
The Dublo Architecture Pattern for Smooth Migration of
Business Information Systems:

An Experience Report

Wilhelm Hasselbring Ralf Reussner
University of Oldenburg

Department of Computing Science
Software Engineering Group

D-26111 Oldenburg, Germany
{hasselbring|reussner}@informatik.uni-oldenburg.de

Holger Jaekel Jürgen Schlegelmilch Thorsten Teschke
OFFIS

Business Information and Knowledge Management
D-26121 Oldenburg, Germany

{jaekel|schlegelmilch|teschke}@offis.de

Stefan Krieghoff
KDO

D-26121 Oldenburg, Germany
krieghoff@kdo.de

Abstract

While the importance of multi-tier architectures for en-
terprise information systems is widely accepted and their
benefits are well published, the systematic migration from
monolithic legacy systems toward multi-tier architectures is
known to a much lesser extent. In this paper we present a
pattern on how to re-use elements of legacy systems within
multi-tier architectures, which also allows for a smooth mi-
gration path. We report on experience we made with migrat-
ing existing municipal information systems towards a multi-
tier architecture. The experience is generalized by describ-
ing the underlying pattern such that it can be re-used for
similar architectural migration tasks. The emerged Dublo
pattern is based on the partial duplication of business
logic among legacy system and newly deployed application
server. While this somehow contradicts the separation-of-
concerns principle, it offers a high degree of flexibility in
the migration process and allows for a smooth transition.

Experience with the combination of outdated database
technology with modern server-side component and web
services technologies is discussed. In this context, we also
report on technology and architecture selection processes.

Keywords: Architecture Pattern, Software Architecture,
Legacy Systems, Migration.

1. Introduction

The major benefit of using multi-tier architectures for en-
terprise information systems is a clear separation of con-
cerns between user interface logic (in the presentation tier),
business logic (in middle tiers) and data persistence man-
agement (in the data tier). This separation of concerns
yields many beneficial properties, such as independent ex-
changeability and adaptability of components, traceability
of business requirements to the implementation in a busi-
ness logic tier, and transparency of database management
issues.

As these properties support information systems to ac-
complish the business requirements, multi-tier architectures
became common practice for modern enterprise informa-
tion systems. However, as most old systems are not struc-
tured in this way, but instead are usually monolithic pack-
ages of legacy code, many enterprises are faced with the
problem of how to migrate these old systems to modern
multi-tier architectures. Needless to say that one cannot
simply neglect the existing code and replace it in one step
by a new architecture:

• Legacy systems represent substantial investments that
cannot simply be disposed.

• Business must go on during the transition. An enter-
prise cannot stop its business or stop selling its prod-
ucts and services for several months just for the pur-
pose of re-organizing its internal software systems.

1

Willi
Textfeld
Preprint of: Hasselbring, Wilhelm, Reussner, Ralf H., Jaekel, Holger, Schlegelmilch, Jürgen, Teschke, Thorsten und Krieghoff, Stefan (2004) The Dublo Architecture Pattern for Smooth Migration of Business Information Systems. In: Proceedings of the 26th International Conference on Software Engeneering (ICSE 2004), 23-28 May 2004, Edinburgh, Scotland, UK. http://dx.doi.org/10.1109/ICSE.2004.1317434

• Legacy software often is the unique place where busi-
ness logic is “documented.” Often no other documen-
tation exists and programmers may have left the com-
pany. Hence, a complete re-implementation of busi-
ness logic is usually not feasible with reasonable ef-
fort.

• Developing a new system will take considerable time.
During this period the legacy system must be main-
tained to meet the ever changing business require-
ments, which implies parallel costs for both the new
system and the legacy system.

Consequently, smooth transition paths and integration of
legacy systems are not just nice properties of software
development projects, but essential for most real-world
projects in the domain of information system integration
[9, 20].

In this paper, we present an architectural pattern describ-
ing the integration of typical monolithic legacy systems
into modern multi-tier architectures. This pattern, named
Dublo pattern for DUal Business LOgic, implements busi-
ness logic at two places: the legacy code and new middle-
tiers (usually realized on application servers). While this
(partial) duplication seems to contradict a clear separation
of concerns, it allows for a smooth migration path.

