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1 Preface

This collection consists of selected contributions to a graduate seminar
conducted within the Graduate School “TrustSoft” at the Carl von
Ossietzky University of Oldenburg, Germany. The Graduate School is
funded by the German Research Foundation (DFG). It was established
in April 2005 and will—over a period of nine years—support three
cohorts of 14 graduate students in Computer Scienceand Law by a
scholarship for obtaining a PhD degree. The first cohort of scholarship
holders as well as externally funded PhD students are currently working
on their PhD theses. They are supervised by thirteen professors from
the Department of Computing Science and the Institute of Law. All
theses are related to the topic of the Graduate School—Trustworthy
Software Systems—, but the students and professors in the school
have diverse backgrounds. To increase the benefit of the graduate
school for its members as well as the scientific community, the graduate
school aspires close cooperation of its members. One means of this
cooperation was the conduct of two seminars in the starting period
of the Graduate School, which resulted in the publication of two
volumes of selected papers, one of which is the present volume on
Dependability Engineering. The other volume provides survey papers
on Research Methods in Software Engineering and is available from
the same publisher.

Topic of the Graduate School Software increasingly influences our
daily life, as we depend on an raising number of technical systems
controlled by software. Additionally, the ubiquity of Internet-based ap-
plications increases our dependency on the availability of those software
systems. Exemplarily consider complex embedded software control
systems in the automotive domain, or IT systems for eGovernment and
eHealth.

Fortunately, the rise of the software industry creates jobs for aca-
demically trained professionals and generates an increasing proportion
of the national creation of value. However, this increased dependency
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on software systems intensifies the consequences of software failures.
Therefore, the successful deployment of software systems depends on
the extent we can trust these systems. This relevance of trust is gaining
awareness in industry. Several software vendor consortia plan to develop
so-called “Trusted Computing” platforms. These current initiatives
primarily focus on security, while trust is a much border concept. In
fact, trust is given by several properties, such as safety, correctness,
reliability, availability, privacy, performance, and certification.

Therefore, the graduate school will contribute to this comprehensive
view on trusted software systems by bundling the Oldenburg computing
science competences with those of computer law.

From a technical point of view, the research programme of the grad-
uate school builds on and advances the paradigm of component-based
software engineering. Besides the industrial relevance of components,
components also constitute a more general paradigm employed suc-
cessfully in the areas of formal verification (compositional reasoning),
the prediction of quality properties, and the certification of software
systems. The scientific methods to be developed in the graduate school
vary according to the aspects of trust under investigation. For example,
correctness is demonstrated by mathematical proofs while quantifiable
quality properties, such as availability, reliability, and performance
require analytical prediction models, which need additional empirical
studies for calibration and validation. Generally, benefits of software
engineering methods must be demonstrated empirically by case studies
and controlled experiments.

Topic of the Seminar This seminar deals with the state of the art
in systematically developing dependable software systems. Depend-
ability comprises the quality characteristics correctness, reliability,
availability, performance, security and privacy. It deals with systematic
approaches to dependability inasmuch we consider concepts, methods
and techniques that do not take aspects of dependability into account
accidentally or in late development phases, but rather consider these
characteristics at least as much as functional aspects. For any software
project, only limited resources will be available. Therefore, a trade-off
of different characteristics will be inevitable. A process determining
an adequate trade-off will lead to results depending of the character-
istics of the project under consideration. In particular, the degree of
dependability expected by users and other stakeholders can severely



vary.

Overview of the Contributions There were nine contributions to the
seminar, seven of which were selected for inclusion in this volume.

The first paper on “Fundamental Definitions of Dependability” by
Simon Giesecke discusses basic terms of Dependability Engineering and
introduces several conceptual frameworks that provide an integrated
view of multiple extra-functional characteristics of software systems.

Daniel Winteler discusses “Implications of the Sarbanes-Oxley Act”
for the development of software systems. While the Sarbanes-Oxley
Act is superficially financial legislation in the USA, it is also relevant
for software development in Germany: First, it applies to all companies
which which conduct major business activities in the United States.
Second, the act imposes control restrictions on the IT used in such
companies, which translate to high dependability requirements.

In his contribution on “An Introduction to Fault Tolerance within
Software Systems,” Timo Warns provides an introduction to the chal-
lenges and approaches of software-based fault tolerance. It presents
basic system and threat models and describes the different phases and
levels of fault tolerance focusing on basic concepts instead of solution
details.

Jan Ploski provides “A Comprehensive Introduction” to Exception
Handling. Exception handling is employed by developers to increase
software robustness by eliminating unpredictable behaviour. This
paper summarises the concept’s evolution since its introduction in the
mid-70’s.

In his contribution on “Operational Profiles for Software Reliability,”
Heiko Koziolek outlines different ways to model operational profiles.
Operational profiles are used as part of quality-of-service prediction
methods.

In Roland Meyer’s contribution on “Model Checking using Testing,”
the theory of model checking is introduced and the technique of model
checking with test automata is described. A test automaton reflects
desired or undesired system behaviour. The model checking algorithm
verifies whether the system model exhibits or avoids the behaviour
described by the test automaton.

Jens Happe discusses “Performance Prediction for Embedded Sys-
tems.” Both hard and soft real-time systems are considered, which are
distinguished by whether or not timing constraints must be strictly
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met in all cases. Either worst-case execution times (WCET) or the
probability of meeting a deadline must be predicted.

Oldenburg, November 2005

Prof. Dr. Wilhelm Hasselbring
Chair of the Graduate School “TrustSoft”
hasselbring@informatik.uni-oldenburg.de
Dipl.-Inform. Simon Giesecke
PhD Student of the Graduate School “TrustSoft”
giesecke@informatik.uni-oldenburg.de
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2 Fundamental Definitions of
Dependability

Simon Giesecke <giesecke@informatik.uni-oldenburg.de>

Abstract

This paper will give an overview on the notion of “Dependability” of
Hardware/Software Computer Systems, as it was defined by Avizienis,
Laprie and Randell. The origins of dependability of Hardware/Software
Computer Systems, especially its roots in dependability of hardware,
are presented. Notions which are similar to “Dependability” are dis-
cussed as well, i.e., “Trustworthiness” and “Survivability”. The extra-
functional characteristics of a software system covered by these notions
are presented. Finally, the relationship of these notions to the TrustSoft
research framework is sketched.

2.1 Introduction

In this paper, terms and concepts that are the basis for studying the field
of Dependability Engineering will be discussed. We will focus on the
conceptual framework of dependability described by Avizienis, Laprie
and Randell [ALRO1, LRALO4]. This framework is not completely
neutral with respect to the different aspects of dependability, since
their authors stem from the field of fault-tolerant computing, but it
is the most comprehensive framework currently available. However, it
shows no domination of one specific quality characteristic, but relates
all covered characteristics from the goal of delivery of correct service.
We will discuss other authors and the relevant literature as a support.


<giesecke@informatik.uni-oldenburg.de>

2 Fundamental Definitions of Dependability

Overview First, we will discuss general foundations of hardware and
software dependability (Section 2.2). Then, we introduce the definition
of dependability by Avizienis et al. and related conceptual frameworks
(Section 2.3). The framework of dependability will be elaborated in
detail in Section 2.4, and then the different quality characteristics
recognised by the different conceptual frameworks will be presented
(Section 2.5). Finally, we discuss the systems of characteristics es-
tablished by the conceptual frameworks and compare them to the
framework used within the TrustSoft research programme (Section 2.6)
and conclude the paper (Section 2.7).

2.2 Foundations

In this section, foundations required for the understanding of the
dependability notion are presented. This includes historical roots of
the notion of “dependability”, with a particular focus on roots in the
dependability of electrical and computer systems. Until we discuss in
detail the different understandings of “dependability” in Section 2.3
and the single characteristics covered in Section 2.5, it should suffice to
note that dependability of a system has many facets, one of which is
reliability: the ability of a system to deliver correct service continuously.

Dependability often refers to emergent properties. Emergent proper-
ties are such properties of a system that cannot be deduced from the
component properties, but result from effects of interaction between the
components. Different notions of “emergence” assume different degrees
of non-deductibility: These include a) properties that are not trivially
(e.g. additively) deducible, but may be effectively calculated; b) proper-
ties that are practically infeasible to be deduced due to inefficiency; c)
properties for which no deduction procedure is known; d) properties for
which it is known that it is theoretically impossible to deduce. Some
system properties—even if they fall into the last category—may, how-
ever, be predicted in sufficient accuracy using compositional techniques,
which is a major field of current research.

The ISO Conceptual Framework The ISO 14598-1 [ISO99] standard
distinguishes different levels of quality properties:

Definition 2.1 (characteristic, sub-characteristic). A characteristic
is a high-level quality property of a software system which are refined
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2.2 Foundations

into a set of sub-characteristics, which are again refined into quality
attributes.

Definition 2.2 (attribute, metric, measurement). Quality attributes
are detailed quality properties of a software system, that can be mea-
sured using a quality metric. A metric is a measurement scale combined
with a fixed procedure describing how measurement is to be conducted.
The application of a quality metric to a specific software-intensive
system yields a measurement.

In the ISO/IEC 9126-1 [ISOO01], a specific hierarchy of characteristics,
sub-characteristics and attributes is defined, which claims comprehen-
sive coverage of all relevant aspects of software quality. Above the
level of characteristics, the standard distinguishes internal and external
quality of software and quality in use.

For each characteristic, the level of performance can be assessed
by aggregating the measurements for the identified corresponding at-
tributes. Here, “performance” does not refer to time efficiency, but to
the accomplishment of the specified needs.

We will not distinguish between characteristics and sub-characteristics
in this paper, as the distinction is strongly influenced by design choices
on how to build a characteristics/sub-characteristics hierarchy. We
will thus only refer to characteristics. While several authors speak of
“attributes” in their papers, these are not attributes in the sense of the
standard for the most part, since they are not fine-grained enough to
be immediately measured. The presentation in this paper will restrain
from the attribute level.

System In the following, we will use the term software-intensive sys-
tem for a software/hardware computing system, in which the influence
of the software on the delivered service dominates that of the hardware.
We will use the term software system to emphasise the software aspect,
and the term computer system to emphasise the hardware aspect.

In the ISO 9126-1 Standard [ISO01], a distinction between system
and software is used: Taking reliability as an example, the reliability
of the system considers any failure, while reliability of the software
considers only failures originating from faults located in the software.
However, the user cannot observe where a problem originates, and it
is not possible to ultimately decide on the source of a fault, so the
distinction is not definitive. Additionally, software may be used to

13
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overcome deficiencies of the hardware (and the other way round), so
the distinction is not helpful either.

Behaviour We need to distinguish a system’s actual, specified, and
expected behaviour. Of particular relevance is the actual behaviour:

Definition 2.3 (service). The service delivered by a system is the
actual behaviour as perceived by its user(s), which may be a person or
another system.

Avizienis et al. [ALRO1] define the function of a system as the be-
haviour specified in its functional specification. A system delivers
correct service if its service matches its function, i.e. the actual be-
haviour matches the specified behaviour. This reduces the service
(and behaviour) to functional aspects, and matches the classical no-
tion of correctness as used in theoretical computer science. Thus, a
system whose service matches its functional specification but does not
match the specified performance requirements, could still deliver correct
service.

2.2.1 Historical Roots of Software Dependability

Dependability of mechanical devices, later of electronic devices has long
been a major issue (cf. [ALRO1]). Research on mechanical dependability
was primarily focused on reliability, and was based on the “weakest
link” approach: If some component failed, then the whole system failed.
After the Second World War, modern reliability theory was developed
which focused on electronic hardware. Early computer components
were very unreliable—perhaps they would be considered unusable by
today’s standards—, so much work focused on realising more reliable
systems based on less reliable components by using these redundantly.
Only later the very idea of software as an artifact that is of interest
independently from the underlying hardware platform arose.

When the lack of dependability of software became established as
a fact of life, first attempts were started to transfer the ideas used
to cope with hardware faults to the software domain. A major pro-
ponent of this early work was Brian Randell [Ran75]. His work was
later complemented with work on N-version programming [ACT77] (see
Section 2.2.2). However this approach later turned out to be ineffective
to overcome software unreliability in general (cf. [Roh05]). The reasons

14



2.2 Foundations

for this phenomenon can probably be found in the different nature of
hardware and software, which is the focus of the next section.

Later, during the early 1990s, aspects of security gained more impor-
tance and were integrated into the conceptual framework of dependable
computing, thereby also increasing interaction of the previously distinct
scientific communities of dependability and security.

2.2.2 Hardware vs. Software Dependability

Hardware and software are fundamentally different in nature, which
causes different sources of threats to dependability to apply to them,
and gives different weights to the possible sources.

Mechanical and electronic hardware are both subject to physical
wear: any physical device will definitely fail after some period of use.
Normal conditions of use are often well-known, so the probable time
until repairs (or exchange) will become necessary can be predicted
using testing. When the system has been repaired, the same defect
may occur again. Slight variations in use have a continuous effect,
so they will not fundamentally change the prediction. Exceptional
use may of course invalidate such predictions. Manufacturing defects
may also impair the life-time. These factors apply to mechanical and
electronic devices as well, but since electronic devices are more complex
and subject to physical influences that are not predictable as well, the
influence of the operating environment becomes less clear. Additionally,
design defects gain more importance. However, physical defects still
dominate.

For software, the situation is different. It is not subject to physical
wear. The dominant class of defects is made up of programming/design
mistakes. When such a defect is detected and repaired, the same defect
cannot occur again (but it is possible that the repair introduced new
defects). The presence of such defects is not affected by the usage
profile, only their effect is. For a subclass of software defects, this is a
bit different: These are design defects such as memory leaks, which are
not a problem in isolation, but lead to excessive resource usage over
time. This phenomenon is known as software aging [ALRO1]:

Definition 2.4 (software aging (Avizienis et al.)). Software aging is
the cumulative degradation of the system state over time.

However, Parnas [Par94] explicitly uses the term software aging for
a different phenomenon: He refers to changes in the environment of
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the software system, i.e. changes in expectations about the software
system, which lead to changes in the usage profile. He argues that
even if the software system is free of defects in the beginning, it is not
possible to use it forever without modification.

Another difference to hardware is related to design redundancy: For
hardware, it is common to design components with the same function in
different ways and to apply them in a redundant setting. The equivalent
approach for software is “N-version programming” [AC77]. N-version
programming certainly works for implementing relatively manageable
algorithms, but not for larger software systems such as whole operating
systems. A major reason is that the programming errors made by
different teams implementing the different versions correlate too much.

Furthermore, expectations put into software are much more far-
reaching compared to hardware insofar as they appear on a much
higher level of abstraction: Software offers services that are much
more complex and less controllable than that offered by hardware (the
hardware may be internally complex, which is certainly the case for
modern CPUs, but this complexity does not show at their (software)
interface—in fact, the complexity of the software interface of typical
microprocessors—their instruction set—has been reduced over the last
decades, following the trend from CISC to RISC processors). This
raises dependability issues for which the dependability of the underlying
hardware is a prerequisite, which is often implicitly assumed nowadays.

Since software systems—if they have some adequate interface (net-
working, telephony, ...), which is the case for most software systems
today—may be accessed remotely, intentional faults are much more
relevant for software than for hardware systems.

2.3 Dependability and Related Notions

In this section, the notion of “Dependability” as introduced by Avizie-
nis, Laprie and Randell is presented first (Section 2.3.1). Then, an
alternative notion of “Dependability” by Sommerville (Section 2.3.2)
and the notions of “Survivability” (Section 2.3.3), “Trustworthiness”
(Section 2.3.4), and other related notions are presented.

In the report [Sch99], we find a compact justification for the intro-
duction of a comprehensive concept like “trustworthiness”, which just
as well applies to the other frameworks:

16
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“While individual dimensions of trustworthiness are cer-
tainly important, building a trustworthy system requires
more. Consequently, a new term—‘trustworthiness’—and
not some extant technical term (with its accompanying
intellectual baggage of priorities) was selected for use in
this report. Of ultimate concern is how people perceive
and engage a system. People place some level of trust in
any system, although they may neither think about that
trust explicitly nor gauge the amount realistically. Their
trust is based on an aggregation of dimensions, not on a few
narrowly defined or isolated technical properties. The term
‘trustworthiness’ herein denotes this aggregation.” [Sch99)

2.3.1 Dependability (Avizienis/Laprie/Randell)

Avizienis et al. [LRAL0O4, ALRO1] provide the following definition of
dependability:

Definition 2.5 (dependability). Dependability (of a computing system)
is the ability to deliver service that can be justifiably trusted.

The other fundamental properties of a computing system, which are
not part of its dependability, are its functionality, usability, performance
and cost.

The dependability characteristics recognised by [ALRO1] are avail-
ability, reliability, safety, confidentiality, integrity and maintainability.
The characteristics are discussed in detail in Section 2.5.

2.3.2 Dependability (Sommerville)

Sommerville [Som01] gives a definition of dependability that makes the
evaluation of dependability entirely subjective:

Definition 2.6 (dependability). Dependability is the extent to which
a critical system is trusted by its users.

Sommerville interchangeably uses the term trustworthiness for de-
pendability. He stresses that dependability is no prerequisite for the
usefulness of a system.

Sommerville’s dependability—and, thereby, his understanding of
“trust”—encompasses the characteristics availability, reliability, safety
and security (cf. Section 2.5 for more details).

17



2 Fundamental Definitions of Dependability

2.3.3 Survivability (SEI)

The notion of survivability originated in the development of military
systems in the 1960s. However, in a report [EFLT99] by the Software
Engineering Institute, a new definition focused on networked software-
intensive systems was developed:

Definition 2.7 (Survivability). Survivability is the capability of a
system to fulfil its mission, in a timely manner, in the presence of
attacks, failures, or accidents. The term mission refers to a set of very
high-level (i.e., abstract) requirements or goals.

While the term mission obviously has its roots in the military context,
it is used here in a more general context.

In this definition, accidents and failures are distinguished. While
both are unintentional, accidents are externally generated events (i.e.,
outside the system) and failures are internally generated events. Attacks
are intentional and malicious events.

Characteristics recognised by the SEI definition include performance,
security, reliability, availability, fault-tolerance, modifiability, and af-
fordability. Herein, the security characteristic includes the three char-
acteristics confidentiality, integrity, and availability.

2.3.4 Trustworthiness (Schneider)

The “Trust in Cyberspace” report [Sch99] of the United States National
Research Council defines a framework called “Trustworthiness”, which
is defined as follows:

Definition 2.8 (Trustworthiness). Trustworthiness is assurance that a
system deserves to be trusted—that it will perform as expected despite
environmental disruptions, human and operator error, hostile attacks,
and design and implementation errors. Trustworthy systems reinforce
the belief that they will continue to produce expected behaviour and
will not be susceptible to subversion.

The characteristics covered by this definition of trustworthiness are
correctness, reliability, security (which including secrecy, confidentiality,
integrity, and availability), privacy, safety, and survivability.

Survivability thus appears here not as a comprehensive notion but
as one single characteristic and is defined as:

18
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Definition 2.9 (Survivability). Survivability is the capability to pro-
vide a level of service in adverse or hostile conditions. [Sch99, App.
K]

2.3.5 Discussion

While Avizienis et al. require some justification—which is amenable
to rigorous assessment and systematic improvement—, Sommerville
leaves the possibility open that a user trusts a system whose developers
undertook no efforts to ensure correct service, and distrusts a system
that has been rigorously developed using formal methods. In contrast
to the definition by Avizienis et al., this definition does focus on the
user rather than the system.

Both definitions of dependability refer to software-intensive systems
in general; survivability and trustworthiness focus on networked systems
which are operated in unbounded networks, i.e., the Internet or other
public network.

The definitions of trustworthiness and survivability explicitly list the
threats to the system they consider, while the definitions of depend-
ability do not mention them (cf. [ALRO1]). Avizienis et al., however,
provide a detailed structure of faults and deduce three major fault
classes.

2.4 Dependability: Threats and Means

In this section, the “dependability tree” (see figure 2.1) as described in
[LRALO04, ALRO1] is introduced: It is structured according to threats
to dependability (Section 2.4.1), extra-functional characteristics (“at-
tributes” in the original paper) which contribute to dependability (these
will be discussed not within this section, but in Section 2.5), and classes
of technical means of attaining dependability of a software system
(Section 2.4.2).

2.4.1 Threats to Dependability

Central to the discussion of threats to dependability are the notions of
fault, error and failure. First, we introduce the notion of “error”:

Definition 2.10 (error). An error is that part of the system state
that may cause a subsequent failure. Before an error is detected (by
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— Availability

- Reliability

- Safety

~ Confidentiality
I Integrity

~ Maintainability

— Attributes —

— Fault Prevention
- Fault Tolerance

~ Fault Removal

— Fault Forecasting

Faults
~ Threats —E Errors
Failures

Dependability — Means —

Figure 2.1: Dependability Tree (from [ALRO1])

the system), it is latent. The detection of an error is indicated at the
service interface by an error message or error signal.

An error can thus not be found in the code (source code or binary
code), but in the system’s data. It is thus not assessable statically, but
only in operation (or if system operation is interrupted temporarily).

Definition 2.11 (fault). A fault is the (adjudged or hypothesised)
cause of an error. When it produces an error, it is active, otherwise it
is dormant.

Depending on the point of view, a fault may be found in the source
code, but other types of faults may be recognised as well (see Sec-
tion 2.4.1).

The true cause of an error cannot be determined for several reasons,
both practical and theoretical: Assume that the system of concern is
developed using some formal method that allows correctness of the
software system to be proved.

A proof may show that the system is incorrect, but it cannot identify
the cause unambiguously in an absolute sense: The “correction” of
the system requires some modification. If arbitrary modifications are
considered, there will be infinitely many modifications that lead to a
correct system. Even if only a minimal modification is looked for, this
may not be unique.
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2.4 Dependability: Threats and Means

Another problem is that the proof of incorrectness can be incorrect
itself, for systematic or accidental reasons. This leads to a problem of
recursion.

These two problems are theoretical problems and cannot be overcome.
Practical limitations include the limited scalability of formal methods,
particularly when resource limitations should be considered as well.

A problem equally rooted in theoretical and practical aspects is that
the matching of the specified and the expected behaviour of a system
cannot be proved. In fact, this problem is rather impeded by the use of
formal methods, since formal specifications are hard to understand and
require significant experience with the formal method in use. When
not using formal methods, the previous issues remain but can only be
assessed with a still more restricted degree of confidence.

To solve the issues of uncertainty and most importantly of recursion,
the definition of fault does not refer to the true cause, but to an
adjudged or hypothesised cause. The adjudgment depends on the point
of view, and the required certainty may be arbitrarily chosen to fit
practical needs.

Definition 2.12 (failure). A failure of a system is an event that
corresponds to a transition from correct service to incorrect service. It
occurs when an error reaches its service interface. The inverse transition
is called service restoration.

A failure can be caused both by a latent and a detected error. In
the case of a latent error, it has the effect of an (implicit) deviation
from the specified behaviour; in the case of a detected error, an explicit
error signal is generated, which is specified in some sense, but is not
part of normal service.

Example For example, a program “bug” in a part A of a software
system that is never executed, is a dormant fault. If another part
B of the software system is modified, such that A is executed, the
fault may still stay dormant, for example, if it only applies to specific
input values. If these input values are actually used, then the fault
will become active. It may still require additional conditions to turn
the fault into a failure. By employing fault-tolerance techniques, the
system may detect the fault and correct it.

In the following, a similar but more general issue is discussed, which
is of particular importance for component-based systems.
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Figure 2.2: Failure Modes (from [ALRO1])

Granularity Avizienis et al. assume a system to consist of interacting
components, each of which has some local state. The system state is
simply the aggregation of the components’ states. When a fault occurs,
it causes an error within one or more components. A (system) failure
will only occur when the error reaches the system’s external service
interface. A component thus acts as a unit of error containment.

Failures

Failures can be categorised according to view dimensions (or view-
points), which lead to different failure modes (see Figure 2.2). The
dimensions are:

domain In this dimension, primarily value and timing failures may be
distinguished.

controllability This dimension describes whether the failure may be
controlled, i.e. handled in a pre-specified way.

consistency This dimension describes whether the failure is observed
in the same way by all users of the system.

environmental consequences The consequences can be grouped into
failure severities, ranging from minor to catastrophic.

The first three dimensions relate to the failure symptoms, whereas
the failure severity may be thought of as a summary ranking of the
specifics of the failure symptom.

Depending on the system, more specific classifications along these
dimensions, as well as in additional dimension, may be used, of course.
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Figure 2.3: Fault classification (from [ALRO1])

Faults

Similarly to the classification of failures, faults can be categorised using
several elementary dimensions (see Figure 2.3). Combinations of the
elementary dimensions lead to three major fault classes, while the
mapping to the fault classes is not entirely unambiguous:

design faults software flaws, malicious logics, hardware errata

physical faults malicious logics, hardware errata, production defects,
physical deterioration, physical interference, attacks

interaction faults attacks, malicious logics, intrusions, input mistakes

2.4.2 Means to Attain Dependability

Avizienis et al. [ALRO1, LRALO04] classify means to attain dependability
into four groups:

1. fault prevention
2. fault tolerance
3. fault removal

4. fault forecasting
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These groups will be discussed in the following. They can be charac-
terised by the life cycle phase(s) in which they may be applied: most
importantly, development and maintenance, deployment and operation
can be distinguished in this respect. To effectively attain dependability,
means from multiple of these groups will usually be employed.

Fault Prevention

Fault prevention (also: fault avoidance) techniques may be applied in
all phases, however in substantially different ways. During development
and maintenance, quality control techniques are used, which include
using rigorous software development methods. During deployment,
training of (human) users can reduce the probability of interaction
faults. During operation of a system, shielding techniques are employed:
These are not restricted to physical shielding of the hardware, but also
include logical shielding, e.g., by using firewalls in networked systems.

Fault Tolerance

Fault tolerance involves delivering correct service in the presence of
faults. It is attained through error detection and subsequent system
recovery. Fault tolerance techniques are implemented during develop-
ment, but are operative during system operation. However, the error
detection phase may take place during service delivery (concurrent
error detection) or while service delivery is suspended (preemptive error
detection).

The system recovery phase handles two aspects: error handling,
which eliminates errors from the system state, and fault handling,
which prevents known faults from being activated again.

Components that implement fault-tolerance in a system must be
fault-tolerant themselves to effectively realise fault-tolerance. This
leads to a problem of recursion, which must be deliberately resolved
by defining an acceptable level of fault probability.

Fail-controlled Systems Of particular importance in the context of
fault tolerance techniques is the realisation of fail-controlled systems.
Such systems “fail only in specific modes [...]| and only to an acceptable
extent”. Halting failures are preferred to the delivery of incorrect or
erratic values. A system that essentially shows only halting failures is
called a fail-halt system or a fail-silent system. A system that shows
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only minor failures (in particular non-catastrophic failures) is called a
fail-safe system.

Fault Removal

Fault removal aims to reduce the number or severity of fault occurrence.
Fault removal can take place both during development and during
system operation. In the former case, it is usually a three-phase process:
verification, diagnosis and correction. In the latter case, corrective and
preventive maintenance may be distinguished.

Verification and Validation Since there are conflicting definitions of
verification and the related term “validation”, we explicitly include
definitions here, which base on the international standard framework.

The most general definition of verification and validation in the
international standards can be found in the ISO 9000 quality stan-
dard [ISO00]. However, for the software engineering domain, the terms
are defined a bit more specifically in the IEEE Standard Glossary of
Software Engineering Terminology [TEE90]:

Definition 2.13 (verification). “The process of evaluating a system or
component to determine whether the products of a given development
phase satisfy the conditions imposed at the start of that phase.” [IEE90]

Definition 2.14 (validation). “The process of evaluating a system
or component during or at the end of the development process to
determine whether it satisfies specified requirements.” [IEE90]

Simply stated, verification can be understood as checking whether
the system conforms to its specification, while validation checks whether
the specification itself corresponds to the users requirements or expecta-
tions. The IEEE definition refers to “specified requirements”, which is
unrealistic on the one hand, since often requirements are not completely
“specified”, and dangerous on the other hand, since the specified require-
ments may not match the actual requirements, similar to mismatches
between system specification and requirements specification.

Fault Forecasting

Fault forecasting aims to “estimate the present number, the future inci-
dence, and the likely consequences of faults” [ALRO1]. They distinguish
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ordinal and probabilistic evaluation. Avizienis et al. alternatively use
the terms qualitative resp. quantitative evaluation, which is misleading,
since ordinal evaluation also—if only implicitly—refers to quantities of
failures. Ordinal evaluation “aims to identify, classify, rank the failure
modes [...] that would lead to system failure”. Probabilistic evaluation
aims to evaluate stochastically “the extent to which some of the at-
tributes of dependability are satisfied”. In principle, all the well-known
scale levels (nominal, ordinal, interval, ratio) may apply here. Ordinal
evaluation minus the ranking step, which may be inhibited for some
reason, would lead to a nominal scale, for example.

2.5 Non-functional Characteristics of
Software and Dependability

In this section, first several isolated non-functional characteristics that
are referred to by the conceptual frameworks described in Section 2.3
are presented (Section 2.5.1). Then, some additional terms of interest
not referring to single attributes are introduced (Section 2.5.2). This
section closes with a discussion of the interdependencies of isolated
attributes (Section 2.5.3), which leads over to the next section.

2.5.1 Single Characteristics
Correctness

Correctness of software systems is classically studied using program
verification and model-checking approaches. Since correctness is only
assessable meaningfully using a dichotomous metric—a system’s func-
tion either conforms to its specification or it does not—, for many
applications correctness is not of major interest due to economic con-
siderations. This of course does not apply to all applications, for
applications with high safety requirements, e.g., the cost of assessing
correctness is a necessary investment.

Classical dependability approaches often consider systems not to
be correct, but to be more or less reliable instead, and they measure
reliability on a ratio-level scale. However, the other aspects of de-
pendability may also be of interest in situations where correctness is
a requirement. Additionally, when considering not a mere software
system, but a software-intensive system, correctness is not attainable
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at all in the overall system, so even if the software part is assessed as
correct, the overall system can only be reliable to a limited extent.

Availability and Reliability

The most ambiguously used characteristics are availability and relia-
bility. The reason for this ambiguity is perhaps that these concepts
have a longer tradition in the hardware domain but cannot be applied
to software-intensive systems in a reasonable way without adaptation.
This caused various different intuitive understandings of these charac-
teristics to arise in the context of software, which evolved into different
more rigorous, but still pre-mature definitions.

In the following, we will present and discuss four definitions of
availability and reliability, by Avizienis et al. [ALRO1], from the Trust
in Cyberspace report [Sch99], by Sommerville [Som01, ch. 16.2] and
the ISO definition from the ISO 9126 Standard [ISOO01].

Definition 2.15 (Avizienis et al.). Availability is a system’s readiness
for correct service. Reliability is a system’s ability to continuously
deliver correct service.

Definition 2.16 (Trust in Cyberspace). Awailability is the property
asserting that a resource is usable or operational during a given time
period, despite attacks or failures. Reliability is the capability of a
computer, or information or telecommunications system, to perform
consistently and precisely according to its specifications and design
requirements, and to do so with high confidence.

