
Runtime Reconfiguration of J2EE
Applications

Jasminka Matevska-Meyer, Sascha Olliges, Wilhelm Hasselbring

Department of Computing Science, Software Engineering Group, University of
Oldenburg, 26121 Oldenburg, Germany
matevska-meyer@informatik.uni-oldenburg.de
olliges@informatik.uni-oldenburg.de
hasselbring@informatik.uni-oldenburg.de

ABSTRACT: Runtime reconfiguration considered as “applying required changes to a running
system” plays an important role for providing high availability not only of safety- and
mission-critical systems, but also for commercial web-applications offering professional
services. Hereby, the main concerns are maintaining the consistency of the running system
during reconfiguration and minimizing its down-time caused by the reconfiguration.
This paper focuses on the platform independent subsystem that realises deployment and
redeployment of J2EE modules based on the new J2EE Deployment API as a part of the
implementation of our proposed system architecture enabling runtime reconfiguration of
component-based systems. Our “controlled runtime redeployment” comprises an extension of
hot deployment and dynamic reloading, complemented by allowing for structural changes.
KEY-WORDS: component-based software engineering, deployment, dynamic/autonomic
reconfiguration/adaptation

78 DECOR’04, Déploiement et (Re) Configuration de Logiciels.

1 Introduction

The permanent change of requirements on software systems necessitates their
evolution. Reengineering approaches aim at a reasonable re-design of the system
and variability management approaches concentrate on designing systems which
include variation points for post-deployment system adaptation. Runtime
reconfiguration as applying required changes to a running system plays an
important role for providing high availability of software systems. Main issues are
maintaining the consistency of the system during runtime reconfiguration and
minimising its down-time caused by the reconfiguration. Due to that, techniques are
required which determine the parts of the system to be halted during reconfiguration,
and, accordingly, the parts of the system which can continue execution during
reconfiguration [MAT 03:2]. In order to identify those parts as a minimal set of
affected components, we need a system description, which provides an information
of its runtime behaviour basically concerning uses dependencies among instances of
components [MAT 03:3]. Furthermore, we have to be able to re-compose the system
during its runtime.

Our approach to runtime reconfiguration concerning the deployment called
controlled runtime redeployment presents an extension of the concepts of hot
deployment and dynamic reloading [IBM 03]. Additionally, we consider consistent
structural changes of the running system [MAT 03:2].

This paper is organised as follows. First, we briefly present our approach to
enabling reconfiguration of component-based systems at runtime (Section 3); next,
we propose a system architecture (Figure 1). In Section 2.1 we present our
implementation of the J2EE Deployment API [OLL 04]. Finally, we conclude and
indicate further work in Section 3.

2 Enabling Reconfiguration of Component-Based Systems at Runtime

We aim at reconfiguration of component-based systems at runtime as applying
required changes to a running system. We distinguish between three different types
of reconfiguration according to their reconfiguration effort: (1) functional, (2) non-
functional, and (3) structural. All types of reconfiguration can occur on different
levels of granularity (i.e., can address the entire system or a single sub-component).
Functional reconfigurations include changes to the functionality of a single
component as well as of a particular subsystem, even of the entire system. Non-
functional reconfigurations are concerned with the quality of service (QoS) of the
system and can affect single components (sub-systems) or the architecture.
Structural reconfigurations consider both, changing the interface of a single
component and changing dependencies among components (architectural changes of
a system).

Runtime reconfiguration of J2EE applications 79

Component

Component Description Live Component

Composite Component Descritpion Atomic Component Description

Service Component Connector Component

Container ComponentAtomic Live Component<< instantiates >>

We observe a running system at a particular time interval from receiving a
reconfiguration request until reconfiguration completion. In an already deployed and
running system we determine time-constrained use dependencies among instances of
components, which are constrained by specified structural dependencies and
specified or derived component protocol information. Knowing the current state of
all possibly affected components, and their future behaviour, we can exclude past
dependencies and late future ones. This allows us to build a minimal runtime
dependency graph matching the particular reconfiguration request [MAT 03:2].

