A Classification Scheme for Self-adaptation Research

Matthias Rohr*, Simon Giesecke, Wilhelm Hasselbring,

Software Engineering Group, Carl von Ossietzky University of Oldenburg
26111 Oldenburg, Germany

Marcel Hiel, Willem-Jan van den Heuvel, Hans Weigand
InfoLAB, University of Tilburg
5000 LE Tilburg, The Netherlands

Abstract

The research on self-adaptation is distributed across many
sub-disciplines of computer science. This leads to the rein-
vention of concepts and impairs the ability to establish a struc-
tured research program on self-adaptation. This paper con-
tributes a classification scheme that allows to structure self-
adaptation research and to compare approaches from different
domains. The classification scheme is based on basic concepts
that are shared across the research disciplines presented in this

paper.

1 Introduction

Self-adaptation promises advantages such as increased qual-
ity of service, higher flexibility, improved dependability, and
lower maintenance costs. On the other hand, self-adaptation
can significantly increase the system complexity and the risks
for unintended behavior.

It is difficult to define self-adaptation, and therefore it is
hard to say whether a system is self-adaptive or not. A
typical characteristic of a self-adaptive system is the use of
a second conceptual perspective to observe the system or en-
vironment, and to adapt the primary operation under certain
circumstances. Self-adaptation can be considered as an addi-
tional operational unit on top of primary system operation.

Research on self-adaptation in computer science is dis-
tributed across many subdisciplines. Each subdiscipline re-
gards self-adaptation from a restricted point of view and fun-
damental cross-domain research is essentially missing. This
leads to the reinvention of concepts and impairs the ability to
establish a structured research program on self-adaptation.

This paper contributes a classification scheme that allows
to structure self-adaptation research, to compare approaches
from different domains, and to identify related research. The
classification scheme is based on general concepts of self-
adaptation from the study of several related computer science
domains, which are discussed within this paper.

This paper is structured as follows: Section 2 briefly dis-
cusses computer science subdisciplines that are related to self-
adaptation research. Section 3| presents general concepts,
goals, and terminology of self-adaptation that are shared

*This work is supported by the German Research Foundation (DFG),
grant GRK 1076/1

among the different domains. In section 4, a classification
scheme for self-adaptation research is introduced. The sum-
mary and future work follows in section 6.

2 Subdisciplines Related to Self-

adaptation Research

A large number of computer science subdisciplines apply
and perform research on self-adaptation virtually independent
from each other. In this section, some of these subdisciplines
are discussed to identify shared basic concepts.

2.1 Autonomic Computing

The IBM Autonomic Computing initiative [1] addresses the
problem that the number of systems and connected systems
are growing rapidly and the accompanying complexity in
maintaining them grows with it. The idea behind autonomic
computing is that systems become more self-managing and
thereby reduce the amount of time and costs put into main-
taining them.

Autonomic Computing draws its vision from the au-
tonomous nervous system. The human nervous system is the
“controller” in the human body that keeps our vital functions
in equilibrium. An example of keeping this balance is that it
keeps our blood-sugar level on a certain point and modifies it
when necessary.

2.2 Self-healing Software Systems

There is no commonly accepted definition of self-healing in
the literature. We characterize self-healing in the context of
complex software systems as follows: Self-healing software
systems derive, select, and execute repair operations when un-
satisfactory quality of service is monitored and detected. Self-
healing is the process of maintaining satisfactory quality of
service of a primary system by a control component during
runtime in the presence of faults.

One typical application domain of self-healing is complex
enterprise software systems. For many companies, such sys-
tems are mission-critical because they are essential part of the
primary business services.

For instance in the domain of complex enterprise software
systems, one motivation for self-healing is to reduce repair
time by an automation of simple repair tasks. An automatic

repair is usually executed much faster than one performed by
an human administrator. As automatic repair is limited to rel-
atively simple problems, it should not be considered as a re-
placement for an human administrator.

2.3 Service-level Agreements

Service Level Agreements (SLAs) provide a established ve-
hicle not only for capturing non-functional requirements but
also for monitoring and enforcing them. SLAs are special con-
tractual agreements that encapsulate multiple concerns, and
symmetrically reconcile the perspective of service provider
and invoker. Besides mutual commitments regarding to-be-
delivered services, e.g., timeliness and availability, the SLA
should stipulate penalties, contingency plans for exceptional
situations, and mechanisms for recovery. Thus, they con-
stitute a instrument to define and enforce Quality of Service
(QoS) requirements, that can be formulated in standard SLA-
languages, such as WS-Agreement [2].

