
Solving Consensus Using Structural Failure Models

Timo Warns∗

Carl von Ossietzky University of Oldenburg

Graduate School TrustSoft

26111 Oldenburg, Germany

timo.warns@informatik.uni-oldenburg.de

Felix C. Freiling

University of Mannheim

Chair of Practical Computer Science I

68131 Mannheim, Germany

freiling@informatik.uni-mannheim.de

Wilhelm Hasselbring

Carl von Ossietzky University of Oldenburg

Software Engineering Group

26111 Oldenburg, Germany

hasselbring@informatik.uni-oldenburg.de

Abstract

Failure models characterise the expected component

failures in fault-tolerant computing. In the context of dis-

tributed systems, a failure model usually consists of two

parts: a functional part specifying in what way individual

processing entities may fail and a structural part specifying

the potential scope of failures within the system. Such mod-

els must be expressive enough to cover all relevant practical

situations, but must also be simple enough to allow uncom-

plicated reasoning about fault-tolerant algorithms. Usu-

ally, an increase in expressiveness complicates formal rea-

soning, but enables more accurate models that allow to im-

prove the assumption coverage and resilience of solutions.

In this paper, we introduce the structural failure model

class DiDep that allows to specify directed dependent fail-

ures, which, for example, occur in the area of intrusion

tolerance and security. DiDep is a generalisation of pre-

vious classes for undirected dependent failures, namely the

general adversary structures, the fail-prone systems, and the

core and survivor sets, which we show to be equivalent. We

show that the increase in expressiveness of DiDep does not

significantly penalise the simplicity of corresponding mod-

els by giving an algorithm that transforms any Consensus

algorithm for undirected dependent failures into a Consen-

sus algorithm for a DiDep model. We characterise the im-

proved resilience obtained with DiDep and show that cer-

tain models even allow to circumvent the famous FLP im-

possibility result.

∗This work is supported by the German Research Foundation (DFG),

grant GRK 1076/1.

1. Introduction

Limitations of threshold models. In fault-tolerant dis-

tributed computing, the most commonly used structural fail-

ure models are threshold models. For example, the SIFT

project [20] was one of the first projects that used them

with fault-tolerant algorithms. Threshold models charac-

terise the sets of failed components by t-out-of-n assump-

tions, that is, at most t out of n components may fail si-

multaneously. The major advantage of these models is their

simplicity that eases proofs of correctness. However, it is

well known [13] today that they have strong limitations

drawing them inapplicable for many practical situations. A

major limitation is the implicit assumption that failures are

stochastically independent.

One domain in which threshold models are particularly

unsuitable is the area of intrusion tolerance, that is, fault tol-

erance extended to the domain of secure systems. The idea

of intrusion tolerance is intriguing: By regarding attacks as

faults, classical fault-tolerant architectures and algorithms

can be applied in security-related settings [18]. Indeed, the

effects of an attack like the infamous “ping of death” [2] are

similar to a classical hardware crash and can often be mod-

elled using the same functional failure model. However, if

a system consists of identical servers and one of them is

vulnerable to the ping of death, all of them are vulnerable

and fail dependently since an adversary deliberately coor-

dinates his attacks. Threshold models cannot describe such

situations accurately such that algorithms developed using a

threshold model may suffer from low assumption coverage

if used in intrusion-tolerant systems.

Undirected dependent failure models. Several refined

failure models have been introduced covering dependent

failures: general adversary structures [8], fail-prone sys-

tems [15], and core and survivor sets [10, 11]. For example,

these models allow to specify that all computers running

Microsoft Windows or all computers running GNU/Linux

may simultaneously fail, but computers of different types

do not fail simultaneously.

The refined failure models still do not allow to cover

all practical situations, because they only cover undirected

dependent failures. However, failures among components

may be directed dependent. For example, trust relations

among components induce directed dependencies among

component failures. Consider a client-server system with

one server and a set of clients. Assume that the clients trust

the server, but the server does not trust the clients. If an ad-

versary is able to break into the server and the clients down-

load and execute program code from the server, an adver-

sary may easily break into the clients as well. However, he

may not be able to break into the server if he only breaks

into a client, because the server does not trust the client

and checks its requests thoroughly. This scenario cannot be

modelled using existing failure models, because the failures

of server and clients are directed dependent.

Contribution In this paper, we make the following con-

tributions:

1. We show that the existing classes of failure models for

undirected dependent failures are equivalent regarding

their expressiveness. This means that, for example, an

algorithm for general adversary structures can be trans-

formed into an algorithm for core and survivor sets and

vice versa.

2. We introduce the failure model class DiDep for di-

rected dependent failures. We show that previous

classes are strictly less expressive than DiDep and that

it allows to generalise results obtained with previous

classes.

3. For the important problem of Consensus, we show how

to transform any algorithm for undirected dependent

failures into an algorithm for directed dependent fail-

ures. The idea is to restrict the operation of the for-

mer algorithm to that part of the system that only con-

tains undirected dependent failures. Processes which

fail dependently are then informed a posteriori about

the Consensus decision. This opens the large body of

existing algorithms to the DiDep world.

4. As an interesting corollary, we present yet another

way to circumvent the FLP impossibility results [6]

by showing that certain DiDep models allow to solve

fault-tolerant asynchronous Consensus deterministi-

cally without any additional tools like failure detectors.

This shows that DiDep allows to improve the resilience

of fault-tolerant Consensus.

Roadmap. The paper is organised as follows. First, we

present the system model and introduce the notion of func-

tional and structural failure models in Section 2. In Sec-

tion 3, we describe previous classes of structural failure

models and prove that previous classes for undirected de-

pendent failures are equivalent. In Section 4, we introduce

our DiDep class and show that it allows to circumvent the

impossibility results of Fischer et al. [6] for certain models.