The pattern generalizes our specific experience and de-
sign discussions in a legacy integration project for munici-
pal information systems. We discuss the legacy architecture
as deployed before this migration project started and the in-
volved problems such as technology selection and migra-
tion alternatives. Although any project has its peculiarities,
we generalize from the presented project by discussing its
re-occurring issues. Furthermore, the system architecture
we started with (a database and a single 4GL-layer inter-
mixing presentation, business logic, and data management)
is somewhat representative for many existing systems to be
migrated.

The main contribution of this paper is the presentation
and discussion of the Dublo pattern and the exemplary de-
scription of a migration project with its typical constraints
and issues to be resolved.

The paper is organized as follows. We first describe
the project’s context in Section 2 by discussing the domain
of municipal information systems and the initial two-tier
(legacy) architecture. In Section 3 we deal with typical is-
sues of migration projects, such as technology selection and
the process of architecture selection we went through. Af-
ter having set the scene in these sections, in Section 4 we
present the emerged Dublo pattern together with its design
rationale. We describe the migration paths as enabled by
the Dublo pattern. As important trade-offs we also discuss
limitations and costs associated with this pattern. The pro-
cess of identifying appropriate web services in our context

is briefly discussed in Section 5. Section 6 presents related
work, such as patterns for enterprise information systems
and patterns for legacy system integration in general. Fi-
nally, Sections 7 and 8 conclude and identify some open
research problems in the intersection of legacy system inte-
gration and enterprise information system architectures.

2. Project Context

This experience report discusses an architecture selection
process together with the emerged architecture pattern for
smooth migration of business information systems.

KDO is a software house that offers domain-specific
software solutions for municipalities such as town coun-
cils and rural districts, with customers in the north-west of
Germany (http://www.kdo.de). So far, their client-server in-
formation systems are mostly based on Informix databases
(server) with Informix 4GL [21] and the 4Js development
tool for user clients [15]. KDO supports both application
service providing for their customers and installation of in-
dividual server systems at the customers’ location.

KDO decided to migrate from this (monolithic) two-tier
architecture towards a more flexible, standards-based, and
future-oriented multi-tier architecture employing modern
software engineering techniques such as component-based
software development. When moving from traditional de-
velopment of packaged applications towards state-of-the-art
component-based software development, special care has
to be taken to manage resulting risks and new challenges
[31, 45].

To manage the transition towards new technology, KDO
collaborates with OFFIS, the Oldenburg Research and De-
velopment Institute for Informatics Tools and Systems.
OFFIS is a technology transfer institute associated with
the Department of Computing Science at the University of
Oldenburg, Germany (http://www.offis.de). The work pre-
sented here is a collaborative effort of the Software Engi-
neering Group at the University, the Business Information
and Knowledge Management division of OFFIS, and KDO.
This cooperation is accompanied by on-the-job training of
KDO employees in object-oriented modeling and Enter-
prise Java technologies, provided by OFFIS. This way, new
software engineering methods are transferred from univer-
sity research via an associated technology-transfer institute
towards industrial practice.

Below, the application domain and the present client-
server architecture are briefly introduced. The present paper
focuses in this project setting on the migration process and
the emerged migration pattern that will be discussed in Sec-
tions 3 and 4.

2

2.1. Municipal Information Systems

Municipal information systems support town councils, rural
districts and other local authorities to accomplish the duties
that are assigned to them by national law. In Germany, these
duties cover approximately 9000 tasks of varying complex-
ity which can be classified as follows, to give a glimpse of
the application domain’s complexity:

• Self-government of activities that are voluntarily taken
by the authorities. Examples are culture and sports.

• Formal liabilities for which the way of fulfillment is
not defined by specific directives. Examples are social
welfare, school building, road development and con-
struction, rescue systems, and fire protection.

• Formal liabilities for which the way of fulfillment is
defined by specific directives. Examples are resident
registration and all kinds of elections.

Municipal information systems are meant to improve the
associated workflows, i.e. to serve the citizens and public
servants in a cost-effective way more effectively, efficiently,
and reliably.

2.2. Present 4GL Architecture

The present client-server architecture which is based on In-
formix products is displayed in Figure 1. 4GL is the lan-
guage employed for coding the business logic on the server
side [21]. 4Js [15] is the development tool, which allows
to generate graphical user interfaces based on the Tcl/Tk
Toolkit [30]. With the 4Js/4GL programming approach
[49], the business logic is tightly coupled with the database
management system; thus, the server side is conceived as
one tier. 4GL and 4Js are proprietary development tools.