2.4 Software Agents

A commonly used definition for agents is given by
Wooldridge [3]: “An agent is a computer system that is situ-
ated in some environment, and that is capable of autonomous
action in this environment in order to meet its design objec-
tives.”

From the perspective of self-adaptive software, agents can
be regarded a technique for achieving the goals that have been
set for self-adaptation. Although a slightly different context is
used and therefore a different accent is put on the word self-
adaptation. Namely, the reactive and proactive properties of
agents are the main characteristics that provide an agent with
the ability to adapt or self-adapt. However, the emphasis in
the term of self-adaptive software is on the self-part. In agents
this is taken more broadly in the sense that the agent could
also (try to) change the environment in which they reside.

2.5 Ad-hoc Networks

Wireless communication has stimulated research on self-
organizing networks. The advantage of these so-called ad-hoc
networks is that they do not need any pre-established structure.

Self-adaptation and ad-hoc networks are related in that
such networks are self-configuring and adaptive. The intent
is to realize self-organized networks that have no regulating
authority like a service provider. Niemeld and Latvakoski [4]
confirm these aspects in their definition of self-organization
as “the ability of a system to spontaneously increase its orga-
nization without the control of the environment or an encom-
passing and external system”.

3 Basic Concepts of Self-Adaptation

As Figure |llillustrates, a separation can be made between the
controller and the adaptable system. A similar distinction is
made in control theory between the controller and the con-
trolled object. The controller manages and adapts the adapt-
able system. The sensors attached to it monitor the possible
changes that can occur, which originate from the environment

Environment

Sensors
Controller |«

Actuators Sensors

Adaptable System

Figure 1: Typical architecture of a self-adaptive system

or from the adaptable system itself. The actuators are used by
the controller to apply changes to the adaptable system.

3.1 Characterization / Definition

A software entity has the capability of self-adaptation if it can
automatically change its structure or behavior, based on obser-
vations of its system or environment, with the goal to maintain
or improve the Quality of Service.

A slightly different description that does not explicitly con-
sider the environment, is given by Laddaga et al. [5]: “Self
adaptive software is software that monitors its own operation,
detects faults and opportunities, and repairs or improves itself
in response to faults and changes. It effects the improvement
by modifying or re-synthesizing its programs and subsystems,
using a feedback control-system like behavior.”

It should be noted that it is likely that Laddaga et al. [5]’s
description refers to ‘failures’ by the term ‘faults’ as it is today
commonly distinguished. The detection of failures means that
some unintended operation is recognized and the term fault is
defined as the source of a failure [6]]. Usually, the localization
and identification of faults is much more challenging than the
detection of a failure. For example, finding the reason for a
memory leak in the source code is much more difficult than to
detect an “out-of-memory” failure.

3.2 Typical goals

One possible goal of self-adaptation in software is the reduc-
tion of maintenance costs. This goal has also been used in the
context of autonomic computing [7]. Software maintenance
is largely based on recurring tasks and if these tasks could be
automated then this could save much administration effort.

Other typical goals are the improvement of Quality of Ser-
vice (especially performance), dependability (e.g., reliability,
availability and performability [8]) and fault tolerance, design
efficiency, and interoperability.

3.3 The Adaptation Cycle

Self-adaptation can be structured as a cycle of three activities:
Observation, analysis, and adaptation (Figure 2)).

(Observation »

Adaptation Analysis

_/

Figure 2: Activities of self-adaptation

3.3.1 Observation

To perform measurements, one has to find a trade-off between
information quality (detail and timeliness) and caused perfor-
mance overhead. Detailed and frequent monitoring, like the
recording of the control flow, is often computationally too ex-
pensive for normal operation. Additionally, a large overhead
of redundant or useless data can make the evaluation more
complex.

For a sophisticated maintainable self-adaptive system, it is
required to design a monitoring model in a systematic process
to ensure that the right measurements are made. The moni-
toring model should prescribe what, where, and when data is
acquired.