We give a general transformer for Consensus algorithms

from undirected to directed dependent failures in Section 5

and conclude in Section 6. Note that we can only sketch the

proofs due to limitations of space. Refer to Warns et al.[19]

for complete and fully detailed proofs.

2. The Model

Distributed systems. Our system model is based on the

model of Fischer et al. [6]. We consider asynchronous

distributed systems without bounds on message delay or

relative process speeds. A system consists of a finite

set of processes, Π = {p1, . . . , pn}, which communicate

by message-passing over reliable point-to-point channels.

Each pair of processes is connected by such a channel.

A process is modelled as a sequential, deterministic au-

tomaton. The global state of the distributed system is a tuple

of n states, one state for each process in Π. A global state

is an initial global state if it only consists of initial states of

the processes. A run r of the distributed system is a finite

or infinite sequence s1, s2, . . . of global states where s1 is

an initial global state and where si+1 results from si by ex-

ecuting a state transition on a single process and where the

selection of the processes satisfies some fairness assump-

tion. An algorithm A is a set of n sequential, deterministic

automata, one for each process respectively. We denote the

set of all runs that the algorithm can exhibit by ρ. In partic-

ular, we assume that ρ is not empty.

We define a property as a set of runs. A problem P con-

sists of a set of properties that an algorithm should preserve.

More precisely, a problem is the intersection of the sets of

runs of its defining properties. An algorithm solves a prob-

lem P iff every run of the algorithm is a run of the problem

P , that is, ρ ⊆ P .

Failure models. As we consider fault-tolerant systems in

this paper, we need to specify the way in which a system

may fail. This is done by a failure model. Intuitively, a

failure model F is a set of properties that characterise all

failures that may occur. Inspired by the structure function

model of Echtle [5], we distinguish between functional and

structural failure models.

A functional failure model describes the failure modes of

single processes. For example, Cristian et al. [4] present a

hierarchy of failure modes ranging from crash failures (i.e.,

prematurely halting) to Byzantine failures (i.e., arbitrary

behaviour). Roughly speaking, a functional failure model

transforms the automata of processes to allow “more” be-

haviour. Formally, a functional failure model may add states

and transitions to an algorithm and may weaken the fairness

assumption. For example, a bit flip of a register value can

be modelled as an additional state transition from the origi-

nal state into the corrupted state, and a crash failure can be

modelled by weakening the fairness assumption such that

a process is allowed to remain in a state even though there

are outgoing transitions from that state. In general, more

runs may occur under a functional failure model than in a

failure-free system. The notion of functional failure models

corresponds to local failure assumptions of Nordahl [17].

The focus of this paper is on structural failure models.

A structural failure model restricts the failure modes of the

functional failure model to a subset of processes. That is, it

describes which processes may simultaneously fail in runs

of a system. Therefore, it models the stochastic dependen-

cies of failures. A structural failure model restricts the set of

runs that can occur under a functional failure model. For ex-

ample, if the functional model specifies that processes only

fail by crashing, the structural failure model specifies that

only a single process may fail, and one process has already

failed, all other processes in the system need to be scheduled

infinitely often. This notion corresponds to global failure

assumptions of Nordahl [17]. A run of an algorithm running

under a specific functional and structural failure model can

be defined analogously to the failure-free definition above.

In the following, we implicitly assume that an algorithm op-

erates under some failure model.

We define structural failure models as follows: A process

may either be correct (i.e., it behaves like given by the algo-

rithm’s automaton) or faulty (i.e., it shows a certain failure

behaviour of the functional failure model) in a given run. A

structural failure model characterises the set of all processes

that can jointly fail in any run of the system. Formally, a

structural failure model is defined by a non-empty subset

of P(Π) containing sets of processes that may simultane-

ously fail in a run. However, structural failure models can

be expressed in different ways as we will see later. We clas-

sify structural failure models into failure model classes. A

structural failure model class F is a set of structural failure

models. We say that a structural failure model F belongs to

the class F iff F ∈ F .

In this paper, we consider crash failures in the exam-

ples that illustrate our results. However, all our basic ar-

guments only depend on the semantics of the structural fail-

ure model. Therefore, the main results on the relationships

of different structural failure models are not specific to the

crash failure mode, but apply to other modes such as Byzan-

tine failures as well. We will give matching arguments for

Byzantine failures respectively.

Comparing failure models. As we want to compare dif-

ferent classes of structural failure models, we define rela-

tions on these classes with respect to their expressiveness.

We say that a class of structural failure models F is weaker

than a class F̂ if and only if everything that can be ex-

pressed by F can be expressed by F̂ . If F is weaker than

F̂ , we write F ¹ F̂ . Formally,

F ¹ F̂ :⇔ F ⊆ F̂ .

Intuitively, F̂ must describe at least as much failure be-

haviour as F does. If F ¹ F̂ and F̂ ¹ F , we write F ∼= F̂
and say that F and F̂ are equivalent. If F ¹ F̂ and there

is a failure model F such that F is in F̂ , but not in F , we

say that F is strictly weaker than F̂ and write F ≺ F̂ . For-

mally,

F ≺ F̂ :⇔ F ⊂ F̂ .

Note that each of these relations is transitive.

Consensus. The problem of Consensus is a fundamental

agreement abstraction in fault-tolerant computing. Each

process proposes a value and all processes must reach a

common decision on a single value. More precisely, the

Consensus problem is specified by three properties [3, 6]:

Validity Each value decided is a value proposed.

Agreement No two correct processes decide differently.

Termination Every correct processes eventually decides.

We will use Consensus as a benchmark for failure model

classes, as described below.

