A Scenario-based Approach to Increasing Service Availability at Runtime
Reconfiguration of Component-based Systems

Jasminka Matevska and Wilhelm Hasselbring
Software Engineering Group, Department of Computing Science

University of Oldenburg, Germany

{matevska,hasselbring } @informatik.uni-oldenburg.de

Abstract

Component-based business-critical systems evolve dur-
ing their life cycle in order to meet changing requirements
or to improve quality properties. At the same time, main-
taining continuous availability of services is an issue with
increasing importance for these systems. Runtime recon-
figuration supports evolution of systems while maintain-
ing availability of services they provide. In this paper
we present a new approach to runtime reconfiguration of
component-based systems, which aims at optimising avail-
ability of requested services during reconfiguration. For a
particular reconfiguration request, we analyse relevant sce-
narios based on the usage model of the system and exploit
the component protocol information. Considering varying
number of requests for a service at different points in time
as well as the priority of each service, we compute minimal
runtime dependency graphs among component instances
and thus the maximal possible availability of services pro-
vided by the system. Finally, we sketch the system architec-
ture for evaluating our approach.

Keywords component-based systems, component pro-
vided/required services, availability, runtime reconfigura-
tion, architecture-based reconfiguration, scenario modelling

1 Introduction

Reconfiguring component-based systems at runtime
aims at maintaining the availability of provided services
during the reconfiguration process. This plays a very im-
portant role especially for mission critical business sys-
tems to prevent financial loss. The process of reconfig-
uration consists of the following four steps: (1) initia-
tion of a change, (2) identification of affected components,
(3) accomplishment of the reconfiguration and (4) analy-
sis/check of the consistency. There exists a large variety of
reconfiguration approaches with different goals depending

on the focus on a particular step. For example, context-
sensitive and fault-tolerance approaches [2] aim at recogni-
tion of needed changes, graph-transformation approaches
[33, 8, 9] optimise architecture transformation methods,
consistency checks are the focus of protocol-based ap-
proaches [24, 1, 13], deployment strategies concentrate on
the process of performing reconfiguration [28, 5]. All run-
time reconfiguration approaches and techniques aim implic-
itly at the same goal: increasing the system availability.
They usually utilise a particular basic reconfiguration tech-
nique and extend it with specific concepts needed to achieve
the approach specific goal. Orthogonal to them, our ap-
proach focuses on optimisation of the complete process of
reconfiguration and that way maximising the set of available
services during runtime reconfiguration.

For this optimisation, we propose exploiting system us-
age model and component protocol information. We split
each reconfiguration request into a set of component recon-
figuration requests. For each component reconfiguration re-
quest we determine the set of affected components as com-
municating parts and thus reduce the usage model of the
system to relevant scenarios concerning the affected sub-
system to be analysed. Additionally, knowing the compo-
nent protocol information (required service effect automata
[26]), we can analyse the runtime dependencies among af-
fected components and determine a state at system runtime
with a minimal set of used services. Executing the requested
reconfiguration step at this point in time increases the sys-
tem availability during the reconfiguration. Each reconfigu-
ration step is performed as a change transaction [14, 7] and
thus maintaining the consistency of the system.

This paper is organised as follows. First, we present an
example illustrating the problem and our suggested solution
(Section 2), next, we give a more precise description of our
idea in Section 3. In Section 4, we briefly present system ar-
chitecture of our realised system. Related work is discussed
in Section 5. Finally, we conclude and indicate future work
in Section 6.

lrrF

COMPUTER
SOCIETY

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007 IEEE

C Tr

Controller | Account Controller

Customer Controller

‘Web Client

Application Client

withdraw
deposit
makeCharge
makePayment

Provided Services

createAccount

removeAccount
addCustomerToAccount
removeCustomerFromAccount

createCustomer
removeCustomer
getCustomersOfAccount
getCustomersOfLastName

withdrawAction
depositAction
makeChargeAction
makePaymentAction

createAccountAction
removeAccountAction
addCustomerToAccountAction
removeCustomerFromAccount Action