Figure 1. C3-Meta Model

Our meta-model in Figure 1, described in [MAT 03:3] presents a Composite
[GAM 95] structural static and runtime view of the system, thus enabling
hierarchical decomposition of the system behaviour and its consistency check and
composition after reconfiguration.

For this paper container components are the essential extension to establish
modelling of deployment and runtime properties of the system. A container provides
the runtime environment for the live components [OMG 03, SUN 03] To describe
the runtime behaviour of the system we use service effect automata (as specified in
[REU 03]). For determining the reconfiguration point in time we propose a special
extension of message sequence charts called live sequence charts [DAM 01]
because they can express liveliness and timing constraints.

Finally, applying required changes to an already deployed and running system
usually triggers changes in a system configuration and implies its reconstruction and
redeployment to obtain a consistent system after reconfiguration. A major problem
to be solved here is managing runtime dependencies among the components. Our
concept of controlled runtime redeployment presents an extension of the concepts of
hot deployment and dynamical reloading [IBM 03]. We additionally allow structural
changes of the running system [MAT 03:2] and manage consistency problems in

80 DECOR’04, Déploiement et (Re) Configuration de Logiciels.

User

Architecture Change Requests

Component Change Requests

Reconfiguration Analyser

Dependency Manager

Consistency Manager

Reconfigurator

Rollback Request

Reconfiguration Licence

Reconfiguration
/ Rollback

Report

Updated Parameters

Reconfiguration Confirm
or Abort

Reconfiguration Request

contrast to both other concepts mentioned before, which only allow a simple swap of
an application or a single component at runtime.

2.1 Implementation of the J2EE Deployment API

Hot redeployment of software components in the J2EE (Java 2 Enterprise
Edition) platform is implemented by the J2EE product providers as an optional
feature for component developers who continuously need to execute tests in a
running environment. As a consequence, hot redeployment was and actually is an
operation that potentially invalidates existing user sessions. This is no problem for
developers, as loosing the session state is not critical while debugging and testing
components. In productive systems, that expose their services to real users,
deployment is a time- and error-sensitive process. While program correctness is only
partially affected by the deployment process, time is an important factor when
dealing with component deployment. In most cases, maintenance downtime of
productive systems is considered a big problem because other business processes
depend on the systems availability.

The Deployment API specification [SEA 03] introduced as a part of the new
J2EE 1.4 specification [SUN 03] takes the concept of redeployment one step further
by specifying redeployment to be transparent to users thus allowing it to be used in
productive systems. The possibility to perform configuration changes in a running
system without invalidating running sessions will significantly reduce its downtime.

Figure 2. Reconfiguration Manager

Runtime reconfiguration of J2EE applications 81

However, no J2EE application server includes a working implementation of the
Deployment API specification yet. Our project “J2EE Deployment API
Implementation” [OLL 04] developed the technical basis for an API implementation
for the JBoss Application Server. We now work on implementing the redeployment
functionality which is marked optional in the specification. The resulting API
implementation will then be integrated into a complete system enabling
configuration, reconfiguration, deployment and redeployment of J2EE applications
in production systems.

We name our system PIRMA (Platform Independent Reconfiguration Manager).
It is activated on reconfiguration requests. It consists of the following four top-level
components [MAT 03]: Reconfiguration Analyser, Dependency Manager,
Consistency Manager and Reconfigurator. Our implementation of the J2EE
Deployment API covers the fundamental functionality of the reconfigurator and
provides an interface to the consistency manager.

2.1.1 Basic concepts of the Redeployment Implementation

Our project exploits the potentials of the JBoss interceptor stack technology
[STA 02] to support redeployment. In JBoss server each J2EE component is
deployed inside a manageable container component. That container is configured
with a chain of interceptor objects that handle the configurable system-level aspects
of an EJB component which are: transaction demarcation, persistence,
authentication, authorization and remote communication as well as instance pooling
and optionally clustering. Other responsibilities of interceptors in these chains are
invocation routing, logging and as a matter of particular interest an interceptor that
manages container shutdown operations. The CleanShutdownInterceptor's
responsibility is to wait for the completion of running invocations on the component
container it is configured for and to deny further invocations. We plan to use a
similar mechanism to support transparent redeployment operations. A newly
introduced interceptor will let any outstanding invocation that started a new
transaction complete while new invocations wait on some synchronization barrier.
After invocation completion the component hosted in the container will be replaced
with a new version. Unlike the CleanShutdownInterceptor which ignores the
transaction attribute of the operation to be invoked, the new interceptor has to
intercept operations that are configured to start new transactions. Thus transactions
are guaranteed to complete and no configuration change is performed while a
transaction is running. Needless to say that there are some restrictions on the
configuration changes allowed in such redeployments. The Deployment API
specification states that the runtime configuration must remain the same for a J2EE
module to be successfully redeployed. However, this restriction may be weakened to
some extent. It should be possible to support structural changes to module parts that
conform to certain requirements. The component type determines the criteria the
component has to satisfy and therefore plays a key role in the distinction of whether
the component is safe to structural change or not.

82 DECOR’04, Déploiement et (Re) Configuration de Logiciels.

Session bean type EJB components are by definition extensions of the client that
created them. The EJB specification [SUN 03:2] defines two types of such
components. A stateful session bean instance contains conversational state that must
be retained across methods and transactions. The session bean container sometimes
needs to transfer the state of the hosted beans to secondary storage for performance
reasons. This transfer is called passivation. The operation of bringing beans back to
life is called activation. To support this, the interface implemented by the session
bean types contains call-back methods that the container invokes to inform a
component about its passivation or activation. It's the instances responsibility to
ensure, that upon return from a call to the passivate method its fields are ready to be
stored via Java serialization. As serialization depends on the serialized type's
structure, a stateful session bean is not safe to structural change. The stateless
session bean component type contains no conversational state between method
invocations. Therefore bean instances of this type are interchangeable. As there is no
need to preserve state information when switching versions of the component this
would be no problem to redeployment. On the other hand, as session beans are client
extensions, their structure is incorporated into the client itself and therefore a
stateless session bean may only be redeployed if it is not referenced by (unchanged)
remote clients. This is always the case when dealing with local EJB components (see
chapter 6.5 of the EJB specification [SUN 03:2]).

An entity bean type EJB component is an object-oriented view of information
entities, like a person or an account for example, that are stored in a database or an
existing enterprise application. As an entity bean is a view on data located elsewhere,
it contains no state. Depending on the container's configuration it may be cached in
the application server, but under any circumstances it is guaranteed that
modifications to the entity are written to the data store when the current transaction
is committed. The real problem that occurs when dealing with redeployments of
entity bean components is that when its structure changes, the data structures in the
associated persistence store most of the time needs to be changed, too. While this is
surely possible, such an operation may be a long-running task, which is not
acceptable in redeployments that should be transparent to users of the system. A
possible solution to this would be using a second data store somehow externally
synchronizing its contents with the first. That second data store then could be used
for persistence of the entities new version. The switch of the data store is performed
by configuring a new resource manager for the new version of the entity. Again it is
not possible to change the structure of the EJB component if it is referenced by
(unchanged) remote clients.

Message driven bean type components have no client-visible identity. A
message driven bean contains no conversational state specific to a client, but they of
course may contain instance variables that constitute state valid across the handling
of client messages. However, the EJB specification [SUN 03:2] states that all
instances of a message driven bean are equivalent and therefore a message may be
send to any instance. As a message driven bean is by definition an asynchronous

Runtime reconfiguration of J2EE applications 83

message receiver, a redeployment operation may temporarily disable message
routing and exchange the associated bean.

The above observations now can be summarized: The distinction of whether an
EJB component is safe to structural change (i.e. interface modification) or not can be
boiled down to the question whether (unchanged) remote clients hold references to it
or not and if it contains conversational state or not. To detect if a component is safe
to configuration change (or even removal) another interceptor may be introduced,
this time intercepting invocations of the components home interface (EJBHome)
which is used to create, find and remove handles (stubs) to EJB objects.

2.1.2 Related Work

The JBoss open source project itself started to work on an implementation of the
Deployment API. Being a new project, the current sources are incomplete and do
not (yet) include any support for redeployment. Anyway, the project is updated quite
frequently and will surely yield some interesting developments.