Definition 2.17 (Sommerville). Awailability is the probability that a
system, at a point in time, will be operational and able to deliver the
requested services. Reliability is the probability of failure-free system
operation over a specified time in a given environment for a given
purpose.

Definition 2.18 (ISO 9126 Standard). Reliability is the capability
of the software product to maintain a specified level of performance
when used under specified conditions. Awailability is the capability of
the software product to be in a state to perform a required function
at a given point in time, under stated conditions of use. Externally,
availability can be assessed by the proportion of total time during
which the software product is an up state.
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Sommerville’s definition is more operationalised than that of Avizienis
et al. Sommerville refers to the system as an aggregation of the services
it offers, and thus assumes that the availability and reliability values of
the overall system may be aggregated from the respective values of its
services. Avizienis et al., on the other hand, have a more comprehensive
understanding of availability. For example, it does not only refer to
availability of services, but also to availability of information. The
latter understanding is not probabilistic, but may also apply to design
faults which cause some stored information to be irretrievable.

Different metrics and attributes for availability and reliability can
be used depending on the typical duration and density of service
invocations. In general they assume a model of alternation of correct
and incorrect service delivery [ALRO1].

A problem with the definition of availability is that it was originally
applied to systems which provide a continuous service, i.e., the avail-
ability measure refers only to an instance in time. Software-intensive
systems however usually provide discrete services: a service is invoked
(service invocation), executes for some time, and then returns a result
(service completion). The system is thus only effectively available, if
it is available (in the original sense) for the full period from service
invocation to service completion.

Integrity, Confidentiality, Security

Definition 2.19 (Integrity). Integrity of a system is the absence of
unspecified alterations to the system state. [ALRO1]

Definition 2.20 (Confidentiality). Confidentiality of a system is the
absence of unauthorised disclosure of parts of the system state. [ALRO1]

The common notion of security is not considered a basic characteristic
by Avizienis et al., but is a complex composite from several aspects
of availability, confidentiality and integrity. An overall definition of
security is:

Definition 2.21 (Security (Avizienis et al.)). Security is the absence
of unauthorised access to and handling of system state. [ALRO1]

Definition 2.22 (Security (Trust in Cyberspace)). “Security refers to
a collection of safeguards that ensure the confidentiality of information,
protect the system(s) or network(s) used to process it, and control
access to it. Security typically encompasses secrecy, confidentiality,
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integrity, and availability and is intended to ensure that a system resists
potentially correlated attacks.” [Sch99, App. K]

In this definition of security, both secrecy and confidentiality are
noted as sub-characteristics, where secrecy is defined as:

Definition 2.23 (Secrecy). “Secrecy is the habit or practice of main-
taining privacy. It is an element of security.” [Sch99, App. K]

This definition however somewhat contradicts the list of character-
istics, since privacy was noted there as a characteristic distinct from
security. Privacy is defined as:

Definition 2.24 (Privacy). “Privacy ensures freedom from unautho-
rized intrusion.” [Sch99, App. K]

The distinction between secrecy, confidentiality and privacy in the
Trust in Cyberspace framework as well as between different frameworks
remains somewhat vague. However, traditionally, and also in the
TrustSoft framework, privacy is used to refer to the confidentiality of
personal data (of natural persons), and is thus an important special
case of confidentiality/secrecy, which refers to trade or state secrets in
addition.

Safety

Avizienis et al. provide the following definition of safety:

Definition 2.25 (Safety). Safety of a system is the absence of catas-
trophic consequences on the user(s) and the environment. [ALROI1]

This view is quite undisputed. However, the ISO 9126-1 Standard
[ISO01] stresses that safety cannot be viewed as a software characteristic
but only of a system as a whole.

Maintainability

Avizienis et al. provide the following definition of maintainability:

Definition 2.26 (Maintainability). Maintainability is the ability to
undergo repairs and modifications. [ALRO01]

This definition of maintainability encompasses corrective, preventive
as well as perfective or adaptive maintenance. It does not immediately
refer to the operation of the system, but to its design.
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Robustness

Avizienis et al. provide the following definition of robustness:

Definition 2.27 (Robustness). Robustness is the ability of a sys-
tem to tolerate inputs that deviate from what is specified as correct
input. [ALRO1]

In the Avizienis et al. dependability framework, similar to what was
noted concerning security above (Section 2.5.1), robustness is a combi-
nation of a specialisation of availability, reliability, safety, confidentiality
and integrity with respect to deviating input values.

2.5.2 Other Notions

Avizienis et al. define secondary characteristics, which are neither a
simple combination of the basic characteristics nor a specialisation
of a single basic characteristic. Besides the two secondary charac-
teristics already defined above (security and robustness), they define
accountability, authenticity and non-repudiability.

The TrustSoft framework views the three characteristics availability,
reliability and performance jointly as Quality of Service. They have in
common that they can be observed quite easily by the user of a service
and several easily applicable metrics are available, which operate on
a ratio level scale. However, their prediction before system has been
built to completion remains a major research issue.

2.5.3 Interdependency of Characteristics

Two characteristics may be interdependent for two similar reasons, one
more theoretical, one more practical. From a theoretical point of view,
two characteristics may be interdependent because they fundamentally
measure the same aspect: Then it is impossible to apply a system
modification that changes the one characteristic without changing
the other. This is a particular concern if the improvement of one
characteristic involves a disimprovement of the other (antagonistic
characteristics). From a practical point of view, it is possible that no
or only inefficient ways are known to modify a system such that only
one characteristic is affected.
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Figure 2.4: The TrustSoft quality characteristics

Example 1 For example, safety and reliability are sometimes antago-
nistic: When a system is very unreliable so that it practically operates
never, it may be safe nevertheless (or just because of this). Of course,
on another level of granularity, this may not be the case. Suppose the
“safe” system is a subsystem A that should control another subsystem
B. If B produces a catastrophe because A fails in a critical situation,
then the overall system is certainly not safe.

Example 2 A system that simply denies access to all users achieves
perfect security, but is similarly perfectly unavailable.

2.6 Systems of Characteristics

In this section, the coverage of the characteristics presented in the
previous section by the different notion of dependability and the research
framework established by TrustSoft will be discussed.

Table 2.5 shows the coverage of characteristics by the different de-
pendability and related notions, as well as the ISO 9126-1 Standard.
The latter is not directly concerned with dependability, but more gen-
erally with software quality. The table is to be read as follows: A
“1” denotes that the respective author uses the characteristic as a pri-
mary characteristic, a “2” denotes that they refer to it as a secondary
or derived characteristic. In the case of the ISO standard, primary
characteristics are distinguished into characteristics “C” and subchar-

31



2 Fundamental Definitions of Dependability

AT[IqeATAINS

A1IN098

K29109S

Ajores

Ayniqrerpar

|| O [ |

Aoeard

[

ooureurofrd

Ayqqeyipour

AI[Iqreurejuren

zG

ALrgoyur

9ouR.I9[0}-3[1Re]

SSOUJI9II0D

4

4

AIR1yUOPYUOD

16

¢/1

g/1

Aniqerreae

1

Aypqepioge

| [toos1] | wosisnag, | [66ws] | (66, 1amd] | [Towos] | [todTy] || onsuejoerern)

Figure 2.5: Dependability definitions and quality characteristics

32
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acteristics “S”. It should be noted, that—with some exceptions—only
the terms used by the authors were considered. If two authors use
two terms for the same aspect, these occur in two separate lines in
the table (this cannot be the case for many terms, however). If two
authors use the same term for different characteristics with different
meanings, they occur in the same line anyway. The reason for this
is that most characteristics are not defined in a way that is rigorous
enough to differentiate between them unambiguously. Some of these
conflicts are discussed in the respective sections in 2.5.

To restrict the size of the table, only those characteristics already cov-
ered by at least one of the authors besides the ISO standard are included
in the table. Additional characteristics (and sub-characteristics) defined
by the ISO 9126-1 Standard for internal and external software quality
are: functionality (suitability, accuracy, interoperability), reliability
(maturity, recoverability), usability (understandability, learnability,
operability, attractiveness), efficiency (resource utilisation), maintain-
ability (analysability, stability, testability), portability (adaptability,
installability, co-existence, replaceability). Additionally, for quality in
use, the characteristics effectiveness, productivity and satisfaction are
defined.

2.7 Conclusion

It is an important design goal of a system of characteristics used to eval-
uate a system to show theoretical independence of the characteristics.
It may be necessary to combine two characteristics into one to achieve
such independence: The reason may be that the phenomenons are not
yet understood well-enough to conceptually separate them, or because
it is infeasible to measure them independently. This is particularly
important if one wants to employ methods from decision analysis to
guide system development, since these methods usually assume some
independence of characteristics (goals) [EW02, ch. 3.3]: a system of
goals should not include a goal that is included only because of its
impact on another goal that is part of the goal system. Such cases
are instrument-goal-relationships, which represent factual judgements,
in contrast to value judgements represented by goals. Additionally, a
system of goals should be non-redundant [EW02, ch. 3.4].

It is questionable if the dependability frameworks as discussed in
this paper are able to fulfil this role in themselves, or if they merely
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guide the process of selecting a set of characteristics for evaluation.

As noted above, we are not discussing immediately measurable
attributes (goal variables), but more abstract characteristics (goals).
One should keep in mind that for most of the characteristics discussed
(e.g., maintainability), no natural attributes [EW02, ch. 3.6] are known,
but proxy attributes must be used. These merely act as indicators for
the respective goal, and their reliability is questionable.
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3 Implications of the
Sarbanes-Oxley Act

Daniel Winteler <daniel.winteler@uni-oldenburg.de>

Abstract

The major goal of this paper is to familiarize the reader with the
Sarbanes-Oxley Act, its main content and its impact on information
technology. Another important goal is to show how even foreign
financial legislation can affect the IT organization within a company
in Germany and especially the areas of correctness, safety, availabilty,
reliability, security and privacy of a system. IT professionals have
to recognize that their job is not only governed by technical aspects
and restrictions. Legal requirements gain more and more influence on
all aspects of IT and complying with the given legal restrictions is a
basic part of many IT professional’s daily work in a company. The
Sarbanes-Oxley Act acts insofar as an example of many existing laws.
Finally, a general way to assess SOX compliance is described by briefly
introducing accepted frameworks for I'T controls.

3.1 Introduction

“Only twice in the past 25 years I saw panic in the eyes of the Chief
Information Officers (CIOs): First, when those unknown machines
came into the company which they couldn’t handle—the pcs—, and
now the second time, as they are confronted with the Sarbanes-Oxley
Act.” [Qua04]. “Sarbanes-Oxley is like Y2K—but without an ending
date.” [Mil04]. IT professionals’ opinions that imply the significant role
of the Sarbanes-Oxley Act (herein referred as the “Act” or “SOX”) for
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3 Implications of the Sarbanes-Oxley Act

IT and related controls. Although the Act is mainly focused on the
credibility of public financial reporting and thereby financial legislation
it has great impact on information technology within a company and
IT professionals—at least in the affected companies—will have to get
familiarized with it. It is estimated that today more than half of
the large companies spend about 15 percent of their whole budget to
SOX-compliance [Bea05].
This paper focuses on the following issues:

Background
Main content of the Act

Additional legal regulatories

)
)
)

(d) Application area in Germany
) Rules affecting IT governance
)

Concrete implications of the Act on information technology man-
agement

(g) Examples of German laws with impact on IT

(h) Conclusion

3.2 Background

The Sarbanes-Oxley Act of 2002 (technically called the Public Com-
pany Accounting Reform and Investor Protection Act of 2002)! was
the reaction on different financial scandals in the US that had a nega-
tive effect on the confidence of investors in the capital markets in the
United States. In 2001 the company Enron and in 2002 the company
Worldcom crushed surprisingly, although both companies seemed to
show great assets (Enron reported sales increases from 13.3 billion
dollars to 100.8 billion dollars between 1996 and 2000 [VKGO04]). Es-
pecially stakeholders and employees were struck unprepared by that
disaster. Thousands lost their jobs, thousands lost their money. The
ensuing criminal investigation against Enron, Worldcom and the audit
company Arthur Anderson revealed questionable accounting practices

IThe whole Act can be found at http://www.law.uc.edu/CCL/SO0act/soact.pdf
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3.3 Main Content of the Act

and standards. Figures in the accounts of business were manipulated,
losses hidden and annual reports presented to the public that not really
reflected the actual financial situation of the company. One major
defect in the whole auditing system was revealed: Auditing companies
often rendered additional services like legal and expert services related
to the audit. As an effect of that situation, the audit company often
audited its own work, which obviously called their independence into
question.

The Act was signed into law on July 30, 2002 by U.S. President
George W. Bush and adopted by the American Congress on August
29, 2002. It is named after Senator Paul Sarbanes and Representative
Michael Oxley who developed the main requirements of the Act. SOX
is generally considered as the most far reaching reform of American
business practices since the Securities Act of 1933 and 1934 and even
its influence in non-American countries can not be underestimated.
Due to the background described above, the Act’s main focus is to
re-establish investor confidence, reduce criminal accounting practices
and enhance the integrity of published reporting data.

3.3 Main Content of the Act

SOX’ main impact is on six important areas [VKGO04, p. 2J:
e Auditor oversight,
e Auditor independence,

e Corporate responsibility,

Financial disclosures,

Analyst conflicts of interests,
e Civil and criminal penalties for fraud and document destruction.

The eleven titles of the Act are briefly presented in the following (for
a short introduction to the main content in German refer to [Men04]):

Title I of the Act creates the Public Company Accounting Oversight
Board (PCAOB), a board that oversees the audit of companies and is
supervised by the US Securities Exchange Commission (SEC). Audit
companies have to register at the PCAOB and the PCAOB adopts
standards for them.
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Title IT aims at the independence of the auditors. Certain require-
ments have to be fulfilled by the accounting firms to ensure the inde-
pendence of their employees. In the first instance a catalog of services
is given which the audit companies are not permitted to render to the
company it audits. Some of that services were forbidden before, but
the catalog of forbidden services was enhanced.

Title III deals with corporate responsibility and requires audit com-
mittees within a company to be independent. The Chief Executive
Officers (CEOs) and Chief Financial Officers (CFOs) have to deliver a
quarterly and annually report about the company’s financial situation.

Title IV is titled with “Enhanced Financial Disclosures”. Manage-
ment has to provide a report on on the effectiveness of internal controls
and procedures for financial reporting. That report has to be attested
by the auditing firm. Sec. 404 is generally regarded as the rule with
the largest impact on companies (and their I'T management) in the
application area of SOX.

Title V advises the SEC to adopt rules that address the conflicts
of interest that can arise when securities analysts recommend equity
securities in research reports and public appearances, in order to
improve the objectivity of research and provide investors with more
useful and reliable information.

Title VI establishes additional resources and authorities of the SEC
and federal courts.

Title VII directs federal regulatory bodies to make reports and studies
on certain aspects of accounting and related topics.

Title VIII deals with corporate and criminal fraud accountability
and establishes stricter criminal penalties for destruction, alteration or
falsification of certain records, e.g. corporate audit records.

Title IX concentrates on white-collar crime penalty enhancements.
Penalties for certifying fraudulent reports and mail and wire fraud are
imposed.

Title X declares that the CEOs have to sign their company’s federal
income tax return.

Title XI deals with corporate fraud and accountability, grants addi-
tional authority to regulatory bodies and sanctions impeding official
proceedings and certain other matters involving corporate fraud.

In figure 3.1 the main actors in auditing in the United States and their
main relations are shown, after SOX becoming effective. Not shown
is the Corporate Fraud Task Force, a body created by the President
George Bush in July 2002, that is responsible for the enforcement of
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Figure 3.1: The Main Actors in Auditing

3.4 Additional Legal Regulatories

It shall also be mentioned that a number of other relevant legal materi-
als? have to be considered in this context (see [Cyb04]):

(a) the rules issued by the SEC that implement SOX statutory
provisions, especially the “Final Rule: Management’s Reports on
Internal Control Over Financial Reporting and Certification of
Disclosure in Exchange Act Periodic Reports” that concretizes
Sec. 404,

(b) the standards issued by the PCAOB, which are up to today Audit
Standard No. 1-3 and adopted in rulemaking by the SEC and

(¢) various provisions contained in the Statements of Auditing Stan-
dards Nos. 55, 78 and 94, issued by the American Institute of
Certified Public Accountants (AICPA) and incorporated into
Audit Standard No. 2 by the PCAOB and the SEC.

2Those legal material can be found at http://www.sarbanes-oxley.com.
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Unternehmen Marktkapitalisierung ~ Anteil am  DAX30 Sektor

(in Mio. Euro) Gesamt
ALLIANZ AG 32.724,97 6,96% Insurance
ALTANA AG 3.221,34 0,69% Pharma & Healthcare
BASF AG 29.449,03 6,26% Chemicals
BAYER AG 18.579,59 3,95% Chemicals
DAIMLERCHRYSLER AG 30.111,18 6,40% Automobile
DEUTSCHE BANK AG 37.036,47 7.88% Banks
DT.TELEKOM AG 43.203,27 9,19% Telecommunication
E.ON AG 48.440,00 10,30% Utilities
FRESEN.MED.CARE AG 2.171,44 0,46% Pharma & Healthcare
INFINEON TECH.AG 4.419,55 0,94% Technology
SAP AG 24.373,39 5.18% Software
SCHERING AG 9.497,75 2,02% Pharma & Healthcare
SIEMENS AG 51.586,44 10,97% Industrial

334.814,42 71,21%
DAX30 Gesamt 470.165,08 100,00% Stand: 07.02.2005

Figure 3.2: German Dax30 Companies listed at the NYSE

3.5 Application Area in Germany

As the Act is foreign law, its application in Germany is not self evident.
Foreign states do not have the power to force German habitants or
companies to obey to their rules as long as they do not act in that
foreign country. In consideration to that, the Act is only applicable
on companies that are listed at the SEC or have to report to the SEC,
which is in general the case when they are listed at one of the American
stock exchanges (e.g. the New York Stock Exchange, NYSE). Since
many German companies fulfill these conditions (e.g. Daimler-Chrysler
AG, Bayer AG, Schering AG, Deutsche Bank AG, ref. figure 3.23) also
German companies are affected by the Act (so called foreign private
issuers).

As far as US based companies also have international subsidiaries out-
side the US, these subsidiaries also have to be included in the evaluation
process for assuring compliance with the Act. False certification from
subsidiaries could render the issuer’s consolidated accounts inaccurate.

In March 2005 the SEC extended the compliance dates for foreign
private issuers for one year. Foreign private issuer now have to begin
to comply with the Act’s requirements for its first fiscal year ending
on or after July 15, 2006.

Besides, it has to be recognized that complying with the Act assists

3Picture taken from [Hem04].
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the international comparableness and is regarded as an advantage in
competition. So it can be anticipated that companies all over the world
voluntarily obey SOX, even if SOX is unapplicable to them as they are
not listed at an American stock exchange.

3.6 Rules Affecting IT Governance

The sections that have an important impact on IT shall be described
in detail in the following. Those are sec. 302, 906, 409 and, in the first
instance, sec. 404.

3.6.1 Officer Certification

The relevant content of sec. 302 para. a and sec. 906 para. c of the Act
shall be printed in the following:
Sec. 302 para. a:

“(a) REGULATIONS REQUIRED- The Commission shall,
by rule, require (...) that the principal executive officer
or officers and the principal financial officer or officers, or
persons performing similar functions, certify in each annual
or quarterly report filed or submitted under either such
section of such Act that— (1) the signing officer has reviewed
the report;

(2) based on the officer’s knowledge, the report does not
contain any untrue statement of a material fact or omit
to state a material fact necessary in order to make the
statements made, in light of the circumstances under which
such statements were made, not misleading;

(3) based on such officer’s knowledge, the financial state-
ments, and other financial information included in the re-
port, fairly present in all material respects the financial
condition and results of operations of the issuer as of, and
for, the periods presented in the report;”

Sec. 906 para. ¢ of the Act:

“CRIMINAL PENALTIES- Whoever—
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(1) certifies any statement (...) knowing that the periodic
report accompanying the statement does not comport with
all the requirements set forth in this section shall be fined
not more than $1,000,000 or imprisoned not more than 10
years, or both; or

(2) willfully certifies any statement (...) knowing that
the periodic report accompanying the statement does not
comport with all the requirements (...) shall be fined not
more than $5,000,000, or imprisoned not more than 20
years, or both.”

As mentioned herein before companies have to deliver an annual
audited report with all the relevant figures about the company’s finan-
cial situation. That was usual before the SOX. But now Section 302
and Section 906 design a duty of the CEOs and CFOs to certify those
reports. An infringement of that rules can lead to a civil liability. If
the CFO or CEO knows that the report does not comport with all
the requirements of the SOA he can be fined with USD1,000,000 or
imprisonment up to 10 years. If he willfully certifies such a wrong
report he can be fined with USD5,000,000 or imprisonment up to 20
years. By putting pressure on the executives it shall be made sure that
they report the financial situation of their entity at a reasonable level
of accuracy.

To summarize it: Each company’s CEO and CFO have to certify
that

(a) they reviewed the report that is filed,

(b) based on their knowledge, the report does not contain any untrue
or misleading statements,

(c) they are responsible for and have created, established and main-
tained disclosure controls and procedures,

(d) they have evaluated and reported on the effectiveness of those
controls and procedures,

(e) that the independent auditor has been informed about any mate-
rial weakness or deficiencies in internal control or fraud and

(f) any significant changes in internal controls that could significantly
affect internal controls are published.
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3.6.2 Internal Controls for Financial Reporting

Section 404(a) of the Act describes management’s responsibility for
certain internal controls and processes. This section is generally redared
to be the part of the Act with the biggest impact on entities and their
IT-management.

The content of Sec. 404(a) is the following:

“(a) RULES REQUIRED- The Commission shall prescribe
rules requiring each annual report (...) to contain an
internal control report, which shall-

(1) state the responsibility of management for establishing
and maintaining an adequate internal control structure
and procedures for financial reporting; and

(2) contain an assessment, as of the end of the most recent
fiscal year of the issuer, of the effectiveness of the
internal control structure and procedures of the issuer
for financial reporting.”

Thus, the senior management has to

(a) establish and maintain adequate internal controls for financial
reporting and

(b) assess annually the effectiveness of those controls.

“It’s not longer just the numbers that are reported but how these num-
bers arrived” [Law03]. The mentioned internal controls and processes
must be auditable. External auditors will be required to issue an
opinion of how well these processes were followed.

Internal control over financial reporting can be defined as a pro-
cess designed and maintained by management to provide reasonable
assurance regarding the reliability of financial reporting and the prepa-
ration of their financial statements for external purposes in accordance
with generally accepted accounting principles (GAAP) [Bru05]. The
financial reports contain in particular current assets, noncurrent assets,
current liabilities, long-term debts, minority interests in consolidated
subsidiaries and stockholders’ equity.

3.6.3 Real Time Issuer Disclosures

Sec. 409 of the Act states the following:
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“REAL TIME ISSUER DISCLOSURES- Each issuer re-
porting (...) shall disclose to the public on a rapid and
current basis such additional information concerning ma-
terial changes in the financial condition or operations of
the issuer, in plain English, which may include trend and
qualitative information and graphic presentations, as the
Commission determines, by rule, is necessary or useful for
the protection of investors and in the public interest.”

3.7 Concrete Implications of SOX on
Information Technology Management

As already mentioned before, SOX is mainly financial legislation. But
sec. 302, 409, 906 and 404 are about ensuring that internal controls or
rules are in place to govern the real time creation and documentation
of information in financial statements. Since IT systems are used to
generate, change, house and transport that data, CIOs as the keepers
of corporate data have to build the controls which ensure that the data
stands up to audit scrutiny. Thus, it is not just the CEO and CFO
who could be held liable for the invalidity of the information.

In general, the CIOs have to assure that the relevant systems are
compliant with the Sarbanes-Oxley legislation. How to assure that, can
not be generally answered as internal control is not “one-size-fits-all”.
Accordingly, each company has tailor an IT control approach suitable
to its size and complexity. CIOs will have to make sure that IT systems
provide transparency of how they record, track and disclose financial
information. Moreover, every division in a company needs to have a
documented set of internal rules that control how data is generated,
manipulated, recorded and reported. Structured data (e.g. spreadsheets
and databases) as well as unstructured data (e.g. e-mails and instant
messages) have to be included.

As a result, CIOs must now take on the challenges of[IT 04, p. 12]

(a) enhancing their knowledge of internal control,
(b) understanding their organizations’s overall SOX compliance plan,

(c) developing a compliance plan to specifically address IT controls
and
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(d) integrating this plan in the overall Sarbanes-Oxley Act.

Regarding the issue of internal controls CIO will especially responsible
for [IT 04, p. 12]:

(a) assessing the current state of their IT control environment,

(b) designing control improvements necessary to meet the directives
of the SOX sec. 404,

(c) closing the gap between the current state of their IT control
environment and the necessary improvements developed in step
B.

(d) keeping the IT management in compliance with SOX by internal
test and audit of the new controls.

3.7.1 Assessing the Readiness of IT

The first step in the process of compliance with the SOX is to assess
the readiness of Information Technology Management. Basic questions
that have to be asked are listed in figure 3.3 (taken from [IT 04, p.
40)).

Some Possible Risks to IT

When evaluating the current state of SOX compliance and the need
for controls in an organization, there are several risks generated by IT
that need to be addressed.

Some of the areas that could constitute a risk in I'T shall be given

below:
a) Lack of accessibility and audit traceability of data or systems,
irretrievability of data,

(
(b

(
(d

)
)
¢) lack of secure storage and storage procedures,
) proliferation of servers and disparate data stores,
)

(e) poor alignment between IT systems and business needs.
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1. Does the Sarbanes-Oxley steering committee understand the
risks inherent in IT systems and their impact on compliance
with section 4047

2. Have business process owners defined their requirements for
financial reporting control?

3. Has IT management implemented suitable IT controls to
meet these business requirements?

4. Does the CIO have an advanced knowledge of the types of
IT controls necessary to support reliable financial processing?

5. Are policies governing security, availability and processing
integrity established, documented and communicated to all
members of the IT organization?

6. Are the roles and responsibilities for all those involved in pro-
cessing financial IT systems related to section 404 documented
and understood by all members of the department?

7. Do members of the IT department and all those involved
in processing financial I'T systems understand their roles, do
they possess the requisite skills to perform their job responsibil-
ities relating to internal control, and are they supported with
appropriate skill development?

8. Is the IT department’s risk assessment process integrated
with the company’s overall risk assessment process for financial
reporting?

9. Does the IT department document, evaluate and remediate
IT controls related to financial reporting on an annual basis?

10. Does the IT department have a formal process in place to
identify and respond to IT control deficiencies?

11. Is the effectiveness of IT controls monitored and followed
up on a regular basis?
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But besides, due to the fact that individuals are involved in the
development, maintenance and access of I'T systems, also the dangers for
the integrity of data and the danger of data processing of unauthorized

individuals have to be recognized. Typical risks in this area are?.:

(a) unauthorized access to data that may result in destruction of
data or improper changes to data, including the recording of
unauthorized or nonexistent transactions or inaccurate recording
of transactions,

unauthorized changes to data in master files,
unauthorized changes to systems or programs,
inaccurate calculations and processing,

system errors and incomplete processing.

Evaluating SOX Relevance

There are many IT controls that are essential to smooth functioning of
IT itself, but have little impact on SOX compliance. So the relevant
business processes have to be identified as well as IT applications
and systems that support or contain financial information. Thus also
systems that, at first view, might not be considered as targets of SOX
will come under the scope of the Act.

A good example too show which parts of IT can be affected by SOX
compliance is given by Armour in [Arm05]: In a steel company the steel
arriving at and taken from the stock yard is counted by a materials
tracking system. But when the amount of steel was counted manually
they recognized that they had a lot less steel than expected. That
can result in a gap of some million dollars in the company’s financial
statements and thereby lead to a SOX-investigation.

3.7.2 Frameworks for Internal Control Systems on IT

The requirements of SOX are so complex that the process of complying
with SOX needs guidelines. Developing own guidelines takes in general
too long and is expensive and the company does not have the guarantee
that their guidelines are accepted as an appropriate base for Sox

4Quoted from the Statement of Auditing Standard No. 94.
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compliance. Since it can generally be recommended to use one of the
accepted frameworks as guidance on internal control.
Two of such frameworks shall be briefly described in the following:

COSO and COBIT.

COsO

The most common general guideline for internal controls is the COSO
framework. COSO (The Committee of Sponsoring Organizations of
the Treadway Commission) is a voluntary private sector organization
dedicated to improving the quality of financial reporting. The COSO
framework is explicitly identified by the PCAOB and the SEC as an
acceptable framework, last but not least because COSO had been the
de facto industry standard for assessing internal controls and recognized
as such by professional accounting associations as well as by standard
setting organizations.
The COSO framework consists of five interrelated components:

(a) Control environment (management’s philosophy and operating
style),

(b) Risk assessment (the identification and analysis or relevant risks
to the achievement of objectives),

(c) Control activities (the policies, procedures and practices that
help ensure management directives are carried out),

(d) Information and communication,

(e) Monitoring.

COBIT

COSO was issued in 1992. So it predated much of the information
revolution and contains little discussion of IT security. Thus companies
turned to another standard for evaluating controls for IT systems used
for gathering, processing and reporting financial information: COBIT
(Control Objectives for Information and Related Technology) published
by the Information Systems Audit and Control Association (ISACA).

COBIT defines 34 IT processes and 318 control objectives that fall
into four categories:
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a) IT planning and organization control objectives,

(a)
(b) IT acquisition and implementation control objectives,
(c¢) IT delivery and support control objectives,

(d) IT monitoring control objectives.

The IT Governance Institute (ITGI) maintained COBIT and pub-
lished the extensive COBIT-based Control Objectives for Sarbanes-
Oxley. In that COBIT SOX framework several COBIT IT processes and
related control objectives were eliminated e.g. if they were too detailed.
Nevertheless 27 IT processes and 134 control objectives remained.

Example 1: Application Controls — Sales Cycle

The ITGI gives an example of application control objectives for the sales
cycle within a company [IT 04]. All the mentioned control objectives
have to be assured by the use of built-in application control functionality
as far as possible.

e “Orders are processed only within approved customer credit
limits,

e Orders are approved by management as to prices and terms of
sale,

e Orders and cancellations of orders are input accurately,

e Order entry data are transferred completely and accurately to
the shipping and invoicing activities,

e All orders received from customers are input and processed,
e Only valid orders are input and processed,

e Invoices are generated using authorized terms and prices,

e Invoices are accurately calculated and recorded,

e Credit notes and adjustments to accounts receivable are accurately
calculated and recorded,

e All goods shipped are invoiced,
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Credit notes for all goods returned and adjustments to accounts
receivable are issued in accordance with organization policy,

Invoices relate to valid shipments,

All credit notes relate to a return of goods or other valid adjust-
ments,

All invoices issued are recorded,

All credit notes issued are recorded,

Invoices are recorded in the appropriate period,

Credit notes are recorded in the appropriate period,

Cash receipts are recorded in the period in which they are received,
Cash receipts data are entered for processing accurately,

All cash receipts data are entered for the processing,

Cash receipts data are valid and entered for processing only once,
Cash discounts are accurately calculated and recorded,

Timely collection of accounts receivable is monitored,

The customer master file is maintained,

Only valid changes are made to the customer master file,

All valid changes to the customer master file are input and
processed,

Changes to the customer master file are accurate,

Changes to the customer master file are processed in timely
manner,

Customer master file data remain up-to-date.”
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Example 2: Ensure Systems Security

Another example given by the ITGI is a control guidance to ensure sys-
tems security. The control objective in general is to provide reasonable
assurance that financial reporting systems and subsystems are appro-
priately secured to prevent unauthorized use, disclosure, modification,
damage or loss of data.