What: What to be measured can be expressed in terms of
metrics (e.g., service response time in ms). A system-
atic way to derive metrics is the Goal-Question-Metric
(GQM) [9] approach.

Where: This aspect specifies at which points in the sys-
tem architecture (or environment) data collection is per-
formed. Both for the interpretation of the monitored data
and for the implementation and maintenance of the soft-
ware, it is important to know where data was and is ac-
quired. Additionally, the precision of the localization
of a phenomena that requires adaptation, and hence, the
chance of successful adaptation, directly depends on the
knowledge about the origin of the data.

When: It is specified at which points in time the model is
updated.

In practice, monitoring is often implemented manually.
This approach is not optimal as the primary application logic
will be mixed with monitoring logic, and this reduces the
maintainability of the source code. The technique of inte-
grating the monitoring logic into the system (instrumentation)
should honor that monitoring is a so called cross-cutting con-
cern of system behavior. Two major alternative techniques for
the instrumentation are middleware interception and source
code instrumentation (e.g., via aspect oriented programming
(AOP) [10] that allows isolated realization of cross-cutting
concerns).

Middleware interception manipulates or extends the mid-
dleware platform (for instance the application server, or the
virtual machine), so that for example component interaction
is automatically observed.

3.3.2 Analysis

The analysis activity summarizes several sub-activities related
to the processing of the observations and the identification
and selection of adaptation operations. Figure 2 shows an ar-
row from “Analysis” to “Observation” to indicate that in many

cases, no adaptation is required.

A straightforward design for this activity are simple rules
(e.g., “if disconnected, then reconnect”). Such rules contain
constraints that specify adaptation operations for a particular
subset of observations. When an observation violates one of
the constraints then a predefined operation will be executed.
For the specification of the rules, some approaches from the
literature use special first-order predicate logic that are de-
signed to express system behavior (e.g., OCL, Armani). A
major problem is that already a few simple rules can result
in very complex behavior so that it is not feasible to predict
behavior of the self-adaptive system.

Many self-adaptive systems require a more complex anal-
ysis during the “Analysis” activity that goes beyond the use
of simple rules. Complex decision making could include con-
cepts from artificial intelligence, such as expert systems, on-
tologies, or data mining.

3.3.3 Adaptation

The adaptation activity is responsible for the execution of
the selected adaptation operation(s). Many different kinds of
adaptation operations can be distinguished and some might
just change single values of the business data, while others
affect the structural system architecture.

Changes of the system architecture are often risky. This
has two major reasons: (1.) if a non-tested system configura-
tion results from an adaptation, then there might be significant
chance that the system will not operate as expected, and (2.)
the execution of the operation itself can be technically chal-
lenging for the execution environment as it is often desired
that the adaptation takes place transparently, this means that
the adaptation is executed during runtime, without an inter-
ruption of primary system operation.

For many systems with risky adaptation operations, it
might not be feasible to test all adaptation scenarios. To pro-
vide sufficient dependability in these systems, it is a good
strategy to design the system under consideration of adapta-
tion faults. A basic strategy for this would at least super-
vise the execution of the adaptation operation, test the ser-
vice, and evaluate whether the adaptation operation achieved
its intended benefit or not. More sophisticated approaches
could execute the adaptation operations at first on a redundant
backup system, or create recovery points to allow for tolerat-
ing adaptation faults.

4 A C(lassification Schema for Self-
adaptation Research

Figure 3 shows a schema that allows to categorize research
approaches according to five major characteristics, which will
be discussed in the following subsections.

4.1 Origin

The origin is the location of the state change that triggers an
adaptation cycle. In biology, this is called the stimulus (state
change) and the response (adaptation operation). The stim-
ulus can either originate from inside the system or from the
environment.

(s e

Activation

(o)

Self- adaptat|on

Appllcat|on
System Layer

Mlddleware
Operatlon system

Hardware

Controller
Distribution

Change in the

environment

Change in
/V the system

Origin
Data adaptatlon
Intra- Component
behavior adaptatlon
Operatlon

Component resource
mapping adaptation

Inter- Component
protocol adaptation
Instance level adaptatlon)

Decentralized Hybrid Centralized

Type-level adaptation J

Figure 3: Classification schema for self-adaptation

This separation between system and environment can be
made more specific if so desired. In a particular system, it can
be beneficial to model elements of the environment explicitly
if they are the source of many changes. For instance, in a
system with a lot of human interaction, it can be helpful to
model the possible changes that an user might desire.

4.2 Activation

Regardless of the origin of the change, it is detected through
the help of sensors and the system must respond to these
changes. We distinguish three different activation types or re-
sponse types, i.e., reactive, predictive and proactive. To de-
scribe the differences between the activation types, we use
performance as an illustrative example for the affected system
attribute:

Reactive If the system adapts only after the performance of
the system has dropped under a certain level, then the
system can be typed as reactive.

Predictive If a certain state or a certain observation occurs
before a drop of performance, then the system might
adapt to this at once rather than waiting for the actual
drop. This is called predictive.

Proactive If the system has a normal performance level but
the system decides to adapt itself to gain a better perfor-
mance then this can be considered proactive or possibly
goal-directed self-adaptation. This type of adaptation is
distinguished from the other two in that it can occur any
time. This type of activation is closely related to self-
optimization.

4.3 System Layer

It is common to distinguish at least four fundamental layers of
computing systems: hardware, operation system, middleware,
and application. One way to focus and simplify research and
development is to limit to one layer and make reasonable as-
sumptions on the other layers. For instance, application pro-
grammers are typically concerned with providing a solution
on the application layer and assume that a middleware plat-

form supports standard operations, and takes care of the man-
agement of lower layers.

Self-adaptation is a general concept that can be applied at
any layer, e.g. regarding the adaptation of non-functional sys-
tem attributes such as timing behavior.

For simplification, the system layer classification should
focus on the layers where the adaptation operation is applied.
The other parts of the self-adaptation, especially observation,
are related to one or more system layers, as well, and addi-
tionally, might even operate on different layers. For instance,
application behavior could be monitored on the application
layer, while the reconfiguration follows on the hardware layer.
However, the adaptation activity requires usually more ef-
fort during development and operation than just observation.
Therefore, it might be required to include the system layers of
other activities than adaptation into the classification as well,
but only with a lower priority.

4.4 Operation

We define a classification scheme for (self-)adaptation opera-

tions by combining and extending the dynamism hierarchy of

Cuesta et al. [11] with the classification scheme of McKinley

et al. [12]. Basically, the operation classification dimension

uses an Architectural Description Language (ADL) viewpoint
on the adaptation operation. Multiple component instances
can be belong to a component type, and the implementation
of a component instance can change without effecting the as-
sociated component type.

We distinguish six types of adaptation operations according
to the architectural perspective:

Data adaptation Data values are changed in the system data
model without effecting the control flow within or be-
tween the system components

Intra-component behavior adaptation Changes the behav-
ior (control flow or quality of service) of a compo-
nent without directly affecting component execution se-
quences

Component resource mapping adaptation Changes the as-
sociation of software components and resources (data
source are here not considered as resources)

Inter-component protocol adaptation Changes the dy-
namic communication between components in a fixed
structure

Instance-level adaptation Changes the structure by adding
or removing component instances (but not component
types)

Type-level adaptation Changes the component types, which
allows to define new component types (the component
dependency graph is affected)

4.5 Controller Distribution

Three controller distribution styles can be distinguished ac-
cording to the architectural localization of self-adaptation:
centralized, decentralized, and hybrid. The controller distri-
bution style is centralized if the adaptation is controlled and
executed from a central point in the system. A decentral-
ized system has no such single point of failure and executes
self-adaptation (all activities) locally. Most software agent ar-
chitectures would be considered as decentralized. Hybrid ap-
proaches combine the advantages of a centralized and decen-
tralized architecture by applying parts of the activities locally
and other parts globally.

5 Related Work

The most related work for the self-adaptation classification
scheme can be found in [11, [12]. However, this work only
addresses adaptation operations, and this is just one activity
of self-adaptation as discussed above (Section 3.3).

McKinley et al. [12] presented a taxonomy and survey
on so-called compositional adaptation. Compositional adap-
tation can be understood as what we have termed architec-
tural reconfiguration of the system. Therefore, it is a subclass
of the adaptation operations that are addressed by our work.
Their classification scheme use the three perspectives of how,
where, when computational adaptation is applied. The taxon-
omy of McKinley et al. [12] is better suited than our scheme if
technical details are of importance (and only adaptation oper-
ations are addressed), as we use the implementation- and fine-
design-independent view of architectural descriptions. Their
“where” dimension distinguishes several system layers, just
as we do. They use the more detailed system level hierarchy
of Schmidt and Buschmann [13] which distinguishes several
middleware layers.

6 Conclusions and Future Work

In this paper we have introduced a scheme that allows to
classify self-adaptation research. The scheme was developed
based on the basic concepts that are shared in the several sub-
disciplines, which have been discussed above.

The benefit of the classification scheme is that it helps to
connect and structure research on the basic principles of self-
adaptation and enables to compare the vast number of ap-
proaches presented in the literature.

Future work will apply the scheme to classify existing ap-
proaches and research from the literature and industry.

References

[1] Paul Horn. Autonomic computing: IBM’s perspective on the
state of information technology. Manifesto, IBM Research, Oc-
tober 2001.

[2] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig,
J. Pruyne, J. Rofrano, S. Tuecke, and M. Xu. Web Services
Agreement Specification, Version 1.1, GGF GRAAP Working
Group, May 2004.

Michael J. Wooldridge. Introduction to Multiagent Systems.
John Wiley & Sons, Inc., New York, NY, USA, 2001.

[4] Eila Niemeld and Juhani Latvakoski. Survey of requirements
and solutions for ubiquitous software. In Proceedings of the 3rd
international conference on Mobile and ubiquitous multimedia
(MUM’04), pages 71-78, New York, NY, USA, 2004. ACM
Press. [doi:10.1145/1052380.1052391.

[5] Robert Laddaga, Paul Robertson, and Howard E. Shrobe. Re-
sults of the second international workshop on self-adaptive
software. In Second International Workshop on Self-Adaptive
Software (IWSAS’01), volume 2614 of Lecture Notes in Com-
puter Science, pages 281-290. Springer, 2001.

3

—

[6] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and
Carl Landwehr. Basic concepts and taxonomy of dependable
and secure computing. Transactions on Dependable and Secure
Computing, 1(1):11-33, 2004. 'doi:10.1109/TDSC.2004.2.

[7] J.O. Kephart and D.M. Chess. The vision of autonomic
computing. Computer, 36(1):41 — 50, January 2003.
doi:10.1109/MC.2003.1160055.

[8] J.F. Meyer. Performability evaluation: where it is and what lies
ahead. In Proceedings of the International Symposium Com-
puter Performance and Dependability, pages 334-343. IEEE,
April 1995. doi:10.1109/IPDS.1995.395818.

Victor R. Basili. The role of experimentation in software engi-
neering: past, current, and future. In Proceedings of the 18th
international conference on Software engineering (ICSE’96),
pages 442-449, Washington, DC, USA, 1996. IEEE.

[10] Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier, and John Irwin.
Aspect-oriented programming. In Proceedings European Con-
ference on Object-Oriented Programming, volume 1241, pages
220-242. Springer-Verlag, Berlin, Heidelberg, and New York,
1997.

[11] Carlos E. Cuesta, Pablo de la Fuente, and Manuel Barrio-
Solérzano. Dynamic coordination architecture through the use
of reflection. In Proceedings of the 2001 ACM symposium on
Applied computing (SAC’01), pages 134—140, New York, NY,
USA, 2001. ACM Press. [doi:10.1145/372202.372298.

[12] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and
Betty H. C. Cheng. A taxonomy of compositional adaptation.
Technical Report MSU-CSE-04-17, Department of Computer
Science, Michigan State University, East Lansing, Michigan,
May 2004.

[13] Douglas C. Schmidt and Frank Buschmann. Patterns, frame-
works, and middleware: their synergistic relationships. In Pro-
ceedings of the 25th International Conference on Software En-
gineering (ICSE '03), pages 694-704, Washington, DC, USA,
2003. IEEE Computer Society.

[9

[

http://dx.doi.org/10.1145/1052380.1052391�
http://dx.doi.org/10.1109/TDSC.2004.2�
http://dx.doi.org/10.1109/MC.2003.1160055�
http://dx.doi.org/10.1109/IPDS.1995.395818�
http://dx.doi.org/10.1145/372202.372298�

