
Trustworthy Software Systems

Research Methods in Software
Engineering

2006

Wilhelm Hasselbring
Simon Giesecke

(eds.)





Contents

1 Preface 7

2 The Role of Experimentation in Software Engineering 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Research and Experimentation in SE . . . . . . . . . . . 13

2.2.1 Empirical Knowledge versus Theoretical Knowledge 13
2.2.2 Research Paradigms and Methods . . . . . . . . 14
2.2.3 Data Collection Methods . . . . . . . . . . . . . 17
2.2.4 Research in Other Fields . . . . . . . . . . . . . . 19
2.2.5 The Difference of SE . . . . . . . . . . . . . . . . 20

2.3 Current State of Experimentation in SE . . . . . . . . . 21
2.3.1 Study by Tichy et. al. (1994) . . . . . . . . . . . 21
2.3.2 Study by Zelkowitz et. al. (1997) . . . . . . . . . 22
2.3.3 Further Analyses . . . . . . . . . . . . . . . . . . 23

2.4 Common Fallacies on Experiments . . . . . . . . . . . . 25
2.5 Future Direction of Experimentation in SE . . . . . . . 28

2.5.1 General Recommendations . . . . . . . . . . . . 28
2.5.2 Repeatability and Families of Studies . . . . . . 30

2.6 Critical Reflection . . . . . . . . . . . . . . . . . . . . . 31
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Example of Empirical Research: n-Version Programming 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 N-version programming . . . . . . . . . . . . . . . . . . 39

3.2.1 Functional redundancy in hardware . . . . . . . 41
3.2.2 Software reliability . . . . . . . . . . . . . . . . . 42
3.2.3 Development process . . . . . . . . . . . . . . . . 43
3.2.4 Effectivity of NVP . . . . . . . . . . . . . . . . . 45

3.3 Selected empirical studies . . . . . . . . . . . . . . . . . 47
3.3.1 Early studies (77-78,80-83) . . . . . . . . . . . . 48
3.3.2 The Knight Leveson Experiment (86) . . . . . . 49
3.3.3 The ‘Six Language’ Experiment (86-88) . . . . . 50

3



Contents

3.3.4 The ‘Second Generation’ Study (85-88,91) . . . . 51
3.4 Analysis and discussion . . . . . . . . . . . . . . . . . . . 53
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Integration of Qualitative and Quantitative Methods 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Categories of Research Objects in Software Engineering 62
4.3 Qualitative and quantitative research approaches . . . . 64

4.3.1 The research process . . . . . . . . . . . . . . . . 64
4.3.2 Data Scale Levels in Quantitative Research . . . 65
4.3.3 Comparison of quantitative and qualitative ap-

proaches . . . . . . . . . . . . . . . . . . . . . . . 66
4.3.4 Research Approaches . . . . . . . . . . . . . . . . 68

4.4 Research Methods . . . . . . . . . . . . . . . . . . . . . 70
4.4.1 Data Collection Methods . . . . . . . . . . . . . 70
4.4.2 Data Analysis Methods . . . . . . . . . . . . . . 74

4.5 Combining Qualitative and Quantitative Approaches . . 76
4.6 Exemplary Study Designs . . . . . . . . . . . . . . . . . 77

4.6.1 Example 1: Analysis of Architectural Design
Decisions . . . . . . . . . . . . . . . . . . . . . . 77

4.6.2 Example 2: Action Research in a Development
Process . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Patterns in Building Architecture and Software Engineering 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Designing a Building in Civil Architecture . . . . . . . . 88
5.3 Architectural patterns and pattern languages . . . . . . 92
5.4 Software patterns and pattern languages . . . . . . . . . 98

5.4.1 Software patterns forms . . . . . . . . . . . . . . 100
5.4.2 Software pattern languages . . . . . . . . . . . . 103

5.5 Similarities and differences . . . . . . . . . . . . . . . . . 105
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Legal Methodology and Research 119
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 The Technique of Subsumtion . . . . . . . . . . . . . . . 120
6.3 The Construction of Law - Hermeneutics . . . . . . . . . 121

6.3.1 Literal Construction . . . . . . . . . . . . . . . . 123
6.3.2 Systematic Construction . . . . . . . . . . . . . . 124

4



Contents

6.3.3 Teleological Construction . . . . . . . . . . . . . 126
6.3.4 Historical Construction . . . . . . . . . . . . . . 126
6.3.5 Additional Construction . . . . . . . . . . . . . . 127
6.3.6 Example: Pistol for Blanks as Weapon . . . . . . 128
6.3.7 The Construction of Treaties . . . . . . . . . . . 130

6.4 Standard Juristic Argumentations . . . . . . . . . . . . 130
6.4.1 Analogy and Reverse Argumentation . . . . . . . 130
6.4.2 Teleological Reduction . . . . . . . . . . . . . . . 132
6.4.3 Argumentum A Fortiori . . . . . . . . . . . . . . 132

6.5 Research Aims in Law . . . . . . . . . . . . . . . . . . . 132
6.5.1 The Descriptive Approach . . . . . . . . . . . . . 133
6.5.2 The New Approach on the Basis of Existing Law 133
6.5.3 Developing New Laws . . . . . . . . . . . . . . . 134

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 134

5



Contents

6



1 Preface

This collection consists of selected contributions to a graduate seminar
conducted within the Graduate School “TrustSoft” at the Carl von
Ossietzky University of Oldenburg, Germany. The Graduate School is
funded by the German Research Foundation (DFG). It was established
in April 2005 and will—over a period of nine years—support three
cohorts of 14 graduate students in Computer Scienceand Law by a
scholarship for obtaining a PhD degree. The first cohort of scholarship
holders as well as externally funded PhD students are currently working
on their PhD theses. They are supervised by thirteen professors from
the Department of Computing Science and the Institute of Law. All
theses are related to the topic of the Graduate School—Trustworthy
Software Systems—, but the students and professors in the school have
diverse backgrounds. To increase the benefit of the graduate school for
its members as well as the scientific community, the graduate school
aspires close cooperation of its members. One means of this cooperation
was the conduct of two seminars in the starting period of the Graduate
School, which resulted in the publication of two volumes of selected
papers, one of which is the present volume on Research Methods in
Software Engineering. The other volume provides survey papers on
Dependability Engineering and is available from the same publisher.

Topic of the Graduate School Software increasingly influences our
daily life, as we depend on an raising number of technical systems
controlled by software. Additionally, the ubiquity of Internet-based ap-
plications increases our dependency on the availability of those software
systems. Exemplarily consider complex embedded software control
systems in the automotive domain, or IT systems for eGovernment and
eHealth.

Fortunately, the rise of the software industry creates jobs for aca-
demically trained professionals and generates an increasing proportion
of the national creation of value. However, this increased dependency
on software systems intensifies the consequences of software failures.

7



1 Preface

Therefore, the successful deployment of software systems depends on
the extent we can trust these systems. This relevance of trust is gaining
awareness in industry. Several software vendor consortia plan to develop
so-called “Trusted Computing” platforms. These current initiatives
primarily focus on security, while trust is a much border concept. In
fact, trust is given by several properties, such as safety, correctness,
reliability, availability, privacy, performance, and certification.

Therefore, the graduate school will contribute to this comprehensive
view on trusted software systems by bundling the Oldenburg computing
science competences with those of computer law.

From a technical point of view, the research programme of the grad-
uate school builds on and advances the paradigm of component-based
software engineering. Besides the industrial relevance of components,
components also constitute a more general paradigm employed suc-
cessfully in the areas of formal verification (compositional reasoning),
the prediction of quality properties, and the certification of software
systems. The scientific methods to be developed in the graduate school
vary according to the aspects of trust under investigation. For example,
correctness is demonstrated by mathematical proofs while quantifiable
quality properties, such as availability, reliability, and performance
require analytical prediction models, which need additional empirical
studies for calibration and validation. Generally, benefits of software
engineering methods must be demonstrated empirically by case studies
and controlled experiments.

Topic of the Seminar There is no generally accepted approach to
research in software engineering, let alone computer science as a whole.
Possibly because computer science is still a young science, a clear sepa-
ration into distinct fields of research with respective research methods
has not emerged (yet). Nonetheless, several different approaches to
software engineering can be identified: E.g., some scientists are con-
cerned with formal and semi-formal development methods, others are
concerned with empirical software engineering. Different approaches
correspond with understandings of software engineering as a branch
or variant of mathematics, natural science, engineering, architecture,
psychology and others.

Overview of the Contributions There were ten contributions to the
seminar, five of which were selected for inclusion in this volume.

8



The first three papers are concerned with research methods in soft-
ware engineering in a strict sense. First, a general introduction to
“The Role of Experimentation in Software Engineering” is given by
Heiko Koziolek. Then, the empirical research into a specific topic—N-
version programming—performed by several researchers is presented by
Matthias Rohr, which makes the long-term research more tangible in
an exemplary way. The last of the three papers by Simon Giesecke and
Thorsten Giesecke-Kopp on “Integration of Qualitative and Quantita-
tive Methods in Software Engineering Research” combines theoretical
considerations on the application of integrative research from general so-
cial sciences to Software Engineering research with exemplary thoughts
on conducting such integrative research.

The next paper on “Patterns in Building Architecture and Software
Engineering” by Marko Boskovic is concerned with the relationship
of two distinct disciplines, Building Architecture and Software Engi-
neering. Software Engineering, and especially the emerging sub-field of
Software Architecture, use many metaphors targeted at Building Archi-
tecture. The concept of “patterns” originates from the field of Building
Architecture and Urban Planning and eventually gained popularity
in Software Engineering. The contribution outlines similarities and
differences between the fields, which supports the further development
of Software Engineering as a research discipline.

The final paper on “Legal Methodology and Research” by Daniel
Winteler reflects the interdisciplinary setting of the Graduate School
by presenting research methods from the Legal Sciences.

Oldenburg, November 2005

Prof. Dr. Wilhelm Hasselbring
Chair of the Graduate School “TrustSoft”
hasselbring@informatik.uni-oldenburg.de

Dipl.-Inform. Simon Giesecke
PhD Student of the Graduate School “TrustSoft”
giesecke@informatik.uni-oldenburg.de

9

hasselbring@informatik.uni-oldenburg.de
giesecke@informatik.uni-oldenburg.de


1 Preface

10



2 The Role of Experimentation
in Software Engineering

Heiko Koziolek <heiko.koziolek@informatik.uni-oldenburg.de>

Abstract

Research proposals need to be validated either by formal proofs or
by applying empirical methods (e.g. controlled experiments). Many
authors have pointed out that the level of experimentation in software
engineering is not satisfactory. The quantity of experimentation is
too low as a lot of software engineering publications do not contain
empirical validation at all. Furthermore, the quality of software engi-
neering experiments conducted so far is often weak, because no proper
methodological approach is applied and statistical methods are misused.
This paper provides an overview of experimentation in software en-
gineering. First, the role of experimentation among other types of
research is clarified. Several research paradigms are introduced, a
classification of different types of experiments in software engineering
is provided, and a comparison with experimentation in other research
disciplines is drawn. Afterwards, the current state of experimentation
in software engineering is presented with more detail. Some discussion
points from various researchers about the situation of experimentation
are summed up.

2.1 Introduction

Any research proposal in computer science needs to be validated prop-
erly to check it claims, improvements and also its applicability in
practice. To conduct such a validation, either the proposal has to

<heiko.koziolek@informatik.uni-oldenburg.de>


2 The Role of Experimentation in Software Engineering

be proven formally or empirical methods have to be used to gather
evidence. The fact that formal proofs are only seldom possible in
software engineering (SE), has lead researchers to emphasise the role of
empirical methods, which are traditionally more common in disciplines
like physics, social sciences, medicine, or psychology.

Several different empirical methods are known. Quantitative methods
try to measure a certain effect, while qualitative methods search for
the reasons of an observed effect. Examples for quantitative methods
are experiments, case studies, field studies, surveys and meta-studies.
Examples for qualitative methods are interviews and group discussions.

The controlled experiment is the method with the highest degree
of confidence into the results. In such an experiment researchers try
to control any variable influencing the outcome, except the variable
they want to analyse. For example, this involves testing a product
or method with a larger group of persons, so that the differences in
the qualifications of the participants can be reduced by averaging
and thus do not influence the result. A less strict method is the
case study, in which a (possibly artificial) example is analysed and
initial interpretations of the observed effects can be drawn, but the
results are normally not generalisable to other examples. Surveys
include searching the literature or passing out questionnaires to experts
to gather evidence. Meta-studies analyse other studies and try to
gain knowledge by comparing different approaches. A more detailed
introduction into empirical methods in computer sciences can be found
in several books, recent such as [WRH+00, Pre01, JM01].

Many authors have pointed out that the level of experimentation in
SE is not satisfactory. The quantity of experimentation is weak, as a
lot of researchers are reluctant to validate their approaches empirically.
The quality of experimentation is also often not sufficient, as statistical
methods are used inappropriately or it is neglected to draw proper
conclusions from experiments. Based on these observations this paper
discusses the role of experimentation in SE in more detail.

This paper is organised as follows: The following section 2 contains an
overview of general research approaches and describes how research is
conducted in other disciplines. Afterwards, the focus shifts specifically
to experimentation and its application in SE. Section 3 analyses the
status quo of experimentation in SE, while section 4 sums up several
common fallacies on this topic. Section 5 summarises future direction of
experimentation and presents some ideas how to improve the conduction
of empirical studies. Section 6 contains a critical reflection of some of

12



2.2 Research and Experimentation in SE

the statements found in the literature analysed before. Finally, Section
7 concludes the paper.

2.2 Research and Experimentation in SE

Evolution in science disciplines is based on encapsulating experience into
models and their verification and validation based on experimentation
[Bas96]. The science process is a cycle of applying ideas, analysing
results and collection feedback. SE requires the same cycle of model
building, experimentation and learning to become a matured scientific
discipline.

Scientific research in SE is conducted under the assumption that ”if
we look long enough and hard enough, we will find rational rules that
show us the best ways to build the best software” [Pfl99].

In the following, first different levels of knowledge are presented
before four general research methods and the experimentation/learning
cycle are introduced. To conduct empirical research, multiple data
collection methods can be applied, which are summed up in the third
subsection. Older scientific disciplines like physics and psychology
have developed their own experimental paradigms, which are shortly
described in the fourth subsection. This section concludes with an
argumentation why SE is different from other scientific disciplines and
why an own experimental paradigm has to be developed.

2.2.1 Empirical Knowledge versus Theoretical
Knowledge

Three levels of scientific investigations to gain knowledge can be identi-
fied [JM01]:

• Survey inquiries observe an object or process and try to find
out, which variables affect other variables. The effect is neither
quantified nor explained. Although other disciplines have identi-
fied the relationships between important variables, most of the
influencing variables in SE are still not known.

• Empirical inquiries aim at quantifying how variables affect
other variables. The goal of such inquiries is to construct an
empirical model. According to Popper [Pop59] empirical inquiries
cannot prove any theory, they can only fail to falsify it. From

13



2 The Role of Experimentation in Software Engineering

this viewpoint scientific knowledge is nothing more than a system
of untrue statements and claims that are provisionally true as
long as they are not contradicted. This insight should always be
kept in mind when reasoning about experimentation. Apart from
the inability to prove a theory, empirical inquiries are also not
able to create an understanding of the observed phenomena.

• Mechanistic inquiries represent the highest level of scientific
investigation. The aim is to explain why variables affect other
variables in the observed manner and to construct a theoretical
model. Such a theoretical model contributes to the understanding
of a phenomena and additionally provides a basis for extrapo-
lation, which is not possible with an empirical model. Thus,
predictions can be made about certain phenomena based on an
theoretical model. Theoretical models also provide a stricter
representation of the response function to a research question.

As survey inquiries have hardly been conducted in SE and not
enough background knowledge has been collected, it is not yet possible
to construct theoretical models in SE. Empirical models are a necessary
step towards theoretical models for SE.

2.2.2 Research Paradigms and Methods

Basili distinguishes between two main research paradigms [Bas93].
The experimental paradigm includes the scientific method with the
engineering method and the empirical method as subsets, while the
analytical paradigm includes the mathematical method:

• Scientific method: ”Observe the world, propose a model or a
theory of behaviour, measure and analyse, validate hypotheses of
the model or theory, and if possible repeat the procedure.”

– Engineering method: ”Observe existing solutions, pro-
pose better solutions, build or develop, measure and analyse,
and repeat the process until no more improvements appear
possible.”

– Empirical method: ”Propose a model, develop statisti-
cal/qualitative methods, apply to case studies, measure and
analyse, validate model and repeat the procedure.”

14



2.2 Research and Experimentation in SE

• Mathematical method: ”Propose a formal theory or set of
axioms, develop a theory, derive results and if possible compare
with empirical observations.”

The experimental paradigm is an inductive approach: it uses empiri-
cal evidence to formulate generalised knowledge from the observations
made. On the other hand the analytical paradigm is deductive: it takes
known theories and provides new evidence for special cases. In deduc-
tive reasoning evidence provided must be a set about which everything
is known before the conclusion can be drawn. Since not all variables of
SE (software artefacts, development processes, people, environment)
are known formally, it is difficult to fully apply such an approach in
this discipline. Thus, Basili concludes that ”the inductive paradigm
might be best used when trying to understand the software process,
product, people, environment”.

According to Glass [Gla94] the engineering, empirical and also the
mathematical method are applicable in computer science, however the
scientific method (although a superset of the first two methods) is
problematic because of the phrase ”observe the world”. Software is
intangible and has an invisible nature, so the phrase should be replaced
by ”observe the problem space”.

To clarify the relationship between deduction and induction, Juristo
et. al. [JM01] illustrate the iterative experimentation/learning cycle
(Figure 2.1). Deduction proves something, induction shows that some-
thing is operational and abduction suggests that something could be.
The cycle is composed as follows: a preliminary hypothesis is made
about some phenomena. A process of deduction from the hypothesis
leads to results, which are compared against real data. Discrepancies
about the deduction results and reality can lead to a new hypothesis
via induction. With the new hypothesis the cycle starts again.

The two variations of the experimental paradigm are rather contrary
[Bas93]. The engineering method is evolutionary, it takes existing
solutions and tries to improve them. For example the knowledge
that a method is less cost-intensive than another or that a new tool
preforms better than its predecessors might be the result of such an
approach. Opposed to that, the empirical method can be a revolutionary
approach not based on existing solutions. For example the proposal of
a new method or model and the evaluation of its effect to the software
development process or software products is a result of this approach.
For both approaches careful analysis and measurements are critical for

15



2 The Role of Experimentation in Software Engineering

Figure 2.1: Iterative learning cycle [JM01]

their success.
With these paradigms research activities and development can be

differentiated. If someone is neither applying the experimental, nor
analytical paradigm, his work cannot be considered as research. For
example, constructing a system or tool alone without validation is
development and not research. Only if an understanding is gained
how a system works, or why it is useful, and this is validated by
experimentation, then a work qualifies as being research.

In Glass’ [Gla94] critique about the state of the art of computer
science research, the author sums up some observations about the
research methods introduced above. Few studies have used the scientific
method. Unfortunately, it seems uncommon for computer scientists to
formulate and validate hypotheses and to do evaluation in an iterative
cycle. The engineering method has been used more frequently, as
sometimes proposals aim to improve existing solutions. Yet the cycle
”repeat, until no further improvement is possible” can hardly be found
in most approaches. The empirical method is under-represented and
only used by a few researchers. Glass criticises that most researchers
have no interest in this approach, and if they do, they tend to use only
student experiments, not industrial case studies. The mathematical

16



2.2 Research and Experimentation in SE

method is still the most common in computer science because of the
mathematical heritage of the discipline. Within this method it is
extremely rare that researchers compare their results with empirical
observations. Glass concludes to characterise the most common research
method as seriously flawed in practice.

2.2.3 Data Collection Methods

Data collection from reality for the experimental/learning cycle can be
done in multiple ways. A taxonomy by Zelkowitz et. al. [ZW98] lists
12 different data collection methods:

• Observational Methods: project monitoring, case study, as-
sertion, field study

• Historical Methods: literature search, legacy data, lessons-
learned, static analysis

• Controlled Methods: replicated experiment, synthetic envi-
ronment experiment, dynamic analysis, simulation

An overview of the empirical methods most common in computer
sciences and SE (controlled experiments, case studies, survey, meta-
studies) can be found in [Pre01, WRH+00].

Basili [Bas96] provides a classification for several kinds of experiments,
which are identified by:

• Type of results

– Descriptive: relationships among variables have not been
examined

– Correlational: variation of dependent variables is related to
variation of independent variables

– Cause-effect: independent variable is only possible cause for
variation of dependent variables

• Type of participants

– Novice: inexperienced students
– Expert: practitioners experienced in the study domain

• Type of environment

17



2 The Role of Experimentation in Software Engineering

– In vivo: in the field (i.e. the software industry) under
realistic conditions

– In vitro: in the laboratory (i.e. the university) under con-
trolled conditions

• Level of control

– Controlled experiment: typically in vitro, mostly with stu-
dents, strong statistically confidence in results, expensive,
difficult to control

– Quasi-experiment: typically in vivo, with practitioners, qual-
itative character

– Observational study: no treatment or controlled variables,
possibly no set of study variables defined beforehand

Furthermore Basili examines, that in general two patterns of experi-
ments have been performed so far: human factor studies and project-
based studies. Human factor studies are usually cause-effect studies
and try to find out how software engineers perceive and solve problems.
Project-based studies are often correlational or descriptive studies and
aim to help practitioners building models of software product and
processes.

Still, there is a disagreement about the right methodology in empiri-
cal SE, as discussed in a panel session on the ICSE 2003, which was
summed up in a position paper by Walker [WBN+03]. Tichy favours
controlled, quantitative, and statistically-analysable experiments, but
like Popper he also states that no ”silver-bullet experiments” exists,
which could provide a final answer to a research question. Kitchenham
also favours quantitative studies, but highlights the value of field studies
in an industrial environment. For Seaman, qualitative studies are a
valuable addition to quantitative studies. On one hand they can be
used to replicate a study with a different methodology, thereby im-
proving the trust in the results. On the other hand qualitative studies
can help reducing the complexity of SE experiment resulting from the
human factor, because they were originally developed to analyse human
behaviour. Murphy (also in [MWB99]) points out that different evalu-
ation treatments have to be applied according the degree of maturity
of a technology under analysis. Briand adds that the discipline of SE
needs to develop its own body of experience and strategies like other
disciplines. Additionally, he states that qualitative and quantitative

18



2.2 Research and Experimentation in SE

methods actually complement each other. Furthermore, in his opin-
ion controlled experiments (with often high internal, but low external
validity) and field studies (with often low internal but high external
validity) both are necessary to create a body of evidence. Notkin states
that empirical evidence is not always needed to transfer research results
into practice. Because of the uniquely high rate of change in SE, the
application of research results must be arranged differently. Although
not each minor solution to a problem needs to be evaluated empirically,
for deeper solutions this is necessary (”heavy claims require heavy
evaluation”).

2.2.4 Research in Other Fields

The science approach of the early Greeks was to observe something and
then create knowledge by a chain of logical thought. Experimentation
was hardly used by the Greeks for scientific purposes. One of the
first popular scientific experiment in science history was performed by
Galileo Galilei, who allegedly dropped balls from the tower of Pisa
to study the free fall. Over the course of history each research field
has developed experimental paradigms. Basili [Bas96] argues that SE
needs to follow this model of other physical sciences and analyses other
disciplines:

• Physics: In physics researchers are usually either theorists or
experimentalists. Models are built by theorists to explain the
universe, while experimentalists observe and measure the envi-
ronment with the goal of validating a theory or exploring new
areas.

• Medicine: Medical professionals are divided into researchers
and practitioners, where the researcher aims at understanding
the human body and the practitioner aims at curing other peo-
ple. In medicine, knowledge is often built by feedback from the
practitioner to the researcher.

• Manufacturing: In manufacturing, the relationship between
process and product characteristics is generally well understood.
Progress is made by experimenting with varying processes, build-
ing models of what occurs and measuring the effects on an over-
worked product.

19



2 The Role of Experimentation in Software Engineering

• Psychology: In psychology experiments have been used since
the end of the 19th century, to base knowledge not on the per-
sonal experience of single human beings, but to check claims
systematically and methodological controlled. Experiments are
used to explain relationships of different variables and to predict
certain events.

2.2.5 The Difference of SE

However, SE embodies different characteristics than other disciplines.
Unlike in physics, but like in manufacturing, computer scientists are
able to manipulate the essence of their product, because software and
the corresponding development processes can easily be modified. Yet
unlike in manufacturing, the problem in SE is not production (because
software can easily be copied), but development, because each new
software product is different from the last [Bas96]. This implies that
the mechanisms for model building are different in SE than in other
disciplines.

A lot of computer science methods and technologies are influenced
by human behaviour. Unlike in physics, the same experiment can
produce different results based on the people involved. The human
factor in SE prevents researchers from directly applying the causal-
deterministic model of for example physics, because psychological and
social influences are not completely determined by preceding facts
[JM01]. Pfleeger [Pfl99] notes that researchers still often view SE as
a natural process like in physics with deterministic effects to causes.
In fact software development is on large parts a social process, which
leads to stochastic effects to causes. The occurrence of an effect can
be described best by a probability function. For example, a software
company with a high development certification level is not guaranteed
to develop high quality software. Yet, the customers are assured, that
they will actually get good software from this company with a high
probability.

Another difference in SE is the amount of variables, which has to be
considered on the outcome of an experiment. Software products, pro-
cesses, the goals to be achieved and the context are all variable [Bas96].
A result of the high variability in SE is a lack of useful models for
reasoning about software processes and products can still be observed.
Because researchers have not been able to construct mathematical
tractable models, like it is possible in physics and manufacturing, they

20



2.3 Current State of Experimentation in SE

have the tendency to not build models at all. Few attempts have
been made to construct non-mathematical models, heuristics, and mod-
els representing simple variable relationships, which for example are
common in medicine.

2.3 Current State of Experimentation in SE

After introducing research approaches in the preceding section, the
status of experimentation in SE shall be analysed in the following
section. Two meta-studies about experimentation in SE are often cited
and will be described more detailed. Additionally, several authors have
written articles about the problems and trends in experimentation and
some of their remarks will be summed up afterwards.

2.3.1 Study by Tichy et. al. (1994)

Tichy et. al [TLPH95, LHPT94] conducted a quantitative study survey-
ing over 400 research articles and looked for the amount of experimental
validation. Included in this study for instance were articles from the
ACM Transactions on Computer Systems (TOCS), ACM Transactions
on Programming Languages (TOPLAS), IEEE Transactions on Soft-
ware Engineering (TSE), and a random sample of articles published
from the ACM in 1993. Also included for comparison with other dis-
ciplines were journals entitled Neural Computing (NC) and Optical
Engineering (OE). The area NC was chosen because it overlaps with
computer sciences (CS) and has a similar level of youth like CS. OE in
contrast was chosen, because it has lots of immediate applications like
CS, but also has a longer history.