transferFunds getAccountOfCustomer transferFundsAction getAccountOfCustomerAction
getTxsOfAccount getDetails getTxsOf AccountAction getDetailsAction
getAccountOfCustomerAction | createCustomerAction
getDetailsAction removeCustomerAction
getCustomersOfAccountAction
getCustomersOfLastNameAction
Required Services | getData getData getData withdraw createAccount
updateData updateData updateData deposit removeAccount
makeCharge addCustomerToAccount
makePayment removeCustomerFromAccount

transferFunds
getTxsOfAccount
getAccountOfCustomer
getDetails

getAccountOfCustomer
getDetails

createCustomer
removeCustomer
getCustomersOfAccount
getCustomersOfLastName

Table 1. Provided and Required Services

2 Motivating Example

To illustrate our approach we chose a simplified Sun Mi-
crosystems Duke’s Bank Application [31] in Fig. 1. On
the client side it consists of a Web Client and an Applica-
tion Client. The Web Client provides an interface to typical
online-banking services. The Application Client provides
an interface to administration services. The business logic
of all services is realised with three components: a Trans-
action Controller, an Account Controller and a Customer
Controller. The back-end component is a Data Base. Ta-
ble 1 shows an overview of the services provided through
and required by these components.

Transamioﬁ_—‘
,,,,, Controller N
- ~N
- N,
\\
2] N
Web Client AN
N
- SN
_______ N $:‘ N
Account |
——————————— Data Base
3 Controller 2
- s
- 4
- 7
P ’/
-
Apliicatiors ,/’
Client g 4
S~ 7

Controller

Figure 1. Component dependencies in Duke’s
Bank Application

Suppose, we get a reconfiguration request to change the
Account Controller Component. A static reconfiguration
approach would (1) shut down the system, (2) perform
the reconfiguration and (3) start up the system. The sys-
tem won’t be available during the entire process of recon-
figuration. A traditional approach to runtime reconfigura-
tion would coarsely (1) identify concerned components, (2)
identify all affected components, (3) passivate the affected
components, (4) suspend upcoming requests, (5) perform
the reconfiguration and (6) activate the components. Not af-

withdraw
l Web Client: l l Account Controller: l lTransacnon Controller: l l Data Base: l

:1) getAccountOfCustomer | : :
| 2) .gefData »i
' " VU
' '
'

2|
!) - - - - - - .
* - - - - i i
i i i
' I '
' ' '
T " T T
| 3) .getDetails f f
i | '
| 4) .getData »
' T >
' '
' !
[[7 . A__ _ _ _ _
' ! [

3]

- - - : :
' ' '
T T T
' I '
' ' '
' ' '
T T T
i » '
: 6) .updateData :
'
'
I 0 _
' [
*------ m T T i
I | | I

Figure 2. Withdraw Success

fected components would be available during the process of
reconfiguration. The runtime reconfiguration potentially in-
creases the availability of the system. This would, however,
not increase the availability of the system for the given re-
configuration request. The static dependency graph (Fig. 1)
shows that for changing the Account Controller both client
components would be affected. Thus, no client compo-
nent and no service would be available during the reconfig-
uration. Our approach additionally analyses changing de-
pendencies among instances of components during runtime
considering the usage model of the application. For sim-
plicity we consider only the success scenario of the busi-
ness process withdraw as a UML sequence diagram (Fig. 2).
At different points in time we can observe different de-
pendency graphs among instances of affected components.
Fig. 7 (b) presents the runtime dependency graph during

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)

0-7695-2977-1/07 $25.00 © 2007 IEEE

lrr.F

COMPUTER
SOCIETY

steps 1, 2, 3 and 4 and Fig. 7 (c) presents the runtime depen-
dency graph during steps 5 and 6. Performing the requested
reconfiguration during steps 5 and 6 maximises the avail-
ability of the system because neither the Web Client nor the
Application Client are affected and have to be halted. But,
for a multi user Web System, it is very improbable that there
is a point in time during runtime at which there are no run-
time dependencies at all for a particular component. Even
in that case, we show that considering changing workload
during runtime for more precise determination of minimal
runtime dependency graphs can considerably contribute to
increasing the availability during reconfiguration.

3 Our Approach

In this section we present our approach in greater detail.
First, we describe all relevant aspects and additionally used
information, and then we show how they work together to
achieve our goal of increasing availability during runtime
reconfiguration.

