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Abstract. The status of our current work on an UML profile to ex-
press software engineering process models is presented. We will discuss
our requirements on such a profile and introduce identified syntactical
and semantical implications. Concluding a first application scenario is
presented.

1 Introduction

Nowadays various development process models exist for efficient development of
software. They range from agile processes, like eXtreme Programming (XP [5])
as a set of “best practices”, customizable frameworks such as the Rational Uni-
fied Process (RUP [21]) towards very detailed process descriptions such as the
V-Model [17]. They all have in common that the process specifications are ex-
pressed informally. This often leads to different interpretations which is obviously
a problem for (automatic) process execution. The informal description of devel-
opment processes leads to the problem that it is not well understood what should
be coordinated/expressed in a software development process and what not: ”To
which extent should a software development process be specified?”

There exist a lot of formal software process modeling languages which allow
to avoid ambiguities when interpreting the process specifications [18, 19, 15]. Un-
fortunately none of them achieved the status of a standard notation for software
process modeling. All of these approaches define their own syntax and semantics
which implies e.g., proprietary data formats. Furthermore all of them are limited
to express a fixed set of certain aspects of a process software model (e.g., time,
? This research was supported by the German Department of Education and Research
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data, concurrency) and it is not possible to extend them easily with new model-
ing constructs e.g., to cover new research topics like ”knowledge management”
or different semantics (e.g., finite automata, Petri net variants).

On the other hand the Unified Modeling Language (UML [37]) of the Ob-
ject Modeling Group (OMG [1]) achieved the status of an industrial standard
for modeling object oriented systems which resulted in considerable tool sup-
port. Even more, UML provides easy to use extension mechanisms (stereotypes,
tagged values, constraints) within so called ”UML profiles”. Unfortunately the
UML does not provide formal semantics. There are different approaches pub-
lished trying to solve this issue (compare Section 2). But they all have in com-
mon that they focus only some aspects of the UML diagram conglomerate.

For these reasons we present an UML-based approach to support software
development process modeling and execution. The remainder of the paper is
structured as follows. In Section 2 we briefly introduce some informal basic
definitions and motivate the approach. In section 3 we give a brief overview of
the accomplished work. Section 6 concludes and elaborates on further research.

2 Fundamentals

In this paper we discuss the ”software dimension” of software development pro-
cesses, this includes all software related elements that are used in the process,
like artifacts and tools. We aim at automating as much of these software elements
as possible. We start the discussion with some requirements sketching the ”big
picture”. Then we discuss briefly implications of these definitions with respect
to modeling static and dynamic concerns inside an UML profile. Requirements
of software development process modeling are:

1. A software development process consists of (disjunctive) sets of activities,
actors, products and tools ((A)APT).

2. Each AAPT can be ready or not ready and describes for example the avail-
ability of an actor. Even more a resource can be several ”times” ready mean-
ing that several products are available.

3. Each activity has a set of inputs and outputs that refer to a subset of defined
AAPT.

4. If all referred AAPTs of an input are ready then the input is enabled.
5. An activity is (possibly) executed if at least one input is enabled.
6. A step is subset of (possibly executed) activities that is executed concur-

rently. Especially the concurrent execution of two equal activities is possible
e.g., regarding a ”coding” activity where more then two persons code at the
same time.

7. If an activity is executed the corresponding input is disabled and it’s referred
AAPTs are set to not ready.
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8. If an activity completes at least one output is enabled.
9. If an output is enabled all referred AAPT are ready.

10. Each APT has a set of attributes to store data and states (e.g., actor name,
product state).

11. The APTs may have relations among each other (e.g., product a is related
to exactly 3 subproducts).

12. Tools are able to change states of products within a defined set of functions
that map a set of products in certain states into a set of products in certain
states.

13. Actors can be persons interacting with tools or just tools.
14. Actors interact with tools in that way that certain functions are executed.
15. An application of these functions is referred as activity execution which can

consume resources.
16. Resources can be time, cost, space etc.