The metric used for measuring the amount of experimentation in
design and modelling articles was simply the physical space the authors
reserved for experimental evaluation. This metric was chosen because
the physical space correlates with the importance the authors attached
to their experimental evaluation and also the quality of the experiments.

Over 40% of CS papers about design and modelling completely
excluded experimentation, in software engineering papers the number
was even higher at 50%. In contrast, only 14% of the NC and OE
articles did not contain experimental evaluations. The CS papers
contained a significantly lower amount of purely empirical papers than
in NC and OE. Hypothesis testing articles were rare in all samples

21



2 The Role of Experimentation in Software Engineering

(1%). The number of papers dedicating more than 20% of their space
to experimental validation was significantly lower in CS (31%) than in
NC and OE (67%).

The authors of the study used these results to disprove a common
perception in CS that the lack of experimentation is resulting from
the youth of the discipline. During the conduction of the study the
field of NC was only six years old, but had a much better level of
experimentation established that was comparable to the much older
discipline of OE. Although NC overlaps with CS, computer scientist
are actually a minority among the NC community.

An explanation the authors offer for the lack of experimentation
in CS, is the lack of well established measuring techniques. Another
problem is the fact, that a lot of conference committees accept papers
without experimental validations. The authors encourage conference
committees to set higher standards for accepting papers and also
viewing empirical work as first class science.

2.3.2 Study by Zelkowitz et. al. (1997)

Zelkowitz and Wallace [ZW97] conducted a similar study like Tichy and
analysed 612 SE papers and 137 papers from other sciences (for example
physics, management science and behaviour theory). SE papers were
from three different years (1985, 1990, 1995) and were taken from
IEEE Transactions on Software Engineering, IEEE Software and the
Proceedings of the International Conference on Software Engineering
(ICSE) of the corresponding year. The articles from other disciplines
were taken from various journals of the respective sciences from the
years 1991-1996.

Similar to the study by Tichy, here, about one-third of the SE
articles had no experimental validation at all. But the percentage was
decreasing over the years (1985: 36.4%, 1990: 29.2%, 1995: 19.4%).
About one-third of the articles contained only assertions as experimental
validation. In assertions the developer of a technolgy becomes the
experimenter and the subject of the study and usually does not perform
any kind of control. These are often preliminary forms of validation and
are potentially biased. 5% of the articles used simulation techniques for
result validations, while the other data collection methods (see section
2.2.3) were found in only 1-3% of the articles.

Concerning other sciences, the authors observed specific patterns of
experimentation approaches in each fields. Physical publications com-

22



2.3 Current State of Experimentation in SE

monly contained dynamic analyses and simulations. In psychological
articles, mainly replicated and synthetic experiments could be found,
while anthropological papers used passive techniques on historical data
like legacy data and literature search.

Additionally to the confirmation of Tichy’s result, that experimental
validation is under-represented in CS, in this study the authors found
out, that one-third of papers which actually contained experimental
validation only did it in an insufficient and weak way (with assertions).
This means that authors are starting to realise the need for experimental
validation, yet still do not do it with strong methods. Encouraging is
the fact, that the authors observed a development with fewer papers
without experimentation comparing the numbers from 1985, 1990 and
1995.

Some qualitative observations of the study are mentioned in [ZW98].
Often, researcher do not succeed in stating their goals explicitly and
clearly. Sections containing experimental validation were sometimes not
labelled accordingly and the terms ”case study”, ”controlled experiment”
were used very loosely with different meanings.

2.3.3 Further Analyses

Fenton et. al. [FPG94] also discuss the current state of experimentation
in SE. Although Basili et. al. [BSH86] had made several recommenda-
tion for experimentation in SE, most of the experiments documented
later did not follow their recommendation. The authors make five
observations:

• Intuitive research: Too many concepts in SE are still based on
so-called ”analytical advocacy research”, meaning that concepts
have been described, analysed for their benefits informally and
recommended for practical use but that rigorous, quantitative
experimentation of them is missing. For example, formal methods
in SE, which use mathematical precise specifications of software
(e.g. the language Z [Spi88]) to prove its correctness, have been
used for decades. It has been claimed that these methods are
cost saving and that they reduce the amount of product failures.
However, quantified evidence to support these claims does not
appear in the respective publications. Nevertheless, counter-
examples, in which methods have become a standard in SE
because of empirical analysis, also exist (for example the use of

23



2 The Role of Experimentation in Software Engineering

inspections to uncover code-defects).

• Experimental design flaws: Experimental designs in SE are
still often flawed. For example, Shneiderman showed with an
experiment that program flowcharts did not increase the com-
prehension of program behaviour better than pseudocode. Years
later, Scanlan made a comparison of flowcharts and pseudocode
and investigated the amount of time needed to understand a
program and the amount of time needed to make appropriate
changes to it. In both dimensions using flowcharts was superior to
using pseudocode. Fenton et. al. claim that flaws in experimental
designs are a result of the thin representation of experimentation,
statistical analysis and measurement principles in the computer
science curricula of universities.

• Toy analysis: Empirical investigations in SE too often only anal-
yse ”toy projects in toy situations”. The costs of large-scale indus-
trial experiments lead most researchers to only experiment with
student groups on small artificial examples. It is often unknown
how the results of such experiments scale up and whether the
results can be generalised. Because of this, a better cooperation
of research institutes and the software industry is recommended.

• Inappropriate statistics: Many experiments use inappropriate
measures and misuse statistical methods. For example, several
experiments can be found that use a nominal scale for their data
and apply means and standard deviations to that data, although
this data can only be analysed in terms of frequency and mode.

• No long-term view: Some experiments are conducted over a
too short period of time and thus omit long-term effects. For
example, the comparison of the benefits of the programming
languages Ada and Fortran at first showed that Ada programmers
were less productive and delivered programs with less quality than
the Fortran programmers. However, the study did not take into
account that Ada has a long learning curve and that the actual
benefits of Ada can only be observed after the programmers had
at least implemented three projects with this language.

Perry et. al. [PPV00] mention that the amount of empirical studies
and also their quality is rising over the last 10-20 years. Empirical

24



2.3 Current State of Experimentation in SE

validation is still not a standard part of research papers, yet a powerful
addition. Especially in the testing community empirical studies are
quite common. US funding agencies such as the National Science
Foundation (NSF) and the National Academy of Sciences are realising
the importance of empirical studies and are sponsoring for example the
”Experimental and Integrative Activities” program or a workshop on
the topic of statistics and software engineering [Pre96]. Furthermore,
Perry et. al. observe, that the awareness for empirical studies is
growing, as can be seen in tutorials, panels and presentations at major
conferences such as ICSE, FSE and ICSM.

The authors notice that the discipline is still suffering from several
systemic problems. Most of them originate from misunderstandings
about the reasons for experiments and their proper conduction. Many
researchers only use empirical studies retrospectively for early validation
of their research results, but do not remember, that studies can also
be used pro-actively to direct research.

Additionally, it is often tried to make the perfect study without flaws,
which in the authors’ opinion is impossible. Instead, more interest
should be directed to the conclusions drawn from studies, which is often
a weak part of such studies. Many studies only observe the obvious,
thereby encouraging an argument by intuition approach. More studies
should investigate unintuitive relationships.

Data collection and analysis is sometimes done very extensive and
precise in empirical studies today, but the use of data to answer ques-
tions is neglected. In these cases no conclusions are drawn making
it difficult to learn anything from such a study. Often studies sim-
ply lack hypotheses, do not ask insightful questions and therefore
contain no well-defined end. Because the drawing of conclusions is
disregarded, researchers are reluctant to generalise their results. But
without generalised results it is hard to make any progress in SE.

Concluding this section, it can be stated that experimentation is
still under-represented in SE, but a positive trend can be observed.
Although the awareness for the need of experimentation is starting to
increase, lots of the experiments conducted today are still flawed in
their designs and in the ability to draw proper conclusions.

25



2 The Role of Experimentation in Software Engineering

2.4 Common Fallacies on Experiments

Researchers often try to justify their lack of experimentation. Tichy
[Tic98] wrote an article refuting common comments given by computer
scientist when they are asked about why they neglect the experimental
validation of their research results:

• ”The Traditional scientific method isn’t applicable”: A
major difference of computer sciences to other disciplines is that
information is neither energy nor matter. Several researchers con-
clude that traditional scientific methods are thus not applicable
in computer science. This is a fallacy, because researchers can use
the same methods as in traditional sciences, like observation of
phenomena, formulation of explanation and theories and testing,
to gain an understanding on the nature of information processes.
The fact that the information itself is different from energy or
matter does not alter the treatment of information processes from
other sciences.

• ”The current level of experimentation is good enough”:
This can be refuted with the studies mentioned earlier [TLPH95,
ZW98], which analysed the amount of experimentation in SE
papers. Experimentation has the purpose of reducing uncertainty
about untested theories, may serve to start new areas of research
and eliminates fruitless approaches thus directing the science
process.

• ”Experiments costs too much”: Tichy admits, that experi-
ments cost a lot of effort, but that this effort is justified, if the
research question asked is of importance and the gained insights
outweigh the costs. For example, Isaac Eddington undertook an
expensive expedition to West Africa in 1919 to observe a total
solar eclipse. Doing so he was able to check Einstein’s theory
that gravity bends light when passing large stars. In this case
the experiment required a lot of effort, but the importance of the
answer to the research question was tremendous.
A way to overcome the high costs of experiments might be involv-
ing software industry. Companies may be able to get competitive
advantages out of experiments and thus may be interested in
sponsoring such research. Furthermore, Tichy mentions that a

26



2.4 Common Fallacies on Experiments

possible cheaper substitute to experiments might be simulations
techniques.

• ”Demonstrations will suffice”: Demonstrations only provide
proof of concepts, but not hard evidence to research questions.
Demos only illustrate a potential and are dependent on the
authors to generalise the results. The need for replication of
results is not stressed by demonstrations.

• ”There is too much noise in the way”: Often researchers
complain, that too many variables have to be controlled in an
experiment and that the results are hard to interpret because
they are swamped by noise. Tichy advises researchers to use
benchmarks to simplify repeated experiments. Noise created by
human subjects may be reduced by using techniques from areas
like psychology and sociology.

• ”Progress will slow”: As experiments require a lot of effort
to be conducted, many argue that experimenting slows the flow
of ideas down, if every idea must be extensively validated with
experiments. Contrary, Tichy replies, that experimenting might
in fact speed up the science progress, because fruitless approaches
would be discarded earlier and science would focus more on the
most promising approaches.

• ”Technology changes too fast”: Problematic in computer
science is the fact that technology changes so fast that ideas
might not be relevant anymore if experimental validations are
finally available. If a research question falls into this category it
is obviously formulated too narrow. Experimentation techniques
should be applied to deeper, fundamental questions and not to
the newest fashion of tools and methods.

• ”You will never get it published”: Theoretical computer
scientists usually expect perfection and absolute certainty in
results published. But because experiments are always flawed in
some way [PPV00], it is difficult to get experimentation papers
accepted at important conferences. Tichy replies that several
journals exists, that would welcome more experimental papers,
but that the supply is actually too low.

27



2 The Role of Experimentation in Software Engineering

Tichy also states that intuition and personal experience is not sufficient
to claim the applicability of a product or process in a matured engi-
neering discipline. Several examples are known in computer science
in which intuition falsely favoured an opinion (the need for meetings
in code reviews, the much lesser failure probabilities of multi-version
programs). It is also dangerous to simply trust well-known experts
and not to demand hard evidence of their claims. A fundamental
precondition of science is, that it is based on healthy scepticism.

2.5 Future Direction of Experimentation in
SE

As the need for experimentation in SE has been emphasised before
and problems of the discipline have been examined, the following
section deals with the possible future of experimentation. Most of the
authors, who have complained about the lack of experimentation in
SE, have also made recommendations about what could be improved
(next subsection). An approach still neglected in SE experiments is the
repetition of empirical studies and the creation of families of studies to
answer larger research questions (last subsection).

2.5.1 General Recommendations

Basili [Bas96] advocates the use of the Goal-Question-Metric (GQM)
method (ref Klaus Krogmanns Ausarbeitung) for a better direction
of experimentation. Especially the level of sophistication of the goals
towards experiments are designed must improve. The results of experi-
ments need to be shared more and the results by one group need to be
used by other groups. An organisation called International Software
Engineering Research Network (ISERN) has been established especially
for this purpose. A forum for empirical researchers is provided by the
International Journal of Empirical Software Engineering by Springer.

Perry et. al. [PPV00] state that in order to improve the quality of
empirical studies in SE, more clarity about the goals of the studies is
needed. Researchers must ask important and sophisticated questions
and establish causal, actionable and general principles. Causality
implies constructing a chain of factors influencing each other, while
actionable principles require factors which can be controlled effectively.

28



2.5 Future Direction of Experimentation in SE

Factors also have to be so much general, that the results are relevant
to multiple persons in multiple contexts.

Credible studies have a high degree of confidence in the results. To
create such studies the internal, external and construct validity have
to be checked explicitly. Enough data has to be published to let other
researcher recheck the validity of a study. Additionally, studies should
always be conducted on the basis of hypotheses. If a study is not
sufficient enough to create a causal relationship of factors, several
alternative explanations may be proposed and data from other source
might be used to discredit certain alternatives.

Glass [Gla94] emphasises the need for a close cooperation between
practitioners and researchers to improve the state of research in com-
puter sciences. For him, the Software Engineering Laboratory (SEL)
[BCM+92] as an institution involving academic (University of Mary-
land), industrial (Computer Sciences Coporations) and governmental
(NASA-Goddard, as sponsors) organisations is an exemplary model
which should be replicated by other researchers and countries to stimu-
late the exchange between practice and research.

Recently, Kitchenham et. al. [KPP+02] have proposed a set of
guidelines for empirical research in SE, which are based on a review of
guidelines for medical researchers. The guidelines cover six topics:

• Experimental context: It is important for studies to include
information about the industrial context they were conducted in.
The research hypotheses have to be discussed and also how they
have been derived. The main guidelines about the context are to
state and discuss the goal of the study and to include sufficient
details for researchers as well as practitioners.

• Experimental design: Studies must describe the population
under analysis (e.g., students, practitioners) and the sampling
technique used for it. It has to be documented which interventions
have been conducted and which method has been used to reduce
bias and to determine the sample size.

• Conduct of the experiment and data collection: Because
the measures for the outcome of a study are not standardised they
have to be documented in sufficient detail. The entity, attribute,
unit and counting rules of measures must be defined. Quality
control methods used on the data and data about subjects who
dropped out of the study should be presented.

29



2 The Role of Experimentation in Software Engineering

• Analysis: Procedures used to control multiple testing should be
specified and a sensitivity analysis should be performed. Addi-
tionally, the data must not violate the assumptions of the tests
used on them. Appropriate quality control methods should be
applied for verification of the results.

• Presentation of results: A reference should be provided for
all statistical procedures used and the statistical package used
should be reported. The magnitude of effects and the confi-
dence limits of quantitative results should be presented as well
as confidence levels. If possible, the raw data should be provided
with the study, so that independent researchers can draw their
own interpretations from them. Descriptive statistics should be
used in an appropriate way. Graphics can increase the degree of
understandability of a study if used correctly.

• Interpretation of results: Researchers should differentiate
between statistical significance and practical importance. The
type of the study needs to be define and limitations of it should
be discussed.

2.5.2 Repeatability and Families of Studies

Perry et. al. [PPV00] note, that it is often not possible to design studies
for complex issues and difficult questions, especially considering the
effort and costs needed for empirical studies. In this case it is necessary
to focus on smaller problems and to create multiple studies, which
results possibly can be combined to answer more deep questions. The
credibility of empirical studies is improved drastically if other researcher
are provided with enough information to reproduce the results.

The same is mentioned by Lewis et. al., who state: ”The use of
precise, repeatable experiments is the hallmark of a mature scientific
or engineering discipline.” [LHKS92]. In the history of science several
examples for experiments can be found, which could not be repeated by
other scientists as summarised by Juristo et. al. [JM01]. For example,
the psychodynamic theories developed by Freud are criticised as being
unscientific because they cannot be verified or disproved empirically.
In 1989 two physicians claimed they had successfully conducted a cold
fusion during an experiment, but after they published the design of
their experiment, other scientist were not able to reproduce their result.

30



2.5 Future Direction of Experimentation in SE

Apart from external replication run by independent researchers, also
internal replications run by the original experimentator are necessary
to improve the trust in an experiment. This might be hard to do in
practice because a software project cannot be repeated precisely, yet it
is not an excuse for not experimenting at all.

Basili [BSL99] also emphasises the importance of replicated exper-
iments . Too many SE experiments stay isolated and do not lead to
a larger body of knowledge. This can only be achieved by a set of
unifying principles that allows the combination and generalisation of
results. The authors propose a framework including the GQM method
for a family of experiments.

Additionally they classify three major categories for replicated ex-
periments:

• Replication without a variation of the research hypoth-
esis: These include strict replications and replications that alter
the way an experiment is run. Strict replications aim at a very
accurate replication of the original experiment and ensure the
repeatability of an observation. Replications that are run with a
different experimental set-up than in the original case but with
the same hypothesis might reveal flaws of the internal validity of
an experiment.

• Replication with a variation of the research hypothesis:
Included are variations of independent, dependent and context
variables. Varying independent variables means changing vari-
ables intrinsic to the object under study, for example changing
an attribute of the process or product under study. This form of
replication is only possible if the experimental design has been
made explicit by the original authors. Dependent variables are
variables regarding the focus of the study. An example of a repli-
cation with a change of the dependent variables may be using
other metrics or measurements for the effects that are be studied.
Varying the context of an experiment might help in identifying
influencing environmental factors. For example an experiment
might be carried out with a group of professionals opposed to a
group of students to analyse the influence of personal experience
to the studied effects.

• Replications that extend the theory: Replications in this
category change a large part of the process or product under

31



2 The Role of Experimentation in Software Engineering

analysis to determine its limit of effectiveness.

2.6 Critical Reflection

After reviewing the literature about the role of experimentation in SE,
some critical remarks about this topic are summed up in this section.

Tichy tried to refute common comments by researchers, who neglect
empirical evaluations of their work, and tried to encourage scientists
to put more emphasis on experimentation. However, overcoming the
organisational effort for proper controlled experiments is still a major
problem. Lots of research is conducted by PhD-students, who simply
do not have the means and time to conduct elaborate experiments.
Including the software industry into experimentation as suggested by
Tichy is also very difficult, because practitioners are hard to motivate
to put resources and money on testing unproven new methods, if
the direct value for their customers cannot be made evident. Also,
as pointed out by Tichy, it is not necessary to evaluate every small
research proposal with large controlled experiments. But criterias for
necessity of experiments are still informal and hard to determine.

One problem, sometimes mentioned by the authors cited here, is the
researcher’s inappropriate knowledge of empirical methods in software
engineering. This point is clearly underestimated by the empirical
software engineering community. The researchers’ knowledge is inap-
propriate because most universities do not teach empirical methods,
and such courses are not part of the standard curriculums. If experi-
ments are conducted, the methods of experimentation have often only
been learned ad-hoc by the researchers, if they have laid emphasis
on a methodological approach at all. Young researchers are seldomly
taught the proper conduction of an experiment and have to collect
experience about it on their own. The facts that books about methods
like experiments or case studies for SE have appeared only recently (in
the last 5 years) and that the methods are still not established well
enough also contribute to this situation. Additionally the inappropriate
application of statistical methods in experimentation can also be seen
as a result of the missing courses in the computer science curriculum.

As seen in the literature analysed above, researchers often criticise
experiments that are carried out with students as the subject under
analysis, claiming that the results are not transferable to experienced
practitioners. Apart from the organisational difficulties and high ef-

32



2.7 Conclusions

fort of including practitioners, there are other reason to counter this
criticism. First, experienced under-graduate students often become
practitioners just a short time later, so that their qualification and
performance is not as different to practitioners as it seems. Second,
the experience by practitioners might actually distort the results of an
experiment, because specialists might have an unusual advantage over
common developers. Thus, the results obtained with some experienced
specialists might not be generalisable for the average developer.

Another reason why researchers are reluctant to experiment, which
has been neglected in the literature reviewed, is simply the fact that
some researchers do not like to experiment and consider it an incon-
venient but necessary task. Most scientists rather want to create new
ideas than spending time on validating old ones. Computer scientists
in particular are more interested in technical problems and how to
solve them. If their solutions are intuitively correct, most of them do
not bother to conduct further evaluation on them. They even might
be scared to prove their solutions empirically wrong. A stronger moti-
vation for experimentation has to be created, possibly by documenting
popular experiments in SE, which revealed unexpected results.

In the future experiments will be conducted with a higher quality
and also more experiments will conducted. But whether a level of
experimentation can and needs to be established in SE like it has been
in other disciplines (physics, medicine, psychology) remains doubtful.

2.7 Conclusions

In this paper the situation of experimentation in SE in the past, present
and future has been presented. ”Experimentation is central to the
scientific process” [Tic98]. This statement is especially true for SE,
because most research proposals cannot be proven formally. It has been
discussed that experimentation is vital for SE to become a matured
scientific discipline. Multiple data collection methods are known for
empirical SE, controlled experiments are the method with the highest
degree of confidence in the results. When analysing experimentation in
SE, the special characteristics of the discipline (like the human factor
and the high variability) have to be kept in mind.

In the past, experimentation in SE has not been sufficient as two
studies from the mid-nineties have shown, although a positive trend
can be observed. The reluctance of researchers to experiment can be

33



Bibliography

refuted with multiple arguments. Researchers in SE should understand
that empirical validation as an essential part of their work and that
their proposals are not valid unless empirical evidence has been pro-
vided. In the future, hopefully, not only the quantity but also the
quality of experiments can be improved. It should be easier to conduct
good empirical studies in SE because an increasing body of literature
about the topic has been published (e.g. [WRH+00, Pre01, JM01].
Additionally, replicated experiments and families of studies should help
to create larger bodies of knowledge.

Bibliography

[Bas93] Basili, V. R.: The Experimental Paradigm in Software
Engineering. In: Proceedings of the International Work-
shop on Experimental Software Engineering Issues: Critical
Assessment and Future Directions, London, UK: Springer-
Verlag, 1993, ISBN 3-540-57092-6, pp. 3–12

[Bas96] —— The Role of Experimentation in Software Engineering:
Past, Current, and Future. In: ICSE, 1996, pp. 442–449

[BCM+92] Basili, V.; Caldiera, G.; McGarry, F.; Pajerski,
R.; Page, G.; Waligora, S.: The software engineer-
ing laboratory: an operational software experience factory.
In: ICSE ’92: Proceedings of the 14th international con-
ference on Software engineering, New York, NY, USA:
ACM Press, 1992, ISBN 0-89791-504-6, pp. 370–381, doi:
10.1145/143062.143154

[BSH86] Basili, V. R.; Selby, R. W.; Hutchens, D. H.: Exper-
imentation in software engineering. In: IEEE Trans. Softw.
Eng. 12 (1986), № 7, pp. 733–743, ISSN 0098-5589

[BSL99] Basili, V. R.; Shull, F.; Lanubile, F.: Building Knowl-
edge through Families of Experiments. In: IEEE Trans.
Softw. Eng. 25 (1999), № 4, pp. 456–473, ISSN 0098-5589,
doi:10.1109/32.799939

[FPG94] Fenton, N.; Pfleeger, S. L.; Glass, R. L.: Science
and Substance: A Challenge to Software Engineers. In:

34



Bibliography

IEEE Softw. 11 (1994), № 4, pp. 86–95, ISSN 0740-7459,
doi:10.1109/52.300094

[Gla94] Glass, R. L.: The Software-Research Crisis. In: IEEE
Softw. 11 (1994), № 6, pp. 42–47, ISSN 0740-7459, doi:
10.1109/52.329400

[JM01] Juristo, N.; Moreno, A. M.: Basics of Software En-
gineering Experimentation. Kluwer Academic Publishers,
2001

[JM03] —— Lecture Notes on Empirical Software Engineering,
vol. 12 of Series on Software Engineering and Knowledge
Engineering. World Scientific, 2003

[KPP+02] Kitchenham, B. A.; Pfleeger, S. L.; Pickard,
L. M.; Jones, P. W.; Hoaglin, D. C.; Emam, K. E.;
Rosenberg, J.: Preliminary guidelines for empirical re-
search in software engineering. In: IEEE Trans. Softw.
Eng. 28 (2002), № 8, pp. 721–734, ISSN 0098-5589, doi:
10.1109/TSE.2002.1027796

[LHKS92] Lewis, J. A.; Henry, S. M.; Kafura, D. G.; Schul-
man, R. S.: On the relationship between the object-
oriented paradigm and software reuse: An empirical inves-
tigation. In: Journal of Object-Oriented Programming 5
(1992), pp. 35–41

[LHPT94] Lukowicz, P.; Heinz, E. A.; Prechelt, L.; Tichy,
W. F.: Experimental Evaluation in Computer Science:
A Quantitative Study. tech. rep., Fakultät für Informatik,
Universität Karlsruhe, August 1994

[MWB99] Murphy, G. C.; Walker, R. J.; Baniassad, E. L. A.:
Evaluating Emerging Software Development Technologies:
Lessons Learned from Assessing Aspect-Oriented Program-
ming. In: IEEE Trans. Softw. Eng. 25 (1999), № 4, pp.
438–455, ISSN 0098-5589, doi:10.1109/32.799936

[Pfl99] Pfleeger, S. L.: Albert Einstein and Empirical Software
Engineering. In: Computer 32 (1999), № 10, pp. 32–38,
ISSN 0018-9162, doi:10.1109/2.796106

35



Bibliography

[PK04] Port, D.; Klappholz, D.: Empirical Research in the
Software Engineering Classroom. In: CSEET ’04: Pro-
ceedings of the 17th Conference on Software Engineering
Education and Training (CSEET’04), Washington, DC,
USA: IEEE Computer Society, 2004, ISBN 0-7695-2099-5,
pp. 132–137

[Pop59] Popper, K. R.: The Logic of Scientific Discovery. London:
Hutchinson, 1959

[Pot93] Potts, C.: Software-Engineering Research Revisited. In:
IEEE Softw. 10 (1993), № 5, pp. 19–28, ISSN 0740-7459,
doi:10.1109/52.232392

[PPV00] Perry, D. E.; Porter, A. A.; Votta, L. G.: Empirical
studies of software engineering: a roadmap. In: ICSE -
Future of SE Track, 2000, pp. 345–355, doi:10.1145/336512.
336586

[Pre96] Pregibon, D.: Statistical Software Engineering. National
Academy of Sciences: Washington D.C., 1996

[Pre01] Prechelt, L.: Kontrollierte Experimente in der Soft-
waretechnik. Springer Verlag, 2001

[Spi88] Spivey, J. M.: Understanding Z: a specification language
and its formal semantics. New York, NY, USA: Cambridge
University Press, 1988, ISBN 0-521-33429-2

[Tic98] Tichy, W. F.: Should Computer Scientists Experiment
More? In: IEEE Computer 31 (1998), № 5, pp. 32–40

[TLPH95] Tichy, W. F.; Lukowicz, P.; Prechelt, L.; Heinz,
E. A.: Experimental evaluation in computer science: a
quantitative study. In: J. Syst. Softw. 28 (1995), № 1, pp.
9–18, ISSN 0164-1212, doi:10.1016/0164-1212(94)00111-Y

[WBN+03] Walker, R. J.; Briand, L. C.; Notkin, D.; Seaman,
C. B.; Tichy, W. F.: Panel: empirical validation: what,
why, when, and how. In: ICSE ’03: Proceedings of the
25th International Conference on Software Engineering,
Washington, DC, USA: IEEE Computer Society, 2003,
ISBN 0-7695-1877-X, pp. 721–722

36



Bibliography

[WRH+00] Wohling, C.; Runeson, P.; Höst, M.; Ohlsson, M.;
Regnell, B.; Wesslen, A.: Experimentation in Soft-
ware Engineering – An Introduction. Kluwer Academic
Publishers, 2000

[ZW97] Zelkowitz, M. V.; Wallace, D. R.: Experimental
Validation in Software Engineering. In: Information and
Software Technology 39 (1997), pp. 735–743

[ZW98] —— Experimental Models for Validating Technology. In:
Computer 31 (1998), № 5, pp. 23–31, ISSN 0018-9162,
doi:10.1109/2.675630

37



Bibliography

38



3 Example of Empirical
Research: n-Version
Programming

Matthias Rohr <matthias.rohr@informatik.uni-oldenburg.de>

Abstract

Software engineering aims to improve the process of software develop-
ment and its resulting product. The human factor introduces complex
behavior into the process. This is difficult to describe with analyti-
cal models. Therefore, empirical research methods often are a more
effective way to validate research results.
In this paper empirical research methods are studied. We focus the
analysis on examples from N-version programming research. N-version
programming is a software development strategy to increase reliability
through redundancy. This area is chosen because its nature suggests
and supports the empirical examination very well, with still providing
typical complexity and a large number of empirical studies available.