The ITGI states the following illustrative controls within that area [IT 04]:

e “An information security policy exists and has been approved by
an appropriate level of executive management,

e A framework of security standards has been developed that sup-
ports the objectives of the security policy,

e An IT security plan exists that is aligned with the overall strategic
plans,

e The IT security plan is updated to reflect changes in the environ-
ment as well as security requirements of specific systems,

e Procedures exist and are followed to authenticate all users to the
system to support the validity of transactions,

e Procedures exist and are followed to maintain the effectiveness
of authentification and access mechanism (e.g. regular password
change),

e Procedures exist and are followed to ensure timely action relating
to requesting, establishing, issuing, suspending and closing user
accounts,

e A control process exists and is followed to periodically review
and confirm access rights,

e Where appropriate controls exist to ensure that neither party
can deny transactions and controls are implemented to provide
nonrepudation of origin and receipt, proof of submission and
receipt of transactions,

e Where network connectivity is used, appropriate controls, includ-
ing firewalls, intrusion detection and vulnerability assessments,
exist and are used to prevent unauthorized access,
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e IT security administration monitors and logs security activity and
identified security violations are reported to senior management,

e Controls relating to appropriate segregation of duties over re-
questing and granting access to systems and data exist and are
followed,

e Access to facilities is restricted authorized personnel and requires
appropriate identification and authentication.”

3.8 Examples of German Laws With Impact
on IT

Finally, two examples of German laws® that affect the organization
of information technology within a company shall be briefly intro-
duced [BIT05): The KontraG and the BDSG. Those Laws had a
background comparable to that of SOX: Bremer Vulkan or Flow Tex
were examples that forced the legislator to fight fraudulent accounting
practices and the manipulation of financial statements.

3.8.1 KonTraG

The Corporate Sector Supervision and Transparency Act (Gesetz
zur Kontrolle und Transparenz im Unternehmensbereich, KonTraG)
changed some sections in other existing laws in 1998. Its aim is to
achieve an economic control and transparency of incorporated com-
panies and limited liability companies. Thus, the law obliges the
management to install a risk management system for the early detec-
tion of imminent losses. This can be seen in analogy to the SOX, as
this implies the installation of an internal control and reporting system
that is capable of effectively identifying risks in order to satisfy external
information needs [Hem04]. Due to the Corporate Sector Supervision
and Transparency Act the company’s auditors are obliged to review
the risk management system. The company-wide risk management
includes of course the IT-risk management.

5For other American laws that have great impact on IT management (e.g. the
Gramm-Leach-Bliley Act or the Health Insurance Portability and Accountability
Act) confer [Ber05].
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3.8.2 BDSG

The German Data Protection Act (Bundesdatenschutzgesetz, BDSG)
protects the right of privacy. Each company has to make sure that it
observes the applicable rules. Infringements of the BDSG can lead to
a civil liability as well as to criminal proceedings. Due to the fact that
the personal data is virtually stored, the CIO has to install routines
that assure that neither unauthorized persons gain access to personal
data nor that more personal data than necessary is stored.

3.9 Conclusion

As a reaction on different financial scandals in the US, SOX focuses
on re-establishing investor confidence. Certain rules for auditors as
well as for audited companies try to secure the integrity of published
reporting data. If a German company is listed at an American stock
exchange, it is also affected by the Act. Although SOX is mainly
financial legislation, it has great impact on IT management within a
company. Each company will have to set up a process for compliance
with SOX, existing frameworks like COSO and COBIT should be used.

As an effect, IT management is no longer an avoidable, low-priority
expense for an entity. It should have never been, but since CEOs and
CFOs are now personally liable for the integrity of financial data, I'T
security will gain more importance in a company and just as well will the
CIO. He will gain more responsibility in an entity but simultaneously
is faced with the possibility of serving jail time.
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4 An Introduction to Fault
Tolerance within Software
Systems

Timo Warns <timo.warns@informatik.uni-oldenburg.de>

Abstract

As software systems increasingly pervade our everyday life, our depen-
dence on their trustworthiness grows. Failures of components cannot
be avoided completely for sufficiently complex systems. However, such
system faults must be handled to attain the dependability of a system.
The means of fault tolerance avoid system failures in the presence of
faults by employing redundancy. This paper provides an introduction
to the challenges and approaches of software-based fault tolerance. It
presents basic system and threat models and describes the different
phases and levels of fault tolerance focusing on basic concepts instead
of solution details.

4.1 Introduction

Software systems continuously pervade more and more areas of our
everyday life. This results in a strong dependence on their successful
application. One requirement is the dependability of the software as
the “ability to avoid service failures that are more frequent and more
severe than is acceptable” [ALRLO4].

Faults cannot be avoided completely for sufficiently complex systems
and may lead to unacceptable outcomes, e.g., if human life is endangered.
Therefore, it is necessary that systems are able to deal with faults
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during run-time even if human intervention is not available. These
needs are addressed by fault tolerance as one of the means to attain the
dependability of a system besides prevention, removal, and forecasting.
Fault tolerance is understood as “means to avoid service failures in the
presence of faults” [ALRLO4].

In order to reach its goals, fault tolerance relies on redundancy.
Redundancy is defined as the property of a system describing that it
contains parts not needed for correct functionality [Jal94]. For example,
the redundant parts may be added for fault tolerance only. The
redundancy can be located in hardware, software, or time. Hardware
(software) redundancy means to employ additional hardware (software)
components to obtain fault-tolerant behaviour. Time redundancy
means to require additional time to obtain such behaviour, e.g., if a
procedure invocation fails, the caller may try another time to tolerate a
transient fault. Please note, that the term component shall be used in
a relaxed sense. It shall not be considered on a type-level as in recent
research on software engineering [Szy02], but like a subsystem with a
well-defined interface and a self-contained functionality. The term will
be applied to software and hardware.

This paper provides an introduction to the area of fault tolerance.
The central problems and concepts shall be presented in general as an
overview on a wide research field. The paper does not go into details
of specific solutions, but summarises the basic concepts and challenges.

Several excellent books and papers that treat the overall concepts of
fault tolerance have been published already. This paper does not try to
introduce a new view on the topic, but gives a summary intended for an
audience not familiar with the area. It is mainly based on Jalote’s book
“Fault Tolerance in Distributed Systems” [Jal94] and adopts his view
and structuring. Where applicable, Avizienis’ et. al article “Basic Con-
cepts and Taxonomy of Dependable and Secure Computing” [ALRLO04],
Cristian’s “Understanding Fault-Tolerant Distributed Systems” [Cri91],
and Lyu’s book “Software Fault Tolerance” [Lyu95] have been used to
smooth the summary.

The paper is organised as follows. Section 4.2 introduces basic
models for fault-tolerant systems. Section 4.3 summarises the threats,
which may need to be treated, with some elementary classification
schemes. Section 4.4 shows basic strategies and corresponding activities
that are the foundation of fault tolerance. Section 4.5 presents a
hierarchical model of different abstraction levels within fault-tolerant
systems. Section 4.6 introduces the top level that contains means wrt.
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to fault tolerant software.

4.2 System Model

A model of a system abstracts from its concrete realisation and preserves
important aspects for a certain point of view. For the development of a
fault-tolerant system, especially the aspects of distribution and timing
assumptions are important as both have a deep impact on the types of
approaches that are applicable.

4.2.1 Distribution

The distribution of a system’s components is an important aspect
affecting the class of tolerable faults. For example, a non-distributed
system cannot tolerate crash faults of the processor it is deployed
on, because all components depend on this processor. In general,
distributed systems are more powerful wrt. fault tolerance, because
the hosting hardware components may have independent failure modes.
Software components deployed on a non-failed hardware component
are able to handle failures of another failed hardware component.

For a distributed system, the physical model and the logical model
are distinguished [Jal94]. The physical model describes the physical
components and their connections; the logical model describes the
processes and their communication channels.

A distributed system is a loosely coupled system, i.e., it consists
of geographically separated nodes connected by a communication net-
work. In contrast to a tightly coupled parallel system, its nodes are
autonomous and do neither have shared memory nor a global clock.
Each node consists of a processor, volatile memory, a clock, non-volatile
storage, and software. These physical components define the physical
model as a view on a distributed system.

The computation done by a distributed system defines the logical
model as another viewpoint. This model describes a system from an
application’s view. It consists of a finite set of processes and logical
channels between them. A process is an instance of a program in
execution. The processes may concurrently run on one node due to
processor sharing. A channel between two processes exists iff. both
processes communicate with each other. The channels are assumed
to be error-free, to have an infinite buffer, and to preserve the or-
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der of messages. These assumptions must be met by the underlying
communication protocols.

Both viewpoints are important. The physical model defines the
components that perform the computation but are exposed to failures.
The logical model defines the computations and, therefore, the services
whose dependability shall be attained. Hence, fault tolerance is a
means of preserving qualities in the logical model despite failures of
components defined in the physical model.

Non-distributed systems can be differentiated according to whether
they employ multitasking or not. In case of multitasking, a single
processor executes multiple processes concurrently, i.e., they share the
processor. This can be treated as a special case of a distributed system
with a single node and intra-node communication among processes.
However, the set of faults that can be tolerated by such systems is
smaller than the set of distributed system, because there is no redundant
hardware with independent failure modes. Without multitasking, the
system runs a single process. The physical model consists of a single
node without a communication network then.

4.2.2 Timing Assumptions

The timing assumptions on a system are a major factor determining
the applicability of concrete fault tolerance approaches. For example,
a distributed approach that relies on synchronised clocks cannot be
employed with an asynchronous model, because these clocks cannot be
realised for such a model.

The processes of a distributed system are hosted by different nodes.
As these nodes are autonomous, no assumptions can be made about the
relative speeds between different processes. However, finite progress for
each process is assumed, which means that each process has a bounded
positive rate of execution [Jal94]. This assumption is common to all
models described below.

The strongest model wrt. timing is the synchronous model. A system
is synchronous if it performs its correct computations within a finite
and known time bound [Jal94]. The message delays of channels and the
time period of a processor to execute a sequence of instructions within
a synchronous system are finite and bound. As a major advantage,
these properties enable crash detection by time-outs, i.e., a node that
does not respond within a certain period can be assumed to have failed.

In contrast to the synchronous model, the asynchronous model is
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the weakest model. This model does not allow any assumptions about
time bounds of communication or execution (except finite progress,
cf. [Jal94]) . Hence, the development of fault tolerance approaches is
harder than for the synchronous model as crash detection by time-
outs is impossible. However, such approaches are more powerful as
they are not affected by performance faults. An approach relying on
synchronous assumptions may fail if the expected time bounds are
violated. For example, a non-crashed but overloaded node may yield
message delays that exceed the expectations of other nodes. These
nodes may wrongly assume the node to be crashed.

As the synchronous model is often not applicable for real-world sys-
tems and the asynchronous model is too weak for many fault tolerance
approaches, other models in-between have been proposed. For exam-
ple, the timed asynchronous model allows timing assumptions about
the execution of a sequence of instructions, but not about message
delays [CF99]. The model is applicable to many real-world systems
and enables a greater class of fault-tolerant approaches than the asyn-
chronous model, e.g., deterministic solutions of Byzantine agreement
(see below).

4.3 Threats

The threats to the dependability of a system are faults, errors, and
failures. “A service failure [...] is an event that occurs when the
delivered service deviates from correct service [...] A service failure is
a transition from correct service to incorrect service [...]” [ALRLO4].
The deviation of externally visible states from correct states is called
an error. “The adjudged or hypothesized cause of an error is called a
fault” [ALRLO4].

Fault tolerance approaches try to handle failures of single components
as these threats can be considered faults on system-level. If a system
is not able to tolerate faults, they may evolve to system failures. The
development of a fault-tolerant system requires to specify the types
and numbers of faults to tolerate. This is facilitated by classification
schemes as described below.

Faults can be classified according to the behaviour of failed com-
ponents, i.e., faults are described by components’ failures. A basic
classification distinguishes crash, omission, timing, response, and Byzan-
tine failures [CAS86, Cri91, Jal94]. These failures form a hierarchy as
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Byzantine

Timing

Omission
Response

Figure 4.1: A basic fault classification wrt. to possible failures
(cf. [Jal94, Cri91]). The five elementary classes form a
hierarchy.

shown in figure 4.1. Correspondingly, a component is said to have a
stricter failure mode than another component if the former exposes
more restricted failure behaviour than the latter. For example, a com-
ponent with crash failures only has a more strict failure mode than a
component with Byzantine failures, because the former may halt only
while the latter may expose arbitrary behaviour (see below).

A failure is considered a crash failure if it causes a component to
halt or lose its internal state. Different types of crash failures can be
distinguished according to how much of the internal state is lost and
whether the component restarts at all.

e An amnesia-crash causes a component to loose all of its internal
state.

o A partial-amnesia crash causes a component to loose only some
of its internal state information.

o A pause-crash halts a component for a certain period of time
without loss of internal state.

e A halt-crash stops a component permanently, i.e., it does not
restart at all.

A failure is considered a omission failure if it causes a component to
omit responses to an input. The set of crash failures is contained in
the set of omission failures as each crashed component cannot respond
to inputs and a component may omit responses although not crashed.

A failure is considered a timing failure if it causes a component
to send a correct response too early or too late wrt. a specified time
interval. Late timing failures are called performance failures as well.
The set of omission failures is contained in the set of timing failures as
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Development faults
foceur during (a) system development, (b) maintenance during the use phase,
___ Phase of creation and (c) generation of procedures to operate or to maintain the system]

or occurrence

il

Operational faults
[occur during service delivery of the use phase]

Internal faults

[originate inside the system boundary]

— System boundaries External faults

[originate outside the system boundary and propagate errors into
the system by interaction or interference]

Natural faults

[caused by natural phenomena without human participation]
| Phenomenological cause

1

Human-Made faults
[result from human actions]
Hardware faults

[originate in, or affect, hardware]
— Dimension
Software faults

Faults — [affect software, i.e., programs or data]

Malicious faults

[introduced by a human with the malicious objective of causing harm to the system]

|

— Objective

|

Non-Malicious faults
[introduced without malicious objective]
Deliberate faults

[result of a harmful decision]

[ Intent "
Non-Deliberate faults
[introduced without awareness]
Accidental faults
[introduced inadvertently]

| |

[ Capability Incompetence faults

[result from lack of professional competence by the authorized human(s),
or from of the

Permanent faults

[presence is assumed to be continuous in time]

" Persistence

|

Transient faults
[presence is bounded in time]

Figure 4.2: Elementary fault classes [ALRLO04]. Faults are classified
according to eight viewpoints leading to 16 elementary fault
classes. The viewpoints address different aspects of faults,
e.g., their cause and their persistence.

each omission is a late (never occurring) response and late occurring
responses are not omissions.

A failure is considered a response failure if it causes a component
to respond incorrectly. Different types of response failures can be
distinguished according to whether they affect the response value or
a state transition. A wvalue failure causes a component to return an
incorrect value. A state transition failure causes a component to take
an incorrect state transition yielding incorrect behaviour.

A failure is considered a Byzantine failure if it causes arbitrary
behaviour of a component. Obviously, this is the most general class of
failures as it does not impose any restrictions on a failing component.
Hence, all sets of failures are contained in the set of Byzantine failures.

Avizienis et al. have proposed another classification of faults [ALRLO04]
introducing eight basic viewpoints leading to 16 elementary fault classes

65



4 An Introduction to Fault Tolerance within Software Systems

as shown in figure 4.2. The fault classes discriminate faults according
to

e their phase of creation or occurrence

e the place of their origin

e their phenomenological cause

e whether they affect hardware or software

e whether they were introduced maliciously
e whether they were introduced intentionally
e the capabilities of their originators

e and their persistence.

4.4 Strategies and Activities of Fault
Tolerance

Fault tolerance approaches can be classified according to whether they
handle faults hierarchically or through a group of components [Cri9l].
Hierarchical fault tolerance relies on a strategy of error detection
and recovery by components on different abstraction levels, i.e., a
component on a higher level tolerates failures of components on a
lower level. For example, if an email component invokes a network
component and detects that the network component failed, it may try
again later in the hope for a transient fault. The high-level component
has redundant functionality that detects and handles failures of the
low-level component.

Group fault tolerance relies on a strategy of compensation of failures
by a group of similar components. The redundancy of the group (e.g.,
through replication of the components) allows to mask failures of single
components. For example, a calling component may ask all components
of a group to perform a certain computation. In case of omission failures,
only one component needs to be available to successfully perform the
computation.

As can be seen from above, a fault tolerance approach embraces
different activities depending on its strategy. In the following, we briefly
describe these activities and show how they can be combined to realise
different strategies.
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4.4.1 Error Detection

Many fault tolerance approaches rely on means of error handling. As
these means are usually invoked on demand only, they depend on
prior error detection. The error detection is performed by checks on a
system’s state, because errors are defined as deviations from a correct
system’s state.

There are four major properties a check ideally satisfies: derivation
from specification only, independent failure mode, completeness, and
correctness [LA90, Jal94]. The derivation property addresses the inde-
pendence of error detection from the component to be checked. The
component should be treated as a black boz, i.e., no knowledge about
the component’s internals should be used to develop the checks. This
helps to avoid errors common to the component and error detection
itself. In general, the error detection should have independent failure
modes wrt. to the rest of the system. Otherwise, detection fails jointly
with the system and, therefore, cannot detect the errors of the system.
The completeness property states that the checks should detect all er-
rors caused by faults that are specified to be tolerated. The correctness
property is closely related and states that the error detection should
not report false-positive or -negative errors.

The development of the concrete checks depends on the errors to
detect and the architecture of the system. However, there are some
general types of checks reusable in different contexts [LA90, Jal94]:

Replication Checks Replication checks rely on multiple replicas of
a component. Service invocations are delegated to a (sub-)set
of replicas and their results are compared in order to identify
erroneous components. Such checks may fail if the design of the
components is incorrect resp. if the component is implemented
incorrectly. For example, if a component returns wrong values
for certain input data because of a flawed implementation, all
replicas will return the same wrong value.

Timing Checks Timing checks detect errors through violations of tim-
ing constraints that are specified for a system. If a component
does not respond within its timeout period, it can be assumed
to be failed. Obviously, timing checks require timing assump-
tions about the system itself, i.e., they cannot be employed for
asynchronous systems.
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Structural Checks Structural checks identify errors through the struc-
ture of data, i.e., they rely on redundancy of data structures to
detect incorrect values. Hardware designers exploit such checks
often: a parity bit is added to a data structure to detect erroneous
changes of single bits.

Reasonableness Checks Reasonableness checks identify errors through
the reasonableness of a system’s state. For example, interpreters
of a programming language employ range checks on data values
to ensure that they fit their designated variable type. Other
examples are monitoring the rate of change of values or assertions
evaluating the state of a system.

Diagnostic Checks Diagnostic checks are performed by the system on
its components. For example, the system invokes a component
with input values for which correct return values are known. In
contrast to the other checks, diagnostic checks are usually not
performed during normal operation, but during certain periods
only, e.g., at start-up.

4.4.2 Compensation

Compensation means that a system can mask errors if the state of
a system contains enough redundancy [ALRLO4]. For example, if
components are replicated and invoked in parallel, the system may
vote on the results in order to discard erroneous results of single
components. Compensation may be combined with other activities
like error detection or error recovery. For example, data structures like
error correcting codes are augmented with redundancy to enable both
error detection and compensation.

4.4.3 Damage Confinement and Assessment

When an error of a component is detected, it may already have spread
to several other components. In order to correct the system state, it is
necessary to know which parts of the system are affected, i.e., damage
needs to be confined [Jal94]. Errors spread with the information flow
of the system as they are distributed by the communication between
components. Therefore, the information flow needs to be analysed
either dynamically or statically. Dynamic assessment relies on logging
and examining the information flow during run-time. Static assessment
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relies on static structures of the systems. So called firewalls are assumed,
which limit the information flow across their borders. Hence, errors are
limited to the system parts within such borders.

4.4.4 Error Handling

When the error has been detected and confined, it can be handled to
avoid a system failure. Basically, two techniques have been proposed
for error handling: backward and forward recovery [Jal94].

Backward recovery tries to restore the system state to an earlier
hopefully error-free state. Therefore, it is required to store the state
periodically in a stable storage, which is not affected by failures. This
is also known as checkpointing. In case of an error, the system state is
said to be rolled back.

Forward recovery tries to advance the state to an error-free state
as a corrective action. No previous states are stored. The knowledge
for the action is based on the current state only. Hence, a detailed
assessment of the error is required. Usually, the assessment and the
corrective actions are application dependent. Therefore, the approach
is not as common as backward recovery.

4.4.5 Fault Handling

If an error was not caused by a transient fault, it is desirable to
handle the fault itself in order to avoid future errors. Fault handling
consists of fault location and system repair [Jal94]. Fault location
identifies the components that suffer from faults. Obviously, this is
necessary to know which components to repair. For system repair,
the system must be reconfigured dynamically so that the identified
components are not used anymore or are used in a different way. The
system may call for maintenance from outside if components cannot
be repaired automatically. For example, fault handling may turn off
faulty components with response failures and call for maintenance to
let them be replaced.

4.4.6 Strategies

Fault tolerance approaches can be classified according to the strat-
egy they rely on. A strategy describes the activities and their con-
nections (i.e., dependencies). Four basic strategies have been pro-
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activities with different dependencies.

Figure 4.3: Basic strategies for implementing fault tolerance [ALRLO4].
Four basic strategies are proposed
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posed [ALRLO4]: backward recovery, full forward recovery, partial
forward recovery, and masking and recovery as illustrated in figure 4.3.

Backward recovery relies on error detection, rollback, and fault han-
dling. When an error is detected, the system state is rolled back to an
earlier correct state. If the fault that caused the error is intermittent,
the service can continue without further treatment, because the roll-
back recovered the system state and the error may be unlikely to recur
immediately. Otherwise, the fault needs to be treated by fault handling
before the service can continue, because the fault would probably reac-
tivate the error right again. It may be necessary to call for maintenance
from outside to ensure the continuous operation of the fault-tolerant
system. For example, if faulty components are deactivated during fault
handling, humans must replace them to keep the required redundancy.
Otherwise, the redundancy degrades alloying the capabilities of fault
tolerance.

Full forward recovery relies on error detection, compensation, and
fault handling. It is assumed that the system state contains enough
redundancy to mask errors completely, i.e., the system state as a
whole advances correctly. However, the redundancy is only exploited
when an error is detected. In this case, the damage is confined (not
shown in the figure) to determine which parts of the system state have
to be recovered. The redundancy within these parts is exploited to
mask the error. After the state is advanced, the service can continue.
Fault handling can be done in parallel, because the new system state
usually is different from previous states and, therefore, an immediate
reoccurrence of the error is less probable than in the case of backward
recovery’s rollback. If the fault is solid even after fault handling, the
system needs maintenance from outside.

Partial forward recovery relies on error detection, rollforward, and
fault handling. In contrast to full forward recovery, the decision how to
advance the system state is not based on redundancy of the state itself,
but on a deliberate decision how to recover from the error. Hence, it
requires elaborate confinement and assessment of the error (not shown
in the figure). The decision itself usually is application dependent.

The strategies described above rely on detection in first place and
employ recovery on demand. In some cases, the application of con-
tinuous error detection may not be feasible, e.g., if error detection is
hard or costly. The strategy of masking and recovery relies on com-
pensation in first place and employs error detection and fault handling
on demand only. For example, a system may use the redundancy of a
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Continued Service
under Design Faults

Fault Tolerant Software

Process Resiliency
Continued Service
under Node Failures

Data Resiliency

Atomic Actions

Consistency under

Consistent State Recovery Node Failures

Reliable and Atomic Broadcast

Byzantine Agreement, Synchronized Clocks,
Stable Storage, Fail-Stop Processors,
Failure Detection, Fault Diagnosis,
Reliable Message Delivery

Building
Blocks

Distributed System

Figure 4.4: Levels in a fault-tolerant distributed system (cf. [Jal94]).
The levels form a hierarchy of abstractions for a fault-
tolerant system. Solutions of a level often require solutions
of lower levels.

replicated component for all invocation of its services: a caller invokes
all replicas and votes on their results. If a result of one replica deviates
from the overall result, error detection is started in parallel to service
continuation.

4.5 Levels of Fault Tolerance

Fault-tolerant systems can be modelled as multi-layered applications
as illustrated in figure 4.4 [Jal94]. There are multiple layers of services
regarding different aspects of fault tolerance. Services of higher levels
provide more advanced services wrt. to the faults they tolerate and
usually rely on services provided by lower levels.

The second and third level address very elementary services required
by many high-level fault-tolerant services. Therefore, they are called
building blocks. In the following, the levels below the top level are only
described briefly. As the focus of this paper lies on software systems,
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the last level is presented in more detail in section 4.6.

Byzantine Agreement The problem of Byzantine agreement is about
reaching agreement in the presence of Byzantine failures. It is also
known as the problem of interactive consistency and was initially pro-
posed by a description of Byzantine generals [LSP82], who correspond
to nodes in a distributed system. The allied armies of the generals
besiege a city and they need to agree jointly with their lieutenants on
a common battle plan. As analogy, different components of a system
need to agree on a value. Formally, the problem is stated as [LSP82]:

1. “All loyal lieutenants obey the same order.

2. If the commanding general is loyal, then every loyal lieutenant
obeys the order he sends.”

For fault-tolerant systems, Byzantine agreement can be employed to
reach consensus on a decision, e.g., how to recover from an error. So-
lutions can be classified into deterministic and randomised. Fischer,
Lynch, and Merritt [FLP85] have shown that deterministic approaches
cannot reach agreement in asynchronous systems if at least one com-
ponent can fail. For synchronous systems, deterministic solutions can
reach agreement for 3n + 1 components in presence of at most n faulty
components with at least n + 1 rounds of communication. Many solu-
tions have been proposed that differ in terms of efficiency and applicable
system model; see Jalote’s book [Jal94] for an overview. Ben-Or [BO83|
was one of the first, who presented a randomised solutions to solve
agreement even for asynchronous systems.

Synchronised Clocks Synchronisation of nodes’ clocks in a distributed
system enables the system to totally order events whereby the order
is based on their occurrences according to a global time. This is
a requirement for both many fault-tolerant approaches and many
applications in general. For example, the order of events may be
necessary to dynamically analyse the information flow to confine a
damage. Formally, the problem of synchronised clocks can be stated
s (cf. [LMS85, Jal94]):

1. At any time, the value of all clocks of nonfaulty nodes must
be approximately equal, i.e., they must not differ more than a
constant period of time.
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2. Every clock is changed with a small (nonzero) period during each
resynchronisation.

The problem of synchronising clocks is closely related to Byzantine
agreement. Hence, some of their solutions are closely related as well.
Solutions can be classified into deterministic and probabilistic. Likewise
to agreement, deterministic solutions have been shown to synchronise
3n + 1 clocks in presence of at most n faulty clocks. In contrast to
deterministic solutions, probabilistic solutions only synchronise the
clocks with a high probability.

Stable Storage Backward recovery tries to rollback the state of a
system to an earlier state. Therefore, it requires to periodically store
the state in such a way that it remains available even in case of errors.
Stable storage addresses the problem of having storage not affected by
errors and failures. Solutions take ordinary physical storage devices,
which may suffer from well-known failures, and combine them in order to
provide a stable storage with a stricter failure mode. For example, one
solution is to employ Redundant Arrays of Inexpensive Disks (RAID)
that distribute data on different disks [PGKS88].

Fail-Stop Processors Many strategies of fault tolerance rely on error
detection, i.e., developers need to implement functionality to detect
errors of components. An implementation of error detection may be
extremely difficult, especially if the detection becomes more costly than
the service itself. Fail-stop processors are a common abstraction for
this problem to ease the development of fault-tolerant systems [SS83].
Formally, a fail-stop processor is defined by the situation after fail-
ures [Jal94]:

1. The processor stops executing.

2. The internal state and the contents of volatile storage of the
processor are lost. The stable storage is not affected.

3. Any other processor can detect the outage of a fail-stop processor.

Different solutions have been proposed. For example, some solutions
rely on stable storage and Byzantine agreement to detect failures and
stop processors upon that. The main advantage of fail-stop processors
is that they ease the design of fault-tolerant systems. Components
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on a low level are assumed to be fail-stop so that fault tolerance of
components on a high-level is easier to implement as no complicated
fault models need to be considered.

Failure Detection and Fault Diagnosis Many strategies of fault tol-
erance require detection of component failures (i.e., errors of the system
state) and diagnosis of these system faults in order to handle them.
Fail-stop processors as described above are one means of such detection.
The more general goal of detection and diagnosis is to detect all faulty
components within a system [Jal94]. Likewise to Byzantine agreement
and synchronised clocks, solutions are bounded by the number of faulty
components, e.g., if all components are faulty, none can achieve de-
tection of failures. Different algorithms for fault diagnosis have been
proposed. Many of them rely on guessing whether a node is fault-free
and base further guessing on this decision. In case of contradiction,
the decisions are backtracked.

Reliable Message Delivery Communication by messages receives spe-
cial attention in fault-tolerant distributed systems. Many services
require that messages between two nodes are not corrupted and are
received in the same order as sent. This shall be fulfilled even if inter-
mediary nodes fail as long as the communicating partner nodes stay
connected. For example, all replicas of a component shall be informed
in case of updates. Formally, it is stated as [Jal94]:

1. “A message sent from node i is received correctly by j.

2. Messages sent from ¢ are delivered to j in the order in which i
sent them.”

Many communication protocols address these properties. Additionally,
an adaptive routing protocol is required to ensure them in case of
failures of intermediary nodes. Adaptive routing allows to choose
message paths whose nodes are known to be nonfaulty. For example,
the Internet Protocol allows to exploit routing tables that may be
adapted according to which nodes are currently available.

Reliable, Atomic, and Causal Broadcast Reliable message delivery
addresses communication between two components. Due to the redun-
dancy of components, many fault-tolerant system require broadcast,
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i.e., communication between a sending component and a set of other
components [Jal94]. Reliable broadcast means that a sent message is
delivered to all nonfailed components. Additionally, atomic broadcast
provides an ordering of different messages, i.e., messages sent by dif-
ferent components are delivered to all components in the same order.
This is an essential requirement for many approaches that are based
on replication (see below). Maintenance of the consistency of replicas
is eased if all replicas receive the same operations in the same order.
However, this order may not be consistent with the causal ordering of
the messages. Causal broadcast addresses this problem. Solutions can
be classified whether they are provided by the network itself or need
to be implemented by higher layers of a system.