Server

(at KDO or at the customer location)

Clients

(at the customers
location)

Business Logic

Informix
database

4Js / 4GL

application
telnet

Tcl/Tk

Windows

front-end

Figure 1. Present Informix two-tier architec-
ture.

In addition to these client-server systems, Visual Ba-
sic 6.0 [27] is used for developing specific stand-alone desk-
top applications. This paper is only concerned with the
client-server systems.

3. Architecture and Migration Process

3.1. Technology Selection

One task was a selection of the component technology for
realizing the municipal informations systems. The capa-
bilities and properties of the underlying technology are an
important concern.

At present, there are only two (competing) compo-
nent development platforms available that have consider-
able support in the market: J2EE [36] from Sun Microsys-
tems and .NET [26] from Microsoft. The criteria that were
defined for selecting among J2EE and .NET in our context
are displayed in Table 1. The evaluation of each criterion is
based on our specific project context, and may be different
for other settings.

Criterion .NET J2EE

platform independence – +
vendor independence – – +
database independence + ++
training costs – – –
hardware/software costs – – –
application service providing � +
zero administration of clients � +
documented usage patterns – +

Table 1. Criteria for selecting among J2EE and
.NET in our project context.

Independence from specific vendors, platforms and da-
tabase systems is an important concern for a guaranteed fu-
ture of the new system architecture. In particular, being in-
dependent of license policies of vendors is desirable, as far
as possible.

Training costs for developers are a one-time investment
(continuing education is required in any case). Costs for
hardware and software are not the primary issue for an ap-
plication service provider such as KDO. For instance, the
BEA Weblogic application server is licensed on the basis of
CPUs utilized by the application server, not the number of
application clients connected to the server.

Zero administration of client programs is achieved by
Java Webstart [38]. So far, a similar technology is not avail-
able for .NET, but we expect that the ActiveX Controls tech-
nology [25] will become available for .NET in the future.

Standardized and established patterns are documented
for J2EE systems [2, 5, 6, 10, 24, 39, 46]. This is con-
sidered an important prerequisite for designing the right ar-
chitectures for our application domain. However, it can be
expected that we will see patterns for .NET usage in the
future [43].

3

In the end, J2EE was selected. At this time, J2EE is the
more mature and proven technology that has broad support
from major vendors such as IBM, Oracle, SAP, and Sun.
Web services [23] take a loosely-coupled approach, which
also allows for cooperation between J2EE and .NET im-
plementations. Note, however, that the architecture pattern
which will be presented in Section 4 is independent of the
specific middleware technology that is employed for imple-
mentation.

As concrete tools BEA Weblogic [3] was selected as ap-
plication server, Together [8] for modeling, and JBuilder [7]
as IDE. In addition to commercial tools and system soft-
ware, various open-source systems are employed, for in-
stance CVS for version control and Linux as a server op-
erating system.

3.2. The Process of Architecture Selection

As discussed in the previous subsection, J2EE has been se-
lected as target technology. The J2EE standard also sug-
gests a multi-tier architecture. A typical instance is illus-
trated in Figure 2 with four tiers. In this example, the client
tier contains Java application clients that access the mid-
dle tier via Remote Method Invocation (RMI) [13]. This
middle tier, which is an application server with a container
for Enterprise JavaBeans (EJB) [36], could also be accessed
by some web container, whereby the web container serves
web browser requests via HTTP; for simplicity in the pre-
sentation, we ignore this alternative. This paper focuses on
server-side component technology.

Clients

(many)

Server Side

Java

GUI

Business Logic

Processes

(Sessions)

Data-

base
Data

(Entities)
JDBCRMI

EJB Container

Figure 2. Four-tier J2EE target architecture.

The EJB container manages session and entity beans.
Entity beans represent (passive) data objects that are stored
persistently in databases. Sessions beans represent (small)
business processes that access the entity beans, but do not
contain persistent data themselves. These two categories
of EJBs constitute two logical tiers in our target architec-
ture: business processes and business objects. EJBs are fur-
ther categorized as stateful/stateless session beans and con-
tainer/bean managed entity beans, as well as the additional
category of message-driven beans. This additional classifi-
cation is not relevant for our discussion.