3.1 Introduction

One goal of software engineering research is to improve the process of
software development and its product. Many research results in this
area are published as suggestions on how to develop good software effi-
ciently. Some kind of evidence or a conclusion from accepted knowledge
can convince other researchers or practitioners to apply new methods.
Without it, new ideas might not be applied, even if they are better
than alternatives. Many researchers complained about the low rate of

<matthias.rohr@informatik.uni-oldenburg.de>


3 Example of Empirical Research: n-Version Programming

empirical verification of research results in software engineering.
Prechelt observes two strategies to advance in software engineering

[Pre01]:

• The engineering strategy develops methods or tools in order to
reach selected goals. Support is given by the market or other
researchers.

• The scientific strategy uses iterations of model creation and
validation to built up lasting knowledge. It can be used to give
support to concepts developed by the engineering approach.

Empirism is a scientific strategy. It derives theories from observed
facts [Ebe99, p. 20]. In combination with generalization, this allows
to support general statements from a limited number of observations,
which can result from experiments. Empirical reseach methods are
often the method of choice to support findings, because other methods,
such as conclusion from proved knowledge, cannot be applied due to
the complexity of the process of creating software from requirements.
The complexity emerges “from technical issues, from the awkward
intersection of machine and human capabilities, and from the central
role of human behavior in software development”[Sea99]. Empirical
research has the disadvantages, that different theories can be concluded
from the same observations [Ebe99, p. 34] and that results based on
single scientific observations are not able to make a final prove [Pre01].
A counter example can disprove a well established theory based on
generalized observations anytime.

Controlled experiments are discussed in chapter 2 as one of its most
important methods. This chapter studies the application of empirical
research. We use N-version programming as example research domain,
because as we will see later, it supports empirical reseach methods very
well and many studies are available as research objects.

The research method of this paper is also empirical research. This
is not a meta study on N-version programming as some might guess,
because that one would evaluate the studies of N-version programming
in order to study N-version programming. We investigate software
engineering research methods based on a selection of few connected
empirical studies. This chapter is a qualitative survey on the research
method application in N-version programming. Our goal is to discuss
consequences of the application of empirical research methods.

40



3.2 N-version programming

N-version programming (NVP) is a strategy to increase the reliability
of software. Faults are tolerated through the parallel execution of redun-
dant software modules. The key idea is to use functional redundancy
in the software (the N-version software, NVS) and its development
process (the N-version programming). By functional redundancy we
mean here the additional integration of software functionality, which is
already included in the software system. The hope is that the effects
of faults of single parts can be masked by correct results of others.

The remaining parts of the paper are structured as follows: Section 2
introduces the basics of N-version programming to support the reader
with a general knowledge that is required to understand the goals and
settings in the empirical NVP studies. Section 3 gives an overview
of some selected empirical studies. The research methods applied are
analyzed and discussed in section 4, and the conclusion follows in
section 5.

3.2 N-version programming

This sections provides an overview of N-version programming. It
starts with a definition and related terms. Section 3.2.1 presents
the underlying concept of reliability improvement through functional
redundancy and its assumption of failure independence in hardware
engineering. Section 3.2.2 explains how NVP applies the concept to
software. A closer description of the NVP development process and a
discussion about the effectivity in improving reliability follow in 3.2.3
and 3.2.4.

N-version programming is the process of developing multi-version
software (also known as N-version software). N ≥ 2 functionally equiv-
alent software entities, called versions, are developed by independent
single programmers or teams of programmers [Avi95]. It is the hope
that the parallel execution of different versions will greatly reduce
the probability of similar failures [AC77]. This implies that the N
individuals or groups do not communicate with each other during the
development to avoid that the versions contain similar faults.

The initial specification defines the functional and non-functional
behavior of the versions. It is important that more effort than usual is
spend to ensure its correctness, completeness, and unambiguity before
the N-version development process starts [CA78]. Additionally, the
initial specification should not limit the possible diversity between the

41



3 Example of Empirical Research: n-Version Programming

Version 1

Input

Version N

...

Version 2

Output
...

decision
algo.

Figure 3.1: N-version architecture

versions by unnecessary restrictions or suggestions [AC77]. During
runtime, the N versions are executed in parallel on the same input (see
figure 3.1). The output of the versions is processed by some form of
decision algorithm (comparison or voting) [LPS01]. Figure 3.1 shows
the architecture of N-version software.

The term ‘programming ’ should not give the impression that only
the implementation process is done separately. NVP usually requires
independent design, coding, and testing to achieve sufficient levels of
diversity between the versions.

We use the following definitions for correct service and (service)
failure:

“Correct service is delivered when the service imple-
ments the system function. A service failure, often abbre-
viated here to failure, is an event that occurs when the de-
livered service deviates from correct service. A service fails
either because it does not comply with the functional spec-
ification, or because this specification did not adequately
describe the system function.”[ALRL04]

A fault is the cause of a failure.
N = 2 is a special case (“matching” comparison [CA78]), because

the decision algorithm has problems to decide, which result might be
correct if both results are different. In this case of disagreement, at
least it is sure that one or both outputs are not correct. Therefore,
2-version software supports fault detection. It can be used to execute
a safe shutdown (e.g., turning traffic lights red), to start a recovery
process, or simply to show an error message [KL86, Avi95].

42



3.2 N-version programming

Fault tolerance can be implemented by a voter in N ≥ 3-version
software (“voting” comparison [CA78]). Voting policies are a separate
research area, and we will only discuss the common majority voting.
Usually, effects of faults occur only in a minority of the versions at the
same time. Therefore, faults are toleranted as long as the majority
agrees on the correct result. If the majority of versions fails with
different values, then the majority voter is not able to select an output
value, but at least the fault is detected. In the worst case, the majority
fails with the same result. In that case, the voter will deliver the wrong
result, without detection of the failure.

3.2.1 Functional redundancy in hardware

The concept of functional redundancy is known to be a general concept
to increase reliability in other engineering disciplines such as hard-
ware development, or even human resource management. The first
documented application was by Babbage in the 1830s [Avi95]. He
suggested to use several people to solve the same, complicated task
independently to ensure its correct fulfillment. Not every task can
be solved independently at the same time. Babbage instructed the
same mathematical problem to different people. Most mathematical
tasks have only one single solution. If different results occur, it is
obvious that not both results can be correct. It was experienced, that
the chance that the majority fails or wrong results are not detected,
is lower than the single ones. In this example, all additional people
provide a redundant service - every one of them alone is usually able to
complete the tasks successfully. In N-version programming the software
development process is the task.

One should not mistake the independent solving of tasks for the
principle of cooperation. Cooperation means that more than one person
(or other entity) solve the same task together. It can be required if a
single entity is not able to provide the service alone. We understand
functional redundancy as a special form of cooperation, because func-
tional redundancy only shows benefits in the case of failure of single
units. In contrast, cooperation is also beneficial for extra-functional
properties of the service. The human body is a good example for the
difference between this terms, because it contains many elements more
than once such as the hands, eyes, arms, and legs. Every eye provides
the (functional redundant) critical service of vision (e.g., looking for
food or dangers) alone, but only in cooperation they allow to percept

43



3 Example of Empirical Research: n-Version Programming

the environment three-dimensionally. It seems not easy to discover
pure functional redundancy in nature (the reader may try).

The concept of using functional redundancy to increase reliability is
known for a long time to hardware engineering disciplines [CA78]. Ser-
vices that could be provided by a single hardware unit, are distributed
to functionally redundant, identical hardware units. For instance,
safety-critical (hardware-) systems of airplanes are replicated several
times. The pilot has still access to critical information (such as the
artificial horizon) if one of the replicated sensor devices breaks down
because of wearout. Another real world example are nuclear power
plants that have at least two separate cooling systems. Functionally
redundant hardware systems have been proven in practice to be de-
pendable if simple guidelines are followed. The most important one is
maximum physical separation of the redundant parts, so that a local
physical effect (e.g., fire) cannot affect multiple components at the
same time.

The highest1 increase of reliability can be achieved, if the failure
different modules fail statistically independent [KL86]:

“Two events, A and B, are independent if the conditional
probability of A occuring given that B has occurred is the
same as the probability of A occurring, and vice versa. That
is pr(A|B) = pr(A) and pr(B|A) = pr(B). Intuitively, A
and B are independent if knowledge of the occurrence of A
in no way influences the occurrence of B, and vice versa.”

The assumption of independence has the advantage of simplifying the
calculation of the failure probability to the product of the single module
probabilities. Even adding modules with a relatively high probability
of failure improves the reliability of the combined modules.

3.2.2 Software reliability

“Software reliability is the probability of failure-free operation of a
computer program for a specified time in a specified environment”
[MIO87].

The N-version programming approach tries to apply the concept of
improving reliability with parallel functional redundancy from hardware
to software.
1Theoretically it would be even better to aim for negative correlation of the failure

process (independency means zero-correlation)[LPS01, p. 186].

44



3.2 N-version programming

Under the assumption of failure independence, the chance is very
low that failures will occur for the same input. The assumption implies
a second aspect for software: if two versions fail, there is no special
probability that the wrong output values are identical (for non-boolean
values). If the output value has a large range, then it is unlikely that
two version that fail, will fail with the same value. In mathematical
terms, it is expectable that the reliability increases exponentially with
additional parallel versions under the assumption of failure behavior
(occurrence and value) independence.

Unfortunately, the concept cannot be applied to software one-to-one.
An important difference is that software usually fails because of design
faults and in contrast, hardware usually fails because of detoriation
or other physical effects. The reliability of hardware systems can be
improved by the usage of identical parallel hardware channels. In
contrast, identical parallel software versions (copies) will usually fail
together for the same input - only hardware related faults such as
bit-shifts in the memory can be tolerated by parallel copies.

Software failure independence of different versions cannot be under-
stood as an realistic assumption. Moreover, it is important to be clear
about that it is just the goal to reach as much as possible diversity in
the failure behavior of single versions [Avi95, p.25].

The main strategy of the N-version approach to reach failure diver-
sity is to use diverse versions that are the product of diverse software
developments (see figure 3.2). It would be far beyond the scope of this
paper to analyze the possible reachable level of diversity of program-
mers, their backgrounds, used tools and programming languages, but
experience and empirical studies (e.g., [KL86]) let believe that even in
‘independent’ software developments, programmers have a tendency to
create similar faults. Only some simple kinds of faults such as typos are
relatively random, but anyway these are not that much of a problem,
because they are in general simpler to find than those that are related
to a misunderstanding of a complex abstract problem.

3.2.3 Development process

As noted in the last section, the reliability improvement strongly de-
pends on the failure process diversity between the versions. The sug-
gested way is to introduce diversity via separate diverse development
processes for each version. Guidelines have been introduced to prevent
some common causes of low diversity.

45



3 Example of Empirical Research: n-Version Programming

‘Diversity’  of
product failure

behavior

Product
‘diversity’

Process
‘diversity’

Figure 3.2: “Different types of diversity at different stages of the soft-
ware design and development process” (from [LPS01, p.
186])

N-version programming requires special preparation during the early
design stages. The first step in the application is to write a formal
specification (the ‘initial specification’). This requires more effort than
in other programming projects to ensure that (1) little communication is
required later, (2) the different versions are functionally equivalent, and
(3) the specification must not be too restrictive by making suggestions
that reduce the diversity [Avi95].

Every N-version development process contains three main tasks: (1)
the development of an initial specification for every NVS unit (the set
of versions with the same functionality), (2) the development of the
different versions by separate developers, (3) and the combination and
development of an environment for the NVS units, which organizes the
parallel execution and evaluation of the outputs of the versions by a
decision algorithm [Avi95].

The developer teams of the different versions have to follow a strict
communication and documentation protocols and have to be isolated
from each other to avoid ‘fault leaks’, which could introduce the same
faults into different versions. For instance, communication between the
developer groups is not allowed at all. A coordination team supervises
the compliance with regulations and communicates to the developer
groups only if it is not avoidable (e.g., changes in the initial specification)
[Avi95, p. 30].

46



3.2 N-version programming

Avižienis [Avi95] lists the following dimensions to introduce diversity:

• training, experience and location of software developers

• algorithms, data structures (restricted or open)

• programming languages

• software development process

• development tools

• testing methods

There are two different ways to maximize diversity: (a) random
diversity, and (b) forced diversity [LPS01, p. 185]. The versions of
isolated developers are diverse, because software development depends
on individual skills, knowledge, and background. The amount of
diversity is random, because people vary in the amount of differences
to each other.

A problem can be that people tend to decide too similarly. Students
from the same university might make very similar decisions based
on their identical educational background. Experienced programmers
often chose methods that are regarded as best-practice. The strategy
of ‘forced diversity’ intents to ensure some diversity by giving different
initial specifications to the developer groups. Avižienis et al [ALS88]
forced diversity by assigning different programming languages to each
development team. Programming languages vary in concepts and styles.
For example, C allows the use of pointers, which are effective but a
possible source of memory access failures. Pointer failures could be
masked by a version written in a pointer-less language, such as Java,
which might itself have the risk of making simple binary operations
such as bit-shifting complicated, and therefore another possible source
for failures. The research of Littlewood et al [LPS01, p. 197] suggests
that it is better to force some diversity.

3.2.4 Effectivity of NVP

.

NVP has lost attractiveness after the empirical work of Knight and
Leveson [KL86] showed that failures are not independent in differ-
ent versions, and therefore the reliability increase is much lower than

47



3 Example of Empirical Research: n-Version Programming

expected before. As consequence, it seems not to be realistic and dan-
gerous to base reliability prediction on the assumption of independence.
However, as Littlewood et al [LPS01] point out, there is no reason
to believe that design diversity (or NVP) is ineffective to reach high
levels of reliability. However, the reliability of the resulting system
has to be measured, because it is insecure to predict the reliability
increase without knowledge of the correlation of the failure process of
the versions.

NVP has additional benefits besides the reliability improvement
through fault tolerance:

Cross-testing: N-version programming allows to do a cross-testing
(also called back-to-back testing) between the different versions.
This helps to detect a large number of (especially simple) faults in
a short time. Anyhow, cross-testing can be a risk if the developers
are not aware that equal results are not necessarily correct. It is
unlikely that the total testing effort is reduced, because especially
complex faults, such as common mode failures, are not detected
[KL86].

High quality specification: NVP requires high quality from the initial
specification. The additional effort can discover mistakes early in
the development process, this usually reduces the risks and the
costs of the software development.

Intense specification checking: More people are involved in the devel-
opment and the required separation between system developers
and version developers leads to a double check of the specification.
This can also improve the software quality.

Field experience: NVP was applied in several industrial projects such
as the Airbus A320/330/340, Boeing 737-300 and railway signal-
ing and control systems [Avi95].

The major disadvantages of NVP are:

Development costs: Multi-version software is costly because parts of
the software are developed multiple times (design, implemen-
tation, testing) and additional organizational work ([LPS01, p.
188]) is required to combine the different versions, and manage
the parallel developments.

48



3.3 Selected empirical studies

Unknown effectiveness: It is difficult to conduct a cost-benefit-analysis,
because it is not known how effective NVP is. On of the later
studies by Eckhardt et al [ECK+91] observed a factor two to five,
but the result is not generalizable.

No guarantee for reliability increase: There is no guarantee for a re-
liability increase of the multi-version software.

Higher complexity: The introduction of diversity to improve reliability
always requires some additional logic such as decision algorithms
(i.e. voter) and the parallel execution environment. Additional
parts can introduce new reliability risks.

Reduced maintainability and readability: The architecture of NVS is
more complex [LPS01, p. 188]. This can reduce the maintain-
ability and reusability of the system [Avi95, p. 41].

Higher resource requirements: The resource requirements of multi-
version software are up to (but usually less than) N-times higher
than of a single version software.

Reduced performance: It can be required to wait for the slowest par-
allel version [Avi95, p. 40].

In conclusion, the efficiency to improve reliability of NVP is unsure,
while newer results are encouraging [Hat97, TXM01]. Efficiency is
determind by effectiveness and the costs. The costs of failure are
increasing with further integration of software in the environment.
This tendency could make NVP a more interesting alternative in the
future.

3.3 Selected empirical studies

In this section, a selection of empirical studies on NVP is summarized.
The scope of this paper does not allow to include all investigations. The
selection represents the major empirical evaluations of NVP-research
from the beginnings in the late 70s to the early 90s. This series of
early studies allows to follow the maturing of both research methods
and NVP, and to learn from weaknesses, which support todays quality
requirements of empirical work from a practical point of view.

It is not our intention to assess the empirical studies. The guidelines
of empirical software engineering were not even invented at the time of

49



3 Example of Empirical Research: n-Version Programming

publication. An assessment would require a very detailed study of the
research methods and NVP, and would probably lead to hypothetical
discussions. Moreover, we want to focus on highlighting parts of the
evolution of the studies and connect it to the research domain. Our
goal is to present the application of empirical research at different
stages of research, discuss some of the research methods applied, and
to derive some suggestions.

Several criteria were suggested to analyze empirical research meth-
ods in software engineering [Bas96, Bro97, Tic00, DBO+03, KPP+02,
Pre01, HWT05]. Most criteria address controlled experiments (see
chapter 2) or are related to the Goal-Question-Metric paradigm.

3.3.1 Early studies (77-78,80-83)

The first set of empirical studies [AC77, CA78] was published together
with the introduction of N-version programming. We have to note that
[AC77] was not available to us during the writing of this paper. There
is reason to believe in large similarities between [AC77] and [CA78]
from citations, the facts that it is written by the same authors, and
the close time frame between the publication dates.

In [CA78] two experiments were set up to test the feasibility of NVP.
The method of empirical research is chosen because of the absence of
formal theories. Besides the test of feasibility, a large scope of additional
qualitative and quantitative objectives is derived from several general
research questions to objectives.

Graduate seminars of students had to develop two different appli-
cations independently. Seven of 16 programs are analyzed closer. It
should be mentioned that three of these were written by the designers
of the experiment.

The major conclusion is that NVP is simple enough to be applied.
Some failures observed are related to missing logic elements in the
programming, and are contained in different versions. Correct results
might have been outvoted. The assessment of effectiveness discovered
to be more complicated than expected. Therefore, the authors decided
to make no conclusion on it, although the results of the study were
classified as encouraging. Chen and Avižienis [CA78] note that their
results only have small general meaning because of the newness of
N-version programming.

50



3.3 Selected empirical studies

A following set of experiments was introducted by related authors
[Kel82, KA83] and more independent investigations by [DL80, RMB+81].
Unfortunately the papers could not be analyzed in this work because
they were neither available online, nor in the library. The study of later
survey articles and empirical studies suggests that their character is
supportive without significant discoveries. Knight and Leveson [KL86]
add that these studies more or less assume failure independence and
do not assess this critical aspect.

3.3.2 The Knight Leveson Experiment (86)

The empirical investigation of Knight and Leveson [KL86] marks a
breakpoint in NVP-research. Their discovery was that the general
expectations about the reliability growth achieved through NVP is
much lower than implicitly expected.

The authors explain the derivation of a null hypothesis up from
the intuition that people tend to create faults that can lead to sim-
ilar failures. Such failures were observed in earlier experiments (i.e.
[CA78]), but the extend of this critical aspect had never been directly
assessed before. As in earlier studies, students are the subjects in an in
vitro (lab) study. The participating students have different educational
backgrounds (mixture of graduates and undergraduates from two uni-
versities and different faculties). Some mathematical skills are required
to solve the developing task. The application scenario was reused from
former software engineering experiments and was published as well. In
total, 20 pairs of programmers required in average about 50 hours to
study the specification, and design, study, and debug the software.

After the development and the debugging process (with small given
test data sets and outputs), the single versions had to pass a given
acceptance test. The versions are evaluated in a long term (several
month) test against a so-called gold version, which was carefully devel-
oped and tested by the authors. The communication with supervisors
was limited to email.

The versions produced several correlated failures. Especially ‘high-
level’ failures related to mathematics were observed for more than one
version. Some of them are related to complex semantics, others to flaws
in the specification. Six of the 27 versions did not show any failure at
all during the long term testing against the gold version.

The formal definition of the null hypothesis allows a statistical evalu-
ation of the experimental results and therefore a systematic conclusion.

51



3 Example of Empirical Research: n-Version Programming

This reveals that the assumption of independent failure behavior is
wrong with a high confidence level. Some problems, which seem not
to weaken the conclusions, are reported. Knight and Leveson [KL86]
conclude that the reliability of an NVP system might be lower than ex-
pected under the assumption of failure process independence. This does
not automatically mean that NVP is ineffective to improve reliability.

The authors explain that the complexity of the problem is low
compared to real world application sizes, so that it is not sure if the
results can be generalized. Additionally, they note that the observed
results are application dependent, and that no general conclusion can
be drawn just on basis of this single evaluation.

The study was criticized by researchers who had presented optimistic
NVP results before (a discussion of the criticism can be found in
[KL90]).

A detailed analysis of the causes of similar failures can be found in
[BKL90]. The two major findings are that the common mode failures
observed were not necessarily caused by similar faults, and that the
faults were not in the areas that have been expected by the programmers.
Fundamental flaws in the algorithms were a major cause for the similar
failures. The authors expect that it is not possible to significantly
reduce failure correlation by simple methodical changes (Note: This is
in contrast to [ALS88]).

3.3.3 The ‘Six Language’ Experiment (86-88)

A six-language study of design diversity is given by Avižienis et al
[ALS88] in cooperation with an industrial partner. Reasons for the
investigation are the research interests: (1) development of design
guidelines to remove the causes of related design faults; (2) search
for potential causes of common mode failures; (3) assessment of the
potential for diversity of the specification; (4) development of methods
to assess the diversity between a set of versions. “It was hypothesized
that different programming languages will lead people to think differ-
ently about the application problem and the program design, which
could lead to significant diversity of programming efforts”[ALS88]. The
authors claim to design an ‘industrial’ study. However, it is controlled
and organized by university researchers. Six teams of two “program-
mers” had to develop software defined by 64 pages initial specification.
At least some of them were PhD students at that time. Their edu-
cational background is diverse with programming experience between

52



3.3 Selected empirical studies

two and six years. Avižienis et al [ALS88] describe the experiment
design clearly and required the subjects to report faults after the first
successful compilation to allow a closer analysis of faults.

The six versions are measured by several metrics (e.g., lines of
code, number of statements, number of procedures). This data is only
presented without making conclusions based on them. About two of
one hundred identified faults (discovered during three different testing
phases) are identical. The order how information is presented in the
specification has an influence to the order in development, and therefore
reduces diversity. The use of different programming languages required
additionally efforts for the decision algorithm.

The authors say that the two identical faults are not very important
because they are “rare” and “could have been avoided”[ALS88]. The
existing design guideline are judged to be sufficient complete. The
initial specification is discovered to be overspecified, which limits the
diversity potential. Furthermore, it is concluded that different pro-
gramming languages are “very effective” for team separation. The
conclusions are descriptive and it is not explained how they can be
derived systematically from the results. Avižienis et al [ALS88] argue
that the fundamental problem of identical failures is avoidable through
rigorous application of the NVP paradigm, in contrast to [KL86].

3.3.4 The ‘Second Generation’ Study (85-88,91)

[KEV+88] and [ECK+91] discuss the same experiment differently. The
first one is an ‘early result’-presentation.

Kelly et al [KEV+88] aim to take NVP research a step further by
conducting a “large-scale” empirical study. They want to get more
comprehensive results to evaluate the effectiveness of NVP and to “de-
fine and develop a multi-version programming methodology” by using a
more realistic application scenario. The primary objective is to evaluate
the reliability improvement, with a closer focus on the identification and
definition of key factors and analysis of the resulting product. Many
secondary general goals are also mentioned (e.g., analysis of failure
causes, reliability modeling, role of recovery).

The study design increases the potential for diversity and confidence
by a high level of physical separation of the development teams (eight
involved research labs), the employment of programmers (instead of
students), and the larger the application scale (compared to former
experiments). The average size of the program was 2500 lines of code.

53



3 Example of Empirical Research: n-Version Programming

After an acceptance test 17 versions were tested in detail with only
low sensor noise levels. 14 of these 17 versions showed no failures
at all compared to a gold program [KEV+88]. Back-to-back testing
discovered more failures. The initial specification was published to
support repeatability.

A high number of flaws was discovered in the initial specification
during the study. The reliability of the developed N-version software
(using consensus decision by voting) is stated higher than the reliability
of the gold program.

Kelly et al [KEV+88] conclude that the benefits of the redundant
development process “clearly extend beyond than those anticipated
for the final MVS system alone” (MVS = multi-version software) from
the high number of early discoved faults in the specificaltion and the
effectiveness of back-to-back testing to find a large number of faults.
Fault analysis “proved” that the specification is “the primary source”
of common mode failures.

Eckhardt et al [ECK+91] published a closer description of the same
experiment and a more sophisticated analysis of the results is given.
The large differences to the presentation of early results in [KEV+88]
are not explained.

The focus is set to assess the effectiveness of NVP for critical systems.
It was decided to redefine failures to abstract from voting. No distinc-
tion is made between identical failures and dissimilar failures. In other
words, some possible benefits of voting strategies are ignored intention-
ally (no assessment of decision algorithm). The reliability growth is
measured under the baseline assumption of independent programming
teams. Diversity in form of common mode failures is assumed as key
variable for this evaluation. The authors are aware that the number of
common mode failures is not a very good metric for diversity, but it
was not possible to find better candidates for metrics.

The choice of 40 programmers (in development, additional 20 during
validation) from 4 universities is explained.Flaws in the specification
lead to insufficient reliability and common faults during the develop-
ment. This problem is recognized early enough and the authors decide
to remove these failures. This can be done because the specification
quality is not the key variable of the analysis and related faults should
not be part of the conclusion.

The operational evaluation of the versions is conducted by an external
organization. Eckhardt et al [ECK+91] give reasons for choosing a
simulation-based evaluation instead of using a goal program. The whole

54



3.4 Analysis and discussion . . .

evaluation procedure and the results are discussed and presented in
detail.

Some coincident failures are connected to a special point in the
specification. However, the specification is sufficiently well. This is
supported by the fact that 14 groups did not make the related mistakes.
Therefore, Eckhardt at. al conclude that some aspects of the application
problem are the cause of similar failures (and not the specification as its
written representation). A second class of coincident failures observed
is caused by dissimilar (‘logical unrelated’) faults. This means that
diversity of the versions (and especially the faults) does not guarantee
diversity in the failure behavior.

It is possible to create poor multiversion systems in terms of reliability
increasement based on the versions developed. The failure probability
under the experiment conditions is only two to five times smaller than
the average failure probability [ECK+91].

The results of Knight and Leveson [KL86] are supported with the
conclusion that the assumption of independence is clearly not justified
for predicting reliability increase [ECK+91]. Furthermore, the results
indicate that independent development (as the primary NVP paradigm)
is no guarantee for sufficient reliability improvement, because some
coincident failures are caused by ‘input domain related’ (problem
related) faults. It is stated clearly that the study cannot be used to
decide if NVP is more efficient than the development of one good
version under conditions with equal resources.

3.4 Analysis and discussion of observations in
the selected empirical studies

From the beginning of NVP-research, empirical methods were applied
in order to support intuitions or explanations. Avižienis and Chen
[CA78] used it because of the lack of alternatives. Many computer
science domains missed the chance to support findings with empirical
evidence [Tic98, Pre01]. This is not the case in the NVP domain -
many later publication about NVP followed the example. Empirical
investigations such as [KL86, ECK+91] verified important hypotheses,
theories and modes, and discovered results of importance beyond the
scope of NVP.

The ‘early studies’ were basically testing the feasibility. Not every

55



3 Example of Empirical Research: n-Version Programming

scientist would classify these papers as empirical research, because
most of the general guidelines of empirical research in software engi-
neering were not applied (because they were published later). Abstract
goals and missing systematic derivation of questions or metrics reduce
confidence and conclusion strength. However, feasibility tests can be
very helpful to identify relevant system variables or relationships from
scientific observations. Chen and Avižienis [CA78] explain their choice
of research style with the lack of theory. We agree in this - a more
informal experiment might be suitable and effective at the first period
of research in a new domain. Good empirical studies are expensive and
risky if theory and former experience are missing.

The later studies such as [ECK+91, KL86] defined goals, purposed
and metrics, described the experiments carefully, and try to achieve
as much as possible control over the relevant system variables. This
seems to be a evolution from ‘demonstrations’ towards controlled
experiments. Controlled experiments are attractive because relatively
strong conclusions can be drawn based on observation. This is a possible
explanation for the fact that high levels of control were not possible
at the beginning of NVP research, because system variables were not
known and theory was missing to develop metrics.

The chapter about controlled experiments (chapter 2) recommends
the rigorous application of research methods. The studies analyzed
give examples to support these claims:

• Chen and Avižienis [CA78] wanted to evaluate the efficiency
of NVP, but did define neither metrics nor objectives for the
assessment of effectiveness of NVP in detail. In the end of the
paper they were not able to conclude on the effectiveness. Besides,
so far it has not been possible to draw strong conclusions on the
effectiveness of NVP compared to the development of single
versions (but many of the studies mentioned it as one of the
goals).

• Knight and Leveson [KL86] derived a null hypothesis and met-
rics from a single research question. The experiment design is
described in detail and sufficient repeatability is ensured. This
allowed them to draw a strong conclusion with high confidence
derived by statistical methods. An additional benefit appeared
later as their surprising results had to withstand criticism. Their
empirical investigation became a “famous”[Tic98] example for
the benefits of empirical research.

56



3.4 Analysis and discussion . . .

The GQM-paradigm allows the study of more than one goal [Bas96,
BR88] in a single study. Studies in software engineering are expen-
sive. This can force researchers to address different goals in the same
empirical investigation. This does not mean that it is required to
address multiple goals in a single paper. Often the scope of a paper is
limited to a few pages and a precise description of an empirical study
with many goals is not possible. We believe to focus on one goal or
one research question for each paper supports readability, the line of
argumentation, repeatability and precision. One possible explanation
to write about multiple goals at the same time might be that the
writer believes the ‘larger’ contribution makes it easier to publish. This
should not be the case. Tichy [Tic98] suggests to reviewers that not
the amount of contribution is a primary criteria for the assessment -
also empirical proves for ‘obvious’ theories are important. We think
that [KL86, ECK+91, BKL90] demonstrate that a limitation to single
goals or a small number supports the quality without reducing the
attractiveness.

In contrast, [CA78, KEV+88, ALS88] use a broad scope of goals in
a single paper. We regard this did not benefit to quality aspects such
as clearness, repeatability, and strength of conclusion.

Many different goals or research questions can be a serious risk to
a single empirical study. For instance [ALS88] aims to analyse the
effects of some known variables (specification, design guidelines), to
develop new metrics (diversity), to identify more relevant variables, and
to assess the effects of an additional concept (different programming
languages). These objectives are not independent if the metrics are
not chosen very carefully (if possible). A controlled experiment would
suggest that only a single variable is modified at the same time. If
more than one aspect changes during the experiment, it might be not
possible to identify and evaluate effect-cause relationships and compare
results to other studies. The conclusions of [ALS88] might reflect that
problem. For instance, we see no empirical support in the paper for the
claims that the application of different languages are “very effective”.

It is an important choice how to distribute the limited budget re-
sources for a study in an experiment. As mentioned above, Avižienis
et al [ALS88] address many different objectives. Only one team of
programmers was used for each programming language. This seems far
too few to make statements independently from the skills of the single
teams. Avižienis et al [ALS88] are not doing this mistake (directly),
because they just assess the feasibility of the application of different lan-

57



3 Example of Empirical Research: n-Version Programming

guages in multi-version software. They cannot make conclusions about
the influence of the application of different programming languages to
the reliability.

3.5 Conclusions

In this seminar paper we addressed the application of empirical re-
search in N-version programming. A general introduction to N-version
programming was used to analyse the influence of empirical research
in the context of the research domain.

We draw two main conclusions:

1. The usage of empirical research was able to advance NVP research.
The studies convinced practitioner of the industrial application of
NVP in safety critical systems. Contrary research results could
be supported by strong empirical evidence to withstand criticism.

2. The level of conformance to the guidelines of empirical research
and GQM are different between the studies. We showed studies of
strict research method application that drew strong conclusions.
Additionally, we presented studies that had problems in drawing
the conclusion, which seems to be related to a lack of strict
empirical research methodology. For instance, we discussed that
some goals of the studies were missed, or did not allow to conclude
general statements because of missing focus, lack of control, or
unknown key variables. We want to add that the level of theory
available and experience seems to constrain the design possibilities
and efficiency of empirical research methods.

Both results are not surprising, but support the general knowledge.
It was not our intend to assess the studies, so our analysis gives only an
idea of possible relationships between some design decisions of empirical
studies and its results. The scale and the nature of this study limits the
possible confidence in the two conclusions to a low level. Nevertheless,
N-version programming is similar to many other subareas of software
engineering research, and we believe that analogous results are likely
in other domains of software engineering with similar complexity.

58



Bibliography

Bibliography

[AC77] Avižienis, A.; Chen, L.: On the implementation of N-
version programming for software fault tolerance during
program execution. In: Proceedings of International Confer-
ence on Computer Software and Applications (COMPSAC
77), IEEE, November 1977, pp. 149–155

[ALRL04] Avizienis, A.; Laprie, J.-C.; Randell, B.; Landwehr,
C.: Basic Concepts and Taxonomy of Dependable and
Secure Computing. In: Transactions on Dependable and
Secure Computing 1 (2004), № 1, pp. 11–33, ISSN 1545-
5971, doi:10.1109/TDSC.2004.2

[ALS88] Avižienis, A.; Lyu, M.; Schütz, W.: In search of effective
diversity: a six-language study of fault-tolerant flight con-
trol software. In: Digest of Papers of the Eighteenth Inter-
national Symposium on Fault-Tolerant Computing (FTCS),
IEEE, June 1988, pp. 15–22, doi:10.1109/FTCS.1988.5291

[Avi95] Avižienis, A.: The Methodology of N-Version Program-
ming. In: Software Fault Tolerance, New York, NY, USA:
John Wiley & Sons, Inc., section 2, 1995, ISBN 0471950688,
pp. 23–46

[Bas96] Basili, V. R.: The role of experimentation in software
engineering: past, current, and future. In: ICSE ’96: Pro-
ceedings of the 18th international conference on Software
engineering, Washington, DC, USA: IEEE, 1996, ISBN
0-8186-7246-3, pp. 442–449

[BKL90] Brilliant, S.; Knight, J.; Leveson, N.: Analysis of
faults in an N-version software experiment. In: Transactions
on Software Engineering 16 (1990), № 2, pp. 238–247, ISSN
0098-5589, doi:10.1109/32.44387

[BR88] Basili, V. R.; Rombach, H. D.: The TAME Project:
Towards Improvement-Oriented Software Environments. In:
Transaction on Software Engineering 14 (1988), № 6, pp.
758–773, doi:10.1109/32.6156

59



Bibliography

[Bro97] Brooks, A.: Meta Analysis-A Silver Bullet-for Meta-
Analysts. In: Empirical Software Engineering 2 (1997),
№ 4, pp. 333–338, doi:10.1023/A:1009793700999

[CA78] Chen, L.; Avižienis, A.: N-Version Programming: A
Fault-Tolerance Approach To Reliability Of Software Oper-
ation. In: Digest of Papers of the 8th International Sym-
posium on Fault-Tolerant Computing (FTCS) (reprint in
Proc. FTCS-25), IEEE, June 1978, pp. 3–9

[DBO+03] Dawson, R.; Bones, P.; Oates, B. J.; Brereton, P.;
Azuma, M.; Jackson, M. L.: Empirical Methodologies
in Software Engineering. In: Proceedings of the Eleventh
Annual International Workshop on Software Technology
and Engineering Practice (STEP’03), Washington, DC,
USA: IEEE, 2003, ISBN 0-7695-2218-1, pp. 52–58

[DL80] Dahll, G.; Lahti, J.: An investigation of methods for
production and verification of highly reliable software. In:
Proceedings of the Conference on Safety of Computer Con-
trol Systems (SAFECOMP 79), Pergamon Press, 1980, pp.
89–94

[Ebe99] Eberhard, K.: Einführung in die Erkentnis- und Wis-
senschaftstheorie. Stuttgard, Germany: Kohlhammer, 1999,
ISBN 3-17-015486

[ECK+91] Eckhardt, D.; Caglayan, A.; Knight, J.; Lee, L.;
McAllister, D.; Vouk, M.; Kelly, J.: An experimen-
tal evaluation of software redundancy as a strategy for
improving reliability. In: Transactions on Software En-
gineering 17 (1991), № 7, pp. 692–702, ISSN 0098-5589,
doi:10.1109/32.83905

[Hat97] Hatton, L.: N-version design versus one good version. In:
Software 14 (1997), № 6, pp. 71–76, doi:10.1109/52.636672

[HWT05] Höst, M.; Wohlin, C.; Thelin, T.: Experimental con-
text classification: incentives and experience of subjects.
In: Proceedings of the 27th international conference on
Software engineering (ICSE ’05), New York, NY, USA:
ACM Press, 2005, ISBN 1-59593-963-2, pp. 470–478, doi:
10.1145/1062455.1062539

60



Bibliography

[KA83] Kelly, J.; Avižienis, A.: A Specification-Oriented Multi-
Version Software Experiment. In: Proceedings of the 13th
International Symposium on Fault-Tolerant Computing
(FTCS 13), Pergamon Press, 1983, p. 120

[Kel82] Kelly, J.: Specification of Fault-Tolerant Multi-Version
Software: Experimental Studies of a Design Diversity Ap-
proach. Ph.D. dissertation, University of California, Los
Angeles, 1982

[KEV+88] Kelly, J.; Eckhardt, J., D.E.; Vouk, M.; McAllis-
ter, D.; Caglayan, A.: A large scale second generation
experiment in multi-version software: description and early
results. In: Digest of Papers of the Eighteenth International
Symposium on Fault-Tolerant Computing (FTCS), IEEE,
June 1988, pp. 9–14, doi:10.1109/FTCS.1988.5290

[KL86] Knight, J.; Leveson, N.: An Experimental Evaluation
of the Assumption of Independence in Multi-version Pro-
gramming. In: Transactions on SoftwareEngineering 12
(1986), № 1, pp. 96–109

[KL90] —— A reply to the criticisms of the Knight & Leveson
experiment. In: SIGSOFT Softw. Eng. Notes 15 (1990),
№ 1, pp. 24–35, ISSN 0163-5948, doi:10.1145/382294.382710

[KPP+02] Kitchenham, B.; Pfleeger, S.; Pickard, L.; Jones,
P.; Hoaglin, D.; El Emam, K.; Rosenberg, J.: Prelim-
inary guidelines for empirical research in software engineer-
ing. In: Transactions on Software Engineering 28 (2002),
№ 8, pp. 721–734, doi:10.1109/TSE.2002.1027796

[LPS01] Littlewood, B.; Popov, P.; Strigini, L.: Modeling
software design diversity: a review. In: ACM Comput.
Surv. 33 (2001), № 2, pp. 177–208, ISSN 0360-0300, doi:
10.1145/384192.384195

[MIO87] Musa, J. D.; Iannino, A.; Okumoto, K.: Software
reliability: measurement, prediction, application. New York,
NY, USA: McGraw-Hill, Inc., 1987, ISBN 0-07-044093-X

[Pre01] Prechelt, L.: Kontrollierte Experimente in der Soft-
waretechnik. Berlin: Springer Verlag, 2001, ISBN 3-540-
41257-3

61



Bibliography

[RMB+81] Ramamoorthy, C.; Mok, Y.; Bastani, E.; Chin, G.;
Suzuki, K.: Application of a methodology for the develop-
ment and validation of reliable process control software. In:
Transactions on Software Engineering 7 (1981), № 6, pp.
537–555

[Sea99] Seaman, C.: Qualitative methods in empirical studies of
software engineering. In: Transactions on Software Engi-
neering 25 (1999), № 4, pp. 557–572

[Tic98] Tichy, W. F.: Should Computer Scientists Experiment
More? In: IEEE Computer 31 (1998), № 5, pp. 32–40,
ISSN 0018-9162

[Tic00] —— Hints for Reviewing Empirical Work in Software Engi-
neering. In: Empirical Software Engineering 5 (2000), № 4,
pp. 309–312

[TXM01] Townend, P.; Xu, J.; Munro, M.: Building dependable
software for critical applications: multi-version software
versus one good version. In: Proceedings of the Sixth In-
ternational Workshop on Object-Oriented Real-Time De-
pendable Systems, IEEE, January 2001, pp. 103–110, doi:
10.1109/FTCS.1988.5291

62



4 Integration of Qualitative
and Quantitative Methods in
Software Engineering
Research

Simon Giesecke <giesecke@informatik.uni-oldenburg.de>
Thorsten Giesecke-Kopp <kopp.thorsten@web.de>

Abstract

Empirical studies in Software Engineering do not only deal with software
artifacts, but also with the people involved in software development.
Therefore, both quantitative and qualitative methods should be inte-
grated in Software Engineering research, in order to benefit from their
specific advantages. We illustrate the integration of quantitative and
qualitative methods using an example research design following the
action research approach.

4.1 Introduction

To a large extent, empirical research in Software Engineering (SE)
has been based on a quantitative approach. In the related field of
Information Systems, which initially relied on quantitative research as
well, the use of qualitative methods has been established for some time
now (cf. [KD88]), but still remains in a minority position today [CH04].
The trend towards qualitative methods was based on the broad and
controversial discussion in social sciences on the use of quantitative
and qualitative methods. In more recent SE research which focuses on

<giesecke@informatik.uni-oldenburg.de>
<kopp.thorsten@web.de>


4 Integration of Qualitative and Quantitative Methods

the people involved in software development qualitative methods are
used as well [Sea99]. In this case, research methods originating from
social sciences or psychology, are needed to deal with the complexity
of human behaviour.

In more recent social research, opportunities for combining of quali-
tative and quantitative methods are discussed [May01]. We propose
to apply these concepts to SE research. In an exemplary study design,
we follow the Action Research approach, which has been successfully
applied in IS research [BWH96].

Overview The rest of the paper is structured as follows: First, we dis-
cuss the different categories of objects that are considered by Software
Engineering research (Section 4.2). Afterwards, we elaborate on the dif-
ferences of qualitative and quantitative research methods (Section 4.3),
and present several research methods, with a focus on research methods
for qualitative research (Section 4.4). Then, we discuss how both kinds
of methods can be combined in general (Section 4.5). In Section 4.6,
we discuss exemplarily how this combination can be applied using the
Action Research approach to resolve research questions which arose in
a real academic/industrial collaboration project. Section 4.7 concludes
the paper.

4.2 Categories of Research Objects in
Software Engineering

The choice of an appropriate research method depends on the regarded
object and the research question [Fli98, p. 4ff]. Empirical SE research
is concerned with different categories of objects:

Software artefacts Software artefacts may be distinguished into those
used for automated processing, e.g., transformation into another
artefact or execution, and those used for reading and communi-
cation. An artefact may serve both purposes, which is the case
for source code, for example; any commentary/documentation
contained in source code primarily addresses human readers.
Byte-code, on the other hand, is (usually) neither written nor
read by humans.

Research in this category constitutes the majority of published
SE research [GRV04]. For his “Preliminary Software Engineering

64



4.2 Categories of Research Objects in Software Engineering

Theory” [Zen01], Zendler only considers research that reasons
about measurements that are applied to software artefacts which
have been produced by applying Software Engineering techniques.

Developers of software Research concerning developers of software
(and other stakeholders involved in the development of software
systems) is the second large field of SE research. The design and
improvement of software development methods belongs to this
type of research as well as the fields of Psychology of Programming
[PPInd] and Program Comprehension. For example, it might
concern team work aspects, the impact of developer incentives
of the development of software, or the subjective theories [GS01]
developers possess of the software architecture in some software
project. Research on Requirements Engineering involves other
stakeholders in addition.

Users of software Users of software in general or, to be more precise,
users of arbitrary software-intensive systems are not in the main
focus of SE. They are in the focus of the disciplines of Computer-
Human Interaction [ACMnd], which takes a more individual
point of view, and Information Systems, which takes a more
organisational point of view.

However, research into developers of software can also be research
into developers as users of software, in particular concerning the
use of CASE tools.

Learning how to use and develop software The aspect of learning to
use software is addressed by the fields of Information Systems,
at least concerning the use of business information systems, and
Computer-Human Interaction.

Since not only the user interface is affected, this aspect is also of
relevance to Software Engineering: the underlying conceptualisa-
tion of the real world are affected as well; and the development
of software, most importantly its decomposition, heavily depends
on these conceptualisations.

The latter aspect is the focus of research on SE Education. Neither
of these two aspects is in the primary focus of this paper.

The objects falling into these categories are closely related to each other;
thus, concrete research cannot always be ascribed a single one of these

65



4 Integration of Qualitative and Quantitative Methods

categories. By distinguishing immediate from ultimate research objects,
the categorisation can be supported: The ultimate research object is
the object about which the researcher wants to increase knowledge. The
immediate research object is the object that he regards for this purpose,
and may in this sense considered his data. This distinction also brings
about the distinction between data collection, which retrieves data
from the ultimate research objects, and data analysis, which operates
on the retrieved data (see Section 4.4). It is important to note that the
distinction cannot be derived from the character of the objects, but
depends on the subjective decision of the researcher on the purpose
of his research. For example, research in source code documentation
can be viewed as research into software artefacts (software artefacts
as research objects), but also as research into people who write and
read source code (software artefacts as data). More generally, research
which evaluates the development process indirectly by assessing its
products, regards the development process as the research object and
the products of the development process as data.

Within each of these categories, several levels of scope can be distin-
guished. In [GRV04], levels were identified for software artefacts and
users/developers of software: These are three technical levels (com-
puting element, system, abstract concept) resp. six behavioural levels
(individual, group/team, project, organisational context, external busi-
ness context, profession, society). A similar distinction may be made for
the learning categories, e.g., individual, learning group, course, cohort,
university, national/international curricula and university/educational
policies.

4.3 Qualitative and quantitative research
approaches

4.3.1 The research process

In the following, we will refer to research processes, i.e., research
activities at a level of scope that considerably transcends the daily
planning of work. We define the important terms of research project,
step and phase.

Definition 4.1 (Research project). A research project is more or less
arbitrary in scope with respect to the content of the research but ought

66



4.3 Qualitative and quantitative research approaches

to make it administratively handleable. It is often the basic unit for
funding, either by public funding agencies (BMBF, DFG in Germany)
or by industrial partners. However, research projects are also modelled
at other levels of scope: First, at a coarser level, a long-term research
project may consist of several funding phases. Second, at a finer level, a
(doctoral or Master’s) thesis project may also be considered a research
project. A research project consists of several research steps.

Definition 4.2 (Research step, research phase). A research step is
confined by methodological considerations. One research step corre-
sponds to the application of one research method. It is the unit of
generation of research results, the character of which depends on the
chosen method. If a research method is itself decomposed, the resulting
elements will be referred to as research (step) phases.

In cyclic/iterative research methods, the distinction between step
and phase is not possible in a definite way.

4.3.2 Data Scale Levels in Quantitative Research

Data in quantitative research can be classified into several scale levels
(levels of measurement), which have an effect on the applicable statis-
tical methods. The levels can be ordered hierarchically from nominal
to ratio level, i.e., data on the higher levels have all features of that
on the lower levels, and all statistical methods applicable at the lower
levels can also be applied to data at a higher level.

We first define the notions of metric and measurement:

Definition 4.3 (metric, measurement). Let U be the set of research
objects, and S a set.

Then, a function m : U → S is a metric for U with the scale S.
For x ∈ U , the act of determining m(x) is called a measurement of

x in S.
The family (m(x))x∈U is called data (for U with respect to m).

Depending on the type of S (its structure or characteristics), differ-
ent types of scales are distinguished (and thereby different types of
measurement):

Nominal Scale The data is textual or numeric. No order is defined
on S, i.e., no “less than” or “greater than” relation is available.
Examples of nominal scales are names, addresses, and telephone
numbers.

67



4 Integration of Qualitative and Quantitative Methods

Ordinal Scale An order relation is defined on S, the data family is
said to consist of ordinal values. Arithmetical operations such as
addition and multiplication are not defined for this scale.

As a statistical method on the data family, the median can be
calculated. Examples of ordinal scales are rankings, school grades,
revision numbers.

Interval Scale The scale S consists of numeric values which are sepa-
rated by the same interval, which is attached importance to. An
addition operation is defined on S.

As a statistical method, the arithmetic mean can be calculated.
However, the zero point of the scale is chosen deliberately, and
no multiplication or division operations are defined on S.

Examples are temperatures in the Celsius and Fahrenheit scales,
and years in the Georgian calender.

Ratio Scale For a ratio scale, in addition, a meaningful zero point is
defined. A multiplication (and division) operation are defined on
S. All statistical methods can be applied. Examples are distances
measured in metres, temperatures measured in Kelvin, age of
people measured in years.

While the mathematical definition allows any function to be called a
metric, a metric is only useful if it has a natural interpretation. This
also restricts the type of scales to be used, since it is possible to map
any scale into the set of real numbers, of course, which would always
lead to a ratio scale.

4.3.3 Comparison of quantitative and qualitative
approaches

The intuitive understanding of the term “qualitative”—in contrast to
“quantitative”—may be worded, for example, as in [Sea99]: “Qualitative
data are data presented as words and pictures, not numbers.” This
explanation is quite straightforward, but does not capture the two
concepts completely, as explained in the following.

Quantitative Research

Quantitative research does indeed, but not exclusively, deal with data
presented in numbers, which are analysed using statistical methods. As

68



4.3 Qualitative and quantitative research approaches

a borderline case, also data at the nominal scale level can be analysed
quantitatively. The data are based on a large sample, optimally a
representative sample.

Quality criteria in quantitative research are objectivity (is the mea-
sure independent from the researcher?), reliability (is the measure
reproducible?), and internal and external validity (did the researcher
measure what they intended to measure, and can the result be applied
to every other case?).

The aim of quantitative research is to identify independent and
dependent variables, eliminate disturbing variables and thus reduce
the complexity of the regarded objects. A research step is based on
a hypothesis, which is to be falsified or confirmed. Progress in the
quantitative (or hypothetico-deductive) paradigm primarily emerges
from testing hypotheses.

Qualitative Research

Qualitative research, as noted above, analyses—among others—textual
and graphical data. The sample is restricted to a few instances or even
a single instance. Thus, it is possible to deal with and interpret the
full complexity of the regarded research objects. Yet, the results are
not supposed to be objective (but intersubjective), or to be generalised
to all other cases.

Characteristics of qualitative research are openness for unexpected
results and an interpretive approach to data analysis. When people
are the object of qualitative research, research is based on their ability
to communicate—they are thus seen as ‘experts’ for their subjective
point of view—, and research is preferably performed in their every-day
environment rather than in a lab (‘naturalism’) [Lam93, pp. 17ff].

As a qualitative research design is based on open-ended questions
rather than a hypothesis, the goal is to generate new propositions or
to systematically improve existing theory.

Discussion

In contrast to the impression conveyed by these two abstract, proto-
typical descriptions, one cannot always discriminate definitely between
concrete qualitative and quantitative research.