Failure detectors. In their seminal paper, Fischer et

al. [6] show that the problem of Consensus cannot be solved

deterministically in the presence of even a single crash fail-

ure in an asynchronous system. To still be able to reason

about Consensus in our examples, we augment our system

model with failure detectors that are used by processes to

detect failures of other processes [3]. Informally, failure de-

tectors are components that are attached to each process. A

process may query its failure detector, which indicates the

set of processes that the detector suspects to have failed.

Chandra and Toueg [3] introduce different classes of fail-

ure detectors. In this paper, we use the class of eventually

strong failure detectors, denoted ♦S.

Tolerance bounds. The system and the failure model de-

termine the tolerance bounds for a problem in fault-tolerant

computing. A tolerance bound is a predicate on which sets

of simultaneously failed processes can be tolerated by an

algorithm that solves the problem. The structural failure

model determines how to express these tolerance bounds.

We will use Consensus as a benchmark problem to compare

different failure model classes. Intuitively, a failure model

class F̂ is more useful than a failure model class F iff F̂ al-

lows better tolerance bounds for Consensus. Note that this

implies that F ≺ F̂ .

3. Relations among Previous Structural Fail-

ure Model Classes

The focus of this paper is on structural failure models

that are suitable for fault-tolerant computing. For fault-

tolerant computing, simplified models are employed that

hide some aspects of failures to ease the development and

evaluation of algorithms. Such models usually omit the ac-

tual probability values and provide no temporal informa-

tion about failures. First, we present the class of commonly

used threshold models that covers stochastically indepen-

dent failures. Then, we present the general adversary struc-

tures, the fail-prone systems, and the core and survivor sets

that cover undirected dependent failures. That is, failures

may be correlated such that the failure of a process increases

the failure probability of another process. However, this de-

pendency holds the other way around resulting in an undi-

rected correlation.

For every failure model class, we first state how it is ex-

pressed and then define the formal semantics of an instance

of this class. Note that we define all classes in terms of our

system model to ease the comparison of the models. The

definitions are equivalent to the original ones in the litera-

ture.

Threshold Models. Threshold models allow to model t-

out-of-n assumptions expressing that at most t out of a set

of n processes simultaneously fail in a run. For example, if

a system consists of five processes and at most two of them

may fail simultaneously, this can modelled by the set of all

sets of processes that contain two or less of the overall five

processes.

Definition 1 (Threshold Models) A failure model F is a

threshold model if and only if it is expressed by a threshold

t ∈ N and ∀f ∈ P(Π) : |f | ≤ t ⇒ f ∈ F .

The class of threshold models is based on the assumption

that it may happen in a run that any subset of P(Π) with i

processes, 0 ≤ i ≤ t, may fail simultaneously. Therefore, it

only covers stochastically independent failures. Tolerance

p p p p
1 2 3 4

Figure 1. Illustration of threshold models

bounds for the threshold model are often expressed in the

form of simple inequalities, k · t < n, k ∈ N, expressing

that the number of processes must be greater than k times

the maximal number of failed processes t. For example, if

a system consists of n processes and the tolerance bound is

that the majority of processes must be correct, then this can

be stated by 2t < n.

Example 3.1 Consider a system consisting of a set of pro-

cesses Π = {p1, . . . , p4}, which fail by crashing only, and

a threshold such that at most 1 of 4 processes fail. As il-

lustrated in Fig. 1, the threshold expresses a failure model

F = {{p1}, {p2}, {p3}, {p4}, {}}. Within the figure, po-

tential failures are illustrated by rounded rectangles. Any

process may fail on its own, but two or more processes do

not fail simultaneously. Assume that we intend to solve de-

terministic Consensus with an ♦S failure detector. The up-

per tolerance bound for such a system is 2t < n [3]. There-

fore, our system with 4 processes can tolerate up to t = 1
failures. As the threshold satisfies the tolerance bound, the

algorithm given by Chandra and Toueg [3] can be used to

solve Consensus in this example. Note that the tolerance

level is strict for this system, that is, no second failure can

be tolerated.

General Adversary Structures. Originally, Hirt and

Maurer [8] introduce the general adversary structures to

specify potentially misbehaving players for secure multi-

party computation. Subsequently, the models were applied

to fault tolerance problems as well [1, 7]. They allow to

strictly generalise results obtained with threshold models by

enabling the specification of undirected dependent failures.

Definition 2 (General Adversary Structures) A set of

processes A ⊆ Π is an adversary class for a failure model

F iff there exists f ∈ F such that f = A. A failure model

is a general adversary structure iff it is expressed as a

monotone set Z ⊆ P(Π) of all adversary classes for F ,

where monotone means ∀A ∈ Z,∀Â ⊆ A : Â ∈ Z .

The class of general adversary structures is based on the

assumption that if a certain set of processes may fail, then

it is also possible that only its subsets fail. For example, if

{p1, p2} is an adversary class, it must also be possible that

in some runs only p1, only p2, or no process at all fails.

Tolerance bounds for general adversary structures are ex-

pressed in terms of the predicate Q(k) [7, 8]. A general ad-

versary structure Z satisfies the predicate Q(k) if and only

pp pp
1 2 3 4

Figure 2. Illustration of adversary structures

if

∀A1, . . . , Ak ∈ Z : A1 ∪ . . . ∪ Ak 6= Π.

For example, Fitzi and Maurer [7] show that Agreement can

be solved for a general adversary structure despite Byzan-

tine failures in a synchronous system iff the structure satis-

fies Q(3).

The Q(k) predicate is a generalisation of the k · t < n in-

equality of threshold models. If at most t processes fail and

n is more than k times greater than t, then no k sets of failed

processes cover the whole process set. However, if the Q(k)

predicate is satisfied by a general adversary structure, more

than t processes may fail as we now explain.

Example 3.2 Consider a system consisting of a set of

processes Π = {p1, . . . , p4}, which fail by crash-

ing only, and a general adversary structure Z =
{{p1, p2}, {p1}, {p2}, {p3}, {p4}, {∅}} satisfying Q(2) as

illustrated in Fig. 2. Any process may fail on its own. The

processes p1 and p2 may fail simultaneously, but no other

combination of processes may do so. This example illus-

trates that the class of general adversary structures cannot

be weaker than the class of threshold models as there is no

threshold model to model this specific failure assumption.

Since Z satisfies Q(2), it is possible to solve Consensus us-

ing an ♦S failure detector under this failure model (see be-

low). This shows that general adversary structures allow to

generalise results obtained with threshold models. Only one

arbitrary failure can be tolerated for the same system using

threshold models, but one arbitrary or two specific failures

can be tolerated using general adversary structures.

Mostéfaoui and Raynal [16] present an algorithm that

solves Consensus using failure detectors under threshold

models. A major advantage of this algorithm is its flexibil-

ity achieved by formulating important predicates in terms

of specific quorum sets. For example, the algorithm can be

used with failure detectors of different classes by using ap-

propriate quorum sets. Hurfin et al. [9] generalise the algo-

rithm to define a versatile family of Consensus algorithms

under the threshold model substantiating the advantages of

the algorithm. It is relatively easy to adapt the algorithm

to work with general adversary structures: The algorithm

solves Consensus with an ♦S failure detector and a general

adversary structure satisfying Q(2) if the quorum set only

consists of all complements of maximal adversary classes

[19]. We are unaware of other algorithms that solve asyn-

chronous Consensus using failure detectors and general ad-

versary structures assuming crash failures.

Fail-Prone Systems. Malkhi and Reiter [15] introduce

fail-prone systems in the context of quorum systems for

data repositories that are able to tolerate Byzantine failures.

Fail-prone systems are closely related to general adversary

structures as a fail-prone system is simply expressed as the

set of all maximal adversary classes. The semantics of the

failure model, that is, which sets of processes are allowed

to fail simultaneously, are a general adversary structure.

Definition 3 (Fail-prone System) An adversary class A

for a failure model F is maximal for F if and only if there

is no f in F such that A for F is a proper subset of f . A

failure model F is a fail-prone system if and only if F is

monotone and it is expressed as a set B ⊆ P(Π) of all max-

imal adversary classes for F .

It is obvious that general adversary structures can be ob-

tained from fail-prone systems and vice versa. Therefore,

both have the same expressive power and are equivalent.

Furthermore, an algorithm for general adversary structures

can be easily transformed to be used with fail-prone systems

and the other way around.

Core and Survivor Sets. Junqueira and Marzullo [10, 11]

introduce the notions of core and survivor sets and use this

class of failure models to solve Consensus. A core is a set of

processes that contains at least one correct process. More-

over, the set is minimal, that is, removing some process im-

plies that there is a run r ∈ ρ such that the core contains no

correct process for r.

Definition 4 (Core and Core Set) A set of processes C ⊆
Π is a core for a failure model F iff (∀f ∈ F, ∃p ∈ C : p 6∈
f) ∧ (∀p ∈ C, ∃f ∈ F, ∀p̂ ∈ C \ {p} : p̂ ∈ f). A failure

model F is a core set iff it is expressed as a set C ⊆ P(Π)
of all cores for F .

For example, consider a system for which each process

of a set of processes Π = {p1, . . . , p4} may fail on its own

and only p1 and p2 may fail simultaneously. Then, C =
{p1, p3} is a core, because p1 or p3 is correct for each run

and there are runs such that either p1 or p3 fails.

Additionally, Junqueira and Marzullo [11] introduce sur-

vivors and survivor sets. A survivor is a set of processes that

has a common process with each core. Moreover, the set is

minimal, that is, removing any process implies that there

is a core, which has no common process with the survivor

anymore. Junqueira et al. [12] give a bijective mapping be-

tween equivalent core and survivor sets showing that the

classes of core and survivor sets are equivalent.

Definition 5 (Survivor and Survivor Set) Given a partic-

ular failure model F expressed by a core set C, a set of

processes S ⊆ Π is a survivor for F iff (∀C ∈ C : S ∩C 6=
∅) ∧ (∀p ∈ S, ∃C ∈ C : [p ∈ C] ∧ [(S \ {p}) ∩ C = ∅]). A

failure model F is a survivor set iff it is expressed as a set

S ⊆ P(Π) of all survivors for F .

We slightly changed the terms for core and survivor

sets compared to the original definitions. Junqueira and

Marzullo use the term survivor set and set of survivor sets

for what we call survivor and survivor set respectively.

The following lemma illustrates a key property of sur-

vivor sets S.

Lemma 3.1 For a survivor set S expressing a failure model

F , for each set of processes f ∈ F , there exists a survivor

S ∈ S that only contains processes that are not in f .

PROOF SKETCH: We fix a set of processes f in F . It suffices

to show that there is a survivor for F that only contains

processes that are not in f . In particular, there is a set Ŝ ⊆ Π
of processes that are not in f . Furthermore, it can be shown

that there is a subset S of Ŝ that is a survivor for F [19].

By the definition of survivor sets, S is included in S. As Ŝ

only contains processes that are not in f , this is true for S

as well, because S is a subset of Ŝ.

Another key property of S expressing F is that all pro-

cesses in the complement of S may fail simultaneously.

Lemma 3.2 For each survivor S in the survivor set S ex-

pressing a failure model F , there is a set of processes f in

F such that all processes in the complement of S are in f .