If one tries an initial (syntactical) mapping of the identified requirements
towards UML diagrams it is obvious that we need to be able to model static and
dynamic aspects of a process. The kind of static aspects we need to express are
covered in UML only by class diagrams - so there is no design choice. But there
are a lot of diagrams dealing with behavioral aspects like state charts, activity
charts and message sequence charts. If we assume, that the static instances of
actors, products and tools can be described by class diagrams then activity charts
offer an adequate syntax to meet the required inputs and outputs (requirement
3). Regarding possible semantics the main characteristic of the process dynamics
we sketched so far is ”resource driven”. Which means, if all required resources are
available or ready the activity is executed. Including all UML specifications until
version 1.5 [37] the OMG proposes to derive the behavior of activity machines
from state machines. This would not be consistent with our requirements e.g.,
it is not possible to have multiple active states in one state chart. Fortunately,
in the actual UML 2 proposals [26] the OMG is changing the behavioral of ac-
tivity machines towards a Petri net-based semantics which match our identified
requirements. A Petri net PN is a tuple (P,T, IF, IB)

– a finite, ordered set P = {p1, . . . , p|P |} of places,
– a finite, ordered set T = {t1, . . . , t|T |} of transitions,
– P ∩ T = 0,
– |P | × |T | − forward−matrix IF over IN, and
– |P | × |T | − backward−matrix IB over IN
– F : P × T ∪ T × P ⇒ IN the edge function, defined as ∀x, y ∈ P ∪ T :

F (x, y)=

{
IFi,j , ifx = pi ∧ y = tj

IBi,j , ifx = tj ∧ y = pi

– The State space of the Petri net is INP .
– A mapping s : P → IN is called state/marking of the net.
– There exist exactly one initial state s0.
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– We call a transition t of N s-enabled, if s ≥ IF(t)(∀p ∈ P : s(p) ≥ IFp,t =
F (p, t)).

– t fires from s to s’, if s’ = s - IF(t) + IB(t).

Figure 1 shows a simple example of a Petri net-based execution frame for
activity charts. In sub-figure (a) the activity chart is presented and in sub-figure
(b) the corresponding Petri net. Note that is is not necessary that ”Activity i+1”
is ever reached, because T0 or T1 can also fire twice in standard Petri net token
game semantics. Petri nets are widely accepted in the area of business process

(a) simple activ-
ity chart

(b) simple Petri
net

Fig. 1. Example illustrating the semantical petri-net-based execution frame of activity
charts

models regarding the execution of so called ”workflow specifications” in so called
”workflow management systems” [3, 31]. But workflows differ from our point of
view from our software process models - which reflects also in the Petri net token
game semantics that is used to describe the behavior of workflows.

One characteristic of Petri nets is that they generally describe closed systems.
This assumption is appropriate if the process model should ”only” be simulated
but this is not a realistic assumption if we want to accompany a ”real” software
development processes where we possibly have to deal with variations over time
regarding the resources that can be used. So we need to support semantics
that allows to specify so called ”reactive systems”. Furthermore as one of their
main characteristic workflow management systems do not allow to modify the
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controlled artifacts. But exactly this is an important feature for automating
software development processes.

There exist a lot of approaches to express Software Engineering Process Mod-
els in UML and UML profiles (e.g., [30, 34, 35]). Most of them have an informal
semantics and thus they are outside of our scope — since we aim at allowing
(computer supported) software process execution. Regarding the formal seman-
tics one could classify the approaches regarding the level of UML coverage. Many
people have defined the semantics of single UML diagrams — e.g., [22, 7] etc., on
state machines, [12] on collaboration diagrams, [13, 16] etc. on class diagrams,
[28] on use cases, [6] on activity diagrams — or just to give formal foundations
for action language (e.g., [25, 2]). This restriction on a single diagram is prob-
lematic because the main advantage of UML is the possibility to use different
diagrams during the model building process to describe a system. Most of the
diagrams are related to each other and thus the formal semantics should have
”interfaces” to connect to other approaches in order to complete the picture.

One example of such interfaces in our approach concerns the tool dimension
of a software development process. All software development processes have in
common that tools are required to support their activities [32, 14, 38]. This is
due to the fact that process models usually specify the activities that should be
accomplished and the tools determine the activities that can be accomplished
— with various levels of automation. Similar relationships between artifacts and
process models resp. tools exist. The relevance of these mutual dependencies is
proportional related to the amount of activities for producing artifacts that can
be supported by tools. Only then, tools are able to serve as bridges between the
process models and the actual processes. The amount of possible automation
is steadily increasing — especially in the domain of system development —
since only tools are able to support the efficient development of the systems that
have a continuously increasing complexity [11]. The relationship between process
models and tools is relevant in both directions. On one hand, process models
have an impact on the tools On the other hand, the tools have an impact on
the process models. The main concern for this direction is the fact that software
development processes are similar to software or at least several aspects of them
are expressible in software. Therefore, we have to deal with the question how the
software environment that is used in a development process can be integrated
into a process modeling language. In the next section we are going to introduce
some of our design choices and results so far.

3 Work status

First we developed a mapping regarding the syntactical constraints of an estab-
lished development process model in order to see whether all required elements
of the process specification could be expressed. Then we expressed this process
model with the chosen UML subset. After this we extended these models with
additional activities and products concerning domain specific standards in the
area of safety critical systems (like ARP4754 [33] in the area of avionics) and also
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introduced model-based development extensions (like Life Sequence Charts [9])
to be able to verify systems very early in the process. For this example mapping
we used the V-Model for its widespread use in the domain of safety critical sys-
tems, and its property of being both very detailed and general. Furthermore this
process model is mandatory for software suppliers working for German govern-
ment organizations. Activities in the V-Model context

”are work-steps in the IT development process; its results and execution
can be described exactly. Activities may consist of a set of sub-activities
as long as each of these sub-activities results in defined interim results.”
([17], GD250-2EINF, p.5)

In each activity objects are processed, called products. And all products that
have to be developed are described (method independently) in detail in the spec-
ification which serves also as contract between customer and contractor.

The V-model comprises the four submodules project management (PM), con-
figuration management (CM), quality assurance (QA), and system development
(SD). We concentrate on the most elaborated part SD. Instead of insisting on
particular languages for products, the V-model in detail specifies what a product
shall describe and recommends specific methods, i.e. languages or notations such
as flow-charts, or even gives general product templates to be used in particu-
lar situations. A product template, for example, specifies that each requirement
must have a unique identification number. Furthermore on the method level
there are ”method interfaces” specified that explain how the methods relate to
each other. In order to illustrate the mapping of the V-Model specification el-
ements towards the UML profile elements we will sketch some examples in the
next two subsections.

3.1 Activity related specification elements in the V-Model

There are two main specification elements that cover the execution of activities
and methods in the V-Model, e.g. ”V-Model activity diagrams” and product
flows. V-Model activity diagrams are used to sketch a grain granular picture of
the relationships between a set of activities and products (example see figure 2).
Activities are depicted in rectangles and products in ellipses. Control- and data
flows are displayed by arrows, whereby data flows have at least one product as
source. These ”pictures” have not much in common with the specifications on
deeper levels because the are only data flows specified. As already mentioned the
lower specification elements provide a more detailed picture of the development
activities. Each activity has a so called ”product flow” that describes all input
and output products. Figure 3 describes all products involved in activity SD 2.5
”Interface Description”. For each (sub-) product (column 3) referred to by the
activity to be described the state at the beginning (column 2) and that at the
end of the activity (column 5) is entered. If the activity does not influence the
state of the product or should no such state of the product exist, then this is
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Fig. 2. Example Activity SD 2: System Design (V-Model Spec.)

marked in the table by a dash. The input products of an activity are identified in
such a manner that the columns ”from Activity” and ”from State” are filled in
and the columns ”to Activity” and ”to State” are marked by a dash. For output
products the ”From”-entries are not applicable. Only the columns ”to Activity”
and ”to State” are filled in. In the cases where a product has both ”from” and
”to” entries it is modified in the corresponding activity. All output products of
an activity whose end states are ”b. proc.” should have ”planned” as beginning
states according to the model. In order to be able to distinguish better visually
between input and output products, the beginning state has been substituted
by a ”—”. This should be interpreted as ”planned” in these cases. Furthermore,
it is noted for each (sub-) product, from which activity the product results (col-
umn 1) and to which activity the product will be passed (column 4). If there
are neither ”from” nor ”to” activities for a (sub-) product this is illustrated in
the table by a dash. If sub-products of a product are created in different (sub-)
activities (see, e. g., activity QA 2.2 ”Definition of Assessment Environment”), it
will become necessary to assemble the product by integrating the sub-products.
This is realized in the activity where the last generated sub-product of a product
is created. In the product flow this is represented by referring to following main
activities in column ”to Activity”. For products that are not updated, the state
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Fig. 3. Example product flow SD 2.5: Interface Description (V-Model Spec.)

in ”to State” is ”submitted”.