Recovering a Consistent State The recovery of a consistent state
is one of the most basic means of error handling [Jal94]. It requires
to periodically store the state of the system in stable storage. The
periodic storing is also known as checkpointing. In case of error handling,
the state is restored from a previous state known as rollback (see
section 4.4).

For distributed systems, some difficulties arise as no node has a global
view on the system. If all nodes store their checkpoint independently
without consideration of other nodes, lost and orphan messages may
occur after rollback. A message is called lost if the state of the sending
nodes says that the node has sent the message, but the state of the
receiving node is like that the message has not been received. A message
is called an orphan if the state of the receiving node says that the node
has received the message, but the state of the sending node says that
the message has not been sent.

Solutions to the problem can be classified whether they employ asyn-
chronous or distributed checkpointing. For asynchronous checkpointing,
all nodes store their checkpoints autonomously. However, they follow
a protocol to ensure that the state can be restored consistently, i.e.,
no lost or orphan messages occur. Consistent recovery requires to find
a set with one checkpoint of each node that does not yield lost or
orphan messages. However, this may lead to the domino effect [Ran75]:
unfavourable patterns of message exchange may require to use the
initial states of the nodes for recovery. In contrast to asynchronous
checkpointing, the nodes cooperate closely in case of distributed check-
pointing. In this case, the processes coordinate their checkpointing to
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compute a global snapshot of the system. Hence, both lost and orphan
messages and the domino effect are avoided.

Atomic Actions The challenge that atomic actions address is to ensure
the atomicity of operations in presence of failures of components [Jal94].
An atomic action may consist of a sequence of basic operations, which
need to be executed as a whole. In case of a failure, the state of
the system must not change. For example, consider a money transfer
between two bank accounts: if a sum of money is transferred between
two accounts, the debiting and crediting must be executed jointly or
not at all.

For non-distributed systems without multitasking, solutions for
atomic actions are rather simple: The system stores a checkpoint
of the current state before the action begins and rolls back if a failure
occurs. In a distributed system or a non-distributed system with multi-
tasking, the situation becomes more complex, because different actions
may interleave. Concurrent actions may lead to inconsistencies and,
therefore, need to be coordinated.

A common abstraction for atomic actions are transactions. They
are especially popular in the area of databases. A transaction is com-
posed of read and write operations and possesses the ACID properties:
atomicity, consistency, isolation, and durability. Atomicity means that
a transaction is indivisible, which is also known as the “all or nothing’
property. Consistency represents that a transaction shall not violate
the integrity of data. Isolation demands that a transaction shall be
independent from other concurrent transactions. In particular, concur-
rent transactions must yield the same result as a sequential execution,
which is called serialisability. Durability means that the outcome of a
transaction is permanent, i.e., the state can be restored after a system’s
restart. This requires to store the state in stable storage.

)

Data Replication and Resiliency Atomic actions provide a means to
execute operations with a well-defined behaviour in case of failures.
The operations of an action are not executed if a failure occurs, i.e., the
system state is rolled back. The goal of data replication is to enable
atomic actions that do not need to be rolled back in case of failures,
i.e., they succeed even if some nodes of a distributed system fail. Data
replication is the creation of copies of data resources, called replicas,
e.g., files. Usually, the replicas are maintained, i.e., several replicas
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are updated jointly, when one replica is updated. If the replicas are
distributed across different nodes in a distributed system, a client that
wants to access the data needs to communicate with a subset of the
hosting nodes. If a node fails, the client is able to access another
hosting node. Replicas are called consistent if the returned value of an
accessed resource does not depend on the accessed replica, e.g., when all
replicas hold the same value. Different levels of consistency are possible
having different impacts on performance and availability. Ideally, the
execution of actions on replicas should be equivalent to an execution
on non-replicated data. This correctness criterion is called one-copy
equivalence. Usually, this is enhanced by the property of serialisability
of concurrent actions (see above) to one-copy serialisability.

Process Resiliency Data replication provides fault tolerance wrt. ac-
cess to data resources. Distributed systems consist of processes that
cooperate to perform a task [Jal94]. In case of a node failure, the
computation of this task may fail even if all required data is available,
because the node may have executed a critical process. The goal of
process resiliency is to provide fault tolerance for the computation of
tasks in presence of node failures. Otherwise, the computation would
need to be restarted, which may not be acceptable.

A simple approach for process resiliency is to introduce global check-
points, i.e., all processes store their state periodically. If a node fails,
its processes may be started with the checkpointed state on another
node. Non-faulty processes may need to be rolled back to ensure con-
sistency. Note that the stored state remains available after node failure
if techniques of data replication have been employed.

4.6 Fault Tolerant Software

Fault tolerance shown so far focuses on failures of nodes or connections.
Such failures are mainly caused by faults of hardware, e.g., effects
of aging. In contrast, fault tolerant software focuses on tolerance of
software faults [Jal94]. The fault classes of software and hardware are
different as software has no physical properties like hardware. Software
faults are mainly design faults.

A common approach to fault tolerance for hardware faults is to
increase redundancy by replication. This approach is not applicable
for design faults, because all replicas are identical and, therefore, suffer
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from the same design faults. An input that activates a fault would
produce an error for all replicas. Hence, design diversity needs to
be employed, i.e., variants of components with different designs are
developed, whose redundancy allows to tolerate even design faults.

The redundancy of different designs can be organised in different ways.
Ezception handling is a general framework to structure computation,
error detection, and fault and error handling. Recovery blocks are an
approach organising error detection and design diversity and relies on
backward recovery. N-version programming masks errors by voting
on results of variants of components. These three approaches will be
presented next.

4.6.1 Exception Handling

The idea of exception handling is to provide a general framework to ease
the design of fault tolerant applications [Jal94]. Exception handling
supports structuring the strategies’ activities and the redundancy for
fault tolerance. It is not limited to a certain strategy, e.g., it can be
used to employ backward or forward recovery.

The responses of a service can be classified into normal and abnormal
responses. A response is called normal if the computation was nonfaulty.
Otherwise, it is called abnormal. The abnormal responses are also
called exceptions. For example, the abnormal response may be caused
by the detection of an error.

An exception handling framework provides language primitives to
structure a fault tolerant program, i.e., to separate the code of the
normal computation and the exception handler, which treats the ab-
normal responses. It allows to specify tuples of handlers, exceptions,
and processes, to enable the signalling of an exception of a process to
the appropriate handler during run-time.

Exceptions can be classified into interface exceptions, local exceptions,
and failure exceptions [Lyu95]. An interface exception occurs if a
service invocation is invalid, e.g., the request had a wrong number of
parameters. In this case, the exception is signalled to the caller who is
responsible to file valid requests. A local exception occurs if an error is
detected within a component that is capable of treating the error itself.
Hence, the exception is signalled to the handler of this component. A
failure exception occurs if an error is detected within a component that
cannot handle it. It is signalled to the exception handler of the caller,
which invoked the service of the component.
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An exception handler, which receives an exception, is supposed to
treat the corresponding error. Exception handling does not enforce any
strategy for this. A handler may employ backward recovery to restore
the system state. However, exception handling does not explicitly
support checkpoints, so the application developer has to care for this
herself. Exception handling may be used to ease forward recovery as
the exception may be augmented with additional informations about
the abnormal response. This eases assessment of the error to draw
decisions on how to perform forward recovery.

4.6.2 Recovery Blocks

The idea of recovery blocks is to provide a language construct that
supports the development of fault tolerant systems relying on backward
recovery [Lyu95]. As described above, exception handling is a means of
structuring different parts of a fault tolerant system. However, this does
not suffice for tolerance of design faults as it requires design diversity.
Recovery blocks, originally proposed in [HLMSR74], are a means of
structuring variants of a service with design diversity that provide
automatic backward recovery.

Recovery blocks are structured into an acceptance test that detects
errors and an ordered list of variants that perform a task. Their
functionality is supported by an environment that automatically stores
checkpoints as follows. If the execution of a process enters a recovery
block, the environment stores the system state. Then, the first variant
is executed to perform the desired task. When it is finished, the
acceptance test is applied to check for errors. If an error is detected,
the system is rolled back and the next variant is tried until there are
no more variants. In this case, the environment checks whether the
recovery block is nested in another recovery block to try the next
variant of this outer block. If no outer block can be found, the system
fails.

In addition to the acceptance test, error detection can be augmented
by other assertions or run-time checks within the computation of the
variants. This reduces speed of normal operation, but may increase
performance in case of errors, because they are detected during execu-
tion of the variant (and not afterwards) and, therefore, other variants
can be executed earlier.

The different variants are not required to have the same functional-
ity. For example, recovery blocks may be used to gracefully degrade
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P,
Input Py @7 Output
P 3

Figure 4.5: N-version programming approach [Jal94]. All variants P,
P,, and P; are executed with the same input. The voter
votes on the results from the variants and returns the final
result.

quality of service. The first variant could be chosen to be a high-
performance but risky service. If it fails, another worse-performing but
safe implementation could be used.

A challenge for the recovery block approach is maintaining the
consistency of the variants. For normal operation, only the primary
variant is executed. However, as only one variant is executed, no
variant may store data between different execution, i.e., they must not
be stateful. Otherwise, the variants become inconsistent. Solutions are
parallel executions of all variants in contrast to the original approach
or design of stateless variants.

The recovery block approach was originally proposed for blocks of
imperative programming languages. During its existence, it has been
adopted to different paradigms of development, e.g., object-oriented or
component-based development [RX93, XRR02].

4.6.3 N-Version Programming

The idea of n-version programming is closely related to the approach
of recovery blocks. The developers have to provide different variants of
a service or n versions. Each variant is executed for each invocation
of the service with the same input data as illustrated in figure 4.5. A
component collects all results and votes on them. The final outcome
is the result of the voting. Likewise to recovery blocks, the different
variants should use design diversity to be able to tolerate design faults.
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Sometimes the results of the variants cannot be considered exact
values but need to be treated with certain tolerance bounds. In this
case, the voting needs to be adapted to the current service, because
the tolerance properties are usually application dependent. Likewise, a
specification may allow different correct return values. The voter has
to choose from a set of correct values then. This choice is application-
dependent as well.

The main disadvantage of n-version programming compared to re-
covery blocks is that all variants are executed as processes in parallel.
Naturally, this parallelism requires more resources than the execution
of a single variant of a recovery block. The execution time of n-version
programming equals the execution time of the worst variant plus the
time of voting. For recovery blocks, the execution time equals the
sum of the execution times of all variants plus the time for check-
pointing, the acceptance test, and rollback in worst case. However, in
case of nonfaulty computation, the execution time equals the time for
checkpointing, execution of the primary variant, and acceptance test.
Usually, this performs better than an equivalent implementation using
n-version programming.

4.7 Conclusion

This paper gave a general overview on software-based fault tolerance
focusing on basic concepts instead of detailed solutions. It introduced
basic system models that highlight the aspects of distribution and tim-
ing assumptions, which are important for the applicability of solutions
on fault tolerance. Threat models were presented that can be used to
describe what kinds of fault a system is able to tolerate. The paper
summarised basic strategies and activities that fault tolerant systems
are based upon. A hierarchical model was presented describing different
levels of services within a fault tolerant system. Each level was briefly
presented to introduce the basic challenges. The paper may serve a
reader to understand and rank approaches on fault tolerance she may
come across in the future.
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5 Exception Handling:
A Comprehensive Introduction

Jan Ploski <jan.ploski@offis.de>

Abstract

Exception handling is employed by developers to increase software
robustness by eliminating unpredictable behaviour. This paper sum-
marises the concept’s evolution since its introduction in the mid-70’s. A
comprehensive motivation for explicit exception handling mechanisms
in imperative programming languages is provided through analysis of
earlier techniques’ weaknesses. Design choices available to implementors
of such mechanisms are briefly presented then.

The lack of guidelines for consistent usage of exception handling con-
structs is identified as a major obstacle for the proper application of
language mechanisms. To alleviate this problem, a simple decision
schema is constructed, which helps distinguish concerns that should be
implemented using normal or exceptional code.

The paper concludes with a presentation of recent research topics in ex-
ception handling. In particular, questions are posed regarding exception
propagation and handlers in component-based software development.

5.1 Introduction

Perhaps the most general model of software execution is that of se-
quential processes. A process is an executing program performing a
series of computation steps that query and alter machine state. From
a programmer’s static point of view, a program is a sequence of syn-
tactic statements. The statements can be of a primitive type such


<jan.ploski@offis.de>

5 Exception Handling: A Comprehensive Introduction

as reading or writing values to memory locations, arithmetic opera-
tions, or conditional branches. Additionally, they can be invocations of
subprograms.

A subprogram performs a computation task based on the current
(abstract) machine state, including values of formal parameters provided
by its invoker, and finally delivers a new output state. Peripherals
gather inputs from, as well as provide outputs to, external users, which
may be humans or other executing programs. The state of peripherals
is accessed and changed as the execution of programs progresses and
can be modelled in a similar way to memory state (e.g., with memory-
mapped 10).

Ideally, a program would always run smoothly from the start to its
intended termination, delivering a desired specified service reflected in
the reached output state. The program’s input configuration would
always contain sufficient information to guide its execution from the
activation point to the successful finish. In practice, programs do not
always succeed at their intended task:

A program may encounter conditions during its execution which call
for the immediate attention of either the invoker or some other entity
interested in the (intermediate) program results. The character and
immediate cause of these conditions may already be known at the time
of writing the program. However, the correct way of addressing them
most probably is not because it depends not just on the program’s
own code, but also on the larger goal towards which the program’s
invocation contributes, which varies when the program is reused in
different contexts.

The basic principle of modularity applies regardless of the used
programming paradigm. It requires that every program remains largely
unaware of the set of its potential invokers. Modularity and information
hiding [Par02] have been recognised as the key to successful reuse
and effortless, piecewise reasoning about arbitrarily nested, complex
program structures.

How then are programs supposed to be designed, if their execution
may both require advice from their actual context and protection from
knowledge about it? Exception handling mechanisms were invented
to help programmers answer this question in a clear, consistent way.
Originating from structured, imperative programming languages, they
gradually found their way into higher-level modelling languages, such
as UML.

This paper provides an overview of how the concept of exception han-
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dling developed over the years since its inception and what questions
about its applications still remain open today. Hopefully, it will help
broaden the reader’s understanding beyond that connected to a partic-
ular programming language and increase sensitivity to the important
design issues that need to be considered when handling exceptions.

5.2 The concept of exceptions

An introductory, tutorial-like paper on exception handling cannot fulfil
its function without a clear, up-front definition of the central term:
exception. However, as in other areas of software engineering, the
terminology used in the context of exception handling varies signifi-
cantly among researchers. We shall not undertake a unification attempt
here; instead we provide some representative examples of the term’s
understanding.

An early, broad, and often cited definition by Goodenough [Goo75]
is expanded upon in the following sections. We then narrow it to
better reflect the use of exceptions in modern programming languages
and, most importantly, to also provide useful guidelines for software
developers who are new to the concept.

5.2.1 Overview of definitions

First, let us consider the following position statement of Knudsen:

“An exception is a class of computational states that re-
quires an extraordinary computation. It is not possible
to give a precise definition of when a computational state
should be classified as an exception occurrence; this is a
decision for the programmer. In practice, most people have
a good feeling of what is the main computation and what
are exceptional situations. The exceptional situations are
all those situations that imply that the main computation
fails.” [Knu00]

We disagree with the above suggestion that the classification of
situations into “normal” and “exceptional” should be left entirely to
individual programmers. The reason for this disagreement will become
clear from further discussion.
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Other authors mostly provide informal definitions, which range from
very general to quite specific ones:

“Exceptions are abnormal events which can happen during
the program execution.” [MRO01, RKO01]

“An exception is [...] a condition that prevents the continu-
ation of the current method or scope.” [BGMO1]

“An exception can be defined as a situation leading to an
impossibility of finishing an operation.” [Don01]

“Exceptions are unexpected situations that are not part
of the normal behaviour of the process, and that require a
deviation from the process model to be managed.” [CCO1]

“An exception is an event (i.e., something that happens),
which deviates from normal behaviour or may prevent for-
ward progress of a workflow.” [CLKO1]

“When a program reaches a place where there are several
possible next steps and the program is unwilling or incapable
of choosing among them, the program has detected an
exceptional situation.” [Pit01]

“A notification is a message sent from one agent to another.
[...] An exception notification is one that the sender does
not know what the receiver will do with it.” [TMO1]

The upcoming UML 2.0 standard also contains a definition of the
term “exception”, which is very general and phrased to accommodate
various implementations:

“[An exception is] a special kind of signal, typically used to
signal fault situations. The sender of the exception aborts
execution and execution resumes with the receiver of the
exception, which may be the sender itself. The receiver
of an exception is determined implicitly by the interaction
sequence during execution; it is not explicitly specified.”
[OMGO03]
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5.2.2 Goodenough’s definition

Goodenough [Goo75] is credited for his pioneering work which provided
the foundation for the research on exception handling in the following
years. According to his paper, exceptions are conditions detected during
a program’s execution and signalled to the invoker, which is either
allowed or required to provide some response. Exception handling
thus provides a way to extend the domain (the set of permissible entry
states) or range (the set of expected final states) of an invoked program
without actually modifying (and recompiling) its own code.

In his paper Goodenough presents exceptions as a universal abstrac-
tion mechanism and gives the following purposes for which they may
be signalled to a program’s invoker:

1. reporting (impending) failure;
2. classification of program results;
3. notifications about progress of execution;

4. branching (according to invoker-provided advice).

The above broad range of uses led Goodenough to invent a similarly
general notation for exception handling in block-structured program-
ming languages. His notation can be implemented in multiple ways,
allowing different trade-offs with respect to runtime performance — an
aspect to which a considerable amount of research has been devoted.
Goodenough’s ideas have been successfully adopted in multiple pro-
gramming languages (such as Ada [ISO01], CLU [LS79], Mesa [MMST79],
Java [JSGBO00]), although the actual syntax and the supported subset of
exception handling concepts vary. The possible options are highlighted
in sec. 5.5 and 5.6.

5.2.3 Exceptions vs. failures

Since 1975 the understanding of exceptions has evolved towards the
meaning suggested by the word itself: exceptions as abnormal, unde-
sired events or situations, which are unlikely to happen. The use of
exceptions for progress monitoring, arbitrary conditional branching,
or even for classification of program results is discouraged in modern
programming languages, which make it difficult or inefficient to em-
ploy exceptions for some of these tasks. However, there seems to be
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little agreement about the recommended use (and thus an appropriate
definition) of exceptions beyond that.

One controversial issue is the role of exceptions in implementing fault
tolerance, that is, avoiding service failures despite occurrence of unan-
ticipated errors. Meyer [Mey88, Mey97] restricts use of exceptions by
defining an exception as an operation’s inability to satisfy its specified
postcondition even though the client ensured the necessary precondition
before its invocation. In light of this definition, the term “expected ex-
ceptions”, used by some authors, appears self-contradictory. Exceptions
signal failures, that is, deviations from the program specification.

On the other hand, Knudsen [Knu00] encourages the use of static
(i.e., compiler-checked) exception handling for specifying anticipated,
abnormal results of operations, while he acknowledges the value of
dynamic exception handling for dealing with unexpected exceptions
and achieving fault tolerance.

Similarly, Cristian [Cri87] clearly distinguishes between exceptions
and failures. In his work, he provides formal definitions of the above
terms for sequential programming. While failures are deviations from
the program specification, exceptions are an extension of it. A pro-
gram with many exceptional specifications yet with no behaviour that
contradicts its specification is correct and never fails. Technically,
exceptions eliminate the possibility of software failure by specifying
program behaviour for inputs that previously caused behaviour against
the specification. Of course, it remains open whether the actual speci-
fication adequately reflects users’ requirements, which provides a line
of argument against such a notion of correctness.

Based on the above considerations and in agreement with Cristian’s
ideas, we propose the following definitions:

Definition 5.1 (Failure). A failure is the event which occurs when
the actual (observed) program’s behaviour deviates from the specified
one.

Definition 5.2 (Exception). An exception is a state transition dur-
ing program execution after which continued execution leads to the
program’s failure if we ignore the exceptional part of the program’s
specification.

Figure 5.1 illustrates the application of the definitions for classifying
types of program behaviour. Exception handling is applicable for inputs
that lie in the exceptional domain, as well as for a subset of inputs

92



5.3 Exception handling without supporting mechanisms

Inputs

/N

Anticipated Inputs Unanticipated Inputs

SN

Standard Exceptional Failure
Domain Domain Domain

Desired  Exceptional Actual Beh. Unspecified
’ Behaviour’Behaviour ‘!=Specified Behaviour
” Undesired
Specified Behaviour
Behaviour

Figure 5.1: Classification of program behaviour (based on [Cri87])

in the failure domain (i.e., for those failures that result in program
termination).

Although a program which reports a specified exception in specified
circumstances by definition does not fail, another program which de-
pends on the former one and does not properly react to the exception’s
occurrence does fail. This observation leads to the following definition
of exception handling:

Definition 5.3 (Exception handling). Ezception handling is supple-
menting programs with logic that avoids failures after the occurrence
of exceptions in invoked subprograms.

We apply these definitions in the next sections while discussing
traditional exception handling techniques, the role of explicit exception
handling mechanisms, and the rationale for our recommended use of
exceptions. However, we revert to the less restrictive definition of
Goodenough for illustrating the variety of exception handling models
and their possible implementations.

5.3 Exception handling without supporting
mechanisms

Programs can fail in two modes: either by not terminating at all or
by terminating in a state different from the specified one. The latter
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possibility also includes violations of performance goals because timers
can be considered as part of the machine state.

Even when a program does not fail and produces a specified result,
it might not be the output desired by its invoker. In other words, a
program might terminate by telling the invoker that it was not able to
fulfil its intended function. As mentioned earlier, this case is formally
not a failure, but it cannot be honestly called a success, either. Relying
on our definitions, it is easy to describe such situations: the program
is said to terminate exceptionally, as opposed to its intended normal
termination.

A subprogram’s invoker is obviously interested in whether it termi-
nated normally or exceptionally because subsequently invoked subpro-
grams usually depend on the results produced by earlier computations.

Before turning our attention to explicit exception handling mecha-
nisms and software structuring techniques that build upon them, we
survey some older (and more primitive) approaches applicable in their
absence:

1. local default handlers;
2. status variables;
3. error labels;

4. custom handlers installed globally or passed as program argu-
ments.

It is sensible to consider these simple measures beforehand for at
least three important reasons:

1. Traditional techniques are still widely used because programming
education tends to begin with languages that do not have explicit
support for exception handling. One prominent example is the
ubiquitous C language, frequently used in operating systems
courses at universities and favoured by the open source community.
Another example are scripting languages, which are easy to grasp
for a beginner and typically lack emphasis on exception handling.
Even when languages are taught which do have exception handling
features, the topic of exception handling is usually delayed and
only presented briefly in introductory courses.
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2. Known deficiencies in the traditional techniques [BMO00] provide
motivation for the more modern ways of solving the age-old
problem of dealing with runtime exceptions. Nonetheless, some
programmers are opposed to the use of dedicated exception han-
dling mechanisms, for reasons ranging from ignorance to valid
concerns about shortcomings in their implementations.

3. Finally, the choice of exception handling techniques is an engi-
neering decision. Depending on the role of software, its execution
environment and the importance of correct service delivery, simple
exception handling, or none at all, may be feasible and economi-
cally preferable to advanced techniques.

The following subsections elaborate each of the traditional exception
handling techniques listed above.

5.3.1 Local default handlers

Local default handlers are the most basic way of addressing impending
failures. The decision about the further execution is left to the program
which detects an exceptional condition. Typically, some default action
is taken before or instead of returning control to the invoker. Examples
of such default actions are:

1. producing undesired, yet specified, fixed output;
2. logging an error message to a console or file;

3. terminating the enclosing process.

Local default handlers are simple to implement. They are the right
choice for trivial programs created in the following circumstances:

1. The main reason for exceptional behaviour are mistakes made
by the implementor (also referred to as software faults, defects,
bugs).

2. The implementor remains the primary user of the program and
is capable of debugging it when exceptions occur.

3. The dependencies on the program are few and accordingly the
consequences of not delivering its standard service are negligible.
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The major shortcoming of local default handlers is their impediment
to reusability. When a program is to be reused in a different context,
its original way of reacting to impending failures is likely to become
inappropriate. As a consequence, it will have to be replaced with
another, similar program which reacts in a different way. The task
of locating and replacing the exceptional code before each attempted
reuse is tedious and yields multiple clones of the same program, which
are difficult to maintain. Moreover, if the source code that needs to
be altered is not available, a program with hard-wired local exception
handling might not be reusable at all.

Local default exception handling may become outright dangerous if it
is not adequately documented. Experience shows that the simplicity of
implementing quick exception handling measures is likely to be paired
with the “simplicity” of not specifying program behaviours. This
practice may lead invokers to optimistically assume that the invoked
subprogram always delivers its standard service. There are reasons
to believe that such assumptions are more likely than the opposite
distrust in underspecified software. In sum, local default exception
handlers do not promote good communication between producers and
consumers of software building blocks.

Note that default handlers (albeit defined non-locally) are a common
way of reacting to failures of primitive operations in programs written
in low-level languages. For example, an attempt by a C program to
access a memory location outside of the allocated process space will
result in a segmentation violation exception and, by default, cause an
immediate process termination in Unix environments.

5.3.2 Status variables and return values

Instead of attempting to deal locally with the inability to deliver normal
service, a program may retain some flexibility by delegating the decision
about the needed reactions to its invoker. For this approach to work,
the invoker needs a way of determining whether the executed program
terminated in a normal or exceptional way. A simple method of relaying
this information is by using a status variable which is updated by the
program and read by the invoker.

Return values and output parameters are a special, and favoured,
type of such status variables; they are local to the executing thread and
syntactically scoped to be only accessible by the invoker. Return values
cannot be always used because they require the set of non-exceptional
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values returned by the function to be a true subset of the set of values
represented by the return type. This cannot be always guaranteed in
statically typed languages. Also, output parameters are not supported
by all programming languages.

A more general possibility is to use external, global or scoped, vari-
ables to deliver information about the termination mode of a program.
The use of global status variables is error-prone in systems that support
concurrent execution (multithreading). Furthermore, shared status
variables increase the risk of mistakenly overwriting a variable’s value
before its previous result is consumed by the intended recipient.

A common deficiency of return values, output parameters and status
variables is the difficulty of their consistent usage across independently
developed software modules. For example, system calls might return
zero to indicate success, while library routines might return the opposite
value, boolean true, for the same purpose. Output parameters for
signalling exceptions might be named according to many different
conventions. Status variables might be used in some cases, while return
values are used in others. Naturally, the lack of consistency easily
becomes a source of programming mistakes. Languages like C or Perl
suffer from this problem.

In theory, the value of a status variable could encode the exception’s
reason, the machine state left upon exiting the terminated program
(partial results) and arbitrary other helpful hints to aid the invoker
in determining how to proceed with the execution, for example in
making an informed choice between backward and forward recovery
(i.e., undoing changes vs. advancing to a new consistent state). In
practice, status variables and error codes are often limited to integer
values. This lack of expressiveness is another deficiency of status
variables, although it should be fairly viewed as a flaw in common
implementations.

The most striking problem with status variables is their negative
impact on source code readability and software maintenance. When
status variables are used for signalling and detecting exceptions, one of
the following scenarios is likely:

1. The code complexity increases rapidly due to the nesting of control
flow structures: basically, an if-branch is added each time when a
status variable needs to be checked, which might well be at every
subprogram invocation. The source code which reflects the normal
execution path is syntactically (visually) interrupted by blocks
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related to exception handling. This hinders the understanding of
the standard intended program behaviour.

Indeed, it is often not possible to distinguish the “normal” case
from the exception handling code afterwards, which becomes a
serious maintenance problem if the set of error codes evolves in
the future. Valuable information is lost in the implementation
process.

. Status variables are not checked when they should be. Unlike in

the above described approach, the code remains simple. How-
ever, exceptions then equal failures. When they occur, they are
extremely difficult to diagnose because the programs attempt to
continue normal execution in invalid states, delaying detection.
This scenario is even worse than an intentional lack of exception
handling due to the false sense of security created by occasional
checks of status variables.

5.3.3 Error labels

Instead of checking status variables after a subprogram invocation,
the invoker may also set up a priori some labels to which control flow
should be routed in case of exception occurrences.

Examples are the On Error GoTo statement available in Visual Basic

and the infamous ON-conditions of PL/I [Mac77].

Error labels are superficially similar to the more advanced excep-

tion handling mechanisms. Upon closer examination, they reveal the
following shortcomings:
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e They do not provide any means of passing additional information

about the exception to the handler; as a workaround, they are
usually combined with status variables.

Arguably, they make it more difficult to reason about program
executions because they rely on the much criticised goto state-
ment.

If control is transferred to the specified error label immediately by
a language mechanism (e.g., when a predefined division-by-zero
exception is signalled), the escaped program may not be given a
chance to perform any local cleanup operations.
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e Dynamic implementations do not support checking of source code
for completeness of exception handling. A programmer’s failure
to set up an error label results in undefined runtime program
behaviour rather than in a compilation error.

It can be said in defence of error labels that they require only minimal
support from the programming language.

5.3.4 Global and subprogram-specific custom handlers

Another way to implement exception handling lacking language sup-
port is by setting up a special handler program that should be called
whenever an exception of a certain type is detected. A reference to
such a handler can be either made available globally or passed over as
an input parameter to a program which can report exceptions.

An example of global custom handlers is the Unix signal mechanism.
A process can install signal handlers to be invoked by the operating
system whenever a condition like segmentation violation or a floating
point exception occurs during execution. The user-defined handlers
replace default predefined handlers or execute before them.

The problems with global handlers are twofold. First, they are not
amenable to static checking. It is difficult to find out which handler is
in effect by simply examining a block of source code. Second, they do
not support inspection of the exception’s context. Therefore, recovery
attempts are seldom undertaken in global handlers.

Local handlers passed as input parameters alleviate the second prob-
lem, as the programmer is able to specify what information should
be passed to the handler upon an exception’s occurrence. It is also
possible to establish a protocol between the exception reporter and the
handler, which can be used to direct further execution. For example,
a handler might return one value to tell the exception signaller to
terminate execution and another value to indicate that the execution
may proceed normally.

