distinguished from
classes, conditions (e.g., “if”’) and loops (e.g., “while”) are
instrumented. This increases the monitoring overhead (e.g.,
more than 100% execution time). This may not be critical
to reverse engineering, but is not suitable for the continu-
ous application during regular operation as intended by our
approach. Additionally, asynchronous and remote commu-
nication is supported, which is not supported by our ap-
proach yet. Another related tool is given by VET [8]. It
also allows to generate Sequence Diagrams from monitor-
ing data and provides a Class Association Diagram, which
is basically a matrix visualization of the Markov Chains
of our tool. Shimba [13] and its component SCED cre-
ates UML Sequence Diagrams from Java monitoring data,
as well. In contrast to other approaches, Shimba combines
static and dynamic analysis to achieve better reverse engi-
neering results. It requires to execute the SUA in the de-
bugger JDebugger and is not intended for continuous oper-
ation. Shimba goes beyond the capabilities of our approach
by providing the synthesis of state diagrams from Sequence
Diagrams.

The open source projects InfraRED [4] and Glassbox
Inspector® use AOP as instrumentation strategy for moni-
toring timing behavior and communication in Java appli-
cations, as we do. The authors of InfraRED reported that
the performance overhead was usually between 1-5% of re-
sponse times in a wide variety of enterprise Web applica-
tions and up to 10% if call trees are monitored in addition
to performance metrics [4]. We experienced similar per-
formance overhead using the same AOP implementation

Ohttp://www.glassbox.com



Aspect]. Jinsight [10] provides several views for runtime
behavior analysis and performance engineering. Results of
Jinsight are now part of the commercial tool Rational Ap-
plication Developer for WebSphere’ and the Eclipse Test
and Performance Tools Platform?®, which uses the Java Vir-
tual Machine Profiling Interface (JVMPI) to allow detailed
performance analysis. Harkema et al. [5] also use the Java
Profiling Interface, which might be too slow for continuous
monitoring during regular operation [11]. However, many
profiling tools aim to provide detailed information to sup-
port debugging such that performance overhead is only a
secondary requirement, in contrast to our tool.

Industrial-strength commercial products are JXIn-
sight®, which provides comprehensive monitoring and vi-
sualization for distributed Java applications, and the profil-
ing and debugging tools Optimizelt'?, and JProbe!!.

The open source tool Java Debugging Laboratory
(JDLab)!?[1] provides similar monitoring data such as the
Tpmon component of our approach and allows to create
control flow graphs. In contrast to our approach, the instru-
mentation is performed via the Java Virtual Machine De-
bugging Interface (JVMDI). Advantages of JDLab are that
no source code of the system under analysis is required and
that a GUI can be used to specify monitoring points. A
possible disadvantage of the current implementation may
be the requirement to run the Java Virtual Machine in de-
bugging mode.

5 Conclusions

We presented our tool Kieker for generating visualizations
and software behavior models such as UML Sequence Di-
agrams, Markov chains, Component Dependency Graphs,
Trace Timing Diagrams and Message and Execution trace
models by monitoring Java applications. The monitoring
component of Kieker has reasonable low monitoring over-
head to allow the continuous application in multi-user Java
Web applications. Visualizations can be generated on de-
mand for single traces (e.g., user requests) or over a time
period. The visualizations and models created by the mon-
itoring data analysis component Tpan supports comprehen-
sion of software behavior and failure diagnosis, or pro-
vides potential input for automatic software management
approaches.

Future work includes to distinguish multiple objects
of the same class and object operations from class opera-
tions (i.e., static methods in Java). Furthermore, we plan to
integrate efficient monitoring for remote and asynchronous
communication, such as RMI and Web services.

http://www.ibm.com/software/awdtools/developer/application/
8http://www.eclipse.org/tptp/
%http://jinspired.com/products/jxinsight
10nhttp://www.borland.com/de/products/optimizeit/
http://www.quest.com/jprobe/
2http://sourceforge.net/projects/jdlabagent
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