3.1 Usage Model

A software application is usually being developed to ful-
fil a particular mission. Therefore, a mission specific usage
model has to be considered as part of the requirements spec-
ification. In general, every usage model consists of different
usage scenarios. Each scenario defines a particular use case
of the system. For each use case there is at least one pos-
sible execution sequence. Each execution sequence is de-
fined through its behaviour and a set of participating compo-
nents. Our meta model is illustrated in Fig. 3. Currently, we
model sequences with UML 2.0 sequence charts. An exten-
sion of the Message Sequence Charts (MSCs), the Live Se-
quence Charts (LSCs) [6] and especially the scenario-based
approach play-in play-out [10] using LSCs for specification
of embedded systems would be considered for the formal
specification of our scenarios. LSCs are more expressive
than UML sequence charts and MSCs, because they can
distinguish between possible and mandatory behaviour. A
formal semantics of LSCs is expressed in terms of Timed
Biichi Automata. LSCs are used for system verification and
model checking. An extension of the behaviour definition
including transition probabilities (e.g. as a Markov chain
model [32]) could be used to achieve a weighting of se-
quences and thus reducing the amount of transition states
considered as relevant for the determination of minimal run-
time dependency graphs.

3.2 Service Effect Specification

A service effect specification (SEFF) of a component
contains a set of descriptions on how each provided service
of a component calls its required services. A SEFF can be
seen as an abstraction of the control flow through the com-
ponent. It can be modelled as a finite state machine (FSM)
and can contain sequences, branches, and loops. A detailed

UsageModel

1.7

UsageScenario

1 Component

ExecutionSequence

0\ Behaviour
1

Figure 3. Usage Meta Model

and formal description of SEFFs can be found at [26]. A
Service execution is a transition of a protocol state machine.
For each service provided by a component we can define an
appropriate SEFF. A set of all SEFFs for a component de-
fines its external behaviour.

Let’s take a look at our example, considering the
withdraw-scenario. If a Web Client executes its provided
service withdrawAction (Fig. 1) it has to call some of its
required services. First it calls the service getAccountOf-
Customer, second, it calls the service getDetails, both pro-
vided by the Account Controller. Finally, it calls the service
withdraw provided by the Transaction Controller. This is
illustrated with an UML state diagram in Fig. 4.

Using SEFFs we can analyse the past and future be-
haviour of a component and its dependencies. Considering
a particular scenario being executed we can determine cor-
responding runtime dependency graphs.

getAccountOfCustomer

=

s1

getDetails,

i

s2

withdraw,

A

s3

o

Figure 4. Web Client withdrawAction service ef-
fect specification

lrr.F

COMPUTER
SOCIETY

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007 IEEE

3.3 Runtime Dependency Graphs

Dependencies among components are static and repre-
sent the worst case dependency graph of the system. We
consider only systems with acyclic dependencies. Each
component can provide some services while requiring ex-
ternal services. A component A is dependent on component
B, iff A uses/requires services provided by B (depicted in
Fig. 5).

Figure 5. A is dependent on B

We assume that each component adhere to the life cycle
protocol shown in Figure 6 after it has been deployed. A
component is active and not used if there are instances of
it executing some services. A component is passive and
used if another component has an active reference to it. It
is possible that a component is active and used at the same
time. To ensure the consistency of the system, a component
can be changed only if it is in the state blocked/ready to
change and only free (not active and not used) components
can be blocked [16].

(blocked / ready to change)

(active and not used) (passive and used)

active and used

Figure 6. Component Life Cycle Protocol

During runtime a system executes different scenarios
and thus activates particular instances of components. At a
particular point in time there are components that are free
(not active and not used). At that point in time they do not
have any dependencies. The runtime dependency graphs
among instances of components can never contain more
dependencies (edges) than a static dependency graph of a

system. For a particular reconfiguration request there exists
a set of affected components (a transitive closure including
components to be exchanged and dependent ones) as a
subgraph of the static dependency graph. Considering
the possibility of having more than one instance of a
component, we define the weight of an edge. Furthermore,
we have to consider the number of requests on a service
and its weight for each provided service of the component
(destination node). To determine which of those services
are currently used for a particular scenario being executed,
we exploit the required service effect specification [17].
Using this information we can define a minimal runtime
dependency graph as a graph with a minimal sum weight.
We calculate the sum as follows:

m n

Wier(t) =Y > Wis(1)

j=1i=1

where

Wiet(t) is the weight of a runtime dependency subgraph at
point in time .

W,;;(t) is the weight of service required by a component ¢
and provided through a component j at point in time .

Ri;(t)

Wi;(t) = Ou, (1) “1i;(t)

R;;(t) is the number of requests on a service required from
a component ¢ and provided through a component j at
point in time .

0;;(t) is the amount of offers of a service required from a
component ¢ and provided through a component j at
point in time ¢. Note that we consider only available,
well functioning components, so O;;(t) >1.

1;; is an importance of service required at point in time ¢
by a component ¢ and provided through a component j

~J=1 for regular services
Y 1>1 for important services

Back to our example with a bank application. We can
draw the static dependency graph and number the nodes se-
quentially (Fig. 7). The worst case during runtime of the
system would be maximal request for all services I2;;,, ..
and a minimal offer of 1 for all O;;. This would produce
maximal weight of the system dependency graph:

Wma$ = Wl?"mu,m +W14'ma:z +W247naw +W257naw +W36'mam
FWi6 00 + Wo6 0o = Bi3mae 130000 + Bt L1400
+ Rogon 24,00 + R25,000 125,000 + 36,000~ 136,100

+ Ra6,nan 126,000 T B56,000 * 1564

lrr.F

COMPUTER
SOCIETY

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007 IEEE

Legend:

Web Client
Application Client
Transaction Controller
Account Controller
Customer Controller
Data Base

o WN =

(a)

i

O © ©

o Yo

(b) (c)

Figure 7. DependencyGraphs: (a) Static de-
pendency graph, (b) Runtime dependency
graph during steps 1,2,3 and 4 (c) Runtime
dependency graph during steps 5 and 6

Considering the reconfiguration request to update the
Account Controller and observing the withdraw sequence
(Fig. 2), we notice that during steps 5 and 6 there are no de-
pendencies from/to the Account Controller (Fig. 7 (¢)), so
we could update this component without affecting any other
component and do not have to calculate any weights. But,
if we get a request to exchange a component providing fre-
quently used service(s) as usual for web applications, there
would be probably no runtime dependency graph without
an edge from/to this component. Even then, we can find
a point in time providing maximal availability. Therefore
we calculate the weight of the affected subsystem in the (1)
worst case, (2) during steps 1 and 2, say at point in time ¢;
and (3) during steps 3 and 4, at point in time ¢y (Fig. 7).
To achieve this, we need additional information about the
workload of each service, the maximal amount of simulta-
neous requests: I2;; and the minimal amount of offered
service Oyj, ... This information is usually part of a sys-
tem workload specification, but it has to be refined for each
service. Even if we don’t have these values, it is possible
to determine them using the usage profile. For particular
points in time during runtime, there is a possibility to esti-
mate this information through monitoring the running sys-
tem and logging the requests and offered service instances.
In our example, we assume an existence of the values in
Table 2.

According to the scenario, we consider the services
getAccountOfCustomer and getData at point in time ¢; and
services getDetails and getData at point in time ¢5. Hence,
we can have different values for the same I;;, at different
points in time. We can calculate following weights for the
worst case, point in time ¢1 and point in time #1:

Variable | Worst Case | ¢1 | t2
Ryy 20 16 | 4
Rys 25 20 | 10
O14 1 8 | 2
Ogs 1 5 5
Iy 5 5 4
146 10 5 1

Table 2. Estimated Values

Wsetrnaa: = W14m,a:c + W46mam =
Bidpae D14pae | B460000 1460000 _
+ =350
Ol4min Ol4min

Wiet,, = Wha,, + Wae,, =
Ria,, - s,

=30
014t1 014t1
Wsettg = W14t2 + W46t2 =
R1412 . Il41,2 R46t2 14612 10

O14,, O14,,

Note that selecting the set of affected components
heretofore increases the availability of the system if the set
of affected components is a subset of a system. But, this is
unfortunately not always the case. Considering the chang-
ing weight of edges during runtime, we can anyway achieve
a higher availability. In this example we can determine
two different dependency graphs, even if they have similar
edges. This differentiation makes an additional optimisa-
tion of the availability possible through choosing the point
in time ¢, for performing the requested reconfiguration.