In SE, we also find several opportunities to combine both approaches:
As noted in Section 4.2, different objects of research in SE require

69



4 Integration of Qualitative and Quantitative Methods

different methods. For most objects, both qualitative and quantitative
methods can be applied, for example software engineers may participate
either in a qualitative interview, or a quantitative multiple-choice
questionnaire survey.

4.3.4 Research Approaches

In this section, several research approaches are presented, ranging from
(Quasi-)Experimental Research (Section 4.3.4), over Action Research
(Section 4.3.4) and Grounded Theory (Section 4.3.4) to Evaluation
Research (Section 4.3.4).

In experimentation, in vivo setups may be distinguished from in
vitro setups [Bas96]. The former are conducted in the field under
normal conditions, while the latter are conducted in a laboratory under
controlled conditions. Formal experiments require an in vitro setup.

The remaining research approaches are all virtually always applied
in an in vivo setting.

(Quasi-)Experimental Research

The aim of experimental research is to create a Controlled Environ-
ment in a laboratory, in which “complete control of all variables is
possible” [Kar02, p. 31]. This aim corresponds to the quantitative re-
search setting, where the isolation of variables is crucial. Experimental
research is the basis for most natural sciences and is also performed
intensively in the psychological school of behaviourism.

However, when research on complex organisations is performed, ex-
perimental research settings encounter severe problems: “In software
process research, where the practise is so tightly connected to organi-
sational and human factors, it is difficult to recreate environments an
situations in the laboratory that are realistic.” [Kar02, p. 33]

Action Research

Action Research was originally conceived by Lewin [Lew48] and uses
scientific methods to solve important social or organisational issues
together with those who experience these issues unintermediately. Thus,
Action Research has two goals: to solve a problem for a client and to
contribute to scientific knowledge [CB01, p. 4–6].

70



4.3 Qualitative and quantitative research approaches

Action Research takes place in an iterative process, which is shown
in figure 4.1. In a pre-step, Context and purpose of the Action Research
design are determined. Then, four steps follow iteratively: (1) Diag-
nosing, i.e., identifying a problem and relating it to relevant scientific
theories, (2) Planning Action, i.e., planning concrete steps to solve
the problem based on the diagnosis, (3) Taking Action, (4) Evaluating
Action, which may result in refining the problem definition or planning
new action, then, continue at (1) [CB01, p. 16–18].

Evaluating action

Diagnosing

Planning action

Taking action

Context and purpose

Figure 4.1: Action Research Cycle (from: [CB01, p. 17])

Grounded Theory

The notion of Grounded Theory goes back to the work of Glaser and
Strauss [GS75]. The main idea of Grounded Theory is to inductively
generate theories, or propositions, that are grounded in data. The
generation of Grounded Theory is a circular process, during which the
data sample is expanded until theoretical saturation is reached.

In detail: At the beginning, a group of cases is chosen according
to their theoretical relevance [GS75, p. 49] for the development of
new knowledge concerning the research question. Then, research is
carried out in order to generate new propositions, according to the
constant comparison method (see section 4.4.2). This method basically
includes taking, reviewing and categorising field notes. Afterwards, a
new group of cases is chosen to collect data from, or additional data
from an previously used group is collected. This process ends, when no
additional data is found, from which the researcher can develop new
properties for a category: The researcher “sees similar instances over
and over again” [GS75, p. 61]. At this point, theoretical saturation is
reached, and the research cycle for this category ends.

71



4 Integration of Qualitative and Quantitative Methods

Evaluation Research

The notion of ‘evaluation research’ covers several different research
approaches and methods (both qualitative and quantitative), which
serve different goals and have different assumptions. Its origins are the
assessment of political programs, as defined by Leeuw [Lee00, p. 57]:

Definition 4.4 (Evaluation Research (Leeuw)). Evaluation is [. . . ] the
application of social science theory and methodology in order to assess
both ex-ante and ex-post the implementation, the impact and the side-
effects of programs, policies, strategies and other ‘tools of governments’
[. . . ] on society, including the explanation of those impacts/side-effects.

Although evaluation research is also employed in Software Engineer-
ing research, the notions and taxonomies from social research must
be modified slightly to be applicable. An exemplary approach to this
adaption can be found in [FF01].

4.4 Research Methods

Research methods must be chosen depending on the research question
and research object. We distinguish two types of research phases,
which require different methods: Data collection and data analysis.
In many cases, there is a clear distinction between these two phases;
however, in some settings data collection and analysis overlap and at
least some analysis is performed already during data collection (e.g.,
reconstruction of subjective theories, see Section 4.4.1).

4.4.1 Data Collection Methods

Although we focus on qualitative data collection methods in this chapter,
many of the methods presented here have quantitative counterparts.
In addition, it is possible to combine qualitative data collection with
quantitative data analysis (see Section 4.4.2).

Observation

Observation is used frequently both in qualitative and quantitative
research. Observational methods may be classified in several dimen-
sions [Fli98, p. 137], of which we consider the following most important
for our issue:

72



4.4 Research Methods

Covert vs. overt observation The individuals being observed may be
aware of the observation (overt) or unaware of the observation.
In the first case, they may know the research question to varying
degrees of detail.

Non-participant vs. participant observation In some settings, the ob-
server becomes an active part of the observed field. In the con-
tinuum between non-participation and participation, at least
four different roles may be distinguished: The complete partici-
pant, the participant-as-observer, the observer-as-participant, the
complete observer.

Degree of standardisation In quantitative approaches, observation is
usually standardised: For example, in a development team meet-
ing, the observer may count the number of contributions to the
discussion made by each team member. In qualitative research
the observers stay more flexible, as the setting is less standard-
ised; yet the observation is also focused on one or more research
questions.

Interview

Oral interviews are very widespread in both qualitative and quantitative
research. Interviews can be classified in (at least) two dimensions: open-
endedness of individual question and standardisation of the question
set.

Interviews containing open-ended questions enable the interviewee
to express his or her ideas very freely, while closed-ended questions
have the interviewee make a choice in a pre-determined value space.
Common are questions where two or more options are listed and the
interviewee has to choose from them (‘multiple-choice questions’). Semi-
open-ended questions are similar to open-ended questions, but contain
the possibility to add own answers in the case the all values in the
predetermined value space seem inappropriate to the interviewee.

Standardised interviews consist of a predetermined set of questions,
that the interviewer must follow exactly. Non-standardised interviews
in contrast consist only of one question at the beginning, framing the
subject of the interview. In the following, the interviewer only listens
and asks questions spontaneously to ensure he or she has understood
the interviewee correctly. Also, a form between these two extremes
exists: In semi-standardised interviews, a set of questions is given as a

73



4 Integration of Qualitative and Quantitative Methods

basis for the interview, but the interviewer may alter them during the
interview and is free to ask ad-hoc questions in addition [Lam05].

Today, the usual practise is to record interviews on some audio media,
and to transcribe them afterwards into a written text, which is the
object of the following analysis. This way, the interviewer can fully
concentrate on the interviewing and does not have to take notes during
the interview. Yet, it is regarded useful to take field notes after the
interview, covering the setting, the impressions and ideas during the
interview, and any extraordinary events during the interview.

Questionnaire Survey

Questionnaire surveys are the paper-and-pencil (or online) counterpart
to (oral) interviews. In contrast to the latter, surveys are always
standardised, as the questions are written down. Yet, they may be
more or less open-ended, as the examples in table 4.1 illustrate.

Closed-ended ques-
tion

Your gender:
a) Male
b) Female

Semi-open-ended
question

Which is the most important reason for choosing
a programming language?
a) availability of tools as open-source software
b) personal experience
c) theoretical considerations
d) other: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Open-ended question What measures during the software engineering
process are used to find and deal with errors?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4.1: Example survey questions

Group discussion

Instead of interviewing single individuals, in many studies group inter-
views and group discussions are used. Following this approach, persons
can be interviewed more efficiently, saving time and money.

Moreover, group discussions also reveal group dynamics which would
not be perceived conducting single interviews. Thus, they “may reveal

74



4.4 Research Methods

how opinions are created and above all changed, asserted or suppressed
in social exchange” [Fli98, p. 121].

In Software Engineering research, group discussions are suitable
primarily when the researchers focuses on team work, stakeholder
cooperation, roles of stakeholders in the development, or decision
making.

Documents

Sometimes, data which can be used in research is already available and
does not need to be generated by the researcher. Such documents of
interest can be diaries, memos, pictures and video documents, as well
as help-desk logs, purchasing records and official publications [Oat03,
p. 61].

Besides these documents, in Software Engineering research there
are also some more technical data sources that can be analysed using
qualitative or quantitative methods:

• source code comments

• architectural design decisions

• other software artefacts in general

Approaches exploiting such data are known as mining software repos-
itories [MSRnd] and Software Archaeology [HT02].

Reconstruction of Subjective Theories

Mainly in German social research, research on so-called ‘Subjective
Theories’ has been proposed. The basis of this approach is the image
of ‘man-the-scientist’ (Kelly [Kel63]), which means that all people use
subjective theories in everyday life that are similar in structure with
objective theories in science [GS01].

These Subjective Theories are reconstructed in a two-phase approach.
Firstly, a special case of semi-standardised, open-ended interview is
performed. Secondly, a graphical structure consisting of the key notions
from the interview transcript is created by both the interviewer and the
interviewee. This structure is used to explain the causal relationships
between the key notions.

Special about this approach is the validity criterion of ‘dialogue
consensus’. This means that not the interviewer alone interprets the

75



4 Integration of Qualitative and Quantitative Methods

interview text and defines the results of the research, but both the
interviewer and the interviewee construct the results in a dialogue.
Thus, in this approach there is no clear border line between data
collection and data analysis.

In the field of Software Engineering, for example it were possible to
reconstruct a developer’s Subjective Theories on the architecture of a
software project.

4.4.2 Data Analysis Methods

Statistical Methods

In order to analyse data quantitatively, a large set of statistical methods
is available, especially the measures of central tendency (e.g., modus,
median and mean), of variance, and of statistical connection (e.g.,
correlation, contingency or co-variance). Yet, these statistical methods
are outside the scope of this text.

These methods can, for example, be applied to data from a quanti-
tative survey, a standardised observation, as well as software-artefacts
(software metrics).

Qualitative Content Analysis

The main idea of qualitative content analysis as proposed by Mayring
is to “preserve the advantages of quantitative content analysis as
developed within communication science and to transfer and further
develop them to qualitative-interpretative steps of analysis” [May00,
§ 2].

Qualitative content analysis consists of three analysis phases [May03,
p. 58]:

Summarising The analysis reduces the available material, while keep-
ing its essential contents. By abstraction, a manageable amount
of data is obtained.

Explication The analysis aims at explaining doubtful parts of the text,
by collecting additional context information.

Structuring A system of categories is applied to the text material,
in order to extract structured information from the text. The
categories can either be deduced from theoretical positions, or be
developed inductively from the text material [May00, § 8].

76



4.4 Research Methods

Hermeneutics

Hermeneutics is “the study of the methodological principles of interpre-
tation” [Mis03], i.e., an hermeneutic approach of data analysis implies
the interpretation of textual data.

In SE research, different kinds of textual data can be distinguished:
Firstly, software artefacts may be available in some textual represen-
tation, i.e., source code. Secondly, the text of interviews, protocols
of team meetings, documents and other can be interpreted. In the
first case, methods specific for SE are needed, while in the latter case,
methods from sociology may (in some cases) be applicable.

Objective Hermeneutics Objective Hermeneutics is a qualitative
method proposed in sociology by Oevermann. The aim of this method
is to reconstruct the objective (i.e., generalisable) structures of sense
that lay behind a specific case. Such sense may be among others of
psychological, cognitive, or sociological nature. The objective sense
may possibly but does not necessarily fit with the subjective sense
articulated in the text.

The analysis of these structures starts with an experiment in mind:
All imaginable senses of a text segment are constructed and written
down by a team of researchers. In a second phase, the common ground
of these constructions is filtered out, in order to reconstruct the common
structure behind them [May93, p. 88].

Constant Comparison Method

The Constant Comparison Method is used to generate grounded theory
(see section 4.3.4). In the first phase, labels (codes) are attached to text
passages, which are important for a particular question under research.
These codes are then used to group text passages into patterns, which
are examined for underlying explanations of phenomena. As a result,
the researcher constructs a new proposition and writes it down as a
field memo [Sea99, p. 566].

Grounded theory is based on a cyclic process, as noted earlier. Thus,
the field memos, being the output of one research phase, are also part
of the input of the next step, are labelled, grouped and interpreted.
This includes that the feasibility of the new proposition is checked in
the next research phase [Sea99, p. 566].

77



4 Integration of Qualitative and Quantitative Methods

Coding

Seaman [Sea99] presents an approach called “Coding”, which combines
qualitative data collection with quantitative data analysis. She de-
scribes a data transformation from qualitative data (like “Tom, Shirley,
and Fred were the only participants in the meeting”) into quantitative
data (“num participants = 3”). In a further phase, these data can be
analysed using statistical methods. As Seaman points out, in many
cases coding is not as trivial as in this example; then, more interpretive
phases are necessary. These phases resemble the qualitative content
analysis presented by Mayring (see Section 4.4.2).

4.5 Combining Qualitative and Quantitative
Approaches

In this section, we first present several setups of quantitative and
qualitative research steps, which are then related to SE research. We
only consider combinations involving both types of research; of course,
the combination of research steps of the same type (see, e.g., [RT03])
is important as well, but outside the scope of this section.

Preliminary Study When research is performed on a subject for which
no hypothesis can be deduced from the existing theory, a prelimi-
nary qualitative study can be used to generate new hypotheses “from
scratch”. In a second step, these hypotheses are tested using a (repre-
sentative) quantitative study [May01, §22].

Generalisation In the generalisation setup, qualitative methods have
a greater weight than in the preliminary study setup noted above. Here,
a complete qualitative study on a given question is performed, which
produces rich knowledge on a single case. This knowledge is generalised
in a second step using a quantitative approach [May01, §23].

Elaboration The elaboration setup is in some sense the counterpart
of the generalisation setup. Here, the first step in research is a (repre-
sentative) quantitative study. Afterwards, the results are refined using
qualitative methods [May01, §24].

The motivation for elaboration of a quantitative study may be of
several kinds. Firstly, qualitative research can be used to identify some

78



4.6 Exemplary Study Designs

causality relationship behind some statistical correlation found in the
quantitative study. Secondly, qualitative research can illustrate an
exemplary case which is a typical representative of the quantitative
data, e.g., one that is close to the arithmetical mean or median. Thirdly,
qualitative research can be used to explain extreme cases: While in
quantitative research, outliers are eliminated using statistical methods,
in qualitative research they are of special interest, as they are thought
to enrich the theory by raising new questions.

Triangulation The most complex combination of qualitative and quan-
titative methods is called triangulation. In this setup, the researchers
enquire into a common question from different points of view using
different research methods, both qualitative and quantitative. Neither
the qualitative nor the quantitative methods dominate necessarily. Fur-
thermore, the results of all used methods are used to create a more
complete picture of the research object, than it could be achieved by
using only either qualitative or quantitative methods.

Combination setups in SE research The preliminary study setup is
often applied implicitly before conducting quantitative SE research,
since no comprehensive theory of SE has emerged yet. Examples for
the generalisation and triangulation setups are given in Section 4.6.2.
The elaboration setup is applicable to the wealth of quantitative studies
that have been conducted in SE.

4.6 Exemplary Study Designs

In this section, two exemplary study designs are proposed. Firstly,
opportunities to analyse architectural design decisions (in the sense of
description decision theory) are discussed (Section 4.6.1). Then, based
on a research report describing experiences in an academic/industrial
collaboration project, an action research setup for a software develop-
ment process is proposed (Section 4.6.2).

4.6.1 Example 1: Analysis of Architectural Design
Decisions

The purpose of the research discussed here is to understand how de-
cisions concerning software architecture (high-level design decisions)

79



4 Integration of Qualitative and Quantitative Methods

are actually made in software development. The findings may be used
to discover deficiencies in decision processes, and to design new deci-
sion processes and supporting tools for future software development
projects.

We will first present possible research setups (Section 4.6.1), and then
discuss the opportunities for conducting quantitative and qualitative
research within these setups (Section 4.6.1).

Possible setups

Three distinct basic settings concerning the research object are of inter-
est: Either a dedicated project may be conducted, which most probably
will use students as developers, a real (single location) industrial project
may be observed, or a real open source project can be analysed. The
first case qualifies as in vitro research, the latter as in vivo research.
The first case might also be considered in vivo concerning student
development, but this is not considered here, since we set the focus on
normal productive development. In this respect, a student project may
merely act as an indicator for real industrial projects, which certainly
impacts the validity of the research results considerably. We emphasise
the “single location” property of an industrial development project to
additionally distinguish it from an open-source development project,
which is in case of a larger project virtually always global.

Concerning an industrial project, different activities of the researcher
may be distinguished, which determine his role in the project. He
may either only observe regular activities of the developers, conduct
individual interviews or group discussions specifically conducted for
the research project, or act as a regular member of the development
team (here again, different development roles are possible). Of course,
combinations of these roles are possible within one research project.

Concerning analysis of an open source project, we again distinguish
three interesting settings: Firstly, an active participation in develop-
ment and mailing-list discussions is possible, similar to the industrial
project setting above. Since due to the character of the development
projects, most discussions take place within mailing lists or newsgroups
and are often archived, relevant data can be expected to be available
publicly and at virtually no cost. Research may be conducted entirely
ex post. So, as a second possibility, mailing lists can be analysed for the
preparation of decisions and actual collaborative decision procedures,
which may or may not be be formalised. Since not only mailing lists,

80



4.6 Exemplary Study Designs

but also source code repositories and other artefacts are archived, a
third possibility is to conduct research on recovering design decisions
from source code and other design documents. The opportunities dis-
cussed in this paragraph may also apply to certain industrial projects
with respect to the necessary technical preconditions, but it is often
difficult in practise for researchers to get access to the relevant data
(and even more difficult to get permission to publish results).

Quantitative and qualitative methods

Quantitative analysis of some kind of research object is only meaningful
if many similar research objects are available, or if many similar opera-
tions are applied to some research object. Since neither the structure
of architectural design decisions nor the relevant types of such decisions
are well-understood yet, it is not sound to regard any two architectural
design decisions as similar in this respect a priori.

Research in all of the presented settings will therefore need to be
chiefly qualitative. Quantitative data may be collected if at all from
mining open source software repositories or mailing-list archives.

Thus, any quantitative data will need to be substantiated by quali-
tative research. A preliminary study may appear as the most natural
setup in this context: First, a qualitative study is conducted, which
must provide a categorisation of design decisions that may be restricted
in applicability to the regarded development project. This study pro-
poses some hypothesis on design decisions, which may be tested using
a further quantitative study.

A generalisation setup is also very interesting in this context: By
qualitatively analysing one or a few projects, a categorisation of design
decisions may be inductively derived. Then, its applicability to a
greater variety of projects is tested using some quantitative study.

The elaboration setting and the triangulation setting are not readily
applicable since no sufficient theory of design decisions currently exists
as discussed above.

4.6.2 Example 2: Action Research in a Development
Process

We sketch an exemplary study design based on a research report [PG05].
The authors describe problems that small, informal software develop-
ment organisations encounter when they approach programming-in-the-

81



4 Integration of Qualitative and Quantitative Methods

large, and summarise experiences made in an academic-industrial coop-
eration project. Although this was not explicitly considered in [PG05],
the project can be interpreted as Action Research. The research meth-
ods used are participant observation [Fli98, p. 141–148] and discussions
with the project participants.

As a result, the authors find several problems in the development
process which can be categorised as follows: (1) implementation tech-
nology selection, (2) technology-specific deficiencies, (3) inefficient build
process and version control, (4) selective use of programming language
features, (5) requirements elicitation, (6) code documentation, (7) miss-
ing automated testing mechanisms [PG05].

Using this study as a basis, we now extend the work and draft a multi-
dimensional research design. Table 4.2 shows finer-grained research
topics and relates them to a primary category of research objects.
It also shows possible research methods, which are presented on a
relatively generic level and must be fine-tuned to fit the requirements
of the research topics.

Object
Category

Research Topic Research Method

Code documentation Content analysis (of
existing documentation)

Software
Artefacts

Reconstruction of (missing)
software architecture

Interviewing, source code
analysis

Selective use of
programming language

features

Source code metrics, Group
discussion, Questionnaire

survey
Incentives for code

documentation Interviewing

Version control misuse Group discussionDevelopers of
Software Implementation technology

selection

Interviewing, group
discussion, participant

observation
Developers as

Users of
Software

Coping with tool
deficiencies

Statistical analysis of tool
usage, Interviewing,

Observation
Learning to

Develop
Software

Knowledge transfer into
commercial software
development projects

Evaluation questionnaire
survey

Table 4.2: Multi-dimensional Research Design

82



4.7 Conclusion

Exemplarily, we focus on the selective use of programming language
features. The authors of [PG05] found that only a subset of C++
language features was used in the project (quantitative method: source
code metrics). In discussions (qualitative method: group discussions)
they found technical, organisational and personal-skill-related reasons
why the developers did not use specific language constructs.

At this point, possible further research steps would be to transfer
academic knowledge into the project team, and to evaluate the success
afterwards (quantitative method: evaluation questionnaire survey and
analysis of new source code).

In each new research step, research methods must be chosen that
are appropriate to the respective research topic. The results of the
different steps must be combined and integrated into a larger theoretical
context. In this way, they refine the problem description and bring
up new questions. This iterative process ends, when no new aspects
to the research question are found, and the problem leading to the
academic-industrial cooperation can be regarded as sufficiently solved.
This setup can be characterised as triangulation.

Furthermore, the question of generalising the results of Action Re-
search may arise. This question may be addressed using quantitative
methods after Action Research is completed, following the generalisa-
tion setup.

4.7 Conclusion

In this paper, we discussed the motivation for integrating both quantita-
tive and qualitative research methods in Software Engineering research
projects. Furthermore, we exemplarily discussed opportunities of ap-
plying such integration to Software Engineering research questions.

The general problems of implementing qualitative research in Soft-
ware Engineering apply to the integration of quantitative and quali-
tative research approaches as well: Time pressure and confidentiality
issues in software projects affect qualitative research more than it does
quantitative research.

On the other hand, the approach of Action Research which involves
qualitative elements results in more immediate benefits for the partici-
pating organisation than mere quantitative research does. Quantitative
research aims at produce general results, which necessarily reduces the
significance of results for specific cases. Therefore, Action Research

83



Bibliography

could provide new incentives to software developing organisations for
participation in research projects.

Bibliography

[ACMnd] ACM: ACM Computer-Human Interaction Special Interest
Group. n.d., URL http://www.sigchi.org/

[Bas96] Basili, V. R.: The role of experimentation in software
engineering: past, current, and future. In: Proceedings of the
18th international conference on Software engineering, IEEE
Computer Society, 1996, ISBN 0-8186-7246-3, pp. 442–449

[BWH96] Baskerville, R.; Wood-Harper, A.: A critical perspec-
tive on action research as a method for information systems
research. In: Journal of Information Technology 11 (1996),
pp. 235–246

[CB01] Coghlan, D.; Brannick, T.: Doing Action Research in
Your Own Organization. London, UK: SAGE Publications,
2001

[CH04] Chen, W.; Hirschheim, R.: A paradigmatic and method-
ological examination of information systems research from
1991 to 2001. In: Information Systems Journal 14 (2004),
pp. 197–235

[FF01] Farbey, B.; Finkelstein, A.: Evaluation in Software
Engineering: ROI, but more than ROI. In: Proc. of the
3rd International Workshop on Economics-Driven Software
Engineering Research (EDSER-3 2001), 2001

[Fli98] Flick, U.: An Introduction to Qualitative Research. London,
UK: SAGE Publications, 1998

[GRV04] Glass, R. L.; Ramesh, V.; Vessey, I.: An analysis of
research in computing disciplines. In: Commun. ACM 47
(2004), № 6, pp. 89–94, ISSN 0001-0782, doi:10.1145/990680.
990686

[GS75] Glaser, B. G.; Strauss, A. L.: The discovery of grounded
theory : strategies for qualitative research. New York, USA:
Aldine, 1975

84

http://www.sigchi.org/


Bibliography

[GS01] Groeben, N.; Scheele, B.: Dialogue-Hermeneutic
Method and the “Research Program Subjective Theories”.
In: Forum Qualitative Social Research (on-line journal)
2 (2001), № 1, URL http://www.qualitative-research.
net/fqs-texte/2-00/2-00groebenscheele-e.htm

[HT02] Hunt, A.; Thomas, D.: Software Archaeology. In: IEEE
Softw. 19 (2002), № 2, pp. 20–22, ISSN 0740-7459, doi:
10.1109/52.991327

[Kar02] Karlström, D.: Increasing Involvement in Software Pro-
cess Inprovement. Licentiate thesis, Lund University, Lund,
Sweden, 2002

[KD88] Kaplan, B.; Duchon, D.: Combining Qualitative and
Quantitative Methods in Information Systems Research: A
Case Study. In: MIS Quarterly 12 (1988), № 4, pp. 571–586

[Kel63] Kelly, G. A.: A Theory of Personality. The Psychology of
Personal Constructs. New York, USA: W. W. Norton and
Company, 1963

[Lam93] Lamnek, S.: Qualitative Sozialforschung. Band 2: Methoden
und Techniken. Weinheim, Germany: BeltzPVU, 2. edn.,
1993

[Lam05] —— Qualitative Sozialforschung. Weinheim, Germany:
BeltzPVU, 2005, ISBN 3-621-27544-4

[Lee00] Leeuw, F. L.: Evaluation in Europe. Opladen, Germany:
Leske+Budrich, 2000, pp. 57–76

[Lew48] Lewin, K.: Action Research and Minority Problems. In:
Lewin, K., ed., Resolving social conflicts : selected papers
on group dynamics, New York, USA: Harper, 1948

[May93] Mayring, P.: Einführung in die qualitative Sozialforschung.
Eine Anleitung zu qualitativem Denken. Weinheim, Germany:
BeltzPVU, 2. edn., 1993

[May00] —— Qualitative Content Analysis. In: Forum: Qual-
itative Social Research (on-line journal) 1 (2000),
№ 2, URL http://www.qualitative-research.net/
fqs-texte/2-00/2-00mayring-e.htm

85

http://www.qualitative-research.net/fqs-texte/2-00/2-00groebenscheele-e.htm
http://www.qualitative-research.net/fqs-texte/2-00/2-00groebenscheele-e.htm
http://www.qualitative-research.net/fqs-texte/2-00/2-00mayring-e.htm
http://www.qualitative-research.net/fqs-texte/2-00/2-00mayring-e.htm


Bibliography

[May01] —— Combination and Integration of Qualitative and
Quantitative Analysis. In: Forum Qualitative So-
cial Research (on-line journal) 2 (2001), № 1, URL
http://www.qualitative-research.net/fqs-texte/
1-01/1-01mayring-e.htm

[May03] —— Qualitative Inhaltsanalyse : Grundlagen und Techniken.
№ 8229 in UTB für Wissenschaft, Weinheim: Beltz, 8. edn.,
2003, ISBN 3-8252-8229-5

[Mis03] Mish, F. C., ed.: Merriam-Webster’s collegiate dictionary.
Springfield, Mass., USA: Merriam-Webster, 11. edn., 2003,
ISBN 0-87779-807-9

[MSRnd] Workshop Series on Mining Software Repositories. n.d., URL
http://msr.uwaterloo.ca/

[Oat03] Oates, B. J.: Widening the Scope of Evidence Gathering
in Software Engineering. In: STEP ’03: Proceedings of the
Eleventh Annual International Workshop on Software Tech-
nology and Engineering Practice (STEP’03), Washington,
DC, USA: IEEE Computer Society, 2003, ISBN 0-7695-2218-
1, pp. 59–64

[PG05] Ploski, J.; Giesecke, S.: When Small Outgrows Beauti-
ful. Experiences From a Development Project. In: Proc. of
ECOOP Workshop on Practical Problems of Programming
in the Large (PPPL2005), 2005. Accepted for publication

[PPInd] Psychology of Programming Interest Group. n.d., URL http:
//www.ppig.org

[RT03] Runeson, P.; Thelin, T.: Prospects and Limitations for
Cross-Study Analyses. In: Jedlitschka, A.; Ciolkowski,
M., eds., WSESE’03 – 2nd Workshop in Workshop Series
on Empirical Software Engineering, Fraunhofer IRB Verlag,
Stuttgart, Germany, 2003, pp. 133–142

[Sea99] Seaman, C. B.: Qualitative Methods in Empirical Studies
of Software Engineering. In: IEEE Transactions on Software
Engineering 25 (1999), № 4, pp. 557–572, ISSN 0098-5589.
Special Section: Empirical Software Engineering

86

http://www.qualitative-research.net/fqs-texte/1-01/1-01mayring-e.htm
http://www.qualitative-research.net/fqs-texte/1-01/1-01mayring-e.htm
http://msr.uwaterloo.ca/
http://www.ppig.org
http://www.ppig.org


Bibliography

[Zen01] Zendler, A.: A Preliminary Software Engineering Theory
as Investigated by Published Experiments. In: Empirical
Software Engineering 6 (2001), № 2, pp. 161–180

87



Bibliography

88



5 Patterns in Building
Architecture and Software
Engineering

Marko Boskovic <marko.boskovic@informatik.uni-oldenburg.de>

Abstract

This paper outlines similarities and differences between patterns of
civil architecture documented by Christopher Alexander and software
patterns. Software patterns became an important tool in software
development during the last ten years. They present a structure
of solutions for common problems in software engineering. Usually
experienced developers discover patterns by identifying solutions to
common problems in their work. They reuse these solutions every
time when they face similar problems, because they have already been
proven in practice. Software patterns were inspired by Christopher
Alexander, who established patterns in civil architecture. Although
the idea of software patterns and patterns in civil architecture is the
same, they are essentially very different.