Another open source project called Ishmael [ISH 04] works on an
implementation for the JOnAS J2EE Server [OBJ 04]. Though the project was
registered at the ObjectWeb website back in October 2002, it is still considered an
alpha release and does not support the current server version. It seems the project’s
development has nearly stopped. Anyway, in the early development phases of our
project ‘J2EE Deployment API Implementation’ [OLL 04] back in summer 2003,
some design decisions were influenced by the Ishmael source code.

3 Summary

An approach to enabling reconfiguration of component-based systems at runtime
allowing changes of the dependencies among components is presented. We use a
meta model which provides description of the system runtime behaviour and a high-
level architecture of our reconfiguration manager (

Figure 2). As an implementation platform J2EE Technology [SUN 03] is
employed. Currently, we work on an implementation of a J2EE system for runtime
reconfiguration of J2EE applications. A special focus of this paper presents our
work in progress on implementing a subsystem that enables deployment and
redeployment of J2EE modules based on the J2EE deployment API [SEA 03].
Future work includes consideration of simulation methods for predicting the optimal
point in time for reconfiguration for a particular reconfiguration request.

84 DECOR’04, Déploiement et (Re) Configuration de Logiciels.

4 Bibliography

[DAM 01] DAMM W. and HAREL D. LSCs: “Breathing life into message sequence charts.”
Formal Methods in System Design, 19(1):45–80, 2001.

[GAM 95] GAMMA, HELM, JOHNSON, and VLISSIDES, Design Patterns Elements of
Reusable Object-Oriented Software, Object-Oriented Technology, Addison-Wesley,
Massachusetts, 1995.

[IBM 03] IBM, http://www-3.ibm.com/software/webservers/appserv/doc/v40, WebSphere
Application Server Documentation, June 2003.

[ISH 04] ISHMAEL project website, http://forge.objectweb.org/projects/ishmael, retrieved 31
August 2004.

[MAT 03] MATEVSKA-MEYER J. and HASSELBRING W., “Enabling reconfiguration of
component-based systems at runtime.”, in J. B. J. van Gurp, editor, Proceedings of Workshop
on Software Variability Management, pages 123–125, Groningen, The Netherlands, Feb.
2003. University of Groningen.

[MAT 03:2] MATEVSKA-MEYER J., HASSELBRING W., and REUSSNER R..
“Exploiting protocol information for speeding up runtime reconfiguration of component-
based systems.”, in Proceedings of Workshop on Component-Oriented Programming WCOP
2003, Darmstadt, Germany, July 2003. Technical University of Darmstadt.

[MAT 03:3] MATEVSKA-MEYER J., HASSELBRING W., and REUSSNER R., “Software
architecture description supporting component deployment and system runtime
reconfiguration”, in Proceedings of Workshop on Component-Oriented Programming WCOP
2004, Oslo, Norway, June 2004. University of Oslo.

[OBJ 04] ObjectWeb, Java Open Application Server, http://jonas.objectweb.org, retrieved 31
August 2004.

[OLL 04] OLLIGES S., J2EE Deployment API Implementation, Student Project, University
of Oldenburg, Germany, Department of Computing Science, Software Engineering Group,
Jan 2004.

[OMG 03] Object Management Group OMG, CORBA Component Model, V3.0, 2003,
http://www.omg.org/technology/documents/formal/components.htm.

[REU 03] REUSSNER R. H., “Automatic component protocol adaptation with the coconut
tool suite”, Future Generation Computer Systems, 19(5):627–639, 2003.

[SEA 03] SEARLS R., J2EE Deployment API Specification, Version 1.1, Sun Microsystems,
http://java.sun.com/j2ee/tools/deployment/, Nov. 2003. Retrieved 2004-03-30.

[STA 02] STARK S, JBoss Administration and Development, JBoss Group, July 2002.

[SUN 03] Sun Microsystems, http://java.sun.com/j2ee/, Java 2 Platform, Enterprise Edition
Specification, Version 1.4, 2003.

[SUN 03:2] Sun Microsystems, http://java.sun.com/products/ejb, Enterprise JavaBeans
Specification, Version 2.1, Nov. 12, 2003