3.4 Service Dependent Availability

We define availability similar to [30, 32, 4] as point avail-
ability:

Availability is readiness of a system/component
for delivering a requested service at a particular
point in time.

One could assume that the availability of a service re-
quired from a component ¢ and provided through a compo-
nent j, has a constant value A;; depending only on its inter-
nal structure. But, taking a look at our example in Fig. ??,
one can recognise that this assumption is very naive. The
Web Client service withdrawAction call other external ser-
vices (getAccountOfCustomer, getDetails and withdraw).
Thus, the availability of each of them influences the avail-
ability of the service withdrawAction. Furthermore, we
have to consider the execution environment (e.g. availabil-
ity of connections) as an additional factor. Putting them all

lrrF

COMPUTER
SOCIETY

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007 IEEE

together, we can define the availability of a service required
from a component ¢ and provided through a component 5 as
follows:

Aij = Aijint ’ Aij ext ATJ env

where

Ajij... s the availability of the internal structure of the ser-

vice.

A

ijope 1S the availability of the external services call by the
service.

A

ijomy 18 the availability of the environment relevant for
the service.

Our approach does not focus on prediction or determina-
tion of these values. We rather include the explained depen-
dencies to our availability relation and consider using of al-
ready determined values by prediction approaches [27, 20].

For a particular reconfiguration request we can deter-
mine a subsystem including a set of affected components.
The availability of this subsystem would then be:

Doy 2 Ai

m-n

Asub =

Considering the fact that (1) a system/component can
provide more than one service, (2) they can have different
importance, and (3) there is a varying number of requests
on a particular service at a particular point in time ¢, we can
identify following relation between availability of services
and runtime dependency graphs:

1
Wi;(t)

It is obvious that a minimal weight would lead to a max-
imal possible availability for a particular subsystem.

Asub(t) = . Asub

4 Platform Independent
Manager PIRMA

Reconfiguration

As a proof of our theoretical concept [16] we developed a
system called Platform Independent Reconfiguration Man-
ager PIRMA (Fig. 8) [18]. The current implementation is
an Eclipse Application, based on Java EE [31] and uses the
JBoss Application Server [12]. It consists of the follow-
ing four top-level components: Reconfiguration Analyser,
Dependency Manager, Transaction Manager and Reconfig-
urator .

Our approach concentrates on analysing and performing
a reconfiguration request, rather then investigating its ori-
gin. Our system PIRMA processes reconfiguration requests
coming from an external system (e.g. Fault Detection Sys-
tems). It first analyses the external reconfiguration request
and generates an XML request containing all requested ac-
tions and a set of affected components for each action. An
action can be (1) add, (2) delete or (3) update. For each

Platform Independent Reconfiguration Manager- PIRMA
Reconfiguration Request £]| Architecture Change Requests
R e S
| |
L | H
1
Updated Parameters]
pommmmmmmmm Dependency Manager
1
1
User S i
. N | 1
P3| 1
Reconfiguration Confirm/ Abort H
foneger 1
1
1
Componert Change Requests |
Re-Deployment Subsystem - —— — = —————— — —
£]
Reconfigurator

Figure 8. Platform Independent Reconfigura-
tion Manager-PIRMA

component to be reconfigured, we can generate an appro-
priate request.xml containing information about the compo-
nent and the requested action. This data is then inserted
into the ejb-jarxml deployment descriptor which is then
opened in an integrated XML editor for further modifica-
tions. When the user has finished editing the deployment
meta data for a particular module, the deployment content
is packaged into a module archive and transferred to the tar-
get server system for deployment.