The example shown in Figure 3 means that ”User Requirements” and ”Sys-
tem Architecture” come from activities SD1 and SD2.4, and represent input
products. Both products have state ”accepted”. Product ”Interface Description”
is newly created. The product leaves the activity having the state ”p.proc” and
is input product for activities SD2.6, SD3, SD4-SW, CM4.3. Figure 4 shows an
aggregated activity diagram of figure 2 and the relevant part of figure 3. In the

Fig. 4. SD 2.5: UML activity diagram

activity diagrams all resources (products, actors, tools) are objects. Furthermore
in the diagram of figure 4 the objects have a state that corresponds to the ”prod-
uct flow” of the V-Model. The next activity level that is specified in the V-Model
are the methods. There are a lot of information that describe for example what to
do in each method, limits and recommendations during the method application
or sketch interfaces among the methods. But the assignment of methods to ac-
tivities is done by allocation a set of methods to each activity. Figure 5 shows an
assignment of the methods ”Class and Object Modeling” (COM), ”SubSystem
Modeling” (SSM), ”Formal Specification” (FS), ”Design VERification” (DVER),
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Fig. 5. SE 2.5 method assignment

”Analysis of Covered Channels” (ACC), ”State Machine Modeling” (STMO)
and ”InterAction Modeling” (IAM) to activity SD2.5 ”Interface Description”.
We further assumed that methods are just activities without a specified activity
flow because this would exceed the limits of a process model description (for
example the V-Model specifies over 60 methods). Nevertheless it would be use-
ful to have such descriptions - especially if most parts are inherently dynamic
between most process runs. Figure 6 depicts a possible flow of methods. First

Fig. 6. SE 2.5 methods: UML activity diagram

the input products of the super activity (SE2.5) are instantiated, namely the
objects ”System Architecture” (SA) and UR (User Requirements) according to
the product flow table of the activity. Then these products are split into the re-
quired sub-products that should be modified by method application, namely in
figure 6 ”System Architecture.Use Cases” (SA.UC), ”System Architecture.Class
and Object Model” (SA.COM) in state ”s1” and ”System Architecture.State
Modeling” (SA.CSTMO) in state ”s3”. The methods ”Class and Object Model-
ing” and ”State Modeling” should be executed sequentially infinitely often till
both produced the objects ”SA.COM” in state ”s2” and ”SA.STMO” in state
”s4”. The changed states denote in this diagram an object change. What changed
exactly is specified somewhere else. Figure 7 shows the corresponding underly-
ing Petri net semantics. Now we are able to use activity diagrams for software
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Fig. 7. SE 2.5 methods: (underlying) Petri net semantics

process modeling. But we did not show yet how static aspects (data) can be
expressed. Even more we assumed that objects are ”created” - but we did not
specify how. According to our defined requirements we would assume that tools
exist that are able to create, modify und (possibly) destruct the products.

3.2 Product related specification elements in the V-Model

There are several product related specification elements in the V-Model. This
includes for example general product information (like: name and identification
of the document, version, person in charge), product information (for example
for user requirements) and activity-related product information (like: user re-
quirements that describe the actual status of an existing old system, that should
be (partly) incorporated into the new one in activity SD1.1 ”Recording Actual
Status and Analysis”). Even more relationships between methods are specified,
for example

”Interface Design Verification - Formal Specification
DVER requires a formally specified detailed specification for to be ver-
ified and formally specified starting specification. These specifications
should be written in the same specification language.”

We mapped these specifications into UML class models. Within their syntactical
boundaries we were able to express
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– Product relationships with multiplicities that denote that a product has a
relationship to other products, for example each state chart has exactly one
class diagram.

– Product instances that describe inheritable product attributes, for example
each products inherits all general product requirements.

– Product hierarchies describe product affiliations, for example that product
”System Architecture” consists of class diagrams, state charts and a design
verification proof.