Unfortunately, local handlers do not naturally support exception
propagation up the call chain. If an exception cannot be handled
locally, it is common to report it to the indirect invoker(s), in hope
of broadening the context to find appropriate countermeasures. In
principle, this process could be achieved by chaining local handlers
(fig. 5.2). Each handler receives a reference to a higher-level handler,
to which it may propagate the exception. However, if the execution
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P1
call P2()

invokes instantiates 7

P2 Y
handlerl

resume P1? ™

call P3()

invokes instantiates invokes
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handler2
call handler1()
I~

call handler2()

Figure 5.2: A nested local handler (handlerl) unable to resume exe-
cution from the desired point (after invocation of program
P2).

should proceed from a statement following the exception signalling
statement somewhere up the call chain, the problem of terminating
intermediately activated programs remains. The direct control flow
marked in the figure with a question mark is not easy to achieve in
block-structured languages. Possible workarounds involve usage of a
non-local transfer mechanism (such as setjmp and longjmp in C) or
checking of return values. The former approach exhibits the flaws of
goto; the latter one defeats the purpose of passing local handlers into
programs as input parameters.

5.4 Role of exception handling mechanisms

The primary role of exception handling mechanisms is to increase the
robustness of programs:

Definition 5.4 (Robustness [Cri87]). A program is robust when its
behaviour is predictable for all possible inputs.

This goal is far from being easy. In order to have predictable be-
haviour, a program must fulfil two major criteria:

1. It must be totally correct with respect to its specification, that
is, contain no bugs.
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2. The specification must be complete, that is, describe all possible
inputs.

It follows that an adequate exception handling mechanism must
not increase the risk of programming mistakes by making the source
code harder to understand or by triggering counterintuitive runtime
behaviours. Furthermore, a good exception handling mechanism should
promote checking of specifications’ completeness, preferably with au-
tomated tools. This task is extremely challenging if we consider that
the inputs are not just limited to values of formal parameters provided
by an invoker. In many cases, they include parts of the global machine
state, which is often beyond the control of the program or its imme-
diate invoker. As a further complication, in dynamic environments
dependencies among programs may change through reconfiguration,
making traditional reasoning about compile-time specifications futile.
We shall return to this topic later when we discuss open issues.

Secondary goals for an exception handling mechanism are:

e Improving readability of source code, especially by making it
easier to distinguish exceptional code from normal code.

e Preventing continued execution after detection of an exception.
Normal execution in an invalid state cannot produce expected
results and may cause undesirable or even dangerous side-effects.
Therefore, it is obligatory that the program either fails fast or
the state is repaired before the program is brought back on its
normal execution path.

e Supporting program evolution. With modifications to software
the set of possible exceptions and their occurrence points change.
An exception handling mechanism should make it straightforward
to locate the affected exceptional code after the normal code has
been updated.

e Supporting modularity. Separate reasoning about the normal
and exceptional execution paths should be possible. Moreover,
it should be feasible to reuse the normal code in a new context
with different exception handling requirements.

e Integration with other language features and tools. The exception
handling mechanism should fit seamlessly into the language and
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runtime environment, allow tool support and not require trade-
offs in the use of remaining language features. For example,
concurrent programming languages should support concurrent
exception handling and debuggers should be able to present
exceptional control flows in terms of source code provided by a
programmer without exposing details of the exception handling
mechanism’s implementation.

5.5 Exceptions as a control flow mechanism

Exception handling mechanisms can be explained, at a technical level,
by examining their effects on the control flow of an executed program.
Most research related to exception handling resides on that level,
perhaps due to the difficulties with nomenclature discussed in sec. 5.2.
For example, Buhr [BMO00] simply views exceptions as “a component of
an exception handling mechanism which specifies program behaviour
after an exception has been detected”.

Different possibilities exist for routing control flow after an exception’s
occurrence, and the available syntactic support for them varies among
programming languages. We next present three fundamental models, as
they were originally introduced by Goodenough [Goo75]. For another
classification of exception handling mechanisms, see [YB85]. We use a
Java-like syntax in examples for consistency.

5.5.1 Termination model

The termination model, illustrated in fig. 5.3, is the most frequent and
best-understood approach to exception handling. It is implemented in
languages such as Ada, C++, and Java. Upon detection of an exception
in a subprogram (syntactically, a block of statements), its normal
execution terminates and the control is transferred to an active handler.
Handlers are located by inspecting the execution stack from top to
bottom, that is, from the most recent subprogram activations towards
older ones. During this process stack frames belonging to subprograms
without a matching handler are removed: each subprogram in the call
chain is terminated in turn and may be given a chance to perform
cleanup before termination. The process continues until a handler is
found. Then it is executed and the execution returns on the normal path
starting with the first statement which syntactically follows the handler.
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void a()
{
try { bO; O35 }
catch (SomeException e) { /* handle */ }
d0;
}
void b()
{
try { e(); £(); } finally { /* cleanup */ }
}
void e()
{
/...
throw new SomeException(argl, arg?2);
gO;
}

Figure 5.3: Termination model. After e signals an exception, b’s
cleanup block and then the handler in a are executed. If
no exception occurs in the handler, the execution proceeds
with d. Because of e’s and b’s exceptional termination
neither c, £ nor g are invoked.

If another exception is detected while executing handler statements,
the same process is repeated. This works because handlers can be
attached to any block of statements, including the blocks representing,
or syntactically enclosing, other handlers.

The defining property of the termination model is that the control
flow does not return to the signalling subprogram after an exception
is detected and handled, at least not without an explicit repeated
invocation of this subprogram. If such behaviour is needed, it has to be
implemented without using exception handling constructs, by relying
on techniques akin to those described in section 5.3.4. It can be seen
as a weakness of the termination model. However, experience with
programming languages suggests that the mentioned requirement is
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void a()
{
try { bO; cO; }
catch (SomeException e)
{
// handle..
resume;
}
d0;
}
void b()
{
try { e); £(); } finally { /* cleanup */ }
}
void e()
{
/...
throw new SomeException(argl, arg?2);
g
}

Figure 5.4: Resumption model. After e signals an exception, the han-
dler in a is executed. If no exception occurs, in the handler,
the execution proceeds with g, £, b’s cleanup block and d.

rare and the simplicity achieved by not explicitly supporting it is a
reasonable trade-off.

5.5.2 Resumption model

The resumption model, illustrated in fig. 5.4, permits a handler
to resume execution starting with the next statement syntactically
following the one which originally signalled the handled exception. The
handler acts as a replacement for the exception signalling statement
in this model. An example of a language supporting the resumption
model is Mesa [MMST79].
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void a()
{
try { bO; O35 }
catch (SomeException e) { /* handle */ retry; }
d0;
}
void b()
{
try { e(); £(); } finally { /* cleanup */ }
}
void e()
{
throw new SomeException(argl, arg?2);
g
}

Figure 5.5: Retrying model. After e signals an exception, b’s cleanup
block and then the handler in a are executed. If no exception
occurs in the handler, control flow is then routed to the
beginning of the try block where b is invoked again.

Resumption can be simulated by passing code references as argu-
ments (cf. sec. 5.5.1 and 5.3.4). This approach, though simple and
practical, has a disadvantage of dissolving the boundary between ex-
ceptional and normal code. However, considering the situations for
which Goodenough suggested the use of resumption, the simulation
approach seems appropriate. Neither progress monitoring nor other
similar notifications are exceptional according to definition 5.2. Their
role is not to rescue a program from an imminent failure, but rather to
augment it with additional useful functionality.

5.5.3 Retrying model

The retrying model, see above fig. 5.5, extends the termination model
by providing a handler with the ability to resume execution at the
beginning of the syntactic unit (block) that reported an exception,
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rather than continuing with the next statement following the handler.
In this model, handlers are supposed to restore the required entry
state of the aborted subprogram. Among others, the retrying model is
available in the Eiffel [Mey91] programming language.

As Buhr [BMO00] points out, the retrying model can be easily simu-
lated using the termination model and looping. However, it is arguable
which approach results in more readable source code. The retrying
model has the advantage of keeping loops related to exceptional condi-
tions syntactically distinct from loops that ensure correctness of the
normal code.

An interesting variation on the retrying model are recovery blocks
introduced by Randell [RX95]. Following his approach, exception
handlers restore state which was saved (automatically) at a checkpoint
before the execution of a guarded subprogram and retry the execution
using another version of the subprogram. The exception is hopefully
avoided by relying on a different algorithm or by only delivering a
degraded, yet still acceptable service. Should an exception occur
during retry, the next version is tried. If there are no more versions
left, the exception is propagated to the enclosing recovery block. The
attractiveness of the recovery block scheme lies in its simplicity: because
no attempt is made to distinguish exception types, it is useful for
handling unexpected exceptions, for example caused by software faults.

5.6 Design of exception handling mechanisms

Besides choosing to support termination, resumption, retrying, or any
combination of these models, an implementor of an exception handling
mechanism is faced with many other decisions. For the sake of brevity,
we shall not describe them in detail. The interested reader is referred to
[BM00] and [YB85] for additional information. To provide an overview,
a short list of the involved issues follows:

e Handler attachment. The units to which handlers may be at-
tached must be identified. For example, expressions, statements,
blocks, classes, objects and threads have all been proposed as
candidates for protection by handlers.

e Default handlers. Rules for invoking default handlers and means
of overriding their behaviour must be developed.
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Exception and handler partitioning. If the exception handling
mechanism supports multiple models, it must be decided whether
exceptions (and handlers) are categorised into resumption-only
and termination-only to enable compile-time checks.

Dynamic vs. static propagation. Most languages define dynamic
propagation in terms of examining the runtime stack. Some
languages allow for static propagation, that is, the propagation
path of each exception is known before executing a program.

Cleanup mechanisms. Means for performing cleanup during
exception propagation should be provided. Constructs such as
Java’s finally clause and C++’s destructors are suitable.

Handler lookup algorithms and runtime performance. It must be
decided whether handlers are registered as soon as the protected
context is entered at runtime or whether they are only looked up
when an exception actually occurs. This decision involves perfor-
mance trade-offs between execution of normal and exceptional
code.

Checked vs. unchecked exceptions. One has to decide whether
only explicitly specified exceptions are allowed to be signalled
by programs and what happens when an unspecified exception
occurs at runtime.

Exceptions as first-class objects. In object-oriented languages it
makes sense to treat exceptions as objects (rather than simple
labels). On the other hand, the power of fully object-oriented
exceptions may render some kinds of static code analysis useless.

Concurrent/asynchronous exceptions. If the language supports
concurrency, it should be considered whether means of raising
exceptions across threads have to be provided.

5.7 Guidelines for use of exceptions

As should be clear from the foregoing discussion, exception handling
was originally introduced as a general mechanism for managing control
flow during software execution, a “structured goto”. Such a broad
understanding appears appropriate when one is concerned with imple-
menting an exception handling mechanism; syntactic and performance
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issues stand out then. Unfortunately, experience shows that viewing
exception handling as yet another control flow construct does not bring
much benefit to constructing dependable software [HVO01].

Not surprisingly, the “structured goto” interpretation is adopted by
programmers unfamiliar with or opposed to the usage of exception
handling constructs. This interpretation inevitably invokes doubts
about when syntactic constructs related to exception handling should
be employed, or when the traditional control flow elements such as
conditional branches are completely sufficient. By depending on in-
tuition for making this choice, programmers are likely to suffer from
stylistic inconsistencies. For example, conceptually similar tasks can be
handled either with exceptions or with normal return codes in different
parts of source code written by different persons at different times.
Intuitions tend to be based on very broad and imprecise definitions,
such as exceptions being “rare events” or “errors” that need some
“special attention”. The same uncertainty about the usage of exceptions
and related decision making efforts can also occur on a more abstract
level when modelling systems’ behaviour, with equally poor results.

Software projects frequently employ written coding guidelines and
style conventions to avoid the undesirable variety of expressing the
same thoughts in many different ways and to foster understandability
of shared work products. Regrettably, semantic aspects are seldom paid
due attention in the conventions documents; provided guidelines are
often limited to a description of the preferred code formatting. Advice
concerning the systematic usage of exceptions is even more uncommon.
However, employing exceptions should not be just a matter of style.
The following explanations seek to alleviate this shortcoming.

5.7.1 Normal vs. exceptional control flow

A simple decision schema for choosing exceptions versus traditional con-
trol flow constructs is presented next. This schema assumes sequential
execution of code statements combined with the common termination
model of exceptions. Besides these constraints, it is not restricted to a
particular way of describing execution like a programming or modelling
language. The schema can be used both in the original software design
and for refactoring of existing code.

As a motivation consider three scenarios in which a programmer is
confronted with evaluating the need for explicit exception handling:
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1. Automatic Software Patching. A mechanism for applying
a patch to an existing software application which consists of
object code and data stored in a relational database should be
implemented. A user downloads and applies a patch provided
by a software vendor. The patch program locates a previous
installation of the software, replaces the database content with a
new version included in the patch and also overwrites selected
object code modules. After the patch program finishes, the
software must be left in a consistent (usable) state.

The question is whether to use exception handling for dealing with
a situation when the import of the new database fails because
of a mismatch in the expected and actual data formats. (When
this happens, the original database has already been emptied to
make room for the new data.)

2. Stock Data Import. A data warehouse is used to store stock
prices accumulated over a period of time. A batch process peri-
odically updates the warehouse with quotes provided by several
external suppliers. It is possible that data for the same period
arrives multiple times, or that two suppliers provide overlapping
data for the same stocks. If matching data already exists in the
warehouse at import time, it is verified by comparing it with the
provided data.

The question is whether to use exception handling to report a
mismatch to an operator when already stored data differs from
the freshly provided data.

3. Account Balance Overdraft. An operation for withdrawing
funds from an account should be implemented in an Account
class of an online banking application. Arbitrary overdrafts are
not allowed. Whenever such an attempt is made, the proper
reaction of the system is to remind the user of her maximum
allowed overdraft and offer credit advice based on the requested
amount of money, her credit rating, and the current offerings of
the bank.

The question is whether to use exception handling to respond to
an attempted overdraft operation.

To address the above questions, the following short characterisation
of the exceptions is employed: Exceptions are undesirable, rare events
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during a program’s execution, which result in entering a system state
from which continued normal execution would lead to a program’s
failure. Furthermore, the occurrence of exceptions cannot be feasibly
avoided by the program’s invokers by ensuring some required initial
state before its execution.

The aspects mentioned in the above description have different 0.
Before we consider them for the presented examples, we describe the
evaluation rules in the order of decreasing importance. They do not
conflict, but rather enforce each other, providing solid ground for a
decision.

1. Undesirability. Exceptions are undesirable events, in the sense
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that elimination of their occurrence would not negatively impact
fulfilment of software’s requirements. To judge undesirability, one
commences a mental experiment by imagining a context in which
the considered event never occurs, and the related code becomes
obsolete. If no stakeholders of the software would be negatively
affected then, the code is clearly exceptional and as such should
be expressed using exception handling constructs.

. Unavoidability. Occurrence of exceptions in a program cannot

be avoided by the invoker. Put another way, if an undesirable
event can be prevented by the invoker, it should not be, per
se, treated as an exception, but rather accommodated in the
program’s specified precondition. Technically, a special type
of exceptions can still be used to signal detection of broken
preconditions in order to increase safety or aid debugging (runtime
assertions).

Unfortunately, not all potential exceptions can be disposed of
by strengthening program preconditions and thus by shifting
responsibility on its clients:

a) The state upon which an execution of a program depends is
not fully controllable by the invoker and may change after
its execution begins.

b) Tt is infeasible for the invoker to check a precondition for
performance reasons because the check would be just as
expensive as the actual program’s execution. Then, it is
easier to try and fail than to ensure successful execution
beforehand.



5.7 Guidelines for use of exceptions

Example Undesired? | Unavoidable? | Imp. failure? | Rare? | X7
Patching | Yes No Yes Yes Yes
Import Yes Yes Yes* Yes Yes
Overdraft | No No Yes Yes No

Table 5.1: Decision schema applied to examples. The last column
contains final judgment (exceptional/non-exceptional).

3. Impending failure. Exceptions should be used to signal detec-
tion of an erroneous state which inevitably leads to failure when
not dealt with. Applying this rule is tricky because the program’s
specification can often be freely adjusted by the programmer
during design. Unfortunately, this freedom makes it easy to ar-
gue both ways: that an event is exceptional, by weakening the
postcondition, or that it is not, by strengthening it. Therefore,
this rule should be used as an a posteriori check: if an exception
is signalled, it should indicate that the standard postcondition
could not be satisfied. In other words, exceptions should never
be signalled when the normal effect of a program’s invocation
has been achieved.

4. Rareness. Exceptions are supposed to be rare. This rule is (per-
haps surprisingly) not as significant as the above ones because
the statistical probability of an event’s occurrence is both difficult
to ascertain and highly dependent on the software’s usage profile.
The rationale for exceptions being characterised as rare events is
mostly that modifying control flow by signalling an exception is
more expensive at runtime than by other control flow constructs
because of overheads like stack unwinding or capturing additional
information. Thus, the rule mostly helps avoid misuse of excep-
tions: if an event inevitably occurs in an inner loop of a program
during every execution, it is very inappropriate to treat it as an
exception.

Table 5.1 shows the application of the above rules to the presented
examples:

According to the schema, the first example is a good candidate for
introducing exception handling. The inability of the import operation to
proceed cannot be considered a desired feature. The example suggests
that the invoker might be able to prevent the exception by comparing
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the actual and expected data formats. However, it is likely that such
comparison would be prohibitively expensive and unnecessary in the
normal case. Signalling an exception from the data import operation
passes the “impending failure” test. Finally, failure in the patching
process is not expected to occur very frequently, therefore the “rareness”
criterion is also satisfied.

In the second example the unavoidability aspect is prominently
displayed — the exception is caused by independent, interacting, un-
controllable data sources. However, it is less clear if the exception
is used to signal an impending failure. One might argue that the
import specification could be adjusted to ignore the mismatching data.
However, we decide to treat this case as an exception following the first
two rules.

The third example shows how the schema can disqualify situations
with respect to usage of exception handling. The example fails the
undesirability criterion because there exist stakeholders positively in-
terested in the overdraft events (the bank wishes to give credits). The
occurrence of an “overdraft” exception can be easily avoided by the
invoker by checking the account balance before attempting withdrawal
of funds, assuming a transactional context typical for financial appli-
cations. An implementation which uses exception handling could be
made to pass the “impending failure” and “rareness” tests. Nonetheless,
we decide to treat this case without resorting to exception handling
constructs by following the first two rules.

The value of the presented schema lies in ensuring consistency in the
use of exception handling by programmers. It would be doubtlessly
very educational to contrast it with other instruments for supporting
exceptions-related decisions. Unfortunately, we are not aware of any
similar efforts. The importance of discussing exception handling guide-
lines can be stressed by pointing out that the “disqualified” banking
example was borrowed from a paper which used it to illustrate extend-
ing UML’s Object Constraint Language with exceptional specifications
[SF99].

5.8 Current research and open issues

We conclude by briefly describing the current topics of exception han-
dling research and open questions.
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5.8 Current research and open issues

5.8.1 Concurrent and distributed systems

Concurrent execution poses additional challenges for dealing with
exceptions. It is acknowledged that concurrent and distributed systems
require more sophisticated exception handling mechanisms than the
traditional ones. Recent research focuses both on language features
[Iss01] and overall structuring of systems which exhibit cooperative
and competitive concurrency to accommodate exceptions [RK01]. One
specific area are agent-oriented systems [TMO1].

5.8.2 Process support systems

In contrast to this paper, exceptions can also be viewed independently
of programming languages. An example is process support systems,
where exceptions are interpreted as events that occur during workflow
execution. Exception handling involves tolerating processes that differ
from the specified ones or ad hoc alterations of process descriptions
[CLKO1].

5.8.3 Persistent exceptions

In context of information systems, exceptions are often perceived as
anomalies in data that may lead to runtime exceptions in the sense
described in this paper. Pioneering research has been performed by
Borgida [Bor85]. More recent work in this spirit relate to exception
handling in object-oriented databases [BGMO1].

5.8.4 Component-based software development

To keep this introductory paper simple, we did not address two major
issues:

1. Non-standard exception propagation paths
2. Expected behaviour of handlers

We assumed that propagation of exceptions along the invocation
chain is satisfactory. However, experience with exception handling
in loosely-coupled software, such as promoted by component-based
development methods, raises some important issues with regard to
propagating exceptions among components. Especially, when notifica-
tions rather than normal service requests are used for communication,
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choosing the propagation path for exceptions that cannot be handled
locally becomes tricky [PHO5].

The expected behaviour of exception handlers is another thorny
issue. Specifically, to provide effective recovery, handlers must have
access to sufficient information about the context of an exception.
However, as mentioned in the introduction, exposing such information
contradicts the idea of modularity [MT97]. A typical approach to solve
this problem is by mapping exception instances to more abstract types
in order to match the level of generality of the propagating component’s
interface. Unfortunately, valuable information may become inaccessible
if this process is applied repeatedly. Techniques that would provide
reasonable trade-offs are a topic of future research.
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6 Operational Profiles for
Software Reliability

Heiko Koziolek <heiko.koziolek@informatik.uni-oldenburg.de>

Abstract

Software needs to be tested extensively before it is considered depend-
able and trustworthy. To guide testing, software developers often use
an operational profile, which is a quantitative representation of how a
system will be used. By documenting user inputs and their occurrence
probabilities in such a profile, it can be ensured that the most used
functions of a system are tested the most. Test cases can be generated
directly out of an operational profile. Operational profiles are also a
necessary part of quality-of-service prediction methods for software
architectures, because these models have to include user inputs into
their calculations.

This paper outlines how operational profiles can be modelled in principle.
Different kinds of usage descriptions of software system have been
developed and are summarized in this article.

6.1 Introduction

Characteristics of dependable software systems are correctness, reli-
ability, availability, performance, security, and privacy. Reliability is
defined as the probability that a system will perform its intended
function during a specified period of time under stated conditions. A
common metric to measure reliability is mean-time-between-failure
(MTBF), which is the average time to the next failure. To achieve a
high MTBF and to be considered a reliable system, software has to be
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tested extensively.

As testing can almost never assure a complete test coverage, an
efficient way of testing has to be found. An operational profile is a quan-
titative representation of how a system will be used [Mus93, MFI*96].
It models how users execute a system, specifically the occurrence proba-
bilities of function calls and the distributions of parameter values. Such
a description of the user behaviour can be used to generate test cases
and to direct testing to the most used functions. Thus, a practically
high reliability of the tested system is achieved.

Descriptions of the user behaviour as in an operational profile can
also be used for other purposes than software testing. The performance
and correctness of systems can be analysed and systems can efficiently
be adopted to specific user groups. If developed early, an operational
profile may be used to prioritise the development process, so that more
resources are put on the most important operations. It might even
be possible to apply an “operational development”, meaning that the
most-used features of a system are released earlier than other features.
An operational profile improves the communication between customers
and developers and makes customers think deeper about the features
they would like to have and their importance to them.

In the following, a short survey on different operational profiles
or usage models for software systems is provided. The differences
and limitations of the approaches are described, as well as further
applications of usage models.

This paper is organised as follows: Section 2 elaborates on the
operational profile approach by Musa by describing the modelling
process, listing limitations and introducing extensions to this type of
operational profile. Section 3 deals with another form of usage model,
namely models based on Markov chains. Additionally, two methods of
Markov chain based usage models especially for software components
are presented in this section. Section 4 lists applications of operational
profiles other than analysing software reliability, and section 5 concludes
the paper.

6.2 Operational Profiles
This section deals with the operational profile model described by John

Musa. The steps of creating such an profile are explained, afterwards
problems of this approach are outlined. The section concludes with a
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6.2 Operational Profiles
proposed extension of Musa’s model.

6.2.1 Modelling Operational Profiles

One of the most refereed papers about the development of operational
profiles is from John Musa from AT&T Bell Laboratories [Mus93]. His
company develops operational profiles to guide the testing of systems.
With an operational profile, a system can be tested more efficiently
because testing can focus on the operations most used in the field. It
is a practical approach to ensure that a system is delivered with a
maximized reliability, because the operations most used also have been
tested the most.

Musa informally characterises the benefits-to-cost ratio as 10 or
greater. In 1993 AT&T had used an operational profile successfully
for the testing of a telephone switching service, which significantly
reduced the number of problems reported by customers. Hewlett-
Packard reorganised its test processes with operational profiles and
reduced testing time and cost for a multiprocessor operating system
by 50%. Although the effort may vary, Musa estimates the effort for
creating an operational profile for a typical project with 10 developers,
100000 lines of code and 18 month development time as about one staff
month.

The development process of the operational profile as described by
Musa successively breaks down system use into five different profiles
(Figure 6.1). A profile is a set of disjoint alternatives with a probability
for each item. If service X occurs 90% of the time and service Y occurs
10% of the time the operational profile consists of X,90% and Y,10%.
The operational profile is designed by progressively narrowing the focus
from customers to operations.

The first four profiles (customer, user, system-mode, functional) are
on the design level of a system while the last profile (operational) is on
the implementation level and deals with the actually coded operations
of a system. For smaller applications it may not be necessary to design
each of the first four profiles. For example, if there is only one customer
of the software, there is no need to design a customer profile.

Participants of the development process of the profile are system
engineers, system designers, test planners, product planners, and mar-
keting professionals. Usage data is either available from similar or older
system or has to be estimated, for example based on marketing analysis
or on the developers experience. The level of detail of the profiles
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Test-Case Selection

Figure 6.1: Development Process of an Operational Profile [Mus93]
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should mainly be dependent on the expected financial impact, but is —
in practice — often defined based on informed engineering judgement.
The granularity of the profile can also vary for different parts of the
system in relationship to their importance.

In principle, the development of the operational profile is not bound
to a specific design methodology or programming language. The design
documents may be UML diagrams or result of a structured analysis,
and it is possible to create operational profiles for systems programmed
object-oriented or imperative.

In the following each of the five profiles is described with more detail.

First Step: Customer Profile

A complete set of customer groups with corresponding occurrence
probabilities makes up the customer profile. Customers are persons,
groups, or institutions that purchase a system. They can but need not
to be the users of the system at the same time. Customers in a customer
group use the system in the same way. For example, companies with
an equal number of employees may use a telephone switching system in
the same way because they have the same number of users even though
their businesses are different.

Information about the customer profile for new systems must be
obtained from marketing by analysing related systems and including
the anticipated changes because of the new features in the new system.
A simple example for a customer profile would be two customer groups
(small and large companies) with respective occurrence probabilities of
70% and 30%.

Second Step: User Profile

A complete set of user groups with corresponding occurrence probabili-
ties makes up the user profile. Users are persons, groups, or institutions
that use a system. They can, but need not to be, the purchasers of the
system at the same time. Users in a user group use the system in the
same way. The user profile can be derived by taking the customer profile
and determining the user groups for each customer group. Resembling
user groups of different customer groups should be combined.
Examples for user groups are system administrators, maintenance
users, regular users etc. User groups are usually related to job roles
of employees and their numbers might be obtained by counting the
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job roles for a customer group. The overall occurrence probabilities
for user groups can be obtained by multiplying the probabilities for
each user group of a customer group with the occurrence probability
of that customer group. If user groups are combined over different
customer groups, then their probabilities will have to be added. A
simple example with the input of the customer profile from above (70%
small company (SC), 30% large company (LC)) and 90% regular users
(RU) and 10% administrator (AD) in each customer group would result
in a user profile of 63% (70% * 90%) SC-RU, 7% SC-AD, 27% LC-RU,
and 3% LC-AD.

After the user profile has been developed the development of the
subsequent profiles can be delegated to different persons, one user
group for each developer.

Third Step: System-mode profile

A complete set of system-modes with corresponding occurrence proba-
bilities makes up the system-mode profile. System-modes are sets of
functions (design level) or operations (implementation level) that are
grouped for a more convenient analysis of the execution behaviour. It is
possible to have system-modes that can only be used if no other system-
modes are active, but it is also possible to have multiple simultaneous
system-modes. The allocation is in the developers’ responsibility.

Examples for characteristics of system-modes are user group (admin-
istration mode versus regular mode), environment conditions (overload
traffic versus normal traffic, initialization versus normal operation),
criticality (nuclear power plant controls versus logging functions), user
experience (newbie versus expert), or hardware components (functions
executed on server 1 versus functions executed on server 2). System-
modes can be used to represent the increasing experience of users after
introducing a new system.

Fourth Step: Functional Profile

A complete set of functions with corresponding occurrence probabilities
makes up the functional profile. For Musa a function is a task or part
of work of a system as defined during the design. Functional profiles
are usually designed during the requirement phases or during early
design phases. Later, functions have to mapped to operations, which
capture a specific behaviour on the implementation level.
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Before designing a functional profile it is often helpful to construct
a work-flow model capturing the overall processes and the context of
the system (i.e. software, hardware, people). To create a functional
profile the system modes have to be broken down into single functions.
The functional profile is independent of the design methodology and
for example might be used for object-oriented or procedural designs.

The number of functions in a functional profile is typically between
50 and 300. Criteria for breaking down a system task into two functions
are the possibility to develop them with different priorities and the
differences in frequency of use. Commands and parameters values are
called input variables. T'wo functions may consist of the same command
but different parameters values, because there is a significant difference
in the use of value range of the parameters. Input variables that
separate functions from each other (in the former case the parameter
values) are called key input variables. The granularity of the functional
profile depends on the information available during early development
stages and the projected amount of costs for a higher precision.

A functional profile may be explicit or implicit. An explicit profile
includes a cross-product of all key input variables with their possible
values and occurrence probabilities, while an implicit profile consist
of sets for the values of each key input variable with the respective
occurrence probabilities. Suppose two key input variables A and B
with two possible values for each variable. The explicit profile would
be [(Al, B1), (A1, B2),(A2, B1), (A2, B2)], while the implicit profile
would be [Al, A2] and [B1, B2]. Implicit profiles (consisting of the
sum of input variables) are smaller but only possible if the key input
variables are independent (see example in Figure 6.2). A disadvantage
is that there is no direct selection of input state for the test cases
within an implicit profile. Explicit profiles (consisting of the product
of input variables) are larger, but allow a direct identification of test
input states. A combination of an explicit and implicit profile is also
possible.

The initial function list contains those functions that are most rele-
vant to the users. In a next step the environmental variables such as
hardware configurations and traffic loads have to be collected during
a brainstorming session of the developers. In Musa’s work [Mus93],
environmental software such as operating systems or background pro-
cesses are not considered as environmental variables. After identifying
relevant environmental variables, the final function list can be cre-
ated, which includes the dependencies between key input variables and
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Figure 6.2: Example of an implicit functional profile [Mus93]
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environmental variables.

The occurrence probability for each function in the final function list
can be obtained in different ways. If a similar system or even an older
release of the software is available, that system can be monitored and
the probabilities can be gathered by measurements (e.g. by looking into
system logs). If the system under development is new, the probabilities
have to be estimated by the developers, which possibly results in an
inaccurate functional profile.

Fifth Step: Operational Profile

A complete set of operations with corresponding occurrence proba-
bilities makes up the operational profile. Operations, as opposed to
functions, are actually implemented tasks of a system, while functions
are tasks of a system on the design level. The functions of the func-
tional profile evolve into operations of the system, but the mapping is
sometimes not simply one to one. Normally the number of operations
is higher than the number of functions, as a single function may be
implemented by multiple operations. It is also possible for a set of
functions to map to different set of operations. The refinement level of
operations is higher, because they include a task with specific input
values and value ranges.

To develop the operational profile runs are defined, which divide
the execution time of a program. Runs are initiated by a specific user
intervention or input state and represent an end-to-end user activity.
A run type is formed by identical runs. For example the function
“change article” in an online-shop may be broken down into two runs,
one deleting an article and one adding a new article. Each run type
possesses a set of input variables that are used during the run, the
so-called input state.

The input space of a program is the set of input states that appear
during the system’s execution and is normally very large, yet finite. The
design input space is different from the required input space a program
must be tested for, which also contains conditions like heavy traffic or
error handling. A list of input states and the corresponding occurrence
probabilities has to be defined for an input-state profile. A complete
input-state profile normally cannot be defined in practice. Instead a
specified input space is defined by listing the involved input variables
and their finite number of possible values ignoring the variables with
an occurrence probability of zero.

Run types can be grouped into operations and the portion of input
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space associated with an operation is called a domain. By grouping run
types the number of profiles is reduced, which leads to fewer costs but
also to less efficient testing. This trade-off has to be considered when
designing operational profiles. The partitioning of the input space by
identifying domains of operations simplifies the later test generation.

As with the functional profile, there are two way to determine occur-
rence probabilities: by recording input states in the field with similar
system or by estimating the values on basis of the occurrence probabil-
ities of the functional profile. For the recording, a general recording
tool may be developed which just uses an interface to each application.
The estimations should be done by experienced system designers and
also reviewed by experienced users.

Sixth Step: Test Selection

With the occurrence probabilities of the operational profile, test cases
can be selected efficiently because the most used operations will be
tested the most. If an explicit operational profile has been designed,
the test cases can be selected straightforward. If an implicit operational
profile has been designed, key input variables and their corresponding
values have to be chosen according to their occurrence probabilities,
thereby identifying the operations that must be tested. If concurrent
system-modes (for example user mode and maintenance mode) occur
in the system, it is sensible to also run tests simultaneously to include
their interactions in the test. The sequence of operations during the
test should be randomized to reduce the bias of the test. Operations
that need a special sequence (e.g. a file first has to be opened, then
can be read out) should be defined as super-operations.

The number of run categories can be further reduced by only including
sequences of two subsequent input variables and excluding sequences
of more than two input variables. When conducting regression tests on
a system, not only the changed operations should be tested but also
all the other operations to reduce the possibility of cross-effects.

Further Issues

A lot of additional research about operational profiles has been con-
ducted. Musa [Mus94] reports, that the error in failure intensity is more
than 5 times lower than errors in estimating occurrence probabilities
of functions. This implies that developers do not have to put a high
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effort in precisely determining occurrence probabilities, because the
accuracy of these values is not proportionally bound to the failures of
the tested systems. Woit [Woi94] specifically describes the specification
of operational profiles, test case generation, and reliability estimation
for software modules. Avritzer and Weyuker [AW95] present test case
generation algorithms for operational profiles and performed load test-
ing for several industrial software systems. Cukic et. al. [CB96] develop
another technique for reducing the sensitivity of failure rates to errors
in the occurrence probabilities of an operational profile. Bishop [Bis02]
shows how reliability bounds can be rescaled in relation to changes in
the operational profile. He found out, that it is possible to derive test
profiles that are insensitive to a varying operational profile.

6.2.2 Problems and Limitations

In 2000, Whittaker and Voas [WV00] argued for a rethinking of the
operational profile and identified two major problems.

First, using an operational profile emphasises testing the function,
which are predicted to be the most used ones. But in practice, users
tend not to stay on the path the developers have prepared for them and
often use software in an unconventional and unintended way. Functions,
for which the developers expected lesser use, might not be tested enough
if an operational profile has been used for testing. Thus, using the
software in an unintended way decreases reliability rapidly if testing
was based on an operational profile. Operational profiles should not
only be modelled after the typical user but after all users.

Second, interactions with the software, which are not initiated directly
by the user, are not explicitly modelled by an operational profile.
Following Musa [Mus93], operational profiles contain a small number
of single environmental variables, which represent an oversimplified
modelling of the influences on the software. Not only the user creates
input to the software, but also the operating system, for example if it
signals for the use of resources. Software does not executed isolated
on a computer, but other applications usually are running in the
background competing for resources. In fact, most parts of the software
do not interact with humans, but with device drivers and operating
system APIs. Furthermore, humans normally only interact with input
device drivers and not with the software itself. The configurations of
hardware devices and of other software applications running on the same
system influence the behaviour of the software, but are not captured
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by the operational profile. The operational profile is incomplete and
should include more informations about its environment, especially the
operating system, other applications, and system configurations. An
appropriate abstraction level should be kept in mind when modelling
the environment, otherwise the operational profile would only be valid
for a single machine with a specific configuration.

Voas’ ideas for countering the second problem can be found in
[Voa00]. For him, an operational profile should be defined as the set of
events a software receives plus the set of inputs generated by external
hardware and software that the software is expected to interact with.
To collect the second set of inputs, he suggests to monitor the systems
of pre-qualified users, who use the software that shall be tested. For
this approach, a prototype or older release of the software has to be
available. The software is extended with automated processes that
collect usage informations on the computers of the users, of course
only with the users’ consent. For example data about hardware and
software configurations might be obtained from the registry on Windows
systems.

To ensure anonymity and privacy of the users participating in such
a data collection, Voas proposes the establishment of a middleman
organization called Data Collection and Dissemination Lab (DCDL).
Not the software developer, but only the DCDL would directly receive
user informations and only in an encrypted form. The DCDL would
anonymise the data and filter out faulty and unusable data. Addi-
tionally, it would ensure that the population of users participating in
the test was representative. The resulting data would then be sent to
the software developers, who could test the software more extensively,
because they then would have a clearer picture in which environments
the software will be executed.

6.2.3 An Extended Operational Profile

Recently, Gittens [Git04, GLB04] tried to solve some of the operational
profile’s problems like the missing inclusion of the software environ-
ment and developed several extensions to the classical approach. This
extended operational profile consists of a process profile, a structural
profile and a data profile.

Process Profile Captures processes and their frequencies of a typi-
cal usage of the software and is basically the same as Musa’s
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operational profile

Structural Profile This profile on one hand tries to characterise the
data structures of the application and its configuration. On the
other hand the profile includes a description of the software and
hardware environment of the software.

The data structures of the application are characterised by so-
called measurable quantities. Usually they are numerical numbers
for the size of a data structure. For example, measurable quan-
tities for a two-dimensional array would be the number of rows
and the number of columns. Measurable quantities may change
with different configurations of the software or over the course
of time. The term data structure does not only refer to arrays,
trees or linked lists here. Furthermore, complexer structures like
Abstract Data Types (ADT) or modules can also be described
with measurable quantities. It is for example also possible to
characterise web pages by the number of text fields, buttons,
frames etc. Which measurable quantities should be included into
the operational profile is the developer’s choice. After they are
defined, the quantities are recorded by running instances of the
software on different systems. Statistics like mean values, median
or standard deviations can then be derived from the collected
data.

Some data structures might also be characterised by a fixed num-
ber of states, so-called categorical quantities they are operating
in. For example, a data structure with an overflow flag, which
may be set to ON, OFF, and PENDING, has this flag as an cat-
egorical quantity with three associated values. The frequencies
of occurrences of the different states can be recorded.

Additionally, the structural profile includes a vector of variables
characterising the hardware environment and a vector of vari-
ables characterising the software environment. The authors have
applied the extended operational profile in an industrial case
study, but do not reveal the concrete values of the hardware
and software characterising variables to ensure the privacy of the
software vendor’s testing and user environment.

In conclusion, the structural profile consists of measurable quan-
tities with statistical values, categorical quantities, and hard-
ware/software characteristics.
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Data Profile This profile is not concerned with the structure of data,
but with the actual values variables can be assigned to. A data
profile for a database could contain the most occurring data types,
the size of single table fields, and the value ranges of table columns.
As the number of possibilities for values is normally almost infinite,
a high-level view of the data has to be developed, which is the
data profile. Values are always recorded for one instance of the
software. For each instance, the data profile consists of a number
of variables from one particular data type, the value ranges for
each data type and the largest data length for each data type
from the perspective of the user. These measures are taken from
the concepts of boundary value analysis in black-box testing.

As it is difficult and time-consuming to obtain all of the data needed
for such an extended operational profile manually, they authors have
developed a toolkit assisting designers. As noted before, the authors
applied their approach on an industrial case study and, using their
toolkit, needed eight person hours to collect the necessary data.

6.3 Usage Models Based on Markov Chains

Operational profiles as in Musa’s approach [Mus93| do not explicitly
consider the dependencies between different inputs to a software sys-
tem. An operational profile is structured like a tree, with operation
calls as the leafs and probabilities on the branches. Not included are
relationships between consecutive calls, also known as protocols. For
example if a specific call always requires a certain predecessor (e.g.
openFile() has to be called before writeFile()), this can not be
expressed explicitly by the operational profile.

6.3.1 Markov Chain Usage Model

Whittaker et. al. [WP93] first proposed using Markov-chains for
modelling sequences of inputs to a software system. Like Musa [Mus93]
they describe usage for the purpose of generating test cases and to guide
software testing statistically. Ultimately, the reliability of a system
shall be improved by extensively testing the most-used functions. The
software system is viewed as a black box, which receives stimuli from
the outside. In particular sequences of stimuli representing traces of
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Termination

Figure 6.3: Exemplary Markov model after structural phase [WP93]

the software execution are of interests to the authors. These sequences
directly represent test cases and can be used in a random experiment,
which is conducted for the statistical software testing. To describe the
test cases, a set of random variables is used, which models the complete
set of sequences the user can execute.

A sequence of events can be expressed as a stochastic process. In this
approach finite state, discrete parameter Markov chains are used to
model the sequences. The states of the Markov chain represent inputs
to the software system, while the arcs imply an ordering of the inputs
and are annotated with probabilities. The Markov property adds that
for each arc, the next state is independent of all past states given the
present state. An advantage of using Markov chains is the rich body of
theory with analytical results and computational algorithms.

The development process of the Markov chain is divided into two
steps: the structural phase and the statistical phase. During the
structural phase, a state is created for every possible action the system
is able to receive. Arcs are added to connect consecutive actions. The
design of the structure is creative process, as there is no algorithm to
support this phase. An example for the result of the structural phase
for the manipulation of a window in a graphical user interface can be
found in Figure 6.3.

After the structure of the Markov chain has been established, proba-
bilities are assigned to the arcs during the statistical phase. There are
three methods to do this:
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Uninformed approach If no information about the expected probabil-
ities is present, this approach is the only possibility. The exit
arcs of each state are assigned with a uniform probability distri-
bution. This results in a single unique model, but is not a close
resemblance of the actual probabilities.

Informed approach If a prototype or older release of the software
system is available, the informed approach can be used. User
behaviour can be monitored, and the measured frequency counts
of taking each arc in the Markov chain can be converted into
transition probabilities. This approach may lead to different
models depending on the monitoring data.

Intended approach If no similar system is available, at least the ex-
perienced designer is often able estimate the expected transition
frequencies with a careful and reasonable analysis of the user
behaviour. This is the intended approach, which also results in
different Markov chains depending on the designer.

The corresponding probabilities to the window example from Figure
6.3, which have been determined during the statistical phase, can be
seen in Figure 6.4.

Using Markov chains yields the advantage, that several analytical
descriptions of the test cases can be made based on the model. For
example the number of states necessary before reaching a certain state
or the mean first passage time can be calculated out of Markov chains.

They authors used their approach on a simple spreadsheet program,
for which the identified 90 states and over 200 arcs. Additionally, they
created a usage model for the IBM DB2 database, which consisted of
more than 2000 states, yet the models were still analytically tractable.
It has to be kept in mind that even small software systems can have
a large input space, so that a Markov chain with many states has
to be created. But even then, the authors assume a manageable
computational effort for the analysis of these model.

6.3.2 Hierarchical Markov Chain Usage Model

Wohlin and Runeson [WR94] also use Markov chains for usage mod-
elling, specifically for the reliability engineering of software components.
Their usage model is divided into an usage structure containing possible
sequences of service calls and a usage profile containing probabilities of
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Table IT.  Statistical Phase—Assigning the Transition Probabilities

From-State To-State Frequency Probability
Invocation Window 6 1
Window Maximize 1 1/12
Window Minimize i 1/12
Window Move 2 1/6
Window Size 2 1/6
Window Close 6 172
Maamuze Window 1 1
Mmnimize leon 1 1
Icon Restore 1 1
Restore Window 1 1
Move Drag Mouse 2 1
Size Drag Mouse 2 1
Drag Mouse Window 4 4/15
Drag Mouse Up 1 1/15
Drag Mouse Down 5 13
Drag Mouse  Left 3 15
Drag Mouse Right 2 2115
Up Drag Mouse i 1
Down Drag Mouse § 1
Left Drag Mouse 3 1
Right Drag Mouse 2 1
Close Termination 6 1
Termunation Invocation - 1

Captured or hypothesized sequences:
1. <Invocation><Window > <Maumize > < Window > < Close>

2

3.

4.

5.

6.

Figure 6.4: Exemplary probabilities for Markov chain after statistical

<Termination>

<lInvocation > <Window > <Minimize > <lcon> < Restore > < Window >
<{Close><Ternmunation >

<Invocanon> <Window > <Move> < Drag Mouse><Down > <Drag-
Mouse > <Right > <Drag Mouse > <Down > <Drag Mouse > < Window:
<Close><Terminanon >

<Invocation><Window > <Suze><Drag Mouse> < Left> <Drag-
Mouse> <Up><Drag Mouse > <Left> <Drag Mouse > <Window>
<Close> < Terminarion>

<Invocation > <Window > <Move> < Drag Mouse><Down > <Drag-
Mouse> <Left><Drag Mouse><Down><Drag Mouse > <Window >
<Close><Termination >

<lInvocation > <Window > <Size > < Drag Mouse><Down><Drag-
Mouse> <Right> <Drag Mouse> <Window > < Close > < Termination >

phase [WP93]
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Usage Level

User Type Level

User Level
0.5

Service Level

Behaviour Level

Figure 6.5: State hierarchy model [WR94]

control flow branches. The overall aim of this work is to provide a basis
for the certification of components in terms of reliability measures for
certain usage models. The approach of certification consists of 5 steps:

1. Modelling of the usage structure

2. Modelling of the usage profile

3. Generation of test cases out of the usage model

4. Execution of test cases and collection of failure data

5. Certification of reliability and prediction of future reliability

The usage models by Wohlin and Runeson describe the user behaviour
for a complete system as well as for individual components from an
external view. Users may be either human beings or other components.
Because the usage model is divided into usage structure and usage
profile the model can be easily reused. For example by changing the
probabilities of the profile while retaining the usage structure the usage
model can be adapted for a different system context.

A hierarchical Markov model, the so-called state hierarchy model
(SHY) is used for the representation of the usage model. A disadvantage
of using Markov models is the possible exponential growth of the state
space and thus the intractability of these models, if they are applied to
complex software systems. To cope with the state space explosion the
SHY models consists of five levels, and the behaviour of single services
can be described separately before being composed into one big model
(Figure 6.5).
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The usage structure can be divided into different user types (for
example regular users and administration users). From the user type
level the behaviour of single users can be modelled. For each user a
number of services of a components is being described, and for each
service the individual behaviour is being described as a Markov model
on the lowest level of the SHY model. The interaction of different
services can be modelled on this level be creating links from one Markov
model to another.

After modelling the usage structure, each branch in the usage model is
assigned with a probability, thereby adding the usage profile. The values
for the probabilities must be derived from similar systems including
expected changes, from the experience of the developers or from the
expected usage of the system as described in the system’s specifications.
Probabilities are normally static, but also can be dynamic, expressing
the fact that some events are more probable under certain conditions.
Because it may be impossible to determine usage profiles reflecting
the exact execution of a components, it is more important to find
reasonable probability relations.

Test cases can be generated by going top-down through the SHY
model randomly selecting users types, single users, services and the
corresponding Markov models. After additionally generating input
parameters, the stimulus of a Markov model on the behaviour level
can then be added to a test script. This procedure can be performed
iteratively to gain a high coverage of the usage model.

The certification is carried out by proposing a hypothesis, which
states if a specific MTBF (mean-time between failure) requirement
can be met with a specific degree of confidence. The goal of testing
the component is to find out whether the hypothesis can be accepted
or rejected. If the hypothesis is neither accepted nor rejected during
the testing process, testing has to continue until the needed degree of
confidence is reached. For the certification the failure number (r) is
plotted against the normalized failure time (t) (Figure 6.6). Normalizing
of the failure time is done by dividing the failure time by the required
MTBEF. Testing is performed as long as the measured data points fall
into the “continue” region and terminated, if the data points fall into
the “accept” or “reject” region. More details about the hypothesis
certification can be found in [MIOS87].

New components can be certified for a particular usage profile with
specific reliability measures. The reliability measures can be stored
into a component repository with the component, so that third-party-
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Continue/@

Figure 6.6: Control chart for hypothesis certification of the reliability
[WR94]

users have a guiding value when assessing the component for possible
use in their architecture. However, the certified measures may not
be reused blindly, because the usage profile the component has been
specified against is arbitrary and normally cannot be replicated exactly
by a potential user of the component. The component user has to
take his special usage characteristics into account when assessing the
true reliability of the component. For example, the component user
can change the probabilities of the usage profile and re-certify the
component for his usage context. By certifying components against
more and more usage profiles, the trust into reusing these components
will be increased, because the components have been tested for a large
number of usage contexts.

6.3.3 Probabilistic Statechart Usage Model

A recent approach specifically for usage modelling of software compo-
nents built on the work by Whittaker and Poore, and used probabilistic
statecharts (Figure 6.7) to describe the usage structure and profile
[SCS04]. With the use of statecharts, the authors hope to overcome
the state explosion problem of Markov chains, which often become
intractable for larger system. Yet they do not explicitly show the advan-
tages of this modelling formalism. This proposal considers dependencies
between the parameters of consecutive calls.

The development of the probabilistic statecharts consists of four
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State4 State3

i = op3[0.4]
e op2 [0.6]

State1 State2

Figure 6.7: Example for a probabilistic state chart as a usage model
[SCS04]

op4 [1.0]

[1.0]/c=0 op1[0<=c<n, 1.0]

steps. First, relevant information is gathered including descriptions
of the interfaces of the components as well as traces of usage data
from a prototype or from simulation. Assumptions are made about
the expected use, where no measurements are available. Afterwards,
the structure of the statechart is modelled. This can be achieved in
a top-down manner, going through the usage traces, grouping related
operations into sequences, and designing statecharts for these groups.
It can also be done in a bottom-up manner, first defining states for
every operation, and then adding transitions branches starting from
the initial state.

In a third step, a transition matrix is constructed containing the
probabilities for the transitions of every state to every other state. For
this purpose, frequencies of calls from the traces are translated into
probabilities. The fourth step consists of a parameter analysis. By
looking at the interfaces of the component, the parameter types can
be determined. Constraints for individual parameters are described as
well as relationships between different parameters. For example the
output parameter of one function call might be the input parameter
for the next call. These descriptions are documented textually.

With the completed probabilistic statechart test cases can be gener-
ated. The authors wrote a Java program for this purpose.

6.4 Other Applications of Operational Profiles

Originally, the primary aim of designing operational profile was the
generation of test cases, the guiding of development and testing to
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the most-used functions of a system, and the reliability analysis of
software systems. However, operational profiles are useful for other
purposes as well, e.g., performance and reliability prediction, detection
of redundant code and web usage mining.

Performance Prediction There are a large number of performance
prediction methods for software architectures that instrument opera-
tional profiles for their calculations and analyses. A comprehensive
survey of such methods can be found in [BDIS04]. These methods try
to analyse software architectures before they are actually implemented
and take models of the software as inputs. Nowadays, UML diagrams
are the de-facto standard for documenting designs, and there is a spe-
cial UML profile (UML Profile for Schedulability, Performance, and
Time [OMGO03]) to include performance related annotations like com-
puting times or rates of incoming requests into UML models. In fact,
the operational profile of the proposed architecture can be specified
coarse-grainly with this profile. For example, it is possible to annotate
single use cases with occurrence probabilities and input frequencies.
Performance prediction methods have to take into account these an-
notations because the operational profile is a major influencing factor
to the performance of a system. For example, if a certain method is
most frequently used with large-sized parameters instead if small-sized
parameters, the average response times of this method is expected to
be rather long.

Most performance prediction methods either transform UML dia-
grams into performance models or directly use such models. Formalisms
like queueing networks, stochastic petri-nets, stochastic process-algebras
and markov-models are most common to describe performance models.
These models need occurrence rates of incoming requests as well as
transition probabilities between different states of the system as an in-
put for their evaluation. These informations are part of the operational
profile.

An approach specifically for the performance prediction of component-
based system can be found in [BM04]. To analyse the performance of
a component-based architecture, an operational profile is developed for
the whole system in this method. Hamlet et. al. [HMWO04] partition
their operational profile for software components into subdomains and
use a finite vector approximation of these subdomains, because the exact
operational profile is never available in practice. They also describe
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how requests to these subdomains fall into the subdomains of following
connected components. With these informations, they are able to
calculate the expected performance of a complete component-based
architecture.

Detection of Redundant Code Alzamil presents an approach for
identifying redundant statements in source code with the help of an
operational profile [Alz04]. Redundant statements are statements that
might be executed, but removing them would not alter the functionality
of the program. Whether a statement can be considered redundant
partially depends on the operational profile. If users executed the
software in a specific way, it might happen that certain statements
are not used in a way that would change the program’s output. For
example, an algorithm identifying the minimum value of an array of
integer-variables does not have to get the value of each element of the
array, if the users always call this algorithm with a sorted array and
the minimum value is always the first value. The reason for eliminating
such redundant statements is the improvement of the performance of
the programs.

The author conducted a case study and tested multiple programs
looking for redundant statements. At first, random inputs were used
to test the software, then a manually generated operational profile
was used. In 80% of the cases using the operational profile yielded a
significant higher number of found redundant code statement. Thus,
the performance of the respective programs could be improved more
effectively with the help of operational profiles.

Web Usage Mining A completely different domain involving the
analysis of usage data is web usage mining (for example in [MDLNO02]).
These approaches try to identify patterns in the user behaviour of
web applications. The aim is the personalisation of web site contents.
For example, an online shop may be able to make recommendations
for products relevant to the user based on the products he or she
viewed before. The methods shall be suited even for anonymous users
not registered to web applications. Patterns like association rules,
sequences, and clusters of user sessions are identified with data mining
techniques, afterwards aggregate usage profiles are derived from these
patterns.
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6.5 Conclusions

Several approaches for specifying user behaviour have been presented
in this survey paper. The classical method of developing operational
profiles by Musa has been used extensively for software reliability
engineering. After designing different levels of profiles, finally an
operational profile on the implementation level can be specified, from
which test cases can be selected. Testing the most used functions
ensures a high software reliability. Problems of the approach, namely
the negligence of the hardware/software environment and the focus on
ideal users have been explained as well as possible extensions to solve
these problems.

Another class of usage models are based on Markov chains and can
also model dependencies between consecutive calls to a software system.
In this class, a state hierarchy model has been developed, furthermore
probabilistic statecharts have been used to model user behaviour.

Still missing in most models is a proper treatment of parameter
values. Probability function could be used to model the value ranges
of input parameters. The dependencies between the parameter values
of consecutive calls could be modelled explicitly. Apart from Hamlet’s
work there is no approach modelling the transformation of operational
profiles between multiple software components. Executing one compo-
nent with a specific operational profile does lead to another operational
profile on the components that the first component is using to provide
its services. To ensure reliability and for sensible test case generation
these transformations need to be modelled explicitly. Including the
software environment into the operational profile has been tried by
Gittens, yet the approach is limited in expressiveness.

Apart from reliability engineering, operational profiles and usage
models can be used for other purposes. In this paper, the examples
of performance prediction, redundant code detection, and web usage
mining can be found.
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7 Model Checking Using
Testing

Roland Meyer <roland.meyer@informatik.uni-oldenburg.de>

Abstract

The process of demonstrating desired behaviour of software and hard-
ware systems has become an integral part in all development process
models. For large scale systems, testing exemplary execution traces is
insufficient due to the large scope of possible behaviour. Model check-
ing is the automatic examination of all system states for demanded
properties and has been used in a number of industrial projects suc-
cessfully. In this paper, the theory of model checking is introduced and
the technique of model checking with test automata is described. A
test automaton reflects desired or undesired system behaviour. The
model checking algorithm verifies whether the system model exhibits
or avoids the behaviour described by the test automaton.

7.1 Introduction

Almost everything concerning our daily life contains embedded hard-
ware and software systems. Often human life depends on the correct
functioning of these systems, in other cases incorrect behaviour will
cause unacceptable material damage. Users assume systems to work in
the expected way but there are several examples in history of computer
science where safety critical systems contained terrible bugs. A method
is needed to ensure a system exhibits expected behaviour. In the con-
text of this paper the behaviour of a system is defined as a sequence of
system states.


<roland.meyer@informatik.uni-oldenburg.de>

7 Model Checking Using Testing

During the testing of implemented and deployed software systems some
of the possible system behaviour is observed and it is checked, whether
the behaviour in regard is correct. This technique has a fundamental
position in the software development lifecycle, although efficiency may
be doubted:

“Although provably effective in the very early stages of
debugging, when the design is still infested with multiple
bugs, their [test and simulation] effectiveness drops quickly
as the design becomes cleaner, and they require an alarm-
ingly increasing amount of time to uncover the more subtle

bugs.” (Pnueli, 1999, [CGP99)])

The question of coverage is concerned with the proportion of the
behaviour evaluated during testing to all system behaviour. In large
systems with a huge state space testing is no adequat method for
checking the system behaviour. The amount of considered behaviour
will be very small in contrast to the amount of possible behaviour. The
advantage of testing compared to formal methods is that it is processed
on the real system. No representation of the system in a modelling
language needs to be found. On the other hand, the requirement of
an implemented system prohibits the evaluation of system models in
early stages of architectural design. This problem can be handled by
building small prototypes for architectures which can be evaluated.
Although testing large scale systems becomes ineffective, testing can
be done for every computer system. There are no limitations in size.
The creation of an appropriate model of the system in regard and the
proof that the property in consideration holds for the model is the
state of the art approach with formal methods. The problem of this
approach is, for large scale computer systems there is no technique
available relating the implemented and deployed system to the model
in a formal way. This is especially true for systems used in practice.
The model is always an abstraction of the system. So the property is
only valid with respect to the abstraction.

In this paper, the method of model checking for reasoning about system
models is presented. Model checking is an automatic technique for
verifying finite system models against given properties. There are
several model checking algorithms to perform verification. It depends
on the model and the property to be checked, which technique is
applicable. A powerful method is model checking with test automata.
It is not related to a special class of system models. A test automaton
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expresses behaviour that needs to be checked for the system. Therefore,
the test automaton is put in parallel with the system and observes the
system’s behaviour. If the system shows behaviour the test automaton
is designed for, it reaches a final state. If the final state is not reachable,
the system omits the behaviour stated in the test automaton.

The paper is organized as follows: Section 7.2 clarifies the notion of
system models and describes the state explosion problem. Section
7.3 introduces specification languages to state properties of reactive
systems, computation tree logic (CTL*) is defined as an example, and
an enumeration of basic system properties is given. In section 7.4,
the idea of model checking is outlined and a classical algorithm for
model checking branching-time logic (CTL) is given. The section also
provides an outlook on advanced model checking methods. Model
checking with test automata and the technique of on the fly model
checking are explained in section 7.5. The paper concludes with section
7.6.

7.2 System Models

Embedded hardware and software systems indicated as critical in the
introduction continuously interact with the environment and never ter-
minate. Environmental values are observed via sensors and influenced
via actuators. The output of the actuators depends on the input and
the internal state of the system. The class of systems is called reactive.
Model checking is an automatic proof technique, which is applied to
a model of the system in concern. A model is a representation of the
system in a well-defined formal language. In history of computer science
transformational systems for computing mathematical functions were
regarded. To show that transformational systems work in the desired
way, their input/output behaviour is observed. It is checked, whether
a certain input leads to an expected output. The internal state of the
system is neglected. This model is no longer applicable, as the change
of the internal system state is the main issue of interest for reactive
systems. For automatic verification, a reactive system can be modelled
as Kripke structure. A Kripke structure consists of the set of all system
states and transitions between consecutive states. The definition of a
state is given in [CGP99:

“A state is a snapshot or instantaneous description of the
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PARBEB

Figure 7.1: A Kripke structure modelling a printer manager

system that captures the values of the variables at a partic-
ular instant of time.”

Following [CGP99] a Kripke structure is defined as follows:

Definition 7.1 (Kripke Structure). Given a set of atomic propositions
AP. A quadrupel (5,5, R, L) with

e a finite set of states S,
e a set of initial states So C S,

e a transition relation R C S x S which is total, i.e. for all s € S
exists s’ € S with (s,s) € R, and

a labelling function L : S — P(AP) that associates a set of atomic
propositions with each state

is called Kripke structure. Atomic propositions p € L(s) are assumed
to be valid in s.

A path from state s in a given Kripke structure K is a sequence of states
= $98182 ... with sg = s and (s;,8;+1) € R, (0 < 4). The number
of states in a path 7 is called length of the path, denoted by | 7|, and
may be infinite. The ith state is adressed by 7 (i) := s;_1.

An example of a system model is the Kripke structure depicted in
figure 7.1. Tt is derived from the printer manager example in [BBFT01].
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The states are drawn as circles, transitions between states are denoted
as arrows. Start states have an arrow without source. The labelling
function is shown by the annotation of the states. A printer manager
handles access to a printer for two independent processes A and B.
In the beginning, both processes do not print and are not waiting
for a job to be processed. This is depicted by the propositions R_A
(:=Rest-A) and R_.B (:=Rest_B) which are valid in the start state. If
one of the processes tries to access the printer, a waiting proposition
W_X (:=Waiting X, Xe {A,B}) is announced. The printing itself is
indicated by P. The six atomic propositions in the model can be inter-
preted as six boolean variables having the value true in the states they
occur.

Proved properties always hold for the model only. It needs to be
ensured that the model of a system and the deployed system are related
such that the model’s properties can be assumed to be correct for the
concrete system. To be able to lift statements about the model to state-
ments about the real system, the model should represent the system as
fine grained as possible. This especially means, the state space of the
real system should be covered. If it would spare states out, there could
be transitions in the model which required several steps in the real
systems. During these steps the property could be violated. Moreover
no transitions are allowed in the model that can’t be executed by the
real system. If this was the case, the model checker could discover a
property as violated in the model and give a countertrace which could
not be processed in the real system.

In systems modelling, there is a trade-off between the granularity of
the model and its complexity. The size of models which can be verified
is still very limited. Currently models with about 10'20 states can
be checked. In section 7.2.1 we discuss how this restricts the usage
of model checking. Further approaches on how to handle large scale
models and even models of infinite state systems are sketched in section
7.4.3.

Although verification of systems is done on a low level representa-
tion as Kripke structures, the model is usually created in a well-defined
syntactical notation called modelling language £. Well-definedness
means that the context, in which every element in the modelling lan-
guage is used, is defined unambiguously. There have been great efforts
in computer science to provide appropriate modelling languages for
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systems. Declarative languages like Z, B, or Algebraic Specifications
are well suited for the description of data types. On the other hand,
it is hard to describe system’s behaviour with these data oriented
languages. Process algebras like CSP, CCS, and the m-calculus, or
automata models like Petri nets or finite automata describe system
behaviour but do not allow the use of data types. The interval based
logic Duration Calculus expresses real-time properties but is not able
to describe data values and system behaviour in an appropriate way.
With the Unified Modelling Language (UML), the Specification and
Description Language (SDL), and Message Sequence Charts (MSCs),
graphical description mechanisms are also available for modelling sys-
tems. A current trend in theoretical computer science is the integration
of modelling languages. This allows more expressive system models
reflecting several system properties and using the advantages of some
modelling languages.

Even supported with a powerful language creating a system model is a
hard task. The engineer needs to know the exact functioning of the
system. Additionally he needs to be trained in the use of mathematics
or formal languages. The authors of [BBFT01] suggest

“a pre-modeling step involving mixed teams of modeling
experts and ‘area’ specialists.”

Nevertheless creating a system model by hand is a source of errors.
As stated in [BBBT04] there is current research on generating system
models from code automatically.

Following the argumentation in [BBBT04], having a formal system
model early in the development process, even before having a final
architecture of the system, is helpful. The model enables the evaluation
of basic system properties without having to build the system. The
problem that needs to be tackled in this approach is that the final
implementation needs to match the model. For low level modelling
languages like SDL, there is research in automatically generating code
from the model. Therefore, the model needs to be worked out well
and detailed. The method is not applicable in the beginning of the
design phase when the architecture is not fixed and when more abstract
modelling techniques are used. Another approach to relate the imple-
mentation to its model is to refine the model step by step in a way
that the desired properties are preserved. The refinement terminates
with the system implementation. In this approach, the preservation
of the properties needs to be proved formally in all refinement steps.
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There is work on using theorem provers to do the proofs automatically,
but currently the method is too complicated to be used in large scale
practical applications. The common approach to the problem is to
generate the code by hand such that it matches the specification to the
best knowledge.

A modelling language has an exact meaning in terms of a mathemat-
ical domain §. Formally the meaning of a specification language is
given as total function [] : £ — S called semantics of the modelling
language. The range of the function [] is called semantical domain or
synonymously semantics.

For arbitrary modelling languages, the semantics may not be given
directly as Kripe structure, but in terms of an operational automata
like model. An automaton itself has a semantics in the notion of runs
leading from one state to the next. The set of all runs naturally gives
a Kripke structure. Thus, the model of a system can be assumed to
be a Kripke structure, often the result of a compilation process from
a higher level modelling language. An example of a higher level mod-
elling language is CSP-OZ-DC developed in the Correct System Design
group in Oldenburg. CSP-OZ-DC integrates the formal languages CSP,
Object-Z, and Duration Calculus. Phase event automata, special timed
automata that reflect timing, data, and behavioural issues, are used as
semantics. In [HMO5], an example model of an elevator in CSP-OZ-DC
is given.

7.2.1 The State Explosion Problem

The complexity of the verification task is directly dependent on the size
of the model as Kripke structure. The state explosion problem can be
defined as the exponential growth of the Kripke structure. The expo-
nential growth results from several factors: If the modelling language
allows the use of variables in a system state, this system state needs to
be split up in the Kripke structure to represent every possible value the
variable can take. Let there be a variable d representing the current day
of the week. In a higher level modelling language only one state may
be needed to represent the day, in the Kripke structure there will be
seven states with d = monday, . ... If the variable has an infinite data
domain, this will result in infinitely many states and model checking
is not applicable any more. In section 7.4.3 advanced model checking
techniques will be introduced that are able to handle classes of infinite
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state systems. If a system has n € N variables with a data domain
of cardinality card, every combination of data values can occur in a
state, which leads to card™ states. If there are m control states such
that each of these states can have card™ possible evaluations for the
variables, the system comprises m * card™ states. Thus, the number
of variables, the cardinalities of their data domains, and the number
of control states have an impact on the size of the Kripke structure
representing the system.

Usually, a system is built up out of different components composed in
parallel. Each component is modelled by a labelled transition system,
also called automaton. A labelled transition system is a Kripke struc-
ture where the transitions are labelled with actions. The behaviour
of an automaton is given as a sequence of actions. A transition de-
mands or forbids the actions specified in its label. If an action is not
contained in a label, the action may occur but is not demanded. The
system is gained by constructing the parallel product of the labelled
transition systems representing the components. The parallel product
construction synchronises all components on common actions. The
state space of the composed system consists of all tuples of states of
the system components. The Kripke structure in figure 7.1 could be
gained by constructing the parallel product of a process A depicted in
figure 7.2 and an analogous process B. As there are no common actions,
no synchonisation is demanded. If process A had only one edge with
action act from state s4 to s’4 and process B had only one edge with
action act from state sp to sz, the only edge from state (sa,sg) in
the parallel product was the edge to (s/y,s%). It was labelled with
action act. The Kripke structure is gained out of the labelled transition
system by neglecting the actions on transitions.

If a system K is given as parallel composition of p € N components,
K :=[?_, K;, and unreachable states are eliminated, the size of K
usually still is about II¥_; | K;|. Let j € {1,...,p} be the index of
the component with the smallest complexity, say m * card™, then the
complexity of the whole system is at least in the size of

or_, |K;|> I m*card™
(m * card™)P
mP x (card™)P

= mP % card™*P.
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R_A
req A
end A WA
print_ A
P_A

Figure 7.2: A labelled transition system representing a single process
in the printer manager

A complexity limit of 10'2° for systems means the system may consist
of twelve components, each having ten variables with discrete values
0,...,9, and no complex control states. Almost every system used in
practice will exceed this limit.

7.3 System Properties

Analogously to the system model, properties of the system need to be
given as well-defined syntactical expressions in a specification language.
For each property p it needs to be defined that a system model K given
as Kripke structure satisfies the property, often denoted as K = p,
K models p. If a model M is given in a modelling language L, the
definition of M = p refers to the semantics of M, [M]. A formal
specification language avoids the ambiguity of natural language in
specifications.

As the input/output model of systems is not suitable for reactive
systems characterized by their behaviour, a new formalism is needed to
state system properties. In 1977 Pnueli introduced temporal logics for
specifying so called behavioural properties. Temporal logics describes
the dynamic behaviour of a system. Therefore, the set of all possible
executions of a system by means of paths in the Kripke structure is
depicted in a so called computation tree. Figure 7.3 shows the first
branches of the computation tree belonging to the Kripke structure in
figure 7.1. Temporal logics specifies the ordering of states in the tree
over time. Time itself is introduced by operators. No explicit notion of
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oR_A.R_B
W AR B \‘E{_A, W B
W A, WA,
P_A, WH WB R_A,
] ®p B

Figure 7.3: The computation tree of the Kripke structure in figure 7.1

time refering to clocks is used. In the following definition, the syntax of
CTL*, the most expressive temporal logics, is given [BBFT01, CGP99]:

Definition 7.2 (Syntax of CTL*). Given a set of atomic propositions
(p €)AP. The syntax of CTL* formulae is defined inductively by the
following equation,

CTL*::= p | (
—¢ | 1 A @a | (boolean operators)
Xo|Fo | Go| p1Uga | (temporal operators)
E¢ [ A¢ (

atomic propositions)

path quantifiers)
with ¢, ¢1, ¢p2 CTL* formulae.

The intuitive meaning of the temporal operators and path quantifiers
can be explained as follows:

e X (Next) defines that the property ¢ has to hold in the next
state following the actual one.

e F (Future) defines that there has to be a state in the future in
which the property ¢ holds.

e G (Globally) defines that the property ¢ has to hold in every
following state.

e U (Until) defines that the property ¢; has to hold until a state
where ¢o holds is reached. The state where ¢2 holds has to exist.
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e E (Exists) defines that there has to be a computation from the
actual state such that ¢ holds.

e A (For all) defines that for all computations from the actual state
the property has to hold.

The exact meaning of any specification language is given by its semantics
in terms of a satisfaction relation, often denoted as =, of the formulae
towards a given Kripke structure. The relation defines, whether a
formula holds for a given model. The following equations taken from
[BBF 101, CGP99] define the semantics of CTL* inductively:

Definition 7.3 (Semantics of CTL*). Given a Kripke structure K =
(S, S0, R, L), a path m over K, and an index of a state on the path
i <|m|. The semantics of a CTL* formula is defined as follows:

K,mil= D < p e L(n(i))

K,mil= - <ot K, m,i = ¢

K,milE d1ANpy &K milEd and K, 7,1 = ¢

K,miE= X¢ Si+l|n| and K,mi+1FE ¢

K,mikE F¢ < there is i < j <|w| such that K,7,j E ¢

K,mil= Go < for all i < j <|w| holds that K, 7,5 = ¢

K,milE ¢1Upy < thereisi < j <|w| such that K, 7, j | ¢
and for all i < k < j holds IC, 7, k = ¢

K,mikE  E¢ & thereisa path n’ with 7'(k) = n(k)(0 < k <)
such that K, 7’,i = ¢

K,miE  A¢ ¢ forall paths 7’ with 7'(k) = 7(k)(0 < k <)
holds that IC, 7,4 = ¢

with ¢, ¢1, ¢po CTL* formulae, p an atomic proposition.

The Kripke structure K is said to satisfy the formula ¢, denoted
by K | ¢, if and only if IC, 7,0 |= ¢ for all paths 7.

The benefit from temporal logics is the possibility to express tem-
poral aspects of systems more compact and more comprehensive than
they can be expressed with first order logics. The main reason is the
intuitive and natural meaning of the operators.

Having a powerful logic for describing system properties the problem
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of formalising the property in consideration remains. Besides formal-
isation problems a problem occurs with the use of tools. A model
checking tool will probably not support the logical operators used in
the specification but others. If model checking is possible, the outcome
needs to be interpreted for the model. If the property is violated, the
system model needs to be adjusted.

It is agreed, that these facts are one point that currently prevents the
broad use of model checking in industry. Scientists investigate alterna-
tive approaches for expressing system properties. Graphical notations
for example are being researched, [DL02]. Graphical representations
are more comprehensive. Thus, no engineer especially trained in writing
system specifications is needed.

There is no straight separation between modelling and specification
languages. A formal language may fit for both modelling and specifica-
tion of a system. It is a question of context how to use it. MSCs e.g.
are often used to model system behaviour, but there is also ongoing
work to check whether a Petri net model of a system can exhibit the
behaviour given by a MSC, [LHBT05].

Even if the properties stated in the specification can be verified for a
given system model, there is no guarantee that all desired properties
were captured by the specification. One possibility to cope with this
question of completeness is to classify system properties in the four
categories as presented in [BBF101]: Reachability properties, safety
properties, liveness properties, and fairness properties. Safety and
reachability properties will be sketched briefly in the following as reach-
ability is important in the model checking approach with test automata
and safety properties may be regarded as the most important system
properties. We only give definitions for liveness and fairness properties
in this paper.

“A reachability property states that some particular |...]
[state] can be reached.” [BBF101]

To answer this question is a basic functionality of a model checker:
The state space is built and the question whether a state is present
is answered. This question is called unconditional reachability. Con-
ditional reachability asks for the presence of a certain state under a
given condition, e.g. in the form of existing pre- or post-states.

The negation of a reachability property demands that some states
never occur in the state space. These states are usually regarded as
unsafe. Therefore, the property is called a safety property. As well as
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reachability properties, safety properties can be stated unconditional
and conditional. Formally a safety property is characterized by the
absence of misbehaviour:

“A safety property expresses that, under certain conditions,
an event never occurs.” [BBF101]

A liveness property makes a statement about whether a given system
can exhibit certain behaviour.

“A liveness property states that, under certain conditions,
some event will ultimately occur.” [BBFT01]

In contrast, a fairness property states that a certain behaviour is
repeated infinitely often. Fairness properties are used to specify that
several processes e.g. use a ressource alternately. They specify the
avoidance of starvation.

“A fairness property expresses that, under certain condi-
tions, an event will occur (or will fail to occur) infinitely
often.” [BBF101]

These are very classical properties that apply to almost all classes of
reactive systems. For every subclass of systems, further properties
become relevant. For example, the question of time bounded reac-
tion is fundamental for real-time systems. Abstracting from concrete
properties, it can be argued following [BBFT01] that a classification
of properties leads to a better style in writing specifications. The
specification is created along the classes of properties, considering the
classes above starting with reachability properties and ending with
fairness properties. This helps to overcome the problem of completeness.
Furthermore, having a characterisation of properties gives a procedure
in the verification process: some property classes need special veri-
fication techniques, others are easy to check. The verification task
can be split along the different techniques to be applied, starting with
the properties most important and easiest to check: reachability and
liveness properties.

159



7 Model Checking Using Testing

7.4 Model Checking System Models against
System Properties

In this section, model checking as an automatic proof technique will
be introduced. Some problems in the practical use of model checking
will be sketched and state of the art solutions to the problems will be
given.

7.4.1 Foundations of Model Checking

Several slightly different definitions of model checking are given in the
literature, the one that fits best in the context of this paper is:

“Model checking is an automatic technique for verifying
finite state [...] systems” [CGP99]

The foundations of model checking can be found in the early 1980s.
The technique was developed independently by Clarke, Emerson, and
Sistla with the article [CES86] and by Queille and Sifakis with [QS82].
In the early stages, model checking was used as a verification technique
for hardware systems. Software systems were to complex to be checked
automatically. The reason is the architecture of software systems as
interacting but independent components which contributes to the state
explosion problem as sketched in section 7.2.1. With the introduction
of advanced techniques, model checking was also applied to software
systems. The basic model checking algorithms were designed to check
CTL formulae. As the expressiveness of CTL was limited, the logics
CTL* was developed, covering CTL and also linear time logic (LTL).
The new idea of model checking presented in the articles is to deduce
properties of finite state system models automatically from the be-
haviour reflected by the model. The verification algorithm does not
demand any human interference. It computes an answer yes/or no on
wether a property holds for the model. The technique is called push
button verification, no handmade proof is necessary.

Another benefit from model checking is to be exhaustive, since it regards
all possible system behaviour:

“The question of adequate coverage or a missed behaviour
become irrelevant”
(Pnueli, 1999, [CGP99))
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If the property in consideration is violated by possible system behaviour,
the model checker will give the special behaviour as a counterexample
for the property. This behaviour can be analysed by the user. A
property may be violated, because the model behaves incorrectly. The
model can be modified and the procedure can be repeated until the
property is satisfied for the model. The property stated may not express
the desired behaviour. As writing formal specifications is a hard task,
this mismatch between the property in mind and the property expressed
by the specification language may occur. In this case, the property
needs to be revised and the model checking retried.

The technique of model checking has several disadvantages. A property
may not be checked even if it is in the class of model checkable formulae
for a given tool, since the state space of the model is too large. Thus,
the technique is limited by the complexity of the model. For systems
used in industry, the complexity of models will almost always exceed the
capabilities of a model checker. Therefore, the number of states in the
model needs to be reduced, which yields a more abstract representation
of the system. The checked results for the model cannot be lifted to
results of the real system without additional argumentation about the
abstraction. If model checking is usable for a system model, it is a time
consuming task. The algorithm’s complexity demands computation
times of several hours for properties of mid size system models. If a
property is stated to be false for a system model, the model or the
property need to be adjusted and the model checking procedure has to
be repeated. For systems, which cannot be represented adequately by
a finite state model, the technique of model checking is not applicable.
In the last 20 years, model checking techniques have evolved. In
the beginning models of communicating concurrent system have been
researched. Now models of real-time or even hybrid systems with
variables of continuous data domains are regarded. Furthermore, not
only properties expressed in temporal logics can be checked. There
is ongoing work on checking e.g. properties expressed in graphical
representations like MSCs [LHBT05] and on checking properties in
interval based logics, [Mey05]. Model checking algorithms have been
improved using representations of models without redundancies or
abstractions from concrete states.
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7.4.2 Model Checking CTL

The basic model checking algorithm for CTL presented in [CES86]
will be sketched in this section. CTL is a subset of CTL* using the
syntactical elements

Pl d1 Ao | AXo | EXe | Alp1Ugs] | E[¢1Ugy]

only. The semantics remains unchanged. A set of atomic propositions
(p €)AP is assumed.

The truth value of all properties in CTL depends on states in the
Kripke structure not on certain paths. The idea of the following model
checking algorithm is to determine bottom up for every single state
the set of formulae valid in that state and to label the state with these
formulae. The function label is used to label the states. For the state
s, the formula ¢ is valid if and only if ¢ € label(s).

Let there be a Kripke structure K = (S, Sp, R, L). To determine which
states satisfy an atomic proposition, it is checked whether the proposi-
tion is in the label of the state. Thus, a state s is labelled with p € AP,
denoted p € label(s), if and only if the labelling of the Kripke structure
for s contains p, p € L(s). A state s is labelled with —¢ if and only if
o & label(s).

The labelling function for ¢ := A[¢1U¢s] demands a recursive algo-
rithm, carrying out a depth first search on the states. The algorithm
listed in figure 7.4.2 is derived from the algorithm presented in [CES86].
The variable phi represents ¢, phil represents ¢, and phi2 represents
¢2. The variable s indicates the state currently handled: If s has
already been visited, indicated by the marked(s) variable, it is only
checked whether ¢ is in the label of s. In this case the search was
successful, else a cycle in the Kripke structure has been found where ¢
but never ¢ is satisfied. Thus ¢ is not valid for the state s. If s has
not been reached before, it is checked whether s is labelled with ¢o. If
this is the case, ¢ holds in s, else s is checked for ¢;. If ¢; is not in the
label of s, ¢ is not valid for s. If ¢; is in the label of s, all sucessors
of s are inspected for ¢ recursively. If ¢ is valid for all successors, the
label ¢ is added to s.

The algorithms for checking the other CTL operators are left out in
this paper. The following theorem from [CES86] states that model
checking is possible and that the size of the model has linear impact
on the complexity of the algorithm. The function length indicates the
number of subformulae.
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boolean au(phi, phil, phi2, s){
if (marked(s)){
if (isLabelledWith(s, phi))
return true;
else
return false;
¥
marked(s) :=true;
if (isLabelledWith(s, phi2)){
addLabel(s, phi));
return true;
} else if(!isLabelledWith(s, phil))
return false;
for all(s’ in successors(s)){
if (lau(phi, phil, phi2, s’)){
return false;
}
¥
addLabel (s, phi);
return true;

Figure 7.4: Recursive algorithm for model checking A[¢1 U]
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Theorem 7.1 (Theorem 3.1, [CES86]). There is an algorithm for
determining whether a CTL formula ¢ is true in a state s of the
structure M = (S, So, R, L) which runs in time O(length(¢) x (|.S|+

| R))-

7.4.3 Advanced Model Checking Approaches

One problem in the use of model checking is the exponential growth of
the model in several parameters: the number of variables, the cardinality
of data types, the number of successor states. A representation of Kripke
structures is needed omitting redundancies and allowing fast algorithms
for computing truth values of formulae. The current solution is to
encode Kripke structures as binary formulae and to represent the binary
formulae as ordered binary decision diagrams (OBDD). The OBDD
for a given formula is gained by representing the formula as binary
decision tree and reducing the tree to a canonical representation — the
OBDD. The reduction algorithm has been presented in [Bry86]. Figure
7.5 shows the binary decision tree for the formula (21 A 22) V 24 with
the ordering x1,x2,z4. Figure 7.6 shows the corresponding OBDD
representation. The representation as OBDD heavily depends on the
ordering that is imposed on the variables. It is current research to
predict orderings leading to small OBDD representations for given
formulae. Having an encoding of the states in the Kripke structure as
boolean formulae (¢(x1) A ... A ¢(xy,)) the transition relation can be
represented as disjunction over formulae consisting of pre- and post-
states of single transitions ((¢(z1)A...Ad(xn))A (P (z1)A. . AP (z1))).
The transition from the start state encoded as R_AAN—-W_AN-P_A
in figure 7.2 can be represented as (R-AA-W_AA-P_A) A (-R_AN
W_A A -P_A). The student Ken McMillan was the first to suggest to
use the OBDD representation for model checking in 1987. With the
CTL model checking algorithm models with 10% to 10° states could be
checked before using OBDDs. With McMillans improvement models
of size 10?° could be handled, [BBBT04]. Model checking using the
OBDD representation of the Kripke structure and fixpoint iterations for
determining truth values of formulae is called symbolic model checking.
In concurrent systems, transitions of different system parts may be
executed independently. The events may occur in any order and any
of these executions traces will result in the same state of the system.
Creating the Kripke structure means mapping the concurrent system to
an interleaving model and demands to impose an ordering on the events.
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a \ﬂ
x4/ \{‘34 x4 4

A

Figure 7.5: The binary decision tree for (x1 A 22) V 4 with ordering
x1,22, 24 [Bry86]

xl

0
x4
i%
Figure 7.6: The OBDD representation for (r1 A 22) V x4 with ordering
x1,22, 24 [Bry86]
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As any possible ordering is allowed, all orderings have to be reflected
in the structure. This results in a large state space. If the specification
language is not able to differentiate between the imposed ordering, it is
sufficient to represent all traces by one execution trace. The argument
is, that all traces result in the same state and that the system parts are
independent, taking transitions in one part does not influence other
system parts. This idea is called partial order reduction as it results
in a reduced state space, because behaviour of unordered events is
demonstrated by one representative. In regard to the property, the
reduced Kripke structure containts as much information as the full state
space. Partial order reduction can be combined with symbolic model
checking introduced above and on the fly model checking introduced
in section 7.5.1 to increase efficiency.

Real-time systems are only one class of systems with no finite nor even
countable state space as every moment in time leads to a different clock
evaluation. For the behaviour of real-time systems, the concrete clock
value is of no interest, but it needs to be guaranteed that certain finite
bounds hold for clocks. For model checking real-time systems, it is
abstracted from concrete states to classes of states which are equivalent
regarding the bounds of their clocks and the values of variables. The
equivalence of states is obtained with an equivalence relation induced
by a mapping of the concrete data domain to an abstract data domain.
The abstract domain usually is much smaller. Especially, it is possible
to handle systems with infinite data types if the properties of these
data types can be expressed by a finite abstract data domain. Model
checking is done on the abstracted model of the system preserving the
desired properties. Model checking algorithms using an abstract model
of the system, which is equivalent with respect to the properties in
consideration, are called explicite, [BBBT04]. In the approach called
cone of influence reduction, it is abstracted from variables in the
system model having no influence on the values of variables used in the
specification. Regarding the specification the abstracted system model
offers as much information as the original model.

Besides explicite model checking, the state space can be abstracted such
that more behaviour is allowed. An over approximation of the system
behaviour is computed. This can be done by merging states or deleting
variables. If the property holds for the abstracted model, it holds for
the original one. If the property is violated in the abstracted model, the
abstracted model can be refined to check whether the counterexample
is possible in the concrete system. This method is called abstraction
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refinement model checking as it is an iteration of abstraction and
refinement steps. There is also work on detecting symmetries in Kripke
structures and collapse the state space to a smaller one with an identic
behaviour. The difference to the folding of states is that state folding
leads to an over approximation of possible behaviour but detecting
symmetry preserves the original behaviour. Compositional reasoning
tackels the question whether a property supposed to hold for a system
consisting of several components can be devided into properties for
each component, which all together imply the desired property. These
properties can be checked for the smaller models of the components.

7.5 Model Checking with Test Automata

Almost all model checkers provide the analysis of reachable states as
one basic functionality. Properties that need to be checked in practice
often cannot be expressed in terms of logical formulae a model checker
can handle. A common solution to this problem is that the designer
of the specification creates a labelled transition system 1., called test
automaton. The system model is given as labelled transition system Tg.
The test automaton is related to the property p such that the property
holds for the system model if and only if the system model put in
parallel with the created automaton, Ts || T-,, cannot reach a certain
state. Parallel composition of system model and test automaton means
synchronous interaction regarding the common alphabet as introduced
in section 7.2.1.

The intuitive idea of this approach is that the test automaton observes
the behaviour of the system and changes its states synchronously if
behaviour occurs that is related to its property. If a final state of the
test automaton is reached, the property is violated.

TsEpe L(Ts) € L(T)) (7.1)
& L(Ts)NL(T,) =0 (7.2)
& L(Ts)NL(T-p) =0 (7.3)
& L(Ts | Top) = 0 (7.4
< -3 final state s € Ts || T, : s is reached (7.5)

The equations above, inspired by model checking temporal logics
formulae with Biichi automata, describe the idea of model checking
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with test automata. Equation (7.1) states that a system given as
labelled transition system named Ts models a property if and only if
the behaviour of the system automaton is allowed by the automaton
T,. This is equivalent to the question wether the automaton can
exhibit none of the behaviour forbidden by T),, equation (7.2). As the
behaviour of T}, is exactly the behaviour that satisfies the property p
the behaviour which is forbidden by T}, is exactly the behaviour allowed
by T-,, the automaton belonging to the negation of property p. This
is the test automaton for the property. Thus the question whether
Ts cannot show behaviour forbidden by T, is equivalent (7.3) to the
question whether T's cannot carry out behaviour allowed by T_,,. This
is exactly the case if and only if the parallel composition of T'g and 1-,,
cannot cooperate, stated in equation (7.4). T-, is designed in a way
that the inability of both automata to cooperate is equivalent (7.5) to
the statement that no final state of 7-,, can be reached in the parallel
product.

Equation (7.1) states that property p is satisfied if the behaviour of
automaton Ty is allowed by automaton T,. Not every property p can
be given as automaton such that equation (7.1) can be expressed on
automaton level. In [Mey05] the semantical adaption between automata
and logical formulae is done on the logical level.

In [CGP99] it is regarded as benefit that model and specification
have the same representation. The meaning of the property for the
model is immediately visible. It needs to be stated that this depends
on the specification language. In [Mey05] test automata for duration
calculus formulae are developed, which tend to become very large and
unreadable even for properties expressed in comprehensive formulae
consisting of only few operators. A second problem with test automata
is that the construction is often done by hand. The relation to the
properties expressed in a specification language remains unclear. If the
step of test automata generation can be automated for the specification
language, one source of possible errors is removed from the verification
process.

For checking safety properties showing the reachability of dedicated
states in an automaton is adequat but it does not seem sufficient
for expressing more complex system properties. It has been shown
in [VW86] that the temporal logic LTL can be checked using the
test automata approach. For real-time systems modelled with timed
automata, model checking with test automata for a dense real-time
logic has been investigated, [ABBLO03]. The class of formulae, that
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il
Teq_A

—print_A

Figure 7.7: A test automaton checking G(req-A = Xprint_A)

can be checked, is characterized. In [Mey05], model checking real-time
systems expressed as phase event automata against formulae in the
interval based logic duration calculus has been studied. A subclass of
model checkable formulae is given.

The automaton in figure 7.7 checks whether a req_A event is followed
by a —print_A. If this is the case the property that event req_A implies
print_A in the next execution step is violated. The automaton can be
put in parallel with the automaton in figure 7.2. The final state of the
test automaton cannot be reached by the parallel product automaton.
Thus, the property holds for the automaton in figure 7.2.

7.5.1 On the Fly Model Checking

A benefit from the use of test automata is that the product automaton
Ts || T, can be computed state by state beginning with the start state.
If a final state in the test automaton is reached, the behaviour observed
so far is a counterexample to the property in consideration. The model
checking procedure can be halted immediately. If Ts is the cartesian
product of several components, it is not necessary to compute T's but
the parallel composition of T's components with 7}, is computed step by
step stopping if a final state in T}, is reached. Thus, the automaton T’s
and the cartesian product Ts || T,, only need to be computed completely
if the property is satisfied and no counterexample can be found. This
time and especially space efficient method of model checking is called
on the fly and was introduced by Courcoubetis, Vardi, Wolper and
Yannakakis in [CVWY92].
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7.6 Conclusion

The technique of model checking consists of several well defined activi-
ties: creating a system model, specifying the desired system properties,
and automatically verifying the properties for a given system model.
In this paper, all three steps have been introduced with a stress on
basic principles instead of special formalisms. The problem of state
explosion in model checking has been highlighted and solutions have
been presented. Finally, a specific model checking technique based on
the use of test automata has been introduced. The technique is not
limited to one class of system models nor to one specification language.
With the advantages of being automatic and being exhaustive, model
checking is an area of interest for industrial projects. One of the main
challenges in model checking research is to handle large state spaces
such that automatic verification can be done for models of systems in
practical applications. As sketched in section 7.4.3 there is work in this
area and in recent years remarkable progress has been made.
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8 Performance Prediction for
Embedded Systems

Jens Happe <jens.happe@informatik.uni-oldenburg.de>

Abstract

In this paper, we discuss different approaches to performance prediction
of embedded systems. We distinguish two categories of prediction
models depending on the system type. First we consider prediction
models for hard real-time systems. These are systems whose correctness
depends on the ability to meet all deadlines. Therefore, methods to
compute the worst case execution time of each process are required.
Then the worst case execution times are used in combination with
scheduling algorithms to proof the feasibility of the system on a given
set of processors. Second we consider prediction models for soft real-
time systems whose deadlines can be missed occasionally. Stochastic
approaches which determine the probability of meeting a deadline
are used in this case. We discuss these approaches with an example
based on Stochastic Automaton Networks. Finally, we discuss the
applicability of performance prediction models for embedded systems
on general software systems.

8.1 Introduction

Performance modelling is important for specifying performance re-
quirements, such as bandwidth, throughput, or resource utilisation,
as well as estimating performance of design solutions. This is often
done by examining scenarios. These give an impression of the system’s
performance for an expected usage. The key concept here is to model
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the system’s workload, which represents a measure of the demand for
the execution of a particular scenario on available resources, including
computational resources.

Many different performance prediction models for embedded systems
have been proposed so far. This paper discusses some of the proposed
models and discusses their generalisability for software systems. Many
approaches focus on the correctness of a system and add timeliness to
this aspect. Thus, the correctness of a result not only depends on its
logical correctness, but also on the time when it is delivered. For these
systems, it has to be ensured that a hard deadline will be met under
any circumstances. Performance analysis for these systems usually
bases on worst-case execution times and proof the schedulability of
a set of process on a given hardware architecture, ensuring that all
deadlines will be met.

This approach is overweighted for real-time systems with soft dead-
lines, like DVD- and MP3-players. Considering the required delivery
time of a video frame as a hard deadline, which must be met, results
in an inefficient design with respect to power consumption. For these
systems, prediction models considering the average performance often
lead to better results.

This paper describes different performance prediction models for hard
and soft real-time systems. Furthermore, we discuss the applicability
of the approaches described here to general software systems. As we
will see, some of the ideas might be applied on general software systems
as well, but in most cases the special restrictions of embedded systems
limit the applicability of the approaches to their domain.