The performing of reconfiguration is realised as a trans-
action [15] called controlled runtime redeployment through
our Redeployment Subsystem [19]. It presents an extension
of the concepts of hot deployment and dynamic reloading
supported by the WebSphere Application Server [11]. Both
are well-suited for development and testing, but pose un-
acceptable risks to production environments. Our concept
of controlled runtime redeployment implements the J2EE
Deployment API [29] and extends it by specifying rede-
ployment to be transparent to users thus allowing it to be
used in productive systems. Our system dynamically de-
termines a redeployment set as a transitive closure of all
currently referenced components and the sets redeployment
points due to achieve a transparent redeployment. Having
found these, it establishes a synchronization barrier that al-
lows suspending execution in the redeployment set. All out-
standing invocations that started a new transaction [31] can
be completed, while new invocations have to wait on this
synchronization barrier. The suspended target component
archive shall then be exchanged and recreated together with
all other modules from their redeployment set. Finally, the
synchronization barrier will be released so that any invoca-
tions that may have been suspended can continue to execute
the new code. This redeployment transition has the follow-
ing key attributes:

e Handle transparency: A redeployment transition is
not interruptible by executions of the targets module

lrrF

COMPUTER
SOCIETY

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007 IEEE

codes. This means, no handle that is used by clients to
communicate with components contained in the target
module, will ever fail due to the module being unavail-
able.

e Weak consistency: Upon successful completion, the
target module is in an execution-ready, deployed state.
If the deployment of the module fails due to in-
valid meta-data declarations, the transition results in
a stopped module.

For more details see [19, 21].

5 Related Work

Runtime reconfiguration is a very active research area
in various disciplines of computer science. Protocol-based
reconfiguration approaches [24, 1, 13] work on dynamic
component updates. They consider contractually defined
components with behaviour-specifying interfaces [25] for
checking consistency and interoperability, but don’t use the
runtime state and the interaction protocols for restricting
runtime dependencies among instances of components.

Architecture-based reconfiguration approach [3] a meta-
framework called ’Plastik’ supports the specification and
creation of runtime component-framework-based software
systems and facilitates and manages the runtime recon-
figuration of such systems while ensuring integrity across
changes is proposed. Runtime dependencies are considered
for ensuring consistency, but not for increasing availability.
At [22, 23], the runtime reconfiguration is basically a re-
placement of single components at architectural level, but
no runtime dependencies are addressed. Structural changes
are performed by checking and altering connector bindings.

Graph-transformation reconfiguration approaches [33,
8, 9] define possible architecture changes as a graph-
transformation. Their focus is on correct definition of possi-
ble reconfigurations, rather then increasing availability dur-
ing the process of reconfiguration.

Runtime redeployment approaches [28], [5] cover the
technical aspects of redeployment and are thus similar to
our basic system, but they consider no architectural changes
of the system and use no runtime dependencies among in-
stances of components for additional increasing of avail-
ability.

Our approach aims at optimising of the process of run-
time reconfiguration. We consider the usage model of
the system and component protocol information, with the
explicit goal of increasing the availability of the system
through maximising the set of available services during run-
time reconfiguration. An additional advantage of our ap-
proach is the possibility of extending/combining each step
of the reconfiguration process with other approaches. For
example, including more consistency checks, by compar-
ing protocols or determining if performing of a particular
reconfiguration request would result in a consistent archi-
tecture using graph transformations.

6 Summary and Further Work

In this paper we presented a new approach to increas-
ing service availability during runtime reconfiguration of
component-based systems. On a given reconfiguration re-
quest, by exploiting additional information concerning the
system usage model and service-based behaviour proto-
col of components, we can determine an optimal system
runtime state for performing the requested reconfiguration.
We briefly represent the system architecture of our Plat-
form Independent Reconfiguration Manager PIRMA, which
has been implemented based on Java EE, using JBoss and
Eclipse as a basic version. Furthermore, we presented con-
ceptual extension/optimisation of the dependency manager
of our system, which establishes maximisation of the ser-
vice availability:

For a particular reconfiguration request we can compare
the set of affected components (a transitive closure includ-
ing components to be exchanged and dependent ones) with
each set of participating components corresponding to a se-
quence of a usage scenario. If there is an interception, then
we identify a relevant scenario. In case of no interception,
we can ignore the sequence. For selected scenarios we can
compute all possible runtime dependency graphs of the par-
ticipating subsystem. Using the service effect automata we
can exclude past dependencies and later future ones. This
way we can determine the minimal runtime dependency
graph (see Section 3.3) and the corresponding minimal re-
deployment set and locate system runtime states which are
convenient for performing the reconfiguration according to
a given request. Next, we have to identify those states by
monitoring the running system and start the reconfiguration.