Figure 8 depicts some method results of activity SE2.5. The ”Interface De-
scription” product has the two sub-products ”Class and Object Model” and
”State Model”. The ”C” at the beginning of the class names show that we talk
about ”Classes” - thus product templates in the V-Model context. Furthermore
each of the sub-products of the class ”Interface Description” inherits the at-
tributes ”InterfaceID” of type ”Unique ID” (UID) and a string that informs
about the purpose of the interface. Even more relation ”R3” ensures that each
class has exactly one state chart.

Fig. 8. SE 2.5: method products

Comprising the above we were able to express specification elements that
were syntactically clear separable e.g., product flows, method assignments and
method interfaces inside a UML profile that consists syntactically mainly of ac-
tivity machines and class diagrams. We did not express large text elements in
”pure” natural language directly, since the possible interpretation range would
be impractically wide. In this case we referred in the diagrams to the unique
specification ID. Nevertheless we assume that it is possible to express these
elements also inside the chosen UML set. We introduced our models on the last
user conference of the V-model, called ”ANSSTAND” in October 2003 [4].
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4 Application Scenario: Process Model Monitoring

Unfortunately the diagrams provide a very grain granular picture of the develop-
ment activities that have to be done because they are not complete. Regarding
the main activities the flow was incomplete and unclear product flow as well
as control flow. Regarding the activity level (every dynamic aspect above the
method level) it was for example unclear what products should be locked and it
is obvious that the QS states are not enough to express all (relevant) product
changes. Regarding the method level the V-Model authors specified just a set of
methods but did not how these should be executed. In several discussions dur-
ing the ANSSTAND user forum and in several other meetings with industrial
partners it turned out that exactly these were the major problems when the
V-Model is applied. Even more when using process models a lot of experience
is needed to ensure that a process is executed in the ”right way” due to several
from project to project changing context factors, like process targets (time-to-
market, budget, quality) resources (people, software) and evolving methods and
techniques. Nevertheless we believe that it is possible to ”sharpen” these pictures
of a process with appropriate tool support. Figure 9 shows the ”big picture” re-
garding a process model monitoring. Process model monitoring means tracking
a certain set of process information and comparing them with an actual process
model to find out how ”good” the development works. There exist already some
approaches in this area but their problem is that the tracking is mostly manual
which suffers from several drawbacks, like:

– Incompleteness because often only a certain detail level can be tracked.
– Cost and time intensiveness because extra personal is needed to track the

development activities and their results.
– Disturbance of the ”normal” development activities.
– Faults in the mapping towards the chosen PML.
– Inconsistencies of several development tracks, especially when different ”track-

ers” are involved.
– Snapshot character of the captures because the tracking is done once or twice

and often even not the whole life cycle of a product.

For these reasons we try to develop techniques that are able to sketch de-
velopment activities more automatically through a ”tool’s perspective” [8]. The
first step in this direction is in figure 9 depicted. The arrows in this figure denote
information flows. As already mentioned the UML diagrams of the V-Model are
not complete. Nevertheless these diagrams provide a (first) base to structure the
development. For this reason we use these information to inform a process exe-
cuter via the ”Mediator” about possible process steps that should be executed
(A). Afterwards the process executer uses the ”Mediator” to inform about the
artifacts that were developed (B). All the modified or created artifacts are ana-
lyzed by a static analysis based on the JavaCC parser [20] to see what changes in
the artifacts (for example the number of methods in a Java program). Further-
more we mapped the grammar files also in UML class diagrams that describe the
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V-Modell templates Software Development Tools

Products Activities

Mediator and staticartefact analysis

Artefact storage (CVS, DB)
Multiple process instances

A B

DE
C

Fig. 9. Process Monitoring

static structure of the artifacts in the process model context. Therefore we are
able to draw (detailed) versions of the V-Model templates according to the mod-
ified and created artifacts (D). Since we would like to provide a ”post mortem
analysis” of the executed process we also store the artifacts on a CVS/DB server
(C). If enough of these process runs are captured they have an influence of the
templates (E).