The benefits of multi-tier architectures are well presented
in the literature (e.g., [11, 48]). Historically, multi-tier ar-
chitectures arose from client-server systems. With widely
available low priced PCs, system architectures moved from
monolithic mainframe systems to client-server systems.
However, often the client presentation layer simply used
a terminal emulation without changing the server (main-
frame) side. However, the benefits of separating a dedicated
presentation tier are convincing, in particular as various (re-
mote) client systems could be developed more or less in-
dependently from the mainframe development process. As
a next step, one realized that similar benefits arise from de-
coupling data management and business logic. This resulted
in the state-of-the-art three-tier architectures. By the identi-
fication of different business-logic layers (i.e., further struc-
turing the middle tier) and/or introducing additional data
access layers (i.e., identifying additional layers in the data
tier), multi-tier architectures emerged.

In particular, modern middleware platforms with their
provision of application servers for server side components
(such as J2EE and .NET) and pre-defined data access meth-
ods through containers and standardized data access tech-
niques (ODBC, JDBC, etc) support multi-tier architectures
as an underlying technology.

Now, the question arises of how to migrate from the two-
tier legacy architecture in Figure 1 towards the four-tier tar-
get architecture in Figure 2. Figure 3 illustrates one of our
first approaches for a migration architecture, exemplary for
our motor vehicle registration system, which is an Informix
4GL/4Js application, as discussed in Section 2.2. During
the migration phase, both the old 4GL/4Js Informix user in-
terface clients and the newly developed Java clients are able
to co-exist.

Clients

Java

Rich

Client

Processes
(Sessions)

Data
(Entities)

K
D

O
 In

te
rfa

c
e

K
D

O
 In

te
rfa

c
e

RMI + SSL /

SOAP + OSCI

Business Logic

Application Server

Legacy ServerClients

data

base

m
o

to
r v

e
h

ic
le

re
g

is
tra

tio
n

vt100 or

Tcl/Tk

UI
telnet / 4Js

JDBC

Figure 3. First approach for a migration archi-
tecture.

The communication between Java clients and application
server is further refined with specific “KDO interfaces” to

4

support different forms of technical communication: RMI
for fast communication on secured channels and Web Ser-
vices over SOAP with OSCI (Online Services Computer In-
terface) [29] for a certified secure communication over inse-
cure channels such as the Internet. A detailed discussion of
these security measures is beyond the scope of the present
paper and not really relevant for our architecture discussion.
It is just important to note that security measures are rele-
vant on the architectural level, and that they are resolved in
our specific architecture as far as required in the applica-
tion domain of municipal information systems according to
German law [22].

The communication between application server and the
legacy server is the critical issue in this architecture. The ap-
proach of Figure 3 to access the legacy database directly via
JDBC poses various problems. The grown database struc-
tures in legacy systems do not reveal all relevant semantics
of the stored data objects that are relevant to use them cor-
rectly. Additionally, those structures usually do not fit the
newly defined business objects on the middle tiers.

So, our second approach was to store those data objects,
which are implemented with the new technology, in a new
database, as illustrated in Figure 4. This approach has the
obvious, and highly critical disadvantage of requiring con-
sistency mechanisms for data that is replicated in both the
old and the new database [18, 19].

Clients

Java

Rich

Client

Processes
(Sessions)

Data
(Entities)

K
D

O
 In

te
rfa

c
e

K
D

O
 In

te
rfa

c
e

RMI + SSL /

SOAP + OSCI

Business Logic

Application Server

Legacy ServerClients

New

data

base

m
o
to

r v
e
h
ic

le

re
g
is

tra
tio

n

vt100 or

Tcl/Tk

UI
telnet / 4Js

JDBC

data

base

Figure 4. Second approach for a migration ar-
chitecture.

These considerations lead us to the finally selected mi-
gration architecture that is displayed in Figure 5. For legacy
information systems it becomes apparent that their internal
databases should never be accessed directly. It is advisable
to access them via some kind of application programming
interface that “knows” their business logic.

We decided to use SOAP as a communication protocol
which consequently requires specific adapters at both the
EJB and 4GL sides. