A Classification Scheme for Self-adaptation Research

Matthias Rohr, Simon Giesecke, Wilhelm Hasselbring

Software Engineering Group, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany

Marcel Hiel, Willem-Jan van den Heuvel, Hans Weigand
InfoLAB, University of Tilourg, 5000 LE Tilburg, The Netherlands

The Need for a Classification Scheme
Research on self-adaptation in computer science is distributed
across many subdisciplines. Each subdiscipline regards self-
adaptation from a restricted point of view and fundamental
cross-domain research is essentially missing. This leads to the
reinvention of concepts and impairs the ability to establish a
structured research program on self-adaptation. Therefore, we
iIntroduce a classification scheme that allows to structure self-
adaptation research, to compare approaches from different
domains, and to identify related research.

What is Self-Adaptation?

A software entity has the capability of self-adaptation if it can
change its structure or behavior, based on observations of the
system or its environment. The figure shows the separation
between the adaptable system and its controller. The controller
observes the system or the environment by sensor and adapts
the primary operation under certain circumstances by using
actuators.

Goals

Typical goals are to maintain or improve the Quality of Service,
dependability, design efficiency, interoperability, or to reduce
maintenance costs.

Risks
Self-adaptation can significantly increase the system com-
plexity and the risks for unintended behavior.

Environment

Adaptable System

Creacove DR

Activation
proocive LS

Self-adaptation

—

System Layer

Application [£ S

Middleware

Operation system

Hardware

Controller
Distribution

Decentralized Hybrid Centralized

P
T~

Operation

The Adaptation Cycle
Self-adaptation can be structured as a cycle of three
activities: Observation, analysis, and adaptation.

(Observation 3

Adaptation Analysis

. “

1. Observation
To perform measurements, a trade-off between information
quality (detail and timeliness) and caused performance
overhead must be made. Detailed and frequent monitoring
Is often computationally too expensive for normal operation.
Additionally, a large overhead of redundant or useless data
can make the evaluation more complex. For a sophisticated
maintainable self-adaptive system, it is required to design a
monitoring model in a systematic process to ensure that the
right measurements are made. The monitoring model
should prescribe when, what, and where data is acquired,
as both for the interpretation of the monitored data and for
the implementation and maintenance of the software, it is
important to know the context of monitored data.

When: Time of model update.

What: Object of measurement in terms of metrics (e.g.,
service response time in ms). A systematic way to derive
metrics is the Goal-Question-Metric (GQM) approach.

Where: Points of data collection in the system architecture
(or environment).

In practice, monitoring logic is often mixed with primary

application logic. As this reduces the maintainability of the

source code, the instrumentation method should honor that
monitoring is a cross-cutting concern of system behavior.

Change in the
environment

Change in
the system

Data adaptation

Intra-Component
behavior adaptation

Component resource
mapping adaptation

Inter-Component
protocol adaptation

Instance-level adaptation

Type-level adaptation

Activation
Regardless of the origin of a state change, it is detected
through the help of sensors and the system must respond to
these changes. We distinguish three different activation types
or response types, i.e., reactive, predictive and proactive. To
describe the differences between the activation types, we use
performance as an illustrative example system attribute:

Reactive: The system adapts only after the performance of
the system has dropped under a certain level.

Predictive: If a certain state or a certain observation occurs
before a drop of performance, then the system might adapt
to this at once rather than waiting for the actual drop.

Proactive: The system has a normal performance level but the
system decides to adapt itself to gain a better performance.
This may also be termed goal-directed self-adaptation, and
Is closely related to self-optimization. It may occur at any
time.

Origin

The origin is the location of the state change that triggers an
adaptation cycle. In biology, this is called the stimulus (state
change) and the response (adaptation operation). The
stimulus can either originate from inside the system or from
the environment.

This separation between system and environment can be
made more specific.: In a particular system, it can be
beneficial to model elements of the environment explicitly if
they are the source of many changes. For instance, in a
system with a lot of human interaction, it can be helpful to
model the possible changes that a user might desire.

Operation

We use an Architectural Description Language (ADL) view on
the adaptation operation. Multiple component instances can
belong to a component type, and the implementation of a
component instance can change without affecting the
associated component type. We distinguish six types of
adaptation operations according to the architectural
perspective:

— C
OSSIET

AR
VO
£ I
universita

L
N
Y
t

OLDENBURG

\ 4

L] -
TILBURG ¢ }%%f & UNIVERSITY
l“;fl

Two major alternative instrumentation techniques are
middleware interception and source code instrumentation
(e.g., via aspect oriented programming (AOP)). Middleware
iInterception manipulates or extends the middleware
platform (for instance, the application server or the virtual
machine), so that component interaction is automatically
observed.

2. Analysis

The analysis activity summarizes several sub-activities
related to the processing of the observations and the
identification and selection of adaptation operations. A
straightforward design could use simple rules (e.g., “if dis-
connected, then reconnect”). Such rules contain constraints
that specify adaptation operations for a particular subset of
observations. When an observation violates one of the
constraints then a predefined operation will be executed.
However, even simple rules can cause complex and
unpredictable behavior.

3. Adaptation

The adaptation activity is executes the selected adaptation
operation(s). It may happen that non-tested system
configuration result from an adaptation. This introduces
risks for unexpected system operation. The execution of the
operation itself can be technically challenging for the
execution environment as it is often desired that the
adaptation takes place transparently. This means that the
adaptation is executed during runtime, without an
interruption of primary system operation. To provide
sufficient dependability, it is a good strategy to design the
system under consideration of adaptation faults. This could
involve the supervision of the execution of the adaptation
operation, the creation of recovery points, or the step-wise
adaptation on a redundant copy of the system.

Data adaptation: Data values are changed in the system data
model without effecting the control flow within or between
the system components

Intra-component behavior adaptation: Changes the behavior
(control flow or quality of service) of a component without
directly affecting component execution sequences

Component resource mapping adaptation: Changes the
association of software components and resources (data
source are here not considered as resources)

Inter-component protocol adaptation: Changes the dynamic
communication between components in a fixed structure

Instance-level adaptation: Changes the structure by adding or
removing component instances (but not component types)

Type-level adaptation: Changes the component types, which
allows to define new component types (the component
dependency graph is affected)

Controller Distribution

Three controller distribution styles can be distinguished
according to the architectural localization of self-adaptation:
centralized, decentralized, and hybrid. The controller
distribution style is centralized if the adaptation is controlled
and executed from a central point in the system. A
decentralized system has no such single point of failure and
executes self-adaptation (all activities) locally. Most software
agent architectures would be considered as decentralized.
Hybrid approaches combine the advantages of a centralized
and decentralized architecture by applying parts of the
activities locally and other parts globally.

System Layer

It is common to distinguish at least four fundamental layers of
computing systems: hardware, operation system, middleware,
and application. Self-adaptation is a general concept that can
be applied at any layer, e.g. regarding the adaptation of non-
functional system attributes such as timing behavior. For
simplicity, the system layer classification should focus on the
layers where the adaptation operation is applied.

The other aspects of self-adaptation, especially observation,
are related to one or more system layers, as well, and
additionally, might even operate on different layers than the
adaptation operations. For instance, application behavior
could be monitored on the application layer, while the
reconfiguration follows on the hardware layer. However, the
adaptation activity requires usually more effort during
development and operation than just observation.

This work is supported by the German
Research Foundation (DFG), grant GRK 1076/1 |