5 Formal Kernel Semantics

In the first step to formalize the chosen UML subset we defined a so called ”kernel
semantics” that can deal with every element of the syntax but provides only the
necessary semantics on a low level. This is done because the developed semantics
is much easier to handle if it is necessary to add additional constructs later on
and we can already integrate necessary ”interfaces” to other semantics as needed.
The two bases for these semantics are the activity diagram semantics introduced
in the thesis of Erik Eshuis [31] and the kernel language of the state machine
semantics developed by Damm et.al [10]. The activity machine semantics was
chosen because Eshuis developed so called ”reactive” Petri nets that are able to
deal with events. But his semantics do not include several aspects activity ma-
chines offer like an action language, object flows or triggered operation calls. The
state machine semantics was chosen to have a base for a kernel semantics that can
deal with every aspect of state machines in order to complete the ”big picture”.
This section will only give a short overview on the developed semantics in order
to sketch ones of the differences between activity machine and state machine
semantics we had to deal with. A krtUML model M = (T,F,Sig, <, C, croot, A)
consists of the following:

– T ⊇ {void, IB, IN}: A set of basic types comprising at least booleans and
natural numbers.

– F: A set of typed predefined primitive functions.
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– Sig: A finite set of signals. Every instance of a signal is called signal event,
or event for brevity.

– < ⊂ Sig×Sig: A generalization relation on signals, i.e. the transitive closure
<+ is irreflexive, where ev1 < ev2 denotes that ev2 is a generalization of ev1.
In the following, we use ≤ to denote the reflexive transitive closure of <.

– C: A finite, non-empty set of classes. A class

c = (c.isActive, c.attr, c.ops, c.sm, c.act)

consists of:
• c.isActive: A predicate. Class c ∈ C is called active iff c.isActive = true.
• c.attr: A finite set of typed attributes, which may not be of type void.
• c.ops: A finite set of typed triggered operations.
• c.sm: A c-state machine in terms of c-actions over c-expressions.
• c.act: A c-activity machine in terms of c-actions over c-expressions.

– croot ∈ C: The class of the root object (serving to specify system initializa-
tion).

– A ⊂ C: A subset of active classes called actors and used to denote external
objects (part of the environment).

Each definition element (e.g., Class, Action, Expression, Guard) is typed
consisting according to the defined basic types. An c-activity machine for a class
c ∈ TC is a tuple c.act = (c.Q, c.q0, c.Qx, c.Tr), where:

– c.Q is a finite set of activities.
– c.q0 ∈ c.Q is the initial activity.
– c.Qx ⊂ c.Q is a set of termination activities with c.q0 6∈ c.Qx.
– c.Tr ⊆ {S|S ⊆ c.Q}× ({γ | γ is a c-guard or c-action})×{T |T ⊆ c.Q} is the

transition relation and ∀tr = (S, γ, T ) ∈ c.Tr:
• c.q0 ∈ S ⇒ S = {c.q0} ∧ γ = “createc”
• c.Qx ∩ T 6= 0 ⇒ T ⊆ c.Q.

– Class c ∈ C is called reactive if there is a transition (S, γ, T ) ∈ c.tr such
that c.q0 6∈ S and γ is in the form ev[expr] or op[expr] for some ev ∈ Sig or
op ∈ c.ops \ {createc}.

We manage objects in so called object configurations that we assume to exist
for each object. Such object configurations store the status (e.g., dormant, idle,
executing, suspended, dying, dead), the attribute configuration (the values of all
attributes), the configuration (in a state machine the active state, in an activity
machine similar to a marking of a Petri net) and the event queue of an object.
The system configuration is a set of all object configurations.
We use so called pending request tables to store triggered operation calls. Each
triggered operation call consists of the destination of the call, the status of the
operation (unused, pending, busy, completed), the result of the operation and
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the parameters of the operation. One of the main differences between objects
of a state machine and objects of an activity machine we made was that the
first ones can be grouped inside a ”component” where only one of the objects
is active in a certain point in time. The rest of the objects is not executed (for
example dormant or dead) or suspended due to pending operation calls to other
objects. In contrast activity machine objects are always active because of their
resource driven token switching. This has for example an impact on the desti-
nation attribute of a pending request table. If the destination of a call is a state
machine object then the destination field contains a reference to one object of
the component. Otherwise the destination field contains a transition of an ob-
ject’s activity machine. The semantics of the krtUML was defined in terms of
a ”symbolic transition system”, proposed in [23] under the name Synchronous
Transition System. In such a system all variables are mapping to values of their
domains in so called ”snapshots”.