At this point we do not consider reconfiguration duration
as a critical factor as we perform the reconfiguration request
sequentially. Furthermore, our redeployment subsystem dy-
namically determines the redeployment set to avoid possi-
ble inconsistency caused by incorrectly determined runtime
states or their faulty recognition by monitoring. This way
we can assure a safe reconfiguration with a maximal pos-
sible availability. Currently, we work on evaluation of our
theoretical concept for determination of minimal runtime
dependency graphs. We simulate normal user behaviour for
example systems and analyse monitored data due to create
the appropriate service effect automata and determine the
point in time with a minimal dependency graph for partic-
ular reconfiguration requests. Next step would be consider-
ing transition probabilities in our usage model for additional
optimisation of availability. As a future work we consider
to integrate the extension of the dependency manager pre-
sented in this paper in our System PIRMA.

References

[1] R. Allen, D. Garlan, and R. Douence. Specifying dynamism
in software architectures. In Proceedings of the Workshop
on Foundations of Component-Based Software Engineering,
Zurich, Switzerland, September 1997.

lrr.F

COMPUTER
SOCIETY

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007 IEEE

[2] N. Arshad, D. Heimbigner, and A. L. Wolf. A planning [18] J. Matevska-Meyer, W. Hasselbring, and R. Reussner. Soft-
based approach to failure recovery in distributed systems. ware architecture description supporting component deploy-
In WOSS ’04: Proceedings of the 1st ACM SIGSOFT work- ment and system runtime reconfiguration. In Proceedings
shop on Self-managed systems, pages 8—12, New York, NY, of Workshop on Component-Oriented Programming WCOP
USA, 2004. ACM Press. 2004, Oslo, Norway, June 2004. University of Oslo.

[3] T.V.Batista, A. Joolia, and G. Coulson. Managing dynamic [19] J. Matevska-Meyer, S. Olliges, and W. Hasselbring. Run-
reconfiguration in component-based systems. In Proceed- time reconfiguration of J2EE applications. In Proceedings of
ings of the 2nd European Workshop on Software Architec- DECORO04 - 1st French Conference on Software Deployment
ture, EWSA 2005, pages 1-17, 2005. and (Re) Configuration, pages 77-84, Grenoble, France,

[4] S. Becker, W. Hasselbring, A. Paul, M. Boskovic, H. Kozi- Oct. 2004. University of Grenoble.
olek, J. Ploski, A. Dhama, H. Lipskoch, M. Rohr, D. Win- [20] J. D. Musa. Software Reliability Engineering: More Reli-
teler, S. Giesecke, R. Meyer, M. Swaminathan, J. Happe, able Software Faster And Cheaper. Authorhouse, 2004.

M. Muhle, and T. Warns. Trustworthy software systems: A [21] S. Olliges. Runtime Reconfiguration in J2EE Systems. Mas-
discussion of basic concepts and terminology. ACM SIG- ter Thesis supervised by Jasminka Matevska and Wilhelm
SOFT Software Engineering Notes, 31(6):1-18, 2006. Hasselbring, University of Oldenburg, Germany, Depart-

[5] X. Chen and M. Simons. A component framework for dy- ment of Computing Science, Software Engineering Group,
namic reconfiguration of distributed systems. In J. Bishop, Dez 2005.
editor, Proceedings of IFIP/ACM Working Conference on [22] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-
Component Deployment, pages 82-96, Berlin, Germany, based runtime software evolution. In Proceedings of the
June 2002. Springer-Verlag Berlin Heidelberg. International Conference on Software Engineering 1998

[6] W. Damm and D. Harel. LSCs: Breathing life into mes- (ICSET98), pages 177-186, Apr. 1998.)
sage sequence charts. Formal Methods in System Design, [23] P. Oreizy and R. N. Taylor. On the role of software archi-
19(1):45-80, 2001. tectures in runtime system reconfiguration. In Proceedings

[7] J. Gray and A. Reuter. Transaction Processing: Concepts of the International Conference on Configurable Distributed
and Techniques. Morgan Kaufmann, 1993. Systems 4,.Annap0hs, Maryland, May 1998.