5.1 Introduction

During the last ten years, software patterns started to attract great
attention of the software engineering community. The book Design
Patterns: Elements of Reusable Object Oriented Software [GHJV95]
made a breakthrough, and introduced software patterns to the wide
audience. This book is still one of the most selling books on software
engineering. The question which arises is, what is the reason for such

<marko.boskovic@informatik.uni-oldenburg.de>


5 Patterns in Building Architecture and Software Engineering

success? Why are they so popular? What kind of problems do they
solve?

Software patterns are attempts do describe successful solutions to
common problems in software development. They help people to reuse
successful practices [SFJ96]. Using them, people better communicate
and share ideas, and what is most important, reason about success of
particular solutions.

Software patterns are not an original idea of software developers. It
is rather an idea taken from civil architecture. In fact, the inspiration
for software patterns were patterns of civil architecture. Patterns in
civil architecture are established by Christopher Alexander. In his work
he defines patterns as a three-part rule that relates some particular
context, the problem, and the solution to this problem. He also calls it
a thing that at the same time happens in the world, and the rule that
tells us how to create that thing [Ale79].

In software development as it is in civil architecture, patterns are
relation between the context, the problem, and the solution. This led
to many miss conclusions in early days of software patterns. Software
engineers were looking for analogy with patterns in architecture under
every rock. During the time it became clear that both different na-
ture of artifacts and development process are breaking analogies with
Alexander’s patterns [Cop96]. Although analogies break, vocabulary
of software patterns community stayed as it is in his work. Pattern,
pattern language, forces are terms that Alexander established. However,
the greatest legacy to the pattern community is his vision and value
system which is not common to most software practice [Cop96].

The paper starts with the description of the current process of
planning the buildings and apartments as well as some shortcomings
of that process. Third section explains architectural patterns and
pattern languages. After it, comes section where software patterns and
pattern languages are explained. Fifth section outlines similarities and
differences between software patterns and languages and architectural
patterns and languages. The last section is conclusion. At the end
comes appendix with descriptions of patterns used as examples.

5.2 Designing a Building in Civil Architecture

Patterns in software architecture were inspiration for applying the same
methodology in building software. Architectural patterns were discov-

90



5.2 Designing a Building in Civil Architecture

ered by Christopher Alexander [AIS77] Building is a well organized
whole which should satisfy needs of humans that live in it [Dan05].
Needs of residents of buildings should be satisfied in apartments and
common rooms and areas. Common rooms and areas are elevators,
stairs, rest rooms, garages, playgrounds etc. Number and types of
common rooms depend on decision of owner of a building.

Apartments consist of several rooms which can be divided into two
categories, rooms for day living and rooms for night rest. Rooms for
day living are:

• Living room, in which family gathers after some activities, lunch,
business, school etc.

• Kitchen with dining room

• Working room

• Hole for communications among the other rooms with toilet.

Rooms for night rest:

• Rooms for grownups

• Rooms for parents

• Rooms for children

Beside number of rooms very important is their connectivity which
depends on functional needs of humans. For a description of functional
requirements we will start from the entrance in the apartment. The
first room is the entrance hole. The entrance is connected to central
hall, and central hall functionally connects most of rooms in apartment
and usually is room that does not have natural light. The toilet should
be near the apartment’s entrance due to human needs to use it after
doing some activities outside. In case of smaller apartments, the toilet
is a bathroom at the same time. In larger apartments the bathroom is
in a part of the apartment which is used for the night rest in order to
provide better intimacy.

The kitchen should be also reachable from the entrance. The kitchen
is meant for preparing food, so it should be easy to bring foodstuff.
Carrying foodstuff and other things needed in the kitchen all over the
apartment until you reach the kitchen would be dysfunctional and of

91



5 Patterns in Building Architecture and Software Engineering

Figure 5.1: An example of a basic schema of an apartment. Yellow
presents rooms for night rest and white are rooms for day
living [Dan05]

course it could leave some unpleasant smell in rooms in which should
day activities be made.

The dining room should be connected with the kitchen as well as with
the central hole. It is mostly located at the sequel of the kitchen, or
should be a part of it. The dining room should be naturally enlightened.
Together with living room play a vital role in both the design and
the composition of other rooms. The dinning room has to be directly
connected with the living room physically and visually, in order to
allow a visual contact with children that can be playing in living room.

The living room is a gathering place of a family and should have
a visual contact with the central hole and the entrance to enable to
monitor who enters the apartment. An important fact is that the main
room for the day life should be oriented to south or southwest, as it is
in case of parents and kids room. Both parents and kids’ rooms are in
the part of the apartment that is meant for night rest.

Taking into account all aforementioned facts the principal example
of an apartment design can be seen in Figure 5.1.

To decide which dimensions rooms should have, we use anthropometry,
a science for measuring dimensions of human body in respect to parts
of apartments. This science standardizes the smallest dimensions of
parts of apartment, while the biggest ones are not standardized. For

92



5.2 Designing a Building in Civil Architecture

instance, the smallest width of a hallway is 90 cm. That is enough
for one person to walk through and if other person has traversed to
wait aside. Furthermore, it defines module, and that is an increment
of dimensions. Adopted modules are 30, 60 and 90, but common used
modules are 30 and 60. In case of the hallway, module is 30, so 120
is hallway which allows that two persons pass by each other without
waiting, 150 is enough for two persons to pass by each other with
carrying some baggage, etc. It is not only places where people pass
by each other that are standardized. Dimensions of other immobile
parts of the apartment are standardized. As and example we can
use a window. The window is not a place where people pass against
each other. According to the average dimensions of human body, it is
standardized that height of window sill should be at least 90 cm, but
in most of cases is 120 cm , because of possibility of dropping out.

As we have already mentioned, dimensions and look of apartments
in one building depends on the owner of the building. If the owner of
the building plans to live in it, then it will be more adjusted to his way
of living and personality. However, the owner plans to sell apartments
or building in most cases, so that the owner can actually make some
profit.

When persons who will live in apartments are not known at the time
of designing apartment then it is left to the imagination to architects to
find a way to fulfill needs that are common to each person a potential
apartment tenant.

Unfortunately, although much of the dimensions are made to fit
human needs, most of the people were not enjoying their life in apart-
ments developed in this way, regardless whether they took a part in
the development process as the future owner or not. Most of simple
needs of their life were not satisfied. People were not satisfied with
their apartments. Although everything may look fine in the project,
it can have shortcomings that are important for living and not visible
from the projects’ blueprints. Christopher Alexander, whose work
is inspiration for software patterns, in his early work ‘Notes on the
Synthesis of Form” [Ale64] mentions that current methods fail to fulfill
real needs of real people because process of designing is artificially
separated to model, process, context and artifact. Instead, they are
intertwined aspects of the same system. This separation makes real
micro-adaptation to real human needs hardly possible. Problems he
identified in Notes are [Lea94]:

93



5 Patterns in Building Architecture and Software Engineering

• Inability to balance individual, group, societal, and ecological
needs

• Lack of purpose, order and scale

• Aesthetic and functional failure in adapting to local physical and
social environments

• Development of materials and standardized components that are
ill suited for the use in any specific application

• Creation of artifacts that people do not like

After identifying these problems, Alexander started to look at tra-
ditional architecture to try to find solutions which could solve these
problems. As part of cultural heritage, people were inheriting good
practices of building houses. Using those practices people were making
artifacts highly adapted to its particularities. This was possible because
building houses was in the hands of people that would live in it [Ale99].
People that were using those practices do not have to be aware why
those practices work. He believed that by documenting this kind of
practices, he would help architects to shape the artifacts, so that they
better fit to human needs. Practices that were parts of ones community
cultural inheritance were actually patterns pattern languages.

5.3 Architectural patterns and pattern
languages

Patterns actually represent experience of generations that were building
architectural artifacts for their own use. Accordingly, patterns are
solutions to common problems in development of buildings for living.
The solutions are general and the problems can be found in some
particular context. At the same time, they are the thing that happens
in the world, the rule which tells us how to create that thing, and when
we must create it. It is both the thing and the process for creating that
thing [Alexander, 1979].

Alexander discovered patterns by analyzing building and town struc-
tures of several cultures. Those structures are solutions that evolved
during the ages, so that they could fulfill cultural, personal and social
needs. As an example, let us consider one pattern from his book “A
Pattern Language” [AIS77]:

94



5.3 Architectural patterns and pattern languages

Low Sill:
...this pattern helps to complete NATURAL DOORS

AND WINDOWS (221), and the special love for the view,
and for the earth outside, which ZEN VIEW (134), WIN-
DOW PLACE (180) and DOWS OVERLOOKING LIFE
(192) are need.

***

One of a window’s most important functions is
to put you in touch with outdoors. If the sill is too
high, it cuts you off.

[. . . ] People are drawn to windows because of the light
and the view outside-they are natural paces to sit by when
reading, talking, sewing and so on, yet most windows have
sill height about 30 inches or so, so that when you sit down
by them you cannot see the ground right near the window.
This is unusually frustrating-you almost have to stand up
to get a complete view.

[. . . ] On the other hand, glass all the way down to
the floor is undesirable. It is disturbing because it seems
contradictory and even dangerous. It feels more like a door
than a window; you have the feeling that you ought to be
able to walk through it. If the sill is 12 to 14 inches high,
you can comfortably see the ground, even if you are a foot
or two away from the window, and it still feels like a window
rather than a door.

Therefore:
When determining exact location of windows also

decide which windows should gave low sills. On the
first floor, make the sills of windows which you plan
to sit by between 12 and 14 inches. On the upper
stories, make them higher, around 20 inches (see
Figure 5.2).

***

Make the sill part of the frame, and make it wide enough
to put things on-WAIST-HIGH SHELF (201), FRAMES AS
THICKENED EDGES (225), WINDOWS WHICH OPEN
WIDE (236). Make the window open outward, so that you

95



5 Patterns in Building Architecture and Software Engineering

Figure 5.2: Sketch of the pattern Low Sill

can use the sill as a shelf, and so that you can lean out and
tend the flowers. If you can, put flowers right outside the
window on the ground or raised a little, too, so that you
can always see the flowers from inside the room-RAISED
FLOWERS (245)...

As we can see the pattern is generative solution to a problem. It does
not make a clear statement how the problem should be implemented,
but only the principal structure that solves the problem. Accordingly,
patterns can be applied million times without being the same twice
[AIS77]. Other dimension of the pattern is that it cares about people,
and their comfort in architectural artifacts. In the pattern we can
see that the pattern care about what do people like and according to
that makes proposal for solution. It is different from anthropometry,
and we can see that on an example of height of sill standardized by
anthropometry is at least 90 cm. The reason for this height is the
possibility of dropping out. The conclusion is that the standardized
height of the window sill should protect life, but this protection should
not be part of a size of window because it constraints life.

The documentation of this structure is a pattern as well. The
documentation that describes the patterns is a literary form. The
literary form should be used as a tool for: introducing a reader to a

96



5.3 Architectural patterns and pattern languages

problem, to describe where the context might arise, to analyze the
problem, and to present and explain solution [Cop96]. The literary
form in which patterns of civil architecture are explained is a text
that is divided, into several groups of three diamonds and with a word
“Therefore”. The first one there is a picture of an example of the pattern.
The paragraph that introduces the context in which pattern can be
applied comes after the picture. The context is usually a larger pattern
that this pattern helps to complete. After this paragraph come three
diamonds which mark the beginning of the problem. The description
of problem starts with a bold statement that gives the essence of the
problem. After comes the body of the problem which explains the
empirical background of the pattern, the range of different ways the
pattern can be manifested in a building, and so on. Then, after the
word “Therefore”, in the bold type comes the solution. The solution
describes both social and physical relationships that are required to
solve the stated problem, in a form of an instruction. After the solution,
comes a diagram that shows the structure of the pattern with labeled
important parts of it. Then, separated by three diamonds come a part
of the text that connects this pattern to smaller patterns in the pattern
language they are actually parts of it [AIS77].

From the structure of the form, we can clearly see that we can not
talk about a pattern in isolation, but it is always connected with other
patterns. A collection of patterns that work together under a rule of
composition, and that build on each other to generate a system is called
pattern language [Cop96]. The name pattern language should describe
that patterns and rules for their composition represent one whole, the
way it is in natural language. In natural language words do not make a
language without connection rules. Accordingly, each pattern depends
on the patterns that are in relations to it. Related patterns can be
either smaller patterns which are part of the pattern or a larger pattern
the given pattern is contained by. Patterns documented in A Pattern
Language [AIS77] go from very large patterns that represent regions
and towns, through smaller and smaller which represent neighborhoods,
clusters of buildings, buildings and at the end they finish with details
of constriction. In Figure 5.3 we can see an example of composition of
patterns [Cop04].

From Figure 5.3 we can see that one pattern consist of several smaller
patterns, and it also is a part of a larger one. Larger pattern consists on
smaller ones, and relies on functionality they provide. However, there
are also smaller patterns that are parts of two larger patterns. This

97



5 Patterns in Building Architecture and Software Engineering

Figure 5.3: An example of composition of patterns [Cop04]

kind of relation is result of interweaving these two patterns. In this
terms pattern language is directed acyclic graph formed by patterns
and their relationships. An example of a pattern language we can see
in Figure 5.4.

An important property of pattern languages is that they create
one whole. The whole is defined by a set of properties it should
have. Examples of wholes are a house, a software system, a software
framework, etc. A pattern language is complete when the system of
patterns it defines is fully capable of allowing all its inner forces to
resolve themselves [Cop04]. However, that does not mean that the
whole is isolated from another architectural artifact. They can be a
part of another larger whole. Accordingly, we can clearly see that one
pattern language can be also a part of another larger pattern language
which defines that larger whole.

A whole is a thing that is discovered and fulfills requirements that
serve human needs. Pattern languages help develop this thing, so that
it has all needed properties. There is no a pattern language that helps
create only one property of the whole. As an example we can use a

98



5.3 Architectural patterns and pattern languages

Figure 5.4: Half-Hidden Garden pattern language. This pattern lan-
guage is a part of a larger pattern language for building a
house. [Cop04]

99



5 Patterns in Building Architecture and Software Engineering

house. Important properties of the house are that it should be beautiful,
safe, economical etc. Therefore, patterns help generate a structure that
has all these properties, but the thing they are building is not “safety”,
“beauty”, or something else. Trying to discover a pattern language
for one property is impossible. The whole the pattern language help
develop are wholes that community has discovered and that has all
the properties humans need from this artifact. The pattern language
creates system that has many desirable attributes [Cop04].

Patterns and pattern languages are not only peace of literature that
is used for documenting good proven practices in architectural design.
Upon the basis of patterns and pattern languages lie deeper ides. First of
all, patterns and pattern languages have a moral capacity of producing
a living structure, the structure that is in constant interaction with its
environment, and which makes human life better. “The most successful
designs are not those that try to fully model the domain in which
they operate, but those that are ‘in alignment’ with the fundamental
structure of that domain, and that allow for modification and evolution
to generate new structural coupling” [WF86]. The second idea is that
they should be generative things with the capability of producing
coherent wholes. Pattern languages are not precise plans for building
the entity. They are rather principles and principle structures. On
one hand, an implementation depends on architects and civil engineers.
One the other hand, it depends on the micro structure of the area
where artifact should be created.

Christopher Alexander’s work influenced software designers, over all
because of the idea to exchange proven ideas and basing the future
work on something that has already worked in the past. In software
design there is a constant idea to reuse implemented peaces of one
software product in the implementation of a new software artifact. The
paradigm taken from patterns of civil architecture seemed like one step
forward to making this idea real.

5.4 Software patterns and pattern languages

During the years of software development, software developers had
both success and failures in their projects. In the 1960s “software crisis”
caused the birth of software engineering. Software engineering is defined
as a set of formalisms, methods, and practices for producing reliable,
economical, efficient software systems that meet their specifications -

100



5.4 Software patterns and pattern languages

“reesstms” [DD94]. During ages of software engineering there were many
inventions like structured programming, data abstractions, information
hiding, program verification and many more. The failure of one was
followed by invention of another. However, it seems that software
engineering could not fulfill expectations that it should.

Starting from 1970s, as an answer to the software engineering inability
to produce “reesstms”, a software design received a great deal of the
attention. Software design is a set of practices and implementation
techniques that allow for construction of software which is provided for
satisfying the users. Software designers claim that software design is a
craft and it can be learned only through apprenticeship and the process
of designing. Through apprenticeship one can learn techniques that are
discovered by experienced developers and which were already working
in the past. Software patterns make another step forward. They try to
capture the experience of many, document it and make it available to
the software community.

Software patterns are structures that solve common problems in
software engineering. They are discovered by experienced developers.
Experienced software developers do not solve each problem from bottom
line. They rather use some solutions that worked for them in the past
[GHJV95]. Since the solution that is proved for them in the past, is
probably going to work for them in this new situation. Knowledge of
those solutions is actually the thing that makes them good designers.

Software patterns started to be documented at the end of the 1980’s
when Ward Cunningham, Kent Beck, James O. Coplien and Erich
Gamma started to collect and document recurring solutions in different
areas of software development [BCC+96], all of them inspired by the
work of Christopher Alexander. Soon they together with some other
people intensified their research in pattern area what led to forming
“Hillside Generative Patterns Group” (www.hillside.net).

Beside the moment of gathering as the Hillside Group, an important
event was the publication of still one of bestseller books on software
design Design Patterns: Elements of Reusable Object Oriented Software
[GHJV95] popularly known as the Gang of four (GoF) book. It is
“a book that helped people conceptualize beyond individual design
relationships, grasp important structures of micro-architectures, and
value proven solution strategies over raw innovation” [Ale99]. The book
consists of 23 documented patterns that names, abstracts and identifies
the key aspects of design recurring structures discovered in developing
of graphical user interface [Hel95]. Success of this book encouraged

101



5 Patterns in Building Architecture and Software Engineering

people to document software patterns in their area of development.
This way they could exchange knowledge, and make software better.

It is important to distinguish patterns from paradigms, idioms, prin-
ciples, heuristics, architectures, frameworks and role-models [Vil95,
Cop96]. Paradigm is a style of work that is followed through the design
of a whole system. Idiom is a language specific typical way of using
and combining elementary building blocks. It is a language specific
pattern. Principle is a design role that a designer follows “always”
when designing software. For example, important principles of reusable
object oriented programming are [GHJV95]: Program to an interface
and not implementation and Favor object composition over class inher-
itance. Heuristics is experience which does not absolutely claim that
actions taken will actually work. Architecture is a total structure of an
application, possibly described by the multiple patterns involved, which
are then often called “micro-architectures”. Framework is a collection
of classes that work together to accomplish a parameterizable task.
Often collaboration between classes in the framework is organized using
design patterns. Role-models describe a single coordinated collabora-
tion among multiple participants and role models can be something
closest to formalize patterns [Vil95].

As an example for software patterns the Composite design pattern
from [GHJV95] is described in the Appendix.

5.4.1 Software patterns forms

From the Composite design pattern example, it can clearly be seen that
software patterns are described in another literary form then patterns
of civil architectures are. Despite the fact that forms are different,
content of these forms clearly identifies same important parts of pattern
as they are identified in the form of Alexander’s work. Most popular
forms for software patterns are The GoF (Gang of Four) Form, The
Coplien Form and The Portland form.

The GoF form is established in [GHJV95] consists of following 13
sections:

1. Name and Classification - The name is very important for a pat-
tern. Since it will become part of a vocabulary, it should describe
the essence of the pattern in a short way. The classification places
the pattern according to scheme presented in the book. Patterns
can be placed according to their purpose to one of three groups:

102



5.4 Software patterns and pattern languages

Creational, Structural or Functional, and according to scope of
application they can be Class or Object.

2. Intent - is a short statement that answers to questions: What
does the design pattern do? What is its rationale and intent?
What particular design issue or problem does it address?

3. Also Known As - other well-known names of the same pattern if
there are any.

4. Motivation - a scenario that illustrates the design problem as well
as both class and object structures in the pattern that solve the
problem. Although this is not place where the pattern is strictly
defined we can clearly see the structure of the pattern from an
example that is presented.

5. Applicability - In the form of bulleted answers to the following
questions: What are the situations in which the design pattern
can be applied? What are examples of poor designs that the
pattern can address? How can you recognize these situations?

6. Structure - represents the structure of the pattern with both class
and interaction diagrams.

7. Participants - responsibilities of classes in the structures.

8. Collaboration - presents how the participants in patterns collabo-
rate to carry out the responsibilities.

9. Consequences - How does the pattern support its objectives?
What are the tradeoffs and results of using the pattern? What
aspect of the system structure does it let you vary independently?

10. Implementation - What pitfalls, hints, or techniques should you
be aware of when implementing the pattern? Are there language-
specific issues?

11. Source Code - Code fragments that illustrate how the pattern
might be implemented in C++ or Smalltalk.

12. Known Uses - Examples of the pattern found in real systems.

103



5 Patterns in Building Architecture and Software Engineering

13. Related Patterns - Section that answers to questions like: What
design patterns are closely related to this one? What are the
important differences? With which other patterns should this
one be used?

The Composite pattern is described using this form, although not all
sections are presented in the paper due to the size of the paper. The
Coplien form consists of seven sections and mostly is based on the form
that Alexander uses [Cop96, Cop04]:

1. Pattern name - it is common to give the name using a noun or a
short verb phrase.

2. Problem - The problem is often presented with a question or a
design challenge.

3. Context - The description of the context in which the problem
can be found and applied. It is not a part of the pattern, but it
is a placeholder of the pattern.

4. Forces - Describe design trade-off; what pulls problem in different
directions, toward different solutions? Forces are not mechanical,
but rather social, economic, psychological etc.

5. Solution - Solution explains how to solve the problem.

6. Rationale - Explains why the pattern work, and what history
behind the pattern is. Emphasis the importance of principles
behind the pattern.

7. Resulting Context - Explains which forces the pattern resolves and
which forces are not resolved. It also contains a list of patterns
that might be considered next.

The Portland form is used for online pattern repository that Ward
Cunningham maintains (http://c2.com.ppr/). The Portland form is
more narrative, not separated by outlined sections of text. It is an
emulation of Alexander’s form with some simplifications in typesetting.
Each document in Portland repository contains a pattern language.
Patterns are represented as paragraphs in the Portland form. Each
pattern makes a statement that goes something like: “such and so
forces create this or that problem, therefore, build a thing-a-ma-jig to
deal with them.” The pattern takes its name from the thing-a-ma-jig,

104



5.4 Software patterns and pattern languages

the solution. Each pattern in the Portland Form also places itself
and the forces that create it within the context of other forces, both
stronger and weaker. They also place them selves in the places of
language according to solutions they require. Patterns in the Portland
form capture ordering of good designers, which resolve stronger forces
first, by citing stronger and weaker patterns in opening and closing
paragraphs. At the end, the structure looks like [Cun94]:

• Having done so and so you now face this problem...

• Here is why the problem exists and what forces must be resolved...

Therefore:

• Make something along the following lines. I’ll give you the help I
can...

• Now you are ready to move on to one of the following problems...

Each document has summary section as well. Since pattern languages
can be very long sometimes, patterns which work around similar ideas
can be found in them. These patterns are introduced in the summary
section. The summary section also introduces the problem which the
patterns try to solve. An example of a pattern language written in
the Portland form is the CHECKS pattern language on information
integrity (http://c2.com/ppr/checks.html).

5.4.2 Software pattern languages

Following idea of A Pattern Language [AIS77], software developers
tried to identify pattern languages in domains of their work. There was
attempt to gather all the patterns identified for software development
and to organize them in pattern language for object oriented software
[Noble, 1998]. However, pattern languages are still not so common in
software patterns community, and pattern community is far a way from
discovering one large pattern language for software development.

At the moment, pattern catalogues are most common sources of
the contemporary use, especially the GoF book on design patterns
[GHJV95], series of Pattern Oriented Software Architecture catalogues
[BMR+96, SSRB00, KJ04], and books based on papers presented at
Pattern Languages of Programs - PLoP conferences [CS95, VCK95,

105



5 Patterns in Building Architecture and Software Engineering

Figure 5.5: The pattern language identified in AT&T telecommunica-
tion systems [ACG+96]

MRB97, HFR99]. However, despite the fact that the books contain
a huge number of patterns, they are rather catalogues of patterns
then they are a pattern languages. Pattern languages create a whole
in a particular domain. Software patterns, e.g. [GHJV95], are not
completely enough to make guidelines for making all the programs of
object oriented programming, which is their domain. Therefore, they
do not present pattern language. Although pattern catalogues are the
most common source in the contemporary use, there are also pattern
languages identified by practitioners of a particular domain. Such a
kind of a pattern language is presented in Figure 5.5.

Pattern language presented in Figure 5.6 is actually a part of a larger
catalogue collection of patterns adopted in AT&T laboratories. These
patterns are used in some other domains as well, but they are originally
identified in the telecommunication community, here they are addressed
as telecommunication patterns. To see relations between these patterns
we will consider two patterns at the right side of the pattern language,
patterns Minimize Human Intervention and SICO First and Always.
Description of these patterns can be found in the Appendix.

From description of these two patterns, it can be seen that larger
patterns are actually employing smaller ones for implementation. The
thing that makes them a pattern language is that they represent
a system of patterns that are relaying on each other and working
together to solve some broader problems [Cop96]. The problem this

106



5.5 Similarities and differences . . .

pattern language solves is to improve reliability by minimizing human
intervention in the system.

From the previous examples it can clearly be seen that idea of software
patterns is to improve human comfort. That is one of properties of
patterns in civil architecture, which was the inspiration for software
practitioners of the pattern community. These two pattern areas have
much in common. Many early members of pattern community tried
to find analogies under every rock, nature of produced artifact and
pragmatics of development process seem to break these analogies. Next
section will try to outline similarities and differences between these two
groups of patterns.

5.5 Similarities and differences between
software patterns and civil architecture
patterns

Christopher Alexander’s work brought a completely different view on all
the artifacts produced in industry. After the period of industrialization,
it became clear that products are becoming more and more separated
from humans. Products are being produced and assembled by standards
which did not care about real human needs and the real nature of
products. Christopher Alexander tried to get building back to the
people that live in them, by fitting houses to their needs. Software
developers which are member sof the pattern community are trying
to do the same. However, although idea is very similar, patterns of
different communities differ significantly. Similarities and differences
are following:

1. Value system of Christopher Alexander and the mem-
bers of pattern community are the same and include
[Cop96]:

• The Quality Without a Name. This quality is in Alexander’s
patterns quality to serve human needs, to help them feel
better. It can not be explained in any other way, so it is
without a name. In the software patterns community, it is a
module of a system that just feels good. Many practitioners
had this pleasure when they build part of a system that is
satisfying.

107



5 Patterns in Building Architecture and Software Engineering

• Real Stuff. Patterns are about some real stuff, about systems
that are really implemented, so that they capture the proven
practice, but not some theories, postulates or techniques that
might work. They rather offer design principles built on the
repeated success in applications. At this point, the pattern
community quote addressed by Edsgar Dijkstra “Premature
abstraction is root of all evil”.

• Constraints Are Liberating. Pattern form constraints a
pattern writer. However, this constraint helps him/her to
more focus on the real nature of the problem the pattern
solves. It helps him/her not to go into the explanation of
unimportant design elements.

• Participative Architecture. In patterns of software architec-
ture it means that a user should participate in designing of
the dwellings. They should not leave it only to a professional
architect. In the software community this spirit drove to
employing patterns for human interface design. It led to
form a completely new part of the pattern community which
deals with HCI (Human Computer Interaction) patterns.
Members of this community force the involvement of users
in designing user interfaces.

• Dignity for Programmers. Patterns are about the real stuff,
so that they are a part of daily concerns of the programmer.
Patterns are dedicated to techniques that enable to make
a product that is deliverable to potential customers. That
approach is totally different form learning them general theo-
ries of programming. They are making them skilled workers
with knowledge of little tricks of the domain in which they
are developing software. Architects have also an important
role in this process, because they should supervise them all
the time and try to tackle with them some important issues
of the project, before they become the problem [Fow03].

• Aggressive Disregard for Originality. Patterns try not to
make same mistake as all new computer science techniques
and technologies do. Usually they get larger attention then
they deserve because of removing shortcomings of their
predecessors. Patterns try to focus to long proven practices.

• The Human Element. As all software should serve human
needs at some level, patterns do not deal only with technical

108



5.5 Similarities and differences . . .

aspects of patterns, they also take care about human issues.
The pattern language of telecommunication systems men-
tioned earlier in the paper is an example of such a language.

• Aesthetics. Some well-written code means that it is easy
to understand. When the code is formatted to be easily
readable, that improves the system’s maintainability and
improves human comfort of programmers. However aesthet-
ics is not only about some nicely written code. It can be
found in the nicely and easily understood overall structure
of the system.

• Interdisciplinary scope. Software patterns try to understand
the domain in which software patterns are applied. They try
to combine organizations, processes, and other important
parts of the domain in which are applied, so that they
can connect human and technological concerns. The most
powerful patterns integrate human concerns with technology.

2. Alexander’s patterns are for development tangible arti-
facts and software patterns are not. Beside the system of
values, both Alexander’s patterns and patterns in software engi-
neering talk about the structure. Alexander’s patterns talk about
relationships between real artifacts that can be seen, real tangible
artifacts. Software patterns are more about functional structures
of the system, since software is not tangible artifact.

3. Alexander pattern help make systems, so that they fit
to human needs, while software patterns adopting hard-
ware, so that it fits to human needs. Beside the fact that
software is not a tangible artifact, there is another difference be-
tween software and architectural artifacts, namely software needs
some hardware to be executed. While patterns in architecture
try to build real tangible artifacts that can serve human needs,
software patterns try to improve hardware as tangible artifacts,
so that they can better serve human needs, taking human issues
as guidelines for the software structure.

4. In architecture and in software, the same pattern can be
found in different contexts. Software patterns can be used
in other context, not only in the context in which they were
discovered. Design Patterns [GHJV95] are discovered in devel-
opment of graphic user interface, but they are also used across

109



5 Patterns in Building Architecture and Software Engineering

various domains like operating system kernels, telecommunication
switching systems etc [Hel95]. In case of patterns in architecture
ENTRANCE TRANSITION is a part of the pattern language of
garden, and the language for the house [Cop96].

5. Patterns in architecture are applied in progressive or-
der, while patterns in software are applied in iterative
and incremental development. Alexander’s way of applying
patterns is in progressive order, from the top of the language
to the bottom, while development of software is in iterative an
incremental fashion.

6. Alexander’s patterns are the product of people that were
making architectural artifacts for their own use, while
software patterns are the product of people that are de-
veloping systems for both their own use and the use of
people not involved in computer science. The environment
of patterns in civil architecture is nature, and they rely on natural
laws. It is a place where people live since their very beginnings.
Architectural artifacts are things that are made to improve the
living area, and changing living area is one important stage in hu-
man evolution. During the history, people were adjusting nature
in order to fit to their needs, and an important part was archi-
tectural artifacts. Environment of software patterns is invented.
Software is an artifact which is based on rules that computer
engineers invented, so it is not common to most of the people.
Most of the people do not understand these rules, and they can
not adopt it to personal needs. Instead, software developers do
it.

7. Alexander’s pattern improve human comfort only of users
of architectural artifacts, software patterns improve the
comfort of persons that use software systems as well as
people that maintain them. Software patterns should im-
prove human comfort as patterns in civil architecture should do.
However, there is a significant difference. Alexander’s patterns
improve human comfort of users of the artifacts. These patterns
should help produce artifacts in which only people, which are
living in it, should enjoy them. Software patterns try to do it too.
They identify solutions to problems in designing software users
were satisfied with. However, there is another dimension of soft-

110



5.6 Conclusion

ware patterns. They improve the maintenance of software, and
the comfort of developers of systems. Software patterns localize
some functional parts of the system, so it is easy to look for causes
of failures in the system. They also capture knowledge that is
implicitly understood [SS95], so that they help less experienced
developers to rapidly produce effective design [Hel95]. Further-
more, they provide a shared vocabulary and a common design
resource for teams and organizations that improve communication
between developers.

5.6 Conclusion

Software patterns became one of important parts of the software en-
gineering community during the last ten years. Origins of software
patterns can be found in civil architecture that is in the work of Christo-
pher Alexander. This paper tries to compare Alexander’s patterns
and patterns in software. A review of the process of making a project
of a house describes how plans of buildings are made. This kind of
process of planning does not fulfill all the needs that human need.
Although it may look perfect on the plans, people were not happy
when they live in it. Christopher Alexander in his work points out
that the buildings should have “A Quality Without a Name”, quality
that makes people enjoy their apartments. People should be really
comfortable on places where they are living. He searches for this qual-
ity in several traditional cultures, cultures of the time when people
were making their own houses. He believes that at that time people
were enjoying more in places they lived, then they are enjoying now.
His believes were proven with series of experiments [Ale99]. During
his work he identified “patterns”, solutions to common problems in
particular contexts in architectures. Further in his work he identified
“pattern languages”, patterns that are calling on each other to make
a whole. Pattern languages are in a form of directed acyclic graphs.
This kind of building process helps architects make buildings in which
people will really live and enjoy.

Software engineers were inspired with Alexander’s work and annoyed
with the inability of that time used methodologies and techniques that
were not able to produce software that will be used to improve human
comfort. Software that was produced was not reliable, economical,
efficient software that meet their specification [DD94]. As Alexander,

111



5 Patterns in Building Architecture and Software Engineering

members of software pattern community started to write down solu-
tions of experienced developers. Soon they realized that there are
similar solutions which different developers use without knowing each
other. As a result, new community was created which was dedicated
to discovering patterns and pattern languages in software development.
At the beginning software patterns community tried to find analo-
gies with Alexander’s patterns everywhere in patterns and pattern
languages they were discovering. Soon, they realized that nature of
artifact and development processes are different and that the software
pattern community has to discover real nature of software patterns on
their own.

This paper represents a comparison of software and patterns of
civil architecture. In the paper a comprehensive introduction to both,
patterns of civil architecture and software patterns are presented, and
similarities and differences are outlined. Similarities are value system
and different contexts in which patterns can be found. Differences are
nature of artifact, and the kind of improvement of this different kind
of artifacts. In case of software patterns it is not only customer that
benefit, it is developer as well. In the paper only patterns concerning
software were analyzed. Pattern community did grow very large last
years, and patterns for software engineering went far beyond software.
Discovery of the patterns nowadays goes in to different areas of software
development even in process of software development and organization
of software development as well [Cop04].

Appendix

Name: Composite

Intent: Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.

Motivation: Graphics applications like drawing editors and schematic
capture systems let users build complex diagrams out of simple
components. The user can group components to form larger
components, which in turn can be grouped to the form still larger
components. A simple implementation could define classes for
graphical primitives such as Text and Lines plus other classes
that act as containers for these primitives...

112



5.6 Conclusion

Figure 5.6: Structure (Sketch) of Composite design patterns [GHJV95]

Applicability: Use Composite pattern when:

• you want to represent part-whole hierarchies of objects.
• you want clients to be able to ignore the difference between

compositions of objects and individual objects. Clients will
treat all objects in the composite structure uniformly.

Structure: Figure 5.6 shows the structure (Sketch) of the Composite
design patterns

Consequences: Composite design pattern

• defines class hierarchies consisting of primitive objects and
composite objects...

• makes the client simple...
• makes it easier to add new kinds of components...
• can make your design overly general...

...

Known Uses: Examples of the Composite pattern can be found in
almost all object-oriented systems. The original View class of
Smalltalk Model/View/Controller was Composite, and nearly
every user interface toolkit or framework has followed in its
steps...

Related Patterns: Often the component-parent link is used for a Chain
of Responsibility (223).

113



5 Patterns in Building Architecture and Software Engineering

Decorator (175) is often used with Composite. When decorators
and composites are used together, they will usually have a com-
mon parent class. That means, decorators will have to support
the Component interface with operations like Add, Remove, and
GetChild.

Flyweight (195) lets you share components, but they can no
longer refer to their parents.

Iterator (257) can be used to traverse composites.

Visitor (331) localizes operations and behavior that would other-
wise be distributed across Composite and Leaf classes.

Pattern: Minimize Human Intervention

Problem: History has shown that people cause the majority of problems
in continuously running systems (wrong actions, wrong systems,
wrong button).

Context: High-reliability continuous-running digital systems, where
downtime, human-induced of otherwise, must be minimized.

Forces: Humans are truly intelligent; machines are not. Humans are
better at detecting patterns of system behavior, especially among
seemingly random occurrences separated by time (People Know
Best).

Machines are good at orchestrating a well thought-out, global
strategy, and humans are not.

Humans are fallible; computers are often less fallible.

Humans feel a need to intervene if they can not see that the system
is making serious attempts at restoration. Human reaction and
decision times are very slow (by orders of magnitude) compared
to computer processors. Quiet system is a dead system.

Human operators get bored with ongoing surveillance and may
ignore or miss critical events.

Events, normal processing or failures, are happening so quickly
that inclusion of the human operator is infeasible.

Solution: Let the machine try to do everything itself, deferring to the
human only as an act of desperation and last resort.

114



5.6 Conclusion

Resulting Context: A system is less susceptible to a human error.
This will make the systems customers happier. In many admin-
istrations, the system operator’s compensation is based on the
system’s availability, so that this strategy actually improves the
lot of the operator.

An application of this pattern leads to a system where patterns
such as Riding Over Transients, SICO First and Always and
Try All Hardware Compos apply to provide the system with the
ability to proceed automatically.

Rationale: Empirically, a disproportionate fraction of high-availability
system failures are operator errors, not primary system errors.
By minimizing human intervention, the overall system availabil-
ity can be improved. Human intervention can be reduced by
building strategies that counter human tendencies to act rashly;
see patterns like Fool Me Once, Leaky Bucket Counters and Five
Minutes of No Escalation Messages.

Notice the tension between the pattern and People Know Best.

Author: Robert Hanmer, Mike Adams, 23.03.1995

Pattern: SICO First and Always

Problem: Making a system highly available and resilient in the face of
hardware and software faults and transient errors.

Context: Systems where the ability to do some meaningful work is
of utmost importance, but rare periods of partial application
functionality can be tolerated. For example, the 1A/1B processor-
based 4ESS switch from AT&T.

Forces: Bootstrapping is initialization. A highly-available system
might require (re)initialization at any time to ensure the sys-
tem sanity.

The System Integrity Control Program (SICO) coordinates the
system integrity.

The system integrity must be in control during bootstrap.

The focus of operational control changes from bootstrap to the
executive control during normal call processing.

The application functioning is very important.

115



5 Patterns in Building Architecture and Software Engineering

The system integrity takes processor time, but that is acceptable
in this context.

The system is composed of proprietary elements, for which design
criteria may be required of all developers.

Hardware designed for fault tolerance which reduces the occur-
rence of hardware errors.

Solution: Give the system integrity the ability and the power to reini-
tialize the system whenever system sanity is threatened by error
conditions. The same system integrity should oversee both the
initialization process and the normal application functionality, so
that initialization can be restarted if it runs into errors.

Resulting Context: In short, System Integrity Control has the major
role during bootstrapping, after which it hands control over to
the executive scheduler, which in turn lets the System Integrity
Control regain the control for short periods of time on a periodic
basis.

See also Audit-Derivable Constants After Recovery.

Rationale: During a recovery event (phase of bootstrap), SICO calls
the processor initialization software first, the peripheral initializa-
tion software second, then the application initialization software,
and finally transfers to the executive control. Unlike a classic
computer program where initialization takes place first, and “nor-
mal execution” second, the SICO architecture does not place
the software initialization as the highest level function. System
integrity is at an even higher level than system initialization.

The architecture is based on a base level cycle in the executive
control. After bootstrapping, the first item in the base cycle
is SICO (though this is different code from that run during
bootstrapping). After the SICO part of bootstrapping is done,
the base level part of SICO is entered each base level cycle to the
monitor of the system on a periodic basis.

System integrity must be alert to watch for failures during both
the bootstrap and the normal base level operation. There is
a system integrity monitor in the base level to watch timers
as well as both overload control and audit control (not to run
audits, but to ask audits if there are error conditions). These are

116



Bibliography

checking in with SICO to report software and hardware failures
and potentially request initialization.

During bootstrap and initialization, system integrity employs
a number of similar mechanisms to monitor the system. For
example, Analog Timers, Boot Timers, Try All Hardware Combos
and others.

Much of the rationale comes from AUTOVON, Safeguard, missile
guidance systems, and other high-reliability real-time projects
from early AT&T stored program control experience. See the Bell
System Technical Journal Vol. 56 No.7, Sept. 1977, pp. 1145-7,
1163-7.

Author: Robert Hanmer

Bibliography

[ACG+96] Adams, M.; Coplien, J.; Gamoke, R.; Hanmer, R.;
Keeve, F.; Nicodemus, K.: Fault-tolerant telecommuni-
cation system patterns. In: (1996), pp. 549–562

[AIS77] Alexander, C.; Ishakawa, S.; Silverstein, M.: A
Pattern Language. New York: Oxford University Press,
1977

[Ale64] Alexander, C.: Notes on the Synthesis of Form. Harvard
University Press, December 1964

[Ale79] —— The Timeless Way of Building. Oxford University
Press, 1979

[Ale99] —— The Origins of Pattern Theory: The Future of the
Theory and the Generation of a Living World. In: IEEE
Software (1999), pp. 71–82. Keynote speech at OOPSLA’96

[BCC+96] Beck, K.; Coplien, J. O.; Crocker, R.; Dominick, L.;
Meszaros, G.; Paulisch, F.; Vlissides, J.: Industrial
Experience with Design Patterns. In: Proc. International
Conference on Software Engineering, ICSE, Berlin, IEEE
CS Press, March 1996, pp. 103–114. Reprinted in Rising98

117



Bibliography

[BMR+96] Buschmann, F.; Meunier, R.; Rohnert, H.; Sommer-
lad, P.; Stal, M.: Pattern-Oriented Software Architec-
ture: A System of Patterns. John Wiley & Sons, New York,
1996

[Cop96] Coplien, J.: Software Patterns. New York: Sigs Books,
1996, ISBN 1-884842-50-X

[Cop04] Coplien, J. O.: Practice and Theory of Patterns: To-
wards a General Design Theory, Lectures at FON-School
of Business Administration, 20-24.9.2004, Belgrade., 2004

[CS95] Coplien, J.; Schmidt, D., eds.: Pattern Languages of
Program Design. Addison-Wesley, 1995

[Cun94] Cunningham, W.: “About the Portland From”, The
Portland Patterns Online Repository. Available online
[accessed 2005/09/09]. 1994, URL http://c2.com/ppr/
about/portland.html

[Dan05] Danicic, D.: Personal communication, April 2005

[DD94] Denning, P. J.; Dargan, P. A.: A discipline of software
architecture. In: interactions 1 (1994), № 1, pp. 55–65,
ISSN 1072-5520, doi:10.1145/174800.174807

[Fow03] Fowler, M.: Who Needs an Architect? In: IEEE Software
20 (2003), № 5, pp. 11–13, ISSN 0740-7459, URL http:
//csdl.computer.org/dl/mags/so/2003/05/s5011.pdf

[GHJV95] Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: De-
sign patterns: elements of reusable object-oriented software.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 1995, ISBN 0-201-63361-2

[Hel95] Helm, R.: Patterns in Practice. In: ACM SIGPLAN
Notices 30 (1995), № 10, pp. 337–341, ISSN 0362-1340

[HFR99] Harrison, N.; Foote, B.; Rohnert, H.: Pattern
Languages of Program Design 4. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999, ISBN
0201433044

118

http://c2.com/ppr/about/portland.html
http://c2.com/ppr/about/portland.html
http://csdl.computer.org/dl/mags/so/2003/05/s5011.pdf
http://csdl.computer.org/dl/mags/so/2003/05/s5011.pdf


Bibliography

[KJ04] Kircher, M.; Jain, P.: Pattern-Oriented Software Archi-
tecture: Patterns for Resource Management. John Wiley &
Sons, 2004, ISBN 0470845252

[Lea94] Lea, D.: Christopher Alexander: an introduction for
object-oriented designers. In: SIGSOFT Softw. Eng. Notes
19 (1994), № 1, pp. 39–46, ISSN 0163-5948, doi:10.1145/
181610.181617

[MRB97] Martin, R. C.; Riehle, D.; Buschmann, F., eds.: Pat-
tern languages of program design 3. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1997, ISBN
0-201-31011-2

[SFJ96] Schmidt, D. C.; Fayad, M.; Johnson, R. E.: Software
patterns: introductions. In: Communications of the ACM
39 (1996), № 10, pp. 36–39, ISSN 0001-0782

[SS95] Schmidt, D.; Stephenson, P.: Experience Using Design
Patterns to Evolve Communication Software Across Diverse
OS Platforms. In: Olthoff, W. G., ed., ECOOP ’95—
Object-Oriented Programming, Springer-Verlag, 1995, vol.
952 of Lecture Notes in Computer Science, ISBN 3-540-
60160-0, pp. 399–423

[SSRB00] Schmidt, D. C.; Stal, M.; Rohnert, H.; Buschmann,
F.: Pattern-Oriented Software Architecture Volume 2 –
Networked and Concurrent Objects. John Wiley and Sons,
2000

[VCK95] Vlissides, J.; Coplien, J. O.; Kerth, N. L.: Patterns
Languages of Program Design 2. Reading, Mass.: Addison
Wesley, 1995, ISBN 0-201-89527-7

[Vil95] Viljamaa, P.: The patterns business: Impressions from
PLoP-94. In: ACM SIGSOFT Software Engineering Notes
20 (1995), № 1, pp. 74–78

[WF86] Winograd, T.; Flores, F.: Understanding Computers
and Cognition: a New Foundation for Design. Ablex, 1986

119



Bibliography

120



6 Legal Methodology and
Research

Daniel Winteler <daniel.winteler@uni-oldenburg.de>

Abstract

This paper is written for juristic laymen and describes some basic
juristic methods when applying law or researching into law. Within
the area of juristic methodology it focuses on the construction of law
as the most important hand tool of every jurist. Thus, the paper wants
to intensify the juristic laymens’ comprehension of the daily work of
jurists. Another focal point is laid on standard juristic argumentations
that are often used to justify a certain result. To explain these topics
a lot of examples are given to bring the theoretical comments into live.
Finally, some general aims of juristic research are described.

6.1 Introduction

The paper focuses on some of the basic hand tools of jurists when
applying law or doing research into law. The main focal points are:

(a) The Technique of Subsumtion

(b) The Construction of Law - Hermeneutics

(c) Standard Juristic Argumentations

(d) Research Aims in Law

(e) Conclusion

<daniel.winteler@uni-oldenburg.de>


6 Legal Methodology and Research

The motivation of this paper is to give juristic laymen an idea of what
studying law and doing research into law is all about. Every scientific
piece of work in law handles with the following items, understanding
them is fundamental to understand the work of jurists. A good overview
about the essential basics of jurisprudential work is also given by [Sch03].
For other topics of juristic methodology the books [KHN05] and [LC95]
shall be recommended.

6.2 The Technique of Subsumtion

The technique of subsumtion means examining whether the facts of
a case fit among the concrete requirements of a certain law. Thus,
applying law is a lot of doing subsumtions. Subsumtion is carried out in
the following way: First you have to split the requirements of a rule in
single requirements. Then you define each requirement in an abstract
way and examine whether the facts of the case fulfill that abstract
definition. If each requirement is fulfilled, the legal consequences can
be applied. Thus, subsumtion takes place in 3 steps [Rue05, p. 440]:
The abstract definition of the legal requirements composes the first
step (premise 1). The decisive parts of the matters of the case compose
the second step (premise 2). As a logical consequence the third step
shows whether the legal requirements are fulfilled or not (conclusion).

To give a first example:
Section 303 para. 1 German Criminal Code states the following about

damaging property1: “Whoever unlawfully damages or destroys the
property of another shall be punished with imprisonment for not more
than two years or a fine.” C throws a stone into his neighbours window
and smashes it because he is upset about his neighbour´s loud music.
That facts of that short case match each requirement of sec. 303 para.
1 Criminal Code:

(a) Whoever=C;

(b) Property of another=the neighbour´s window;

(c) Destroying the property=C smashed the window with the stone;

(d) Unlawfully=He had no right to do that.

1The translations within this paper are made by the author. All laws translated
and referred to are German laws.

122



6.3 The Construction of Law - Hermeneutics

The mentioned three steps (premise 1, premise 2, conclusion) shall
not be used here for each legal requirement. But to take the legal
requirement “destroying” property as an example:

• Destroying something can be defined as damaging something
so substantially that the thing gets absolutely unusual for its
purpose (premise 1).

• By smashing the window it can not be used as window any more,
it is damaged in a way that it got absolute unusual for its purpose
(premise 2).

• Thus, the window was “destroyed” (conclusion).

The fact that C did this because he is upset about the neighbour’s
loud music does not affect the subsumtion since it can not be attached
to one certain requirement. That does not mean that C’s motives do
not matter in any way, they will be considered in the context of the
sentence.

The example becomes not as clear if the facts of the case are changed:
If C does not smash the window but takes an aerosol can and soils the
neighbour´s house, is that a “damaging” or “destroying” of the house
when the neighbour just has to clean the walls again and they will be
like before? Does it matter how much time it would take the neighbour
to clean the walls up again?

This leads to another point: For deciding whether the requirements
of a law are fulfilled in doubtful cases, you have to examine the meaning
of the requirements, that is to interpret or to construe the law. Thus,
the accepted ways of construction shall be briefly introduced in the
following.

6.3 The Construction of Law - Hermeneutics

When people hear that someone studies law, a sentence often heard
is: “Oh you poor, you have to learn so many laws by heart!” Then it
is always quite hard to explain that the problem is not to memorize
law since you always keep the law with you (even in the exams) but is
actually more that of understanding law. An example often given to
clarify that point is sec. 164 para. 2 Civil Code (right of representation):
“If the intention to act in the name of another is not apparent, the

123



6 Legal Methodology and Research

agent’s absence of intention to act in his own name is not taken into
consideration.” To understand a sentence like that, it is elementary
to construe it. Construction of law is therefore finding the sense and
application area of rules.

When law shall be interpreted (Grecian: hermeneutics), there are
four common ways of construction-methods [Hor04, p. 176]: The gram-
matical construction, the teleological construction, the systematical
construction and the historical construction. They are flanked by
additional construction-methods like the constitutional-conform con-
struction and the european-law-conform construction. These methods
of construction are part of the basic hand tools jurists need. Although
some aspects are even today still in dispute, they are generally accepted
as “state-of-the-art.”

The need for construction of parts of the law results from the fact
that laws are per definition general and abstract. Legislative can
not consider each individual case, thus many requirements are not
absolutely precise defined. Although many laws are formulated in an
“if-then” style that must not be confused with “if-then” relations in
computer science. The main difference is that computer scientists can
exactly define what “if” and “then” are. Either it is “true” or “false”
and if you ask 100 computer scientists they will all give you the same
answer (if they calculate correctly) when asking them whether a certain
event is “true” or “false.”

Main problems occur in law due to the fact that in the first instance
“if” is usually not exactly defined in law, perhaps it is never exactly
defined. In general legislator can not define requirements so precise
since it is not possible to anticipate all supposable developments. So
legislator often uses general terms. But the more general terms are,
the more interpretations are fungible. Besides, it is an attribute of
language in general that it has never a definition everybody would
agree to. The meaning of language or of a certain word depends on
many circumstances, thus, many questions of law are in dispute among
jurists.

To give an easy example:
That thievery, robbery and comparable crimes are punished is ob-

vious. Besides law states that someone who commits such a crime
within a gang (German: “Bande”) will be punished more severe since
in general danger for other people and their property is bigger when
several people act together than if one person acts alone. But the term
“gang” is not defined elsewhere in law. So the questions arises how many

124



6.3 The Construction of Law - Hermeneutics

people must act together so that you can speak of a “gang.” Are two
enough or are three persons needed? Perhaps even four or five? That
question can decide whether a criminal offender is released on licence
or is imprisoned for one year. The only obvious wrong interpretation -
mostly everybody would agree on—is that a “gang” can be formed by
one person alone, all other interpretations mentioned are in principle
fungible2.

The following methods of construction are—in general—always appli-
cable. They do not depend on the question whether the constitution, a
“normal” law or a charter of a public corporation is construed. Besides
it does not matter whether the law to be construed is from the area of
civil, public or criminal law.

6.3.1 Literal Construction

In general an interpretation must be in the wording of a law. It is
obvious that in the example just mentioned, one person alone will
never form a “gang.” That is because the literal construction of
“gang” does not allow that wording. Hence, the literal interpretation
is sometimes called “the last line of interpretation.” On the other
hand, the German Federal Constitutional Court3 formulated that when
the literal interpretation comes to a clear interpretation, the usage
of other methods of interpretation is not allowed4. Thus, the literal
construction serves primarily two functions: it is the starting point for
each interpretation and at the same time restricts the other methods
of construction.

The literal interpretation examines the “usual” or “natural” meaning
of a word. But from the point of view of whom? That is again disputed.
Some say it has to be interpreted from a juristic layman´s point of view
and a good argument for that point of view is the following: Law should
be constructed in a way that every citizen can understand it. He only
can comply with the rules when he knows what law demands of him.
This is best warranted when the literal construction of laws is done
from a layman´s point of view. On the other hand legislative often

2The Grand Senate for Criminal Matters decided that at least three persons can
form a gang, ref. BGH 3/22/2001 – file ref.: GSSt 1/00, published in NJW
2001, p. 2266-2270.

3Cf. for the methods used by the Federal Constitutional Court when construeing
law: [Ble02].

4E.g. BVerfGE vol. 19, p. 147; vol. 21, p. 305,; vol. 55, p. 170.

125



6 Legal Methodology and Research

uses technical terms in a way jurists define them. But if the legislator
wants certain expressions to be understood in a way jurists define them
you would foil his explicit will if you interpreted the requirements from
a different point - the juristic layman´s - of view. The German Federal
Constitutional Court tends to the first opinion5.

The literal construction often gets easier if the legislator himself
defines certain legal requirements. For example sec. 276 para. 2 of the
Civil Code defines negligence like that: “A person acts negligently if
he fails to observe the relevant accepted standards of care.” If law
defines certain term itself that has to be accepted and that definition
has to be applied. But that example also shows that the definition of a
certain term by law itself often is only of little assistance. The logically
next question would be: “But in what case does someone not observe
the relevant accepted standards of care?” and: “What are accepted
standards of care, who defines them?” But nevertheless it has to be
stated that as far law defines a certain term that definition has to be
applied in every case.

Other examples of juristic definitions are:

• Sec. 13 Civil Code defines a consumer as “any natural person
that concludes a legal transaction for a purpose that can neither
be assigned to its commercial nor to its self-employed type of
work.”

• Sec. 90 Civil Code defines a thing (German “Sache”) as “physical
items only.”

• Sec. 121 para. 1 defines promptly (German “unverzüglich”) as
“without culpably delay.”

But those definitions are often only applicable to the law in which
the definition can be found and sometimes a certain term is defined
in different ways in different laws. An example for that will be given
below.

6.3.2 Systematic Construction

The systematic construction examines the function of a specific rule of
law in the total system of law. This way of interpretation handles with
logic and tries to avoid discrepancies in valuation. The German Federal
5E.g. BVerfGE vol. 73, p. 235; vol. 85, p. 73; vol. 92, p. 20.

126



6.3 The Construction of Law - Hermeneutics

Constitutional Court outlines the systematic interpretation as follows6:
“Within the systematic construction it has to applied that single rules
that were put in an objective context have to be interpreted in a way
that they are logically comformable. Since it has to be assumed that
the whole regulation has a continous, obliging sense.”

An example:
Since Jan. 1, 2002, prostitution is not regarded as immoral (in the

sense of law) any more: Treaties prostitutes place with their suitors are
effective. On the other hand sec. 4 para. 1 Licencing Act states that
a licence to operate a restaurant shall be refused if the applicant is
unreliable. The Licencing Act concretises that a person is for example
then unreliable if he promotes immorality. Both regulations mentioned
can only be regarded as continous and obliging if a publican who
employs or tolerates prostitutes in his rooms can not be regarded as
unreliable. Only this way of interpretation of the word “unreliable”
makes sure that the unity of the legal system is assured [Cas02].

One aspect of the systematic construction is for example that it can
be assumed that the same word has the same meaning in different rules.
But that must not be so. For example the word “nighttime” appears
in different contexts (example taken from [Rue05]). Sec. 292 para. 2
Criminal Code states that poaching in nighttime is to be penalized more
seriously than poaching at daytime. Judgement defines nighttime as the
time from dusk untill dawn. In sec. 19 para. 4 Federal Game Law there
is a ban on hunting regulated for nighttime. But nighttime is defined in
the same paragraph as the time one and a half hour after dusk to one
and a half hour before dawn. In sec. 104 Code of Criminal Procedure
the requirements of a house search during nighttime are defined. Here
again law itself defines nighttime, but this time depending on the date
of the house search: From April, 1 to September, 30 nighttime is from
9pm to 4am in the time of October, 1 to March, 31 nighttime is from
9pm to 6am. So the definition of the word “nighttime” depends on the
context it is used in.

Besides it can for example be referred to the title of a rule or a
section in which the rule is settled.

Part of the systematic construction are the general rules that the
newer regulation replaces the older (Latin: “lex posterior derogat legi
priori”) and that the specific regulation replaces the more general one
(Latin: “Lex specialis derogat legi generali”).

6Ref. BVerfGE vol. 48, p. 257.

127



6 Legal Methodology and Research

6.3.3 Teleological Construction

The teleological construction is generally appreciated the most impor-
tant construction method, even though that is often critizised (e.g. by
[Her05]). It has to be examined what the spirit and purpose of the law
is. Deciding is not the subjective will of the legislator but the purpose
that the law can reasonably have. But nevertheless it is often reverted
to the official reasons of a law in order to determine the spirit and the
purpose of a law, although that seems more to be the following, i. e.
the historical construction method.

Again an example:
The Law on Political Parties stated that a donation to a party above

10.000 Euro has to be published. The donator now does not contribute
45.000 Euro at once but gives 5 persons of his trust each 9.000 Euro,
advices them to donate the money and these persons contribute in
their name. Now the formal contributor are the friends, but is should
be clear that the spirit and the purpose of the law wants that kind of
arrangement also to be put under its scope.

6.3.4 Historical Construction

The historical construction is fed by two sources: The history of origins
and the recourse to its previous history. The historical construction is
generally regarded to be the weakest construction method. It is often
only used to fortify a conclusion already found by other methods of
construction.

The historical construction by referring to the history of origins
means recoursing to the opinion of the different legislative organs and
their members. It is often referred to the official reasons for a law.

The recourse on the previous history of a law is done by examining
the development of a law through the years. When formulations have
been retained unchanged in a succeeding law, it can be assumed that
the legislative did not want to change the existing prevailing view -
otherwise the legislator would have changed the law.

An interesting example is the following:
Sec. 69 Criminal Code states the following:

“If someone is convicted of an unlawful act which he com-
mitted in connection with the driving of a motor vehicle
or in violation of the duties of a driver of a motor vehicle,
or is not convicted only because his lack of capacity to be

128



6.3 The Construction of Law - Hermeneutics

adjudged guilty has been proved or may not be excluded,
then the court shall withdraw his permission to drive if the
act reveals that he is unfit to drive a motor vehicle.”

In dispute was for a long time how to interpret “if the act preveals
that he is unfit to drive a motor vehicle”. Obvious someone is unfit
to drive a motor vehicle when he often drives drunken or often causes
accidents driving in gross violation of traffic regulations or recklessly.
But is someone unfit in the mentioned sense if he is convicted because
of robbery and he only used the car to get to the site of crime and
away again, driving the car in accordance with the relevant road traffic
regulations? What about someone who sneaks out of an restaurant
without paying and then drives away with a car (again in accordance
with the relevant road traffic regulations)?

The law that introduced sec. 69 into the Criminal Code in the year
1952 had as official reasons the abatement of traffic accidents. The aim
of the law was - according to the official reasons - to take the actions
that are necessary to improve road safety and to reduce the number of
road accidents. So sec. 69 has to be interpreted in the way that the
unlawful act that reveals the unfitness of the driver must be an act
that shows that he endangers the road saftey, that the general public
has to fear that he will commit road accidents7. But that is not the
case as long as the offender complies with traffic regulations. Thus,
recoursing to the opinion of the legislator what the purpose of a law is
helps interpretating laws.

6.3.5 Additional Construction

The constitutional-conform construction is an effect of the hierarchy of
Law. Each federal law has to comply with the Constitution, otherwise
it is not effective. To avoid that ineffectiveness in certain cases, that
construction should be applied that complies with the Constitution
instead of other ones that do not conform with it. The reason for
that way of construction may be the principle of separation of powers
[Lue04]. A part of that principle can be seen as the respect the judiciary
must have for the legislative. That respect demands to maintain a law
effective as long as possible.

7Ref. BGH 8/26/2004 - file ref.: 4 StR 85/03, published in NJW 2004, p. 3497-
3504.

129



6 Legal Methodology and Research

The constitutional-conform construction is also often referred to as
a part of the systematic construction.

The object lesson students are taught to explain the historical con-
struction is the following:

Sec. 14 of the law concerning assemblies and processions states that
a “planned” public open-air assembly has to be registered 48 hours
before its start. If the assembly is not registered in time or is not
registered at all, it can be prohibited by the public authorities (sec.
15). But what happens if there is an unforeseen event, like the begin
of a war or the death of a prominent person and people come together
spontaneously and without appointment. How should that assembly
have been registered 48 hours before? So the question arises whether
a spontaneous assembly that reacts on unforeseen events also can be
prohibited due to the lack of registration, that is whether sec. 14 of
the law must also be applied to such assemblies. With respect to sec. 8
Constitutional Law, which guarantees the freedom of assemblies, a duty
for registration has to be denied in such cases. Another construction
would not be conform with the constitution, the result would be that
sec. 14 is ineffective in whole. The wording of sec. 14 of the law
concerning assemblies and processions is therefore construed that it
only is applicable if the assembly is pre-”planned” a certain time before
the event.

Since Germany is part of the European Union and has to comply
with the European Law there is also the rule that national law has
to be consistent with European Law. How far that rule has to be
applied, that is whether really every law in Germany, especially the
whole German Constitution has to conform with all European law is
strongly disputed even between the German Federal Court and the
European Court of Justice. That problem shall not be deepened here.
But in the scope of the European law conform construction, national
law has to be understood so that it is conform to European Law as far
as the literal construction allows that.

6.3.6 Example: Pistol for Blanks as Weapon

Here is an example of a judgement of the Federal Court of Justice8 in
which most of the presented construction methods are applied [Wan05,
p. 108-110]:

8Ref. BGH 2/4/2004, file ref.: GSSt 2/02, published in NJW 2003, p. 1677-1679.

130



6.3 The Construction of Law - Hermeneutics

In the following the circumstances of the case: A gets into a bank,
aims with a pistol for blanks (German: “Schreckschusspistole”) at the
bank assistant B from a distance of 2 meters and shouts: “Give me the
money or I will shoot you.” B gives him some thousand euros and A
flees.

It is clear that A has committed a robbery. But a robbery is even
stronger punished if the robber acts in a certain way. Sec. 250 para.
1 Criminal Code states the following: “Imprisonment for not less
than three years shall be imposed, if: 1. the perpetrator or another
participant in the robbery: a). carries a weapon or other dangerous
tool (. . . ).” The question now arises, whether even a pistol for blanks
is a weapon as mentioned in sec. 250 para. 1 lit. a Criminal Code. In
the following the construction of that rule as carried out by the Federal
Court of Justice is outlined.

Literal Construction

The literal construction of a “weapon” is not clear. In any case it
allows the interpretation that a pistol for blanks can be understood as
a weapon.

Systematic Construction

Sec. 1 firearms act defines the pistol for blanks as a weapon in the sense
of that act. As mentioned above from that fact it can be assumed that
this definition can be also used within the Criminal Code. But that
is not mandatory since sec. 1 firearms act defines the word “weapon”
only for that act and not for others like the Criminal Code.

Historical Construction

According to the official reasons of the 6th penal law amendment that
introduced sec. 250 para. 1 Criminal Code a pistol for blanks shall not
be defined as a weapon in the sense of that section.

Teleological Construction

The reason for the aggreviation of sentence by sec. 250 para. 1 lit a
Criminal Code is that in these cases the victim´s health is endangered
by the usage of certain means. Actual research findings of the forensic
science show that even a pistol for blanks is suitable to evoke serious

131



6 Legal Methodology and Research

injuries. When applied at the head, eyes or throat a shot can also have
lethal effect.

Mainly referring to the systematic and the teleological construction,
the Federal Court of Justice ruled that also a pistol for blanks has to
be considered a “weapon” in terms of sec. 250 para. 1 lit. a Criminal
Code.

6.3.7 The Construction of Treaties

It should be underlined that the methods of construction mentioned
above are only applied when interpretating law “made” by government.
Legal transactions between persons also have to be construed but that
has little to do with the methods applied when construing law. The
construction of treaties follows other rules that should not be explained
here.

6.4 Standard Juristic Argumentations

Some standard forms of argumentation are generally accepted today.
One or more of them generally can be found in every detailed juristic
script. Thus, the analogy and the reverse argumentation, the teleo-
logical reduction and the argumentation a fortiori are also part of the
jurist´s basic methods. But it shall also be mentioned that even these
methods of juristic argumentation are in dispute, too. A theoretical
background to juristic argumentation gives [KHN05, p. 333-346].

6.4.1 Analogy and Reverse Argumentation

Analogy

As already mentioned, the legislator can not predict all eventual cases,
so he tries to formulate laws as general as necessary and as exact as
possible. But sometimes he formulates a law too specific or forgets to
regulate some case at all. Then it is possible - under certain require-
ments - to transfer the legal consequence of a regulated case on that
not regulated case. But that is only possible, if there is a not planned
legal loophole and the interests are comparable. Thus, in general it
has to be asked whether the legislator would have put that case under
the same legal consequences if he had seen that case. If that can be
approved jurists talk of an analogy or in Latin “argumentum a simili.”

132



6.4 Standard Juristic Argumentations

Here is a demonstration of an analogy:
Sec. 823 para. 1 Civil Code states that whoever willfully or negli-

gently violates the live, the body, the health, the freedom, the property
or another right of someone is obliged to make good the damage. Sec.
1004 para 1 sentence 1 Civil Code states that whoever affects or intends
to affect the proiperty of another can be filed for injunctive relief. It is
obvious that someone must have the possibility to file for injunctive
relief if someone intends to hurt him. But sec. 823 para. 1 Civil Code
only states that after a violation of the body of someone he has to
make good the damage and sec. 1004 para 1 Civil Codes states that
only the imminent danger of the violation of property allows to apply
for an injunction. With respect to the unity of law sec. 1004 para. 1
Civil Code is applied analogously in all the cases in which sec. 823
para. 1 Civil Code gives the possibility of claiming damages.

The only area in which an analogy to the disadvantage of an offender
is not allowed is the area of substantive criminal law. That is because
sec. 103 para 2 of the Constitution states: “An act may be punished
only if it was defined by a law as a criminal offense before the act was
committed.”

Reverse Argumentation

The counterpart to the analogy is the reverse argumentation, in Latin:
“argumentum e contrario.” The regulated case is understood as an
exception that can not be generalized. So sometimes it can be concluded
from a regulated case that other similar but not equal cases shall not be
subsumed. The reverse argumentation is also referred to as “eloquent
silence.”

An example for the method of reverse argumentation could be the
following:

Sec. 1601 para. 1 Civil Code states that directly related relatives
have in general a maintenance obligation for each other. When the
law was created the legislative knew that there were also other kind of
relatives but he only stated that direct related relatives schould have
that support obligation. Thus, you can draw the reverse argumentation
that collateral relatives shall not have such a support obligation.

Analogy and reverse argumentation do not have a mandatory rela-
tionship but exclude each other.

133



6 Legal Methodology and Research

6.4.2 Teleological Reduction

Teleological reduction means not applying a rule to the facts of a case
that seem to match the requirements of the law when concidering the
literal construction. But the spirit and purpose of the law do not
match the facts. Thus, the scope of the rule is too broad and has to be
reduced.

An example (ref. [Wra03, p. 987]):
Sec. 306 para. 1 Criminal Code states the following: “Whoever

sets fire to or, as a result of setting a fire, destroys in whole or in
part: (. . . ) 4. motor vehicles, rail vehicles, aircraft or watercraft (. . . )
6. agricultural, nutritional or forestry facilities or products, shall be
punished with imprisonment from one year to ten years.” As the reader
may recognize, the minimum sentence is one year for these crimes. But
is it really right to bring someone behind bars for one year if he burns
and destroys an aged canoe that could hardly swim anymore or if he
burns some apples? The reason for the hard punishment of those crimes
were not cases like that, so jurists try to construe these objects in a
restrictive way. In general they add an “unwritten legal requirement”:
the property of another of significant value must be endangered by the
fire. This requirement can also be found in sec. 315c Criminal Code.

6.4.3 Argumentum A Fortiori

The argumentation a fortiori exists in two versions: the “argumentum
a maiore ad minus” and the “argumentum a minore ad maius.”

The “argumentum a maiore ad minus” describes an argumentaion
from the bigger to the smaller. An example could be the following: If
someone has the right to cancel a treaty without respite he may a fortiori
cancel the treaty with recipe. The argumentation a minore ad maius
takes place the other way round, e. g.: If the citizen gets a compensation
in the case of legal expropriation he will get a compensation a fortiori
in the case of illegal expropriation.

6.5 Research Aims in Law

Research in law can have different aims. In general three aims can
be distinguished. These aims are not strictly separated but can be
mixed in different proportions in one scientific work. Of course it
always depends on the specific area law research is done in. Research

134



6.5 Research Aims in Law

in sociology of law or history of law for instance may have a lot of
other aims, then mainly due to the fact that research is done in an
interdisciplinary area, so that the research methods of the area also
affected have to be integrated.

The research aims are:

(a) a descriptive approach,

(b) a new approach on the basis of existing law,

(c) an approach for a new law.

6.5.1 The Descriptive Approach

Research in law is basically of descriptive nature. Many scientific works
“just” represent the state-of-the-art regarding a specific question. This
is not as easy as it may sound. A great effort has to be made to
understand the arguments delivered by other jurists. These arguments
often base on other axioms so they have also to be examined. But
these axioms may also be disputed and so one thing may lead to the
other.

In general the different positions are discussed and the author of
the research work tries to decide who´s arguments are better and why
they are. Maybe by new arguments of the researcher himself or by
disproving the arguments of the contra-opinion. For the argumentation
the techniques and construction methods mentioned above are applied.

6.5.2 The New Approach on the Basis of Existing Law

The core of a jurist´s research work may also be a new approach to a
certain question on the basis of existing law. The author of this paper
for example examines in his doctoral thesis whether there are new
ways to consider the particularities of software within the given system
of law. Basis could be for example that the warranty rights within
sales law are only directly applicable if “software” is a thing (German:
“Sache”). If software is not a thing in the sense of sec. 90 Civil Code (a
“physical thing”) but some kind of intangible thing, the rules of sales
law are only applicable mutatis mutandis. But an application mutatis
mutandis is nothing else than an application in consideration of the
specialties of the area the law shall be applied. So the specialties of
software in contrast to other objects of purchase have to be examined.

135



Bibliography

The two kinds of descriptive approaches are the aims mostly re-
searched in. That is because the function of jurisprudence is generally
seen in helping the one who applies law (mainly judges and public
officials) to find a correct decision; correct not in the sense of “true”
since jurisprudence consists of a lot of value judgements which are not
provable as “true” or “false,” but correct in the sense of best fungible.

6.5.3 Developing New Laws

More rarely juristic laymen may think the issue of a doctoral thesis
in law is to develop new laws. The main focus of such a work will
be to highlight the unsactisfactory parts of law and examine which
problems occur when applying the law in question. For example the
Law of Obligations of the Civil Code was “updated” in large parts in
2002. This was due to several reasons but it was mainly because this
part of the Civil Code was over 100 years old and therefore had some
sections that had become obsolete and a lot of judge-made law had to
be included.

Such an advancement of law is quite rare as jurisprudence has not
the power to make laws. The predominant function of jurisprudence is
examing that what is not that what could be. As already mentioned:
The classical challenge of jurisprudence is supporting the judge in his
decision-making.

6.6 Conclusion

The reader of this paper should now have an idea of what jurists do
when handling with law, in particular when interpreting it. Hopefully
he parted with the misconception that studying law is about memo-
rizing section by section and paragraph by paragraph of laws. Being
introduced into the technique of subsumtion and the methods of con-
struction helps the reader to understand juristic papers or judgements.
Perhaps this knowledge motivates juristic laymen to read some other
juristic contributions.

Bibliography

[Ble02] Bleckmann, A.: Zu den Methoden der Gesetzesauslegung
in der Rechtsprechung des BVerfG. In: Juristische Schulung

136



Bibliography

(2002), pp. 942–947

[Cas02] Caspar, J.: Prostitution im Gaststättengewerbe? Zur Ausle-
gung des Begriffs der Unsittlichkeit im Gaststättengesetz. In:
Neue Zeitschrift für Verwaltungsrecht (2002), pp. 1322–1328

[Her05] Herzberg, R. D.: Die ratio legis als Schlüssel zum Geset-
zesverständnis? - Eine Skizze und Kritik der überkommenen
Auslegungsmethodik. In: Juristische Schulung (2005), pp.
1–8

[Hor04] Horn, N.: Einführung in die Rechtswissenschaft und Recht-
sphilosophie. Heidelberg, Germany: C. F. Müller Verlag,
2004

[KHN05] Kaufmann, A.; Hassemer, W.; Neumann, U.:
Einführung in die Rechtsphilosophie und Rechtstheorie der
Gegenwart. Heidelberg, Germany: C. F. Müller Verlag, 2005

[LC95] Larenz, K.; Canaris, C.-W.: Methodenlehre der
Rechtswissenschaft. Berlin, Germany: Springer Verlag, 1995

[Lue04] Luedemann, J.: Die verfassungskonforme Auslegung von
Gesetzen. In: Juristische Schulung (2004), pp. 27–30

[Rue05] Ruethers, B.: Rechtstheorie. Munich, Germany: Verlag C.
H. Beck, 2005

[Sch03] Schmidt, T. I.: Grundlagen rechtswissenschaftlichen Ar-
beitens. In: Juristische Schulung (2003), pp. 551–556 and
649–654

[Wan05] Wank, R.: Die Auslegung von Gesetzen. Cologne, Germany:
Carl Heymanns Verlag, 2005

[Wra03] Wrage, N.: Typische Probleme einer Brandstiftungsklausur.
In: Juristische Schulung (2003), pp. 985–991

137


	Preface
	The Role of Experimentation in Software Engineering
	Introduction
	Research and Experimentation in SE
	Empirical Knowledge versus Theoretical Knowledge
	Research Paradigms and Methods
	Data Collection Methods
	Research in Other Fields
	The Difference of SE

	Current State of Experimentation in SE
	Study by Tichy et. al. (1994)
	Study by Zelkowitz et. al. (1997)
	Further Analyses

	Common Fallacies on Experiments
	Future Direction of Experimentation in SE
	General Recommendations
	Repeatability and Families of Studies

	Critical Reflection
	Conclusions

	Example of Empirical Research: n-Version Programming
	Introduction
	N-version programming
	Functional redundancy in hardware
	Software reliability
	Development process
	Effectivity of NVP

	Selected empirical studies
	Early studies (77-78,80-83)
	The Knight Leveson Experiment (86)
	The `Six Language' Experiment (86-88)
	The `Second Generation' Study (85-88,91)

	Analysis and discussion …
	Conclusions

	Integration of Qualitative and Quantitative Methods
	Introduction
	Categories of Research Objects in Software Engineering
	Qualitative and quantitative research approaches
	The research process
	Data Scale Levels in Quantitative Research
	Comparison of quantitative and qualitative approaches
	Research Approaches

	Research Methods
	Data Collection Methods
	Data Analysis Methods

	Combining Qualitative and Quantitative Approaches
	Exemplary Study Designs
	Example 1: Analysis of Architectural Design Decisions
	Example 2: Action Research in a Development Process

	Conclusion

	Patterns in Building Architecture and Software Engineering
	Introduction
	Designing a Building in Civil Architecture
	Architectural patterns and pattern languages
	Software patterns and pattern languages
	Software patterns forms
	Software pattern languages

	Similarities and differences …
	Conclusion

	Legal Methodology and Research
	Introduction
	The Technique of Subsumtion
	The Construction of Law - Hermeneutics
	Literal Construction
	Systematic Construction
	Teleological Construction
	Historical Construction
	Additional Construction
	Example: Pistol for Blanks as Weapon
	The Construction of Treaties

	Standard Juristic Argumentations
	Analogy and Reverse Argumentation
	Teleological Reduction
	Argumentum A Fortiori

	Research Aims in Law
	The Descriptive Approach
	The New Approach on the Basis of Existing Law
	Developing New Laws

	Conclusion