PROOF SKETCH: We assume the opposite and obtain a con-

tradiction. We can construct a set Ĉ = ∪f∈F {p : p ∈ Π \

S, p 6∈ f} such that S∩Ĉ = ∅ and ∀f ∈ F,∃p ∈ Ĉ : p 6∈ f .

In particular, it can be shown that Ĉ has a subset C that is

a core for F [19]. As C is a subset of Ĉ, the intersection of

S and C is empty, that is, S ∩ C = ∅. By the definition of

survivors, S is not a survivor for F then.

Junqueira and Marzullo [10] show that the core and

survivor sets allow to generalise results obtained with the

threshold model. In particular, they give tolerance bounds

for asynchronous Consensus with failure detectors. They

reason that the Crash Partition property is necessary and

sufficient to solve Consensus with a failure detector equiv-

alent to an ♦S failure detector. The property is satisfied iff

every partition (A, B) of a set of processes Π is such that

either A or B contain a core. Furthermore, they show that

the Byzantine Partition condition is necessary and sufficient

to solve Consensus in a synchronous system. The property

is satisfied iff every partition (A,B,C) of a set of processes

Π is such that either A, B, or C contain a core.

Example 3.3 Consider a system with a set of processes

Π = {p1, . . . , p4}, which fail by crashing only, and a core

set C = {{p1, p3}, {p1, p4}, {p2, p3}, {p2, p4}, {p3, p4}}.

Using the mapping of Junqueira et al. [12], the equivalent

survivor set is S = {{p3, p4}, {p1, p2, p3}, {p1, p2, p4}}.

As a survivor set models the processes that work correctly

at least, either the processes in {p3, p4}, in {p1, p2, p3}, or

in {p1, p2, p4} work correctly at least. Taking the comple-

ments, either p1 and p2, p3, or p4 simultaneously fail at

most. Obviously, this models the same failure assumptions

as the general adversary structure of Example 3.2, which is

illustrated in Fig. 2. As C satisfies the Crash Partition prop-

erty, the algorithm of Junqueira and Marzullo [10] solves

asynchronous Consensus with failure detectors in this case.

Relationships among Models. Different failure model

classes can be compared with respect to their expressive-

ness. As the examples given above indicate, the class of

threshold models is strictly weaker than the class of gen-

eral adversary structures, fail-prone systems, and core and

survivor sets. We now argue that the classes of general ad-

versary structures, fail-prone systems, and core and survivor

sets are equivalent.

Theorem 1 The class of threshold models is strictly weaker

than the class of general adversary structures, fail-prone

systems, and core and survivor sets. The latter classes are

equivalent.

PROOF SKETCH: Fitzi and Maurer [7] show that the class of

threshold models is strictly weaker than the class of general

adversary structures. The equivalence between the classes

of fail-prone systems and general adversary structures is

obvious. In order to prove the equivalence with the class

of core and survivor sets, consider mappings cs2gas and

gas2cs from survivor sets to general adversary structures

and vice versa. In particular, we define cs2gas as follows:

for a survivor set S, cs2gas returns a general adversary

structure Z using the complements of all survivors in S
as (maximal) adversary classes and adding subsets thereof

until Z is monotone. For the opposite direction, we de-

fine gas2cs as follows: for a general adversary structure Z ,

gas2cs returns a survivor set S using the complements of

maximal adversary classes as survivors. To prove the equiv-

alence of both structural failure model classes, it suffices to

show that both mappings map between models expressing

the same failure model F . Essentially, this proof can be

derived from the two key observations of Lemma 3.1 and

Lemma 3.2. However, due to limitations of space, we can-

not give the proof in further detail. Refer to Warns et al. [19]

for the full details of the proof.

m s s
1 k...

...

...

Figure 3. Illustration of the DiDep class

4. DiDep

In this section, we introduce the class of DiDep models

that is more expressive than previous classes as it allows

to model directed dependent failures. Furthermore, DiDep

models allow to generalise results obtained with previous

models. Similar to previous models, they abstract from tem-

poral dependencies and the probabilistic nature of failures,

that is, they provide no information on temporal order and

the actual probability values. DiDep models are closely re-

lated to general adversary structures as they are sets of ad-

versary classes as well. The main difference is that mono-

tonicity is not required for a DiDep model.

Definition 6 (DiDep Model) A failure model F is a DiDep

model iff it is expressed as a set D ⊆ P(Π) of all adversary

classes of F .

It is obvious that the class of general adversary struc-

tures is weaker than the class of DiDep models, because

each general adversary structure is a DiDep model as well.

As a general adversary structure Z is monotone, it provides

the following information when a process p fails: Specific

other processes may fail as well if they are in an adversary

class of Z together with p. Analogously, specific other pro-

cesses do not fail together with p if there is no adversary

class in Z that contains them together with p. In contrast,

a DiDep model D can provide more information. In partic-

ular, if there is a process p̂ such that p̂ is in each adversary

class of D that contains p as well, p̂ must fail jointly with p.

Example 4.1 Consider a set of processes Π =
{m, s1, . . . , sk}, which fail by crashing only, and a

DiDep model D = {{m, s1, . . . , sk}} ∪ P({s1, . . . , sk})
as illustrated in Fig. 3. Any subset of {s1, . . . , sk} may

fail on their own, but all processes fail if m fails, because

all processes are in the only adversary class that contains

process m.

The example shows that the class of DiDep models can-

not be weaker than the class of general adversary struc-

tures, because there is no general adversary structure for

this specific failure assumption. As the class of general ad-

versary structures is weaker than the DiDep class, all classes

Algorithm 1: MasterConsensus(vp).

Input: Proposed value vp

Output: Decided value v

if p = m then1

forall s ∈ {s1, . . . , sk} do2

send DECIDE(vp) to s3

end4

return v5

else6

wait until DECIDE(v) received from m7

return v8

end9

of undirected dependent failure models are strictly weaker

than the DiDep class by Theorem 1.