[8] L. Grunske. Automated software architecture evolution with [24] F. Plasil, D Balek, and R 'J anecek.
hypergraph transformation. In Proceedings of the 7th Inter- SOFA/ DCUP:ArchHecture for _component tra}dmg and
national IASTED on Conference Software Engineering and dynamic updating. 1In Proceedings of International Con-
Application, Nov 2003. ference on Configurable Distributed Systems, pages 35-42.

[9] L. Grunske. Formalizing architectural refactorings as graph IEEE CS Press, Mar. 1998. .
transformation systems. In Proceedings of the Sixth Inter- [25] F. Plasil and S. Visnovsky. Behavior protocols for software
national Conference on Software Engineering, Artificial In- components. IEEE Transactions on Software Engineering,
telligence, Networking and Parallel/Distributed Computing 28(11):1056-1076, Nov. 2902'

(SNPDOS), volume 00, pages 324—329, Towson, Maryland [26] R. H. Reussner. Parameterised contracts for software com-
USA Ma}; 2005. IEE]é Computer S oci;ty. ’ ’ ponents. Technical report, DSTC Pty Inc., Melbourne, Aus-
[10] D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based tralia, Apr. 2002. .
Programming Using LSC’s and the Play-Engine. Springer- [27] R H Reussger,' H. W. Schmidt, and I. H. Poernomo. 'Re—
Verlag New York, Inc., Secaucus, NJ, USA, 2003. liability prediction for component-based software architec-
[11] IBM, http://publib.boulder.ibm.com/infocenter/wsdoc400/. tures. J. Syst. Softw., 66(3):241-252, 2003. . .
W . . . [28] M. J. Rutherford, K. Anderson, A. Carzaniga, D. Heim-
ebSphere Application Server Documentation, Version 6, . o .
2007. bigner, and A. L. Wolf. Reconfiguration in the Enterprise
[12] JBoss Group, http://www.jboss.org/docs/index. JBoss Ap- JavaBean component model: In J. Bishop, editor, Pro-
plication Server Documentation. Retrieved 2007-03-20. ceedings of IFIF/ACM Working Conference on Component
[13] F. Kon and R. H. Campbell. Dependence management in geg loy. me\r/zt,lpa%esl.m;l&a ll?i)erhn, Germany, June 2002.
component-based distributed systems. [EEE Concurrency, pringer-verlag Berlin Heidelberg. . .
8(1):26-36, Jan. 2000 [29] R. Searls. J2EE Deployment API Specification. Sun
[14] J Kiramer z’m d J Mag.ee The evolving philosophers prob- Microsystems, http://java.sun.com/j2ee/tools/deployment/,
: .) . Nov. 2003. Retrieved 2007-03-13.
lem: Dynamic change management. /[EEE Transactions on
Software Engineering, 16(11):1293-1306, Nov. 1990 [30] I. Sommerville. Software Engineering. Addison-Wesley,
. ’ _— ’ oo 2007.
[15] M. thtle, J. Maron, and G. Pthk,' Java Trgnsactzon Pro- [31] Sun Microsystems, http://java.sun.com/javaee/5/docs/tutorial/.
cessing: Design and Implementation. Prentice Hall PTR, .
U Saddle Ri NJ. USA. 2004 The Java EE 5 Tutorial, 2006.
pper saddie River, NJ, > . . [32] K. S. Trivedi. Probability and statistics with reliability,
[16] J. Matevska-Meyer and W. Hasselbring. Enabling reconfig- . . Lo
uration of component-based systems at runtime. In J. van queuing, and computer science applications. pub-PH, pub-
| P N ystel i o PH:adr, 1982.
Gurp and J. Bosch, editors, Proceedings of Workshop on [33] M. Wermelinger. Specification of Software Architecture Re-

(7]

Software Variability Management, pages 123—125, Gronin-
gen, The Netherlands, Feb. 2003. University of Groningen.
J. Matevska-Meyer, W. Hasselbring, and R. Reussner. Ex-
ploiting protocol information for speeding up runtime re-
configuration of component-based systems. In Proceedings
of Workshop on Component-Oriented Programming WCOP
2003, Darmstadt, Germany, July 2003. Technical University
of Darmstadt.

configuration. PhD thesis, Universidade Nova de Lisboa,
1999.

lrr.F,

COMPUTER
SOCIETY

33rd EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2007)
0-7695-2977-1/07 $25.00 © 2007 IEEE