A symbolic transition system (STS) S = (V, Θ, ρ) consists of V, a finite set of
typed system variables, Θ, a first-order predicate over variables in V characteriz-
ing the initial states, and ρ, a transition predicate, that is a first-order predicate
over V, V ′, referring to both primed and unprimed versions of the system vari-
ables (their current and next states).

An STS induces a transition system on the set of interpretations of its vari-
ables as follows. Let S = (V, Θ, ρ) be an STS and T the set of types of variables
in V. Let Dτ be a semantic domain for each τ ∈ T.

– A snapshot
s : V →

⋃
τ∈T

Dτ

of S is a type-consistent interpretation of V, assigning to each variable v ∈ V
a value s(v) over its domain. Σ denotes the set of snapshots of S.

– A snapshot s ∈ Σ inductively defines the value [[expr]](s) for first-order pred-
icates ‘expr’ over V and the value [[expr]](s, s′) for first-order predicates ‘expr’
over V, V ′, where s provides the interpretation of unprimed and s′ the inter-
pretation of primed variables in ‘expr’.

– A snapshot s ∈ Σ is called initial, iff [[Θ]](s) = true.

– Let s, s′ ∈ Σ be snapshots of S. Snapshot s′ is called S-successor of s, iff
[[ρ]](s, s′) = true.

– A computation, or run, of S is an infinite sequence of snapshots
r = s0 s1 s2 . . . , satisfying the following requirements:
• Initiation: s0 is initial.

for each j ∈ IN0.

– The set of all computations of S is denoted as runs(S).
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Thus we elaborated in this semantics the way the snapshots can evolve, defin-
ing for each of the possible cases a transition predicate. Finally, we defined the
predicate characterizing initial snapshots and collect all pieces of the transition
relation into a full predicative definition of the transition relation, leading to a
definition of the symbolic transition system associated with the krtUML model.

5.1 Example interface between state and activity machines for
process monitoring

Objects are needed to express various process related information, like all kinds
of artifacts, persons and software. Objects are created and live until they are
destroyed. In general they should have a system-wide scope, but it must be
possible to put them into local scopes (e.g., an activity). Furthermore they have
additional attributes and methods for example to support product locks for write
access. Events are needed because it is not always possible to distinguish two
product according to their state (for example imagine refactoring activities) or to
model timers (and thus timing events). In contrast to objects events live exactly
one step after the are send (no fixpoint semantics) and they are always related
to a certain element (object, transition).

Central for the whole discussion of software process modeling are objects
and their way they are treated inside activity diagrams. As already depicted
in figure 1 the first approach is to sketch the artifacts an activity ”consumes”
and ”produces”. This picture is complete for tracking purposes as long as we
don’t want to monitor software development processes. If we want to monitor
a software development process than we must be able to react on a certain set
of objects that is developed during the execution of an activity and integrate
these objects into the picture. But this set of objects can’t be specified initially
before the process is executed because we don’t know how many objects we will
have at a certain point of time. We additionally required that tools are able
modify this object set. But tools don’t ”behave” on base of a Petri net based
execution semantics. They react on a state chart-based semantics. Thus we need
to discuss the possible combination of activity-charts and state charts in relation
to what these diagrams should be able to exchange. As already mentioned we
need objects as permanent ”things” and events as temporally restricted ones to
a single step. Regarding an object modeling we made these design choices:

1. There exist object places for all objects o1, . . . , on × {lock, unlocked} ×
{a1, . . . am, no− scope} all activities.

2. The object places are connected with the activities that produce and con-
sume the objects.

3. There exist two additional places for each object as object token sources and
drains.

4. Each time a creation of object oi is executed a token is put onto it’s object
token source.
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5. Each time a destruction of object oi is executed a token is removed from one
object token place (that is designated for token removal).

6. Tokens are inside a scope of an activity if the tokens are moved to the
designated places of the activities.

Figure 10 shows a simple Petri net invoking a tool a. This figure bases one the
activity diagram of figure 1, whereby on ”Activity i+1” a ”tool (a)” in invoked
— this can be expressed in the activity diagram by an object ”a” with stereotype
”tool”.