Furthermore, the example illustrates the reason for the

increase in expressiveness is that DiDep allows to specify

directed dependent failures. If process m fails, all other

processes fail as well, but if a process si, 1 ≤ i ≤ k, fails,

m may not fail. Compare this to a specification by a general

adversary structure Z . As all processes may jointly fail, Π
must be in Z . Hence, all possible subsets of Π are in Z as

well, because Z is monotone. This introduces the implicit

assumption that some si, 1 ≤ i ≤ k, can be correct even if

m fails, although there is no such run.

Apart from being more expressive, the DiDep class also

allows to increase the resilience of solutions to Consensus.

Algorithm 1 solves asynchronous Consensus deterministi-

cally even without failure detectors for the failure model

given in the example. Therefore, it opens another condition

under which the impossibility results of Fischer et al. [6]

do not hold. In the algorithm, the master sends its proposal

value to all slave processes and decides. The slave processes

wait for this message and decide if they receive it. The crit-

ical property of Consensus is Termination (Agreement and

Validity are easy to verify). The algorithm looks like slave

processes may wait infinitely for the message from the mas-

ter in the case of a master crash. Because of the DiDep

failure model however, the slaves jointly crash if the server

crashes. So if m is correct, all correct processes eventually

receive the decision value from m and decide on this value.

Otherwise, no process is correct and nobody decides. By

similar arguments, it can be shown that the algorithm even

solves Consensus in the presence of Byzantine failures if

processes can correctly determine the sender of a received

message.

5. Solving Consensus using DiDep

The class of DiDep models allows to express failure be-

haviour in more detail and, therefore, it has more expressive

power. We now show that this does not significantly pe-

nalise simplicity, but allows to generalise results obtained

Algorithm 2: extract_undep(D).

Input: DiDep model D
Output: Set of processes U whose failures are undirected dependent

U ← Π1

while ∃p, p̂ ∈ U : [p 6= p̂] ∧ [∀A ∈ D : p̂ ∈ A ⇒ p ∈ A] do2

U ← U \ {p}3

end4

return U5

with previous models. We give a Consensus algorithm for

DiDep models that has relaxed tolerance bounds compared

to solutions using previous models. We apply a transforma-

tional approach that uses an arbitrary Consensus algorithm

for general adversary structures (or another model for undi-

rected dependent failures) instead of developing a new one

from scratch. In particular, we show how to identify a min-

imal set of processes such that all processes depend on a

process in this set. Within the algorithm for DiDep mod-

els, these processes solve Consensus with an algorithm us-

ing general adversary structures and propagate the decided

value to the remaining processes.

Dependency relation. The specification of directed de-

pendent failures introduces a dependency relation among

processes. We say that a process p depends on a process

p̂ under a failure model F if p fails when p̂ fails, that is,

∀f ∈ F : p̂ ∈ f ⇒ p ∈ f.

Extracting independent processes. In Example 4.1,

each process depends on itself, and each process si, 1 ≤ i ≤
k, depends on m. In general, there is a subset of processes

such that every process depends on a process within this

subset (dependency property). Algorithm 2 extracts such a

set U of processes for an arbitrary DiDep model.

Lemma 5.1 Let D be a DiDep model expressing a failure

model F and let U = extract_undep(D). Each process

p depends on a process p̂ in U , that is, p fails if p̂ fails.

Formally, ∀p ∈ Π,∃p̂ ∈ U ,∀f ∈ F : p̂ ∈ f ⇒ p ∈ f.

PROOF SKETCH: The algorithm initially starts with the

whole process set Π for which the dependency property is

obviously satisfied. As it only removes a process from U
if this process depends on another process in U and the de-

pendency relation is transitive, the dependency property is

never violated. The algorithm terminates, because Π is fi-

nite, one process is removed each time the while loop is

executed, and the while condition is false for the empty set.

Independent processes. The set that is returned by Al-

gorithm 2 is minimal meaning that no process can be re-

moved from U without violating the dependency property,

Algorithm 3: extract_structure(D).

Input: DiDep model D
Output: General Adversary Structure ZU

U ← extract_undep(D)1

ZU ← {}2

forall A ∈ D do3

ZU ← ZU ∪ {A|U}4

end5

return ZU6

Algorithm 4: ConsensusDiDep(vp).

Input: Proposed value vp

Output: Decided value v

U ← extract_undep(D)1

if p ∈ U then2

v ← ConsensusAlgorithm(vp)3

forall p̂ ∈ Π \ U do send DECIDE(v) to p̂4

else5

wait until DECIDE(v) received6

end7

return v8

because it removes as much processes as possible until ter-

mination. As U is minimal, no process in U depends on

another process in U . Therefore, the failure assumption on

the processes in U can be modelled by a general adversary

structure if the view is restricted to U . Formalising such a

restriction, we say that the set A|B is the set A restricted to

B iff A|B = A ∩ B. In particular, Algorithm 3 extracts the

general adversary structure ZU for a given DiDep model D
with U = extract_undep(D).

Lemma 5.2 Let D be a DiDep model expressing F

and let U = extract_undep(D). The set ZU =
extract_structure(D) is the general adversary structure

for F |U .

PROOF SKETCH: The algorithm only adds adversary classes

to ZU by considering all sets A in D restricted to U . It

does not overlook any adversary classes, because it consid-

ers all adversary classes in D. The algorithm terminates,

because extract_undep terminates and the number of ad-

versary classes is finite.

With such a general adversary structure, Consensus can

be solved for a DiDep model by using a Consensus algo-

rithm for general adversary structures, for example, the al-

gorithm given by Warns et al. [19]. This algorithm solves

Consensus among the processes in U = extract_undep(D)
if ZU = extract_structure(D) satisfies Q(2) with respect

to U in the presence of crash failures.