Section 8.2 briefly introduces the important terms and concepts of
embedded systems. Section 8.3 describes an approach for the compu-
tation of the worst-case execution time of a single program, which is
required for the schedulability analysis algorithms explained in section
8.4. The computation of the average execution time is explained in
section 8.5. Section 8.6 discusses the generalisability of the prediction
models for software systems. The paper is concluded by section 8.7.

8.2 Embedded Systems

Embedded real-time systems challenge their developers. They require
precise real-time responses to the microsecond in a distributed system.
The development and validation of such systems is a complex task due
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to the complexity and variation of the influences. Furthermore, the
system is expected to be fault tolerant under strict timing requirements.
In many cases, embedded real-time systems offer services of great
importance. For example, consider the aircraft control of a plane. The
lifes of the passengers depend on the timeliness and reliability of this
system. Often the systems have to operate for very long periods, which
requires a high physical robustness of the systems. A challenge for
commercial embedded systems is to provide a high maintainability
and testability under competitive pricing pressures. This refers to
everything from microwaves and DVD-players to cars.

One can see that there is a large variety of embedded systems. So,
performance analysis methods must scale from small 4-bit and 8-bit
controller based systems up to networked arrays of powerful processors
coordinating their activities to achieve a common purpose.

For the vendor, it is important to keep the per shipped item cost
as low as possible. This results in the usage of the least expensive
(and therefore less powerful) computers able to meet the functional
and performance requirements. On the other hand, this decrease in
hardware costs leads to a more expensive software development. This
increase of the software development cost is often considered harmless,
since it occurs only once. However, one has to take care, not to
underestimate the cost of software development.

The software of an embedded computer is much more difficult to
construct, since the software architect has all problems of desktop
computer and, additionally, has to consider timeliness, robustness, or
safety requirements which must be fulfilled. The devices in which the
system is embedded usually fulfils a general, non-computing task. So,
the user may be not aware of the CPU embedded within a system.
Moreover, the system must operate for days or even years without
errors in hostile environments. Examples for embedded systems with
such properties can be found in medicine. A cardiac pacemaker has to
operate for years without errors in a most hostile environment. These
devices have the potential to do great harm if they fail.

An embedded system contains a computer as part of a larger system
and does not exist primarily to provide standard computing services to
a user [Dou04]. Actuators are used to control environment and sensors
deliver feedback about the results to the system. For real-time systems,
additional requirements emerge, since the correctness of the system
depends not only on the logical results, but also on the time at which
the results are produced. For real-time systems in general, timeliness,
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performance, and schedulability are essential to correctness. The order
and arrival times for external events are frequently unpredictable. So,
many hard real-time systems are reactive in nature, and their responses
to external events must be tightly bounded in time.

If a deadline must be met or can occasionally be missed without
resulting in a system failure, determines whether a deadline is consid-
ered hard or soft. Hard Deadlines are performance requirements that
absolutely must be met. A missed deadline constitutes an erroneous
computation and a system failure [Dou04]. So, the correctness of an
action includes a description of timeliness. Performance prediction mod-
els for systems with hard deadlines focus on the worst-case execution
times.

Soft real-time systems are characterised by time constraints which can
be missed occasionally, be missed by small time deviations, or occasion-
ally skipped altogether [Dou04]. Soft deadlines are often stochastically
characterised. For example, in 98% of all cases the next video frame
is delivered within 1/30 second. Average time constraints are another
way to specify soft deadlines, although such constraints actually refer to
throughput requirements rather than the timeliness of specific actions.
It is common to specify but not to validate soft real-time requirements.

Different arrival patterns of requests exist. The two main categories
are periodic and aperiodic (or episodic). In the first case, a fixed time
interval can be specified after which the request reoccurs. This is not
possible for the latter case. If a request occurs aperiodic it can be
further specified [Dou04]:

Bounded A minimum and maximum interarrival time can be specified.

Bursty For example, messages tend to clump together in time. Bursty
requests are specified by a maximum burst length and a burst
interval specifying the time between two bursts.

Irregular Nothing can be said about the arrival pattern of the requests.

Stochastic The interarrival time can be specified by a random variable.
‘Random’ in this case does not mean that nothing is known about
the variable. It can be described by its mean value or a probability
density function.

To determine how long the action takes to execute, the worst-case
execution time is estimated. This leads to very strong statements
about absolute schedulability. Thus, it has several disadvantages for
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the analysis of systems in which occasional lateness is either rare or
tolerable. As discussed above, it is more common to use average
execution time to determine a statistic called mean lateness of soft
real-time systems.

8.3 Worst-Case Execution Time

The purpose of Worst-Case Execution Time (WCET) analysis is to
determine a priori information about the worst possible execution time
of a piece of code on a given processor. The approximation of the
uninterrupted WCET of a program is the precondition for almost all
approaches that analyse the schedulability of a set of tasks. These
techniques base on the knowledge of the WCET of a single uninterrupted
piece of code and use this information to determine the utilisation and
feasibility of a set of tasks on a set of processing elements. To be valid,
the estimation of the WCET must be safe. So, it guarantees not to
underestimate the execution time. To be useful, it must be tight. So,
overestimations are low.

It is assumed that the program execution is uninterruped (no pre-
emptions or interrupts) and that there are no interfering background
activities, such as direct memory access. To estimate the WCET, the
control flow of a program is analysed, since the WCET depends on
it. The underlying architecture, including like pipelines and caches,
influences the WCET strongly as well. Thus, both aspects must be
modelled by any WCET analysis method. Therefore, the analysis of
the WCET is split into three phases: Program flow analysis, low level
analysis and calculation [EE00].

The program flow analysis phase determines possible control flows
of the program. At this point the execution time for each ‘atomic’
operation is not considered. In this phase, it is determined what
sequence of operations is executed in the extreme case (worst or best).
As a result, information about the called functions and how many times
a loop iterates are retrieved. Furthermore, it is analysed if there are
dependencies between if-statements. The information can be obtained
using (a) manual annotation, which are integrated in the programming
language or provided separately, or (b) automatic flow analysis [EE00].

In the low-level analysis or micro-architectural modelling phase, the
execution time for each atomic unit of the control flow is determined.
In this case, the term atomic unit refers to a single instruction as well
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as a basic block. For the computation of these execution times, the
target architecture and its features are used. According to [EE00], the
influence of instruction caches, cache hierarchies, data caches, branch
predictors, scalar pipelines and superscalar CPUs has been analysed so
far.

The last phase bases on the results of both preceding phases. The
program control flow and the global and local low-level analysis results
are used to compute the WCET estimate for a program. According to
[EE0Q], there are three main categories of calculation methods proposed
in literature:

Path-based The final WCET estimate is generated by calculating
times for explicitly represented paths in a program, searching for
the path with the longest execution time.

Tree-based The final WCET is generated by a bottom-up traversal of
a tree representing the program.

Implicit Path Enumeration Technique (IPET) based The control flow
of a program and its atomic execution times are represented us-
ing algebraic and/or logical constraints. The WCET estimate is
calculated by maximising an objective function while satisfying
all constraints.

In this section, we focus on the WCET estimation approach of Li
and Malik [LM95], who introduces the implicit path enumeration first.
They use this technique to implicitly determine the extreme case of
execution paths, which includes the longest and the shortest path. This
and the knowledge about the target architecture are used to determine
the execution times of both: the best and the worst-case.

The implicit path enumeration is a form of static code analysis. The
complete control flow information of the program is used to create
the set of possible execution paths. This explicit enumeration of all
possible paths yields a (possibly infinite) set. For each execution an
ordered list of statements or instructions is created that represents a
single execution path of the program.

The largest set of executions is given by the structure of the program
and includes all traceable paths of the control flow graph. The gen-
eration of paths does not consider the semantics of the program and,
therefore, includes many infeasible paths. Due to an arbitrary iteration
of loops, the resulting set is likely to be infinite. It is represented by
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Actual feasible |
paths

WCET found here=desired result
WCET found here=overestimation

Figure 8.1: Relation between possible executions and flow information
[EE00].

the outer set in figure 8.1. So, the computation of the longest path is
undecidable in general, since it is equivalent to the halting problem
[LM95]. However, restrictions and/or annotations of the program allow
us to give approximations of the longest path. These approximations
have to be:

Safe The approximation is safe if no feasible worst-case execution of
the program is excluded.

Tight The approximation is tight if as few infeasible executions as
possible are included.

The following restrictions can be applied to a program to make
the longest path computation decidable: (a) The absence of dynamic
data structures, like pointers and dynamic arrays, (b) the absence
of recursion, and (c) only bounded loops. These restrictions can be
realised by either the introduction of annotations to existing programs
to bound the loops or the creation of a new programming language
which only allows constructs that follow the restrictions. Both solutions
add basic finiteness information to the program, since they bound all
loops with an upper limit. The set of resulting path is a finite subset of
the original set as shown in figure 8.1. Adding more information yields
the statically feasible set that includes the actual feasible path as a
subset and, therefore, is still an overestimation. The optimal outcome
of the static analysis would be the actual feasible set of paths.
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Li and Malik used annotations of existing programming languages
to reach the computability of the longest path [LM95]. Therefore,
mapping from the programming to the assembler language level is
required that captures optimisations of the compiler. This is a rather
difficult task.

The functionality of a program (or piece of code) determines the
actual paths taken during its execution, which is represented by the
inner set in figure 8.1. Any information about the functionality of a
program (semantics) can be used to determine which paths are feasible
and which are not. Some of this information can be derived from the
program. However, this is a difficult task in general. On the other
hand, the programmer can provide some additional information that
eases the analysis. This task is not too hard for the programmer, since
he/she generally knows about the functionality and/or semantics of
his/her program. The required information includes information about
upper /lower loop bounds and the maximum execution counts of a given
statement in a given scope. Additionally, any information about the
functional interactions between different parts of the program help to
tighten the bounds of the computed feasible paths [LM95]. Next, we
describe the approach of implicit path enumeration to determine the
longest execution path of a program. Implicit path enumeration bases
on integer linear programming, which is a common tool to to solve
optimisation problems. The constraints and the function, which shall
be optimised for the constraints, are given as linear equations. In the
following, we provide the optimisation function and two sets of linear
constraints: Program structural constraints and program functionality
constraints. The first are derived automatically from the structure of
the program, whereas the latter are provided by the programmer.

8.3.1 Implicit Path Enumeration

The aim of the implicit path enumeration is computation of the worst-
case execution time of a program, which not necessarily has to be the
path with most basic blocks and/or instructions. Therefore, we need a
more precise formulation of the problem.

Let xz; be the number of times the basic block B; is executed when
the program takes the maximum time to complete. A basic block (of
code) is a maximal sequence of instructions whose only entry point is
the first instruction and whose only exit point is the last instruction.
So, it is always executed in a sequence and contains no other branches
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in or out. Let ¢; be the execution time or cost of basic block B; in the
worst-case. We assume that ¢; is constant for all executions of the basic
block. Then the longest path of a program is the path for which the
following formula is maximal while considering the restrictions imposed
by the program structure and functionality:

N

=1

where N is the number of basic blocks of the program. This is a rather
naive and pessimistic approach to compute the worst-case execution
time of a program. It neglects the influence of caches, pipelines and
the variation of the execution time caused by the input parameters of
a basic block. However, it is sufficient at this point, since it illustrates
the basic ideas of implicit path enumeration quite well.

Program Structural Constraints

[* p >= 0 */ d2'

ohi 2’( 4<10) B2 whi | e( g<10)

q++;
r=aq; ds
Bir =g [ %
de
(i) Code (i) CFG

Figure 8.2: An example of a while-loop statement and its control flow
graph [LM95].

Program structural constraints are defined by the structure of the
program and/or the program itself. So, they can be extracted from
the program’s control flow graph and/or source code automatically.
This is illustrated in figure 8.2, which shows a while-loop and the
corresponding control flow graph. The edges and nodes of the control
flow graph are labelled with the variables d; and x; respectively. Both
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represent the number of times the control flow is passing either the
associated node or edge. We use these variables to determine structural
constraints of a program. In general, the execution count of the basic
block (node) is equal to both the sum of the control flow going into it,
and the sum of the control flow going out from it. So, we can derive
the following constraints for the while-loop statement in figure 8.2:

T, = di=ds
To = do+dy=d3+ds
r3 = d3=dy
T4y = ds=dg

The constraints listed here do not contain any loop count information.
The reason for this is that the loop count information depends on the
values of the variables, which are not tracked in the control flow graph.
To be able to handle loops, we mark them and ask the user to provide
loop bound information as part of specifying the program functional
constraints during the next step.

i =10 ldl

store(i); Bij = 10

n o= 2%; X store(i); / d.
store(n);

b

void store(int i)

{ %o By n = 2*i;
. store(n);
} I %
(i) Code (ii) CFG

Figure 8.3: An example showing how service calls are represented
[LM95].

The approach of Li and Malik handles services and service calls as
well. Therefore, a new variable f; is introduced after each service call
as shown in figure 8.4. It contains a pointer to the control flow graph
of the called service. The concept of the structural constraints remains
the same. So, the constraints for the example in figure 8.4 are:
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1 = di=fi
T2 = f1=f2

The f; labelled edges can be used to compute the number of times a
service is called. It is simply the sum of all edges that represent a call
to that service. So, for the service store() of the example, we have:

dy = f1+ f2

where ds is the first edge of the service’s control flow graph. The first
edge of the main service’s control flow graph is labelled with d; and it
is executed exactly one time (d; = 1).

Program Functionality Constraints

Program functionality constraints describe knowledge about the func-
tionality and/or semantics of a program on a very basic level. So,
the functionality constraints of a program or piece of code must be
provided by the programmer. They are derived from the semantics
and relationship of different code fragments. These constraints can be
specified on a local base or describe the dependencies of code contained
in different services. The minimal information required to compute
the longest path of a program are the bounds of loops. Any addi-
tional information can be used to tighten the bounds of the computed
worst-case execution time and, therefore, enhances the value of the
result.

The code in figure 8.4 shows the service check_data that checks the
values of the data[] array. If any of these values is less than zero, the
function will stop and return 0, otherwise it will return 1. In line 10,
we see that the variable morecheck is set to 0, which causes the loop
iteration to stop, if the value of the constant DATASIZE is exceeded.
Therefore, the while-loop must be executed between one and DATASIZE
times. This is expressed by the following constraints:

1£C1

< 2
xr9 < DATASIZE z1

where x1 is the count of the basic block just before entering the loop and
To is the count of the first basic block inside the loop. All loops have
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1 check_dat a()

2 { int i, norecheck, w ongone;

3 X1 norecheck = 1; i = 0; wongone = -1,
4: whi | e (norecheck) {

5: X2 if (data[i] < 0) {

6: X3 wrongone = i; norecheck = O;
7: }

8: el se

9 X4 if (++i >= DATASI ZE)

100 xs nor echeck = 0;

11:  Xg }

122 %z if (wongone >= 0)

130 xg return O;

14 el se

15.  Xg return 1;

16: }

Figure 8.4: check_data example [LM95].

been marked during the analysis of the program structural constraints,
with this additional knowledge these variables can be determined auto-
matically.

Some additional information to tighten the estimated bounds can be
derived for line 6 and line 10, since both are mutually exclusive and
either of them is executed at most one time. The constraint for that
dependency is:

where the symbols ‘&’ and ‘|’ are the conjunction and disjunction
respectively. The constraint is not linear, but a disjunction of linear
constraints. This can be considered as a set of constraints where at
least one constraint must be true. Furthermore, line 6 and line 13 are
always executed for the same number of times. So, we have that:

Tr3 — Xy
It is also possible to specify inter service dependencies, for example
between the calling and the called service. The service clear_data

in figure 8.5 is only executed if service check_data returns 0, which
corresponds to the number of executions of basic block Bg (line 13 in
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check_dat a()

X7 | f ' (wrongone >= 0)
Xg return O;
el se

Xg return 1;

}

task()

{ ...
X10, f1 status = check_data();
X11 if (!status)
X12, f2 cl ear_data();

}

Figure 8.5: Inter service dependencies between the services check_data
and clear_data [LM95].

figure 8.4). The following constraint describes this dependency:

T2 = f1.78

where fi.rg represents the number of executions of basic block Bg
during the service call associated with fi. So, calls from other points
of the program do not affect this constraint. Next, we briefly look into
the analysis of the constraints.

Solving the Constraints

To solve the constraints, we have to transform the disjunctions of the
functionality constraints to linear constraints. Due to the disjunction,
some constraints may be satisfied and do not have to be satisfied. This
contradicts linear programming where all constraints must be satisfied.
The straight forward solution to this problem is the creation of all
possible sets of constraints, so that in each set all constraints must be
satisfied. For example, two sets (one for each alternative) are created
for the disjunction in equation 8.2. Next, we combine each set of
functionality constraints with the set of structural constraints. Then
an integer linear programming solver is used and the best result is
computed with respect to the execution time as specified in equation
8.1. The maximum of results of all sets yields the worst-case execution

185



8 Performance Prediction for Embedded Systems

time of the program.

8.4 Schedulability

The worst-case execution time computed in the section above is the
result of a static code analysis. It does not consider the concurrency of
different processes and their influences on the execution times. This is
done in the next step, the schedulability analysis of the system. The
worst-case execution times of all processes running on a given set of
processors are used to check the timeliness requirements of the systems.
Schedulability is concerned with the question: Can the system be
guaranteed to meet its timeliness requirements? So, given the allocation
of resources to processes, it is analysed if the performance requirements
of the system can be met for a certain scheduling algorithm.

Therefore, schedulability is more than concurrency. It includes
the scheduling responsibility of executing the mechanisms necessary
to make concurrency happen. This responsibility is handled by the
scheduler, which executes a certain scheduling policy or technique, like
round robin. The scheduler allows the simultaneous access of a set of
processes on a set of resources, like processing elements and memory
I/0O. If a resource can only be occupied by a single process at a time,
the simultaneous access of different processes has to be made sequential.
Therefore, monitors and/or semaphores are used, which forbid the
access to a resource or critical section if it is in use. This is done by
blocking the process trying to access the resource until the resource is
released.

For real-time systems, it is assumed that the process structure is
known in advance. Furthermore, the set of processes is assumed to be
periodic meaning that it occurs again after a certain amount of time.
The time by which a process must complete its execution is bounded
by a deadline that is known a priori as well. As discussed in section 8.2,
the deadline can either be hard or soft. In the case of a schedulability
analysis, which proves the timeliness of the system, hard deadlines are
considered. So, all required information is available at the design time
of a real-time system, which is a significant difference to time-sharing
operating systems. This enables us to estimate the worst-case delay of
a process given the computation time of the uninterrupted execution of
processes, the allocation of processes, and the priority assignment for
process scheduling to see whether the deadline is satisfied. Here, the
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same conditions hold as for the estimation of the worst-case execution
time of a single process: The result has to be safe and tight.

The authors of [RS94] introduce some simple performance metrics for
real-time and non-real-time systems. These metrics are used to compare
different scheduling policies. For example, the response times and the
throughput is a good performance metric of dynamic non-real-time
systems. The term ‘dynamic’ refers to the number and type of running
processes and their priority. In the dynamic case, both are determined
at runtime. For static real-time systems, the performance aim is either
to maximise the average earliness or to minimise the average tardiness
depending on the feasibility of the system. For dynamic real-time
systems, it cannot be a priori guaranteed that all deadlines will be met,
so maximising the number of arrivals that meet their deadlines is often
used as a metric.

The different performance metrics indicate that the choice of the
scheduling has a strong influence on the schedulability and other prop-
erties of the system. These additional influences on the system quality
can be characterised by the following criteria [Dou04]:

Stable In an overload situation it is possible to a priori predict which
task(s) will miss their timeliness requirements.

Optimal The strategy can schedule a task set if it is possible for any
other policy to do so.

Responsive All incoming events are handled in a timely way.

Robust The timeliness of one task is not affected by the misbehaviour
of another.

Furthermore, scheduling policies can be classified by the following
two dimensions [Dou04]:

Fair vs. priority A scheduling policy is fair if all processes progress
more or less evenly. It is unfair if some tasks are scheduled pref-
erentially to others. The latter is the case if tasks are scheduled
by their priority. Some priority-based scheduling policies allow
pre-emptions: If a ready process has a priority higher than that of
the running process, the scheduler pre-empts the running process.

Importance vs. urgency This distinguishes whether the scheduling
policies gives by the importance or urgency of a process. Im-
portance refers to the value of a specific action’s completion to
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correct system performance. On the other hand, urgency of an
action refers to the nearness of its deadline for that action without
regard to its importance.

An example of a fair scheduling policy is the well known round
robin algorithm. Once a process is started, it runs until it voluntarily
relinquishes control to the scheduler. Other processes may be spawned
or killed during the run. Despite its advantages of fairness and simplicity,
the round robin algorithm has several drawbacks. It is unresponsive,
since once a process is started the scheduler has no control how long it
will execute and therefore cannot transfer the control to other processes.
For the same reason, it is unstable, nonoptimal, and nonrobust. In
general, round robin is only applicable for short tasks.

An enhanced version of round robin is time division round robin:
Each process is interrupted within a specified time period, called a time
slice and the control is transferred to the next process in the queue.
This adds a higher flexibility and robustness to the approach, since
misbehaving processes do not affect the computation time available
to other tasks. However, it is unresponsive, unstable, and nonoptimal,
since the cycling through all existing process does not consider the
urgency and/or importance of the processes. These are considered only
by priority scheduling policies. To get a broader overview on different
scheduling policies please refer to [Dou04, RS94].

For rate monotonic scheduling (RMS), it is assumed that the pro-
cesses are periodic. Each process P; has computation time ¢; and a
period p;. The deadline of a process is always at the end of its period.
The priorities are assigned at design time. Liu and Layland showed
that the CPU is optimally utilised when processes are given priorities
according to their rates [YW98]. The deadline of n processes can be
met if the processor utilisation U satisfies the following condition:

U:= ch/pj < n(2/" —1)

j=1

The upper bound of the process utilisation converges to 0.69 for large
n.
Another approach discussed in [YW98] can be used to bound the
response times for a set of independent processes. Let Pj, Ps... be
priority-ordered processes allocated on the same CPU, with P; being
the process with the highest priority. It is assumed that there are no
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data dependencies between the processes. The minimum period of
process P; is p; and its longest computation on the CPU is ¢;. The
worst-case response time from a request of P; to its finish is w;. It is
shown that w; is the smallest nonnegative root of equation :

1—1
X=g@) =ci+Y cilz/p;]
j=1

The function g(x) represents the computation time required for higher
priority processes and for P; itself: If the response time is x there are
at most [z/p;] requests from P;. The total computation time for these
requests is ¢; [x/p;], so g(z) includes these terms for all j as well as
the computation time ¢; for P; itself [YW98].

A fixed-point iteration technique can be used to compute the worst-
case response time w; based on the equation above:

o= e/ (1= ST ei/ns)|
2. while (z < g(z))x = g(z)

It is assumed that the processor utilisation is below one and, therefore
1-U = 1—23;11 ¢;j/pj > 0. Otherwise, the schedule must be infeasible.
Furthermore, it has been proved that the value of x must converge to
w; in finite steps.

In the cases discussed above, it is relatively easy to determine the
feasibility of a set of processes on a set of processing elements. But, this
becomes harder when data dependencies between different processes
have to be considered. One approach to handle this is to unroll the
schedule. The result is a single large process whose length is the least
common multiple of all periods. This allows the scheduler to evaluate
interactions between different-rate processes. However, unrolling the
schedule is inherently less efficient. Moreover, if the periods and
computation times of processes are bounded, but not constant, this
cannot be handled easily by schedule unrolling. Simulation is an
alternative to judge the feasibility of a schedule during co-synthesis.
Unfortunately, extensive simulation is often time consuming and not
guaranteed to prove feasibility. The algorithm described by Yen and
Wolf [YWO98] uses task graphs to model data dependencies between
different processes. It is capable of handling bounded periods and
execution times of processes.
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First, the definition of process is modified: A process P; is a single
thread of execution, characterised by bounds on its computation time
[clower cPPET] " These bounds are a function the processor type to
which P; is allocated. Next the term task (which generally is used
synonym to process) is defined as a partially ordered set of processes.
A task graph is a directed acyclic graph which represents the structure
of a task (or a set of tasks). A directed edge from P; to P; represents
that the output of F; is the input of P;. A process is not initiated until
all its inputs have arrived, it issues its outputs when it terminates.

period computation
time
P1 80 15
P2 50 20
P3 50 10

Figure 8.6: Task graph [YW98].

Figure 8.6 shows an example of two task graphs. The first task
graph consists only of the single process P;. The second contains two
processes P> and P3. Note that P; depends on the output data of
P;. Similar to a process, each task is characterised by a period and a
deadline. The period is the time between two consecutive initiations. If
the period is not constant, it is modelled by an interval. The deadline
is the maximum time allowed from the initiation to the termination of
the task. The allocation maps processes onto processing elements. In
the example, all processes are mapped onto the same CPU.

It is assumed that processes have been partitioned so that they do
not cross CPU-ASIC or CPU-CPU boundaries. Each process is given
an integral, fixed priority and the CPU always executes the highest-
priority ready process, which continues execution until it completes or
is pre-empted by a higher-priority process. The algorithm of Yen and
Wolf [YW98] considers the dependencies between different processes
to compute the worst-case response time. For the example in figure
8.6, process P; can only pre-empt either P, or Ps, but not both in a
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single execution of the task. Furthermore, P, cannot pre-empt Ps. So,
delays among processes in disjoint tasks are not independent.

This illustrates that the schedulability analysis is a difficult task.
However, it is possible to determine whether a system is feasibility
or not, if enough information of the system is given a priori and cer-
tain assumptions about the system can be made. For example, the
periodicity of process initialisations and the independence of differ-
ent processes. Next, we consider an approach for systems with soft
performance requirements.

8.5 Average Performance Prediction Models

Most research in performance analysis of embedded and real-time sys-
tems deals with worst-case execution times and hard deadlines. On
the other hand, embedded multimedia systems are characterised by
soft real-time constraints. Their average behaviour is far more impor-
tant than the worst-case behaviour. Due to data dependencies, their
computational requirements show such a large spectrum of statisti-
cal variations that designing them based on the worst-case behaviour
would result in completely inefficient systems. Therefore, the analysis
of average performance behaviour of a systems becomes more and more
important.

In this section, we present the approach of Nandi and Marculescu
[NMO1], who use Stochastic Automata Networks (SANs) to determine
the average response time of a real-time system. They argue that,
SANs are an effective formalism for average-case analysis that can be
used early in the design cycle to identify the best power/performance
figure. SANs are a Markov-based formalism that models communicating
concurrent processes. The advantage of SANs is that the state space
explosion problem associated with the Markov models (or Petri nets)
is partially mitigated by the fact that the state transition matrix is not
stored, nor even generated [NMO1].

Similar to the work done by Yen and Wolf [YW98|, Nandi and
Marculescu [NMO1] separate the different concerns: functionality and
architecture. They use process-level functional models to describe the
interaction and communication of different processes. These define what
the application should do and not how it will be implemented. On the
other hand, architecture models represent behavioural descriptions of
the architectural building blocks, like processing elements and memory
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resources.

The SAN is a modular state-transition representation for highly
concurrent systems. The aim of the analysis of the system is the compu-
tation of the stationary probability distribution 7 for an N-dimensional
system consisting of N stochastic automata. These automatons are
executed in parallel and operate more or less independently.

A transition in one automaton may force a transition to occur in
one or more automata. They affect the global system by altering the
state of possible many automata and are called global transitions. On
the other hand, transitions that are not synchronising transitions are
said to be local transitions. The rate at which a transition may occur
in one automation may be a function of the state of other automata.
These transitions that depend on other external conditions are called
functional transitions as opposed to constant-rate (non-functional)
transitions [NMO1].

To make predictions about the systems average performance, its
steady-state behaviour needs to be determined. For SANs this can be
optimised using numerical methods that do not require the explicit
construction of the transition matrix of the continuous time Markov
chain, but can work with the descriptor in its compact form (iterative
methods). So, the problem of state space explosion is circumvented at
this point.

Once the steady-state distributions are known, performance measures
such as throughput, utilisation, and average response time can be easily
derived. However, to calculate these performance figures, the true rates
of the activities need to be determined. This is because the specified
rate of an activity is not necessarily the rate of that activity in the
equilibrium state, since bottlenecks elsewhere in the system may slow
the activity down. The true (or equilibrium) rate of an activity can
be obtained by multiplying the given rate with the probability of the
activity being enabled.

An example of a process graph used for the performance analysis
is shown in figure 8.7. It shows the well known producer consumer
problem for the special case of a MPEG-2 decoder. Each component
(producer and consumer) models a process in the application. For
sake of simplicity, it is assumed that both processes do not conflict
for processing resources. So, each process has its own space to run.
The transition from the VLD state, in which a new item is produced,
to the wait_buffer state of the producer is a local transition. Its
rate is given by Ap = 1/Tproduce; Where Tproduce is the time required

192



8.5 Average Performance Prediction Models
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Figure 8.7: Producer consumer problem, modelled as process graphs
[NMO1].
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to produce a new item. The next transition to the state write is a
functional transition, since its rate depends on status of the buffer. If
the consumer is accessing the buffer or the buffer is full, the transition
cannot be taken. So, the rate must be computed in dependence on the
equilibrium state. The consumer behaves analogously. The execution
time of a state is characterised by its rate. This implies that these
times are exponentially distributed. The advantage of this assumption
is, that these can be used to generate the underlying Markov chain.

The evaluation presented in [NMO1] shows that the analysis of the
average performance results in a more efficient design than a worst-case
analysis would have. The result is a good utilisation of the underlying
hardware and a relatively low power consumption.

8.6 Can the approaches be applied to general
software systems?

A general answer to this question is no. The reason for this is that,
for embedded systems, most information about the system is available
a priori. The approaches presented here require knowledge about
the exact number of processes, their execution times and the used
scheduling policy in advance. This is not known for software systems in
general. These systems are highly dynamic and the configuration might
change in time. For example, it is unknown which other processes will
execute and what the system load might be. So, no or only a very few
assumptions can made about the system at design time. However, the
approaches predicting the performance of soft real-time systems already
provide a relatively high flexibility and might be a good basis for the
development of more general approaches. Furthermore, the system
might be not that unknown as stated here. If we are talking about high
end business servers, these often execute only a set of specific software
whose properties are well known. This information might be used to
give a valuable performance estimations of the system.

8.7 Conclusion
A lot of work has been done in the area of performance analysis of

embedded systems. We described some of the approaches and illustrated
how they can be used to evaluate the performance of real-time systems.
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Most approaches focus on the verification of hard deadlines. Given
the worst-case execution times of all process on a given hardware
architecture, it can be shown that the tasks either are feasible or
infeasible. For real-time systems with hard deadlines, this approach
is justified and useful. However, for systems with soft deadlines this
is not applicable, since it leads to inefficient results in many cases, for
example with respect to power consumption. For soft real-time systems
probabilistic constraints are more useful. Their analysis is based on the
average performance of the system. Many of the approaches for both
areas already proofed their value for system development in practice.
Their value for software systems in general has to evaluated in more
detail, since embedded systems become more and more dynamic and
some of the a priori information is lost. So, the borders between
embedded and software systems in general soften more and more.
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