Fig. 10. Simple Petri net semantics including tool

One difference compared to figure 1 is that the object state space is a subset
of the Cartesian product we defined in our design choices. Furthermore fig-
ure 10 depicts token sources and drains as connection between activity and state
machines, illustrated as transition without source place or without destination
place. If it is not possible to determine object changes according to their object
states then events should be used to inform the activity-machine about ongoing
process. Regarding events we made these design choices:

1. There exist event places for all events that can be received.
2. An event starts to ”live” one step after it it send (no fix-point semantics).
3. An event lives exactly one step.
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Figure 11 shows a Petri net distributing an event. After informing the event
source that the event occurred the token source puts five token onto the event
distribution place (ed). Then all event consumers (ec1, . . . , ec5) can fire.

Fig. 11. Event distribution

When distributing an event it is necessary to remove the unused event tokens
after one step from the distribution place. This is done by transition t6 in the
example. Notice that we have to make three assumptions regarding the firing
of transitions compared to place/transition Petri nets. The first is that we have
a maximality constraint that says that in each step the set of fired transitions
include as many enabled ones as possible. The second is that we have two steps
when choosing the set of enabled transitions that will fire. The first one includes
all transitions without that ones that have ”sink” destinations. The second one
includes the other transitions. The third is that event consuming transitions are
only allowed to fire once in one step.

To model the diagrams we used Together 6.1 [36] - mainly because of three
reasons. It is the only UML tool we know that allows to express activity machi-
nes in such an elaborated way (for example Rational Rose [29] v2003 does not
support object flows). The second reason was that Together offers a wide range
of possible XMI [39] variants in order to exchange models. Unfortunately the
exports of version 6.1 were not compliant to the OMG meta-models but it was
possible to develop a mapping. With these changes we were able to parse the
models into an OFFIS [27] development of a MOF [24] repository.

In order to summarize the first results so far, we developed a syntactical
mapping of a process model towards a snapshot of the UML language, the Kernel
semantics for the execution of activity machines in relation to state machines
and an architecture including a first prototype implementation of a framework
to track the execution software development processes.
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6 Conclusion and Further Research

The status of our work on defining an approach for a UML profile for software
development process modeling was presented. We started with a motivation for
such a profile and defined general requirements. Then we briefly discussed why
the previous work on UML formalization do not match and explained our ap-
proach shortly.

Our next research activities focus on the definition of the precompilation
phase and the implementation of the software based process monitoring frame-
work. The precompilation phase describes the unfolding of all used diagram
elements into the specified kernel model language. Afterwards this language has
to be extended in a direction to be able to express software development process
templates. In such a template we have to deal for example with the question
what are universal and what existential elements. At the same time we plan to
extend our prototype implementation towards a stable and easy to use software
system in order to get more ”real” world process descriptions. After extending
the capabilities of the kernel language with respect to the specification of process
templates we have to deal with the question how the framework is adoptable to
this requirement. We are going to integrate the ”Mediator” component more and
more directly into the development tools so that we are directly informed when
objects are created, modified or destroyed.

References

1. Object management group. http://www.omg.org. last visited May 2004.
2. J.M. Alvarez, T. Clark, A. Evans, and P. Sammut. An Action Semantics for UML.

In Proc. UML 2001, 2001.
http://www.cs.york.ac.uk/puml/mmf/AlvarezUML2001.pdf.

3. An introduction to workflow management systems.
http://ctg.albany.edu/publications/reports/workflowmgmt/workflowmgmt.pdf.
last visited May 2004.

4. Verein der anwender des software-entwicklungsstandards der öffentlichen verwal-
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35. Störrle. Describing process patterns with uml (position paper). Software Process
Technology - 8th European Workshop, EWSPT 2001, pages 173–182, 2001.

36. Together control center 6.1. http://www.borland.com/together. last visited May
2004.

37. UML - Unified Modeling Language v1.5 (complete specification).
http://www.omg.org/cgi-bin/doc?formal/03-03-01. last visited May 2004.

38. G. (Hrsg.) Versteegen. Das V-Modell in der Praxis - Grundlagen, Erfahrungen,
Werkzeuge. Dpunkt Verlag, Heidelberg, 2000.

39. XMI - XML Metadata Interchange Specification v1.2 (complete specification).
http://www.omg.org/cgi-bin/doc?formal/2002-01-01. last visited May 2004.