The transformer. The processes in U play a special role

in Algorithm 4 that solves Consensus for the DiDep model.

If these processes are able to decide a value among them-

selves with an arbitrary Consensus algorithm, Consensus

can be solved for the overall process set. If the processes in

U decide a value, they propagate this value to the remaining

processes, which wait for notification from a process in U .

In particular, if a process p that is not in U is correct, then

there is a process in U that is correct as well, because p de-

pends on a process in U . Hence, p receives a notification

from a process in U . Note that the following theorem does

not state any assumptions on failure detectors. However, the

Consensus algorithm used within the algorithm may require

such assumptions.

Theorem 2 Algorithm 4 solves Consensus in the presence

of crash failures in an asynchronous system for a DiDep

model D if ConsensusAlgorithm solves Consensus for

U = extract_undep(D).

PROOF SKETCH: Each value decided is a value proposed as

it is returned by ConsensusAlgorithm, which is correct by

assumption. No two correct processes decide differently,

because ConsensusAlgorithm returns the same value for

each process in U . If a process is in U , it eventually de-

cides, because ConsensusAlgorithm terminates and there

is no other point to block. If a process is not in U , it eventu-

ally decides, because the process eventually receives a value

from a correct process in U .

Interestingly, the algorithm resembles some ideas of the

Paxos algorithm given by Lamport [14]. For Paxos, three

roles for processes are differentiated: proposers, acceptors,

and learners. A proposer proposes values to decide and

an acceptor decides on proposed values while coordinating

with other acceptors. A learner is only informed about a

decided value. Within our algorithm, all processes are pro-

posers as each process proposes a value. However, the pro-

cesses in Π \ U only propose values due to the Consensus

problem specification: their proposed values do not influ-

ence the decision process. Only the processes in U are ac-

ceptors as only the processes in U participate in the decision

process. Finally, all processes are learners as all learn about

a decided value.

Theorem 2 illustrates that the DiDep model allows to

generalise results obtained with previous models. If D is

a DiDep model, the set U is a subset of the overall set of

processes Π. ConsensusAlgorithm must solve Consensus

among these processes only. The set ZU must satisfy Q(2)

with respect to to U only. In particular, Q(2) may be vio-

lated with respect to Π as seen in Example 4.1.

Example 5.1 Consider a system that is a set of processes

Π = {m1, . . . ,m4, s1, . . . , sl}, which fail by crashing only,

and a DiDep model D = {{m1,m2, s1, . . . , sj},
{m1, s1, . . . , si},{m2, si+1, . . . , sj}, {m3, sj+1, . . . , sk},
{m4, sk+1, . . . , sl}} ∪ P({s1, . . . , sl}). Each combination

of processes in {s1, . . . , sl} may fail jointly. Each process

in m1, . . . ,m4 may fail without another mh, 1 ≤ h ≤ 4,

and m1 and m2 may fail jointly. If m1 fails, all processes

in {s1, . . . , si} fail as well. If m2 fails, all processes in

{si+1, . . . , sj} fail as well. If m3 fails, all processes in

{sj+1, . . . , sk} fail as well. If m4 fails, all processes in

{sk+1, . . . , sl} fail as well. Therefore, each process de-

pends on a process in {m1, . . . ,m4}. Algorithm 2 returns

the set U = {m1, . . . ,m4}. Algorithm 3 returns the set

ZU = {{m1,m2}, {m1}, {m2}, {m3}, {m4}, ∅}. As ZU

satisfies Q(2) with respect to U , Consensus can be solved

among the processes of U by an algorithm for general ad-

versary structures. Therefore, Algorithm 4 solves Consen-

sus for D if it uses such an algorithm.

It is relatively easy to extend Algorithm 4 to Byzantine

failures. There is a process p̂ in U for each process p not in

U such that p depends on p̂. If p only decides the value re-

ceived from p̂, then agreement is solved for Byzantine fail-

ures as well, because, by assumption, p fails if p̂ fails.

6. Discussion and Conclusions

The application of fault-tolerant algorithms in new con-

texts such as intrusion-tolerant systems yields new chal-

lenges for their development and evaluation. In particular,

it requires to adapt structural failure models, because the

common assumption of stochastic independent failures may

not be valid anymore. We have presented structural failure

models that are suitable for fault-tolerant computing and al-

low to specify dependent failures. In particular, we have

introduced the DiDep class that covers directed dependent

failures.

From a theoretical point of view, the class of DiDep mod-

els can be regarded as the “most expressive” structural fail-

ure model class (omitting probability values and timing in-

formation), because its semantics are equivalent to the gen-

eral form of a structural failure model as a set of subsets of

Π that can jointly fail. Therefore, any failure model can triv-

ially be expressed as a DiDep model. The major advantage

of DiDep is that its expressiveness allows to model failure

assumptions more accurately than using previous classes.

In general, if a failure model does not express failure as-

sumptions with an appropriate accuracy, the failure model

is either too optimistic or too pessimistic. If the model is

too optimistic, the model expresses less failure behaviour

than occurring in reality such that the system suffers from

low assumption coverage and fails even if proven to be cor-

rect. If the model is too pessimistic, the model expresses

more failure behaviour than occurring in reality such that

the systems is less resilient than possible: The system ei-

ther requires an unnecessary amount of redundancy for a

given number of failures to tolerate or tolerates less failures

than possible for a given amount of redundancy. In sum-

mary, DiDep as a more expressive model allows to improve

the assumption coverage and the resilience of a system.

The class of DiDep models has another interesting theo-

retical property: a DiDep model is a combination of a safety

and a liveness property on failures. On the one hand, a

DiDep model states that no more failures than specified oc-

cur. On the other hand, it may state that certain specified

failures will occur eventually. For example, a DiDep model

D can express that a process p depends on another process

p̂ such that p eventually fails if p̂ has failed. In contrast,

threshold models and the undirected dependent failure mod-

els are only safety properties on failures. For example, the

monotonicity of general adversary structures implies that

each subset of an adversary class for a failure model F is an

adversary class for F as well. Subsequently, a general ad-

versary structure cannot state that a process must fail jointly

with another process. Therefore, a general adversary struc-

ture is only a safety property on failures stating that no more

failures occur than specified by its adversary classes.

For the moment, we only combined DiDep models being

structural failure models with the functional failure model

of crashes. In future work, we will combine DiDep mod-

els with other functional failure models and, in particular,

transient failures such as the crash-recovery model. Under

a crash-recovery model, processes are allowed to crash and,

subsequently, recover during the execution of an algorithm.

Currently, solutions using the crash-recovery model are de-

veloped under a variant of the threshold model assuming

that, eventually, at most t of n processes do not work cor-

rectly. The major difference to the classic threshold model

is that the threshold must hold eventually only. This idea

will be applied to other structural failure models as a part

of our future work. Furthermore, we will investigate hy-

brid failure models addressing situations in which, for ex-

ample, both crash and Byzantine failures may occur. Fi-

nally, we will look into the efficiency of algorithms using

DiDep models illustrating that DiDep also allows to reduce

the number of rounds and messages of solutions.

References

[1] C. Cachin. Distributing trust on the internet. In Proc. 2001

Int’l Conf. Dependable Systems and Networks (DSN ’01),

pages 183–192. IEEE Computer Society Press, 2001.

[2] C. C. Center. CERT advisory CA-1996-26 denial-of-service

attack via ping. Internet: http://www.cert.org/

advisories/CA-1996-26.html, Dec. 1996.

[3] T. D. Chandra and S. Toueg. Unreliable failure detectors for

reliable distributed systems. J. ACM, 43(2):225–267, Mar.

1996.

[4] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic

broadcast: From simple message diffusion to Byzantine

agreement. Information and Computation, 118(1):158–179,

Apr. 1995.

[5] K. Echtle. Fehlertoleranzverfahren. Springer, 1990.
[6] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility

of distributed consensus with one faulty process. J. ACM,

32(2):374–382, Apr. 1985.
[7] M. Fitzi and U. M. Maurer. Efficient byzantine agreement

secure against general adversaries. In S. Kutten, editor, Proc.

12th Int’l Symp. Distributed Computing (DISC ’98), volume

1499 of Lecture Notes in Computer Science, pages 134–148.

Springer, 1998.
[8] M. Hirt and U. Maurer. Complete characterization of adver-

saries tolerable in secure multi-party computation (extended

abstract). In Proc. 16th ACM Symp. Principles of Distributed

Computing (PODC ’97), pages 25–34. ACM Press, 1997.
[9] M. Hurfin, A. Mostéfaoui, and M. Raynal. A versatile fam-

ily of consensus protocols based on Chandra-Toueg’s unre-

liable failure detectors. IEEE Trans. Computers, 51(4):395–

408, 2002.
[10] F. P. Junqueira and K. Marzullo. Designing algorithms for

dependent process failures. In A. Schiper, A. A. Shvartsman,

H. Weatherspoon, and B. Y. Zhao, editors, Future Directions

in Distributed Computing, volume 2584 of Lecture Notes in

Computer Science, pages 24–28. Springer, 2003.
[11] F. P. Junqueira and K. Marzullo. Synchronous consensus for

dependent process failures. In Proc. 23rd Int’l Conf. Dis-

tributed Computing Systems (ICDCS ’03), pages 274–283.

IEEE Computer Society Press, 2003.
[12] F. P. Junqueira, K. Marzullo, and G. M. Voelker. Coping

with dependent process failures. Technical Report CS2002-

0723, University of California, San Diego, Dec. 2001.
[13] I. Keidar and K. Marzullo. The need for realistic failure

models in protocol design. In Proc. 4th Information Surviv-

ability Workshop (ISW 2001/2002), Mar. 2002.
[14] L. Lamport. The part-time parliament. ACM Trans. Com-

puter Systems, 16(2):133–169, 1998.
[15] D. Malkhi and M. Reiter. Byzantine quorum systems. In

Proc. 29th ACM Symp. Theory of Computing (STOC ’97),

pages 569–578. ACM Press, 1997.
[16] A. Mostéfaoui and M. Raynal. Solving consensus us-

ing chandra-toueg’s unreliable failure detectors: A gen-

eral quorum-based approach. In Proc. 13th Int’l Symp.

Distributed Computing (DISC ’99), pages 49–63. Springer,

1999.
[17] J. Nordahl. Specification and Design of Dependable Com-

municating Systems. PhD thesis, Technical University of

Denmark, Department of Computer Science, 1992.
[18] P. Veríssimo, N. F. Neves, and M. P. Correia. Intrusion-

tolerant architectures: Concepts and design. In R. de Lemos,

C. Gacek, and A. Romanovsky, editors, Architecting De-

pendable Systems, volume 2677 of Lecture Notes in Com-

puter Science. Springer, 2003.
[19] T. Warns, F. C. Freiling, and W. Hasselbring. Solving con-

sensus using structural failure models. Technical Report 03-

06, University of Oldenburg, Department of Computing Sci-

ence, Apr. 2006.
[20] J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N.

Levitt, P. M. Melliar-Smith, R. E. Shostak, and C. B. We-

instock. SIFT: Design and analysis of a fault-tolerant com-

puter for aircraft control. Proc. IEEE, 66(10):1240–1255,

Oct. 1978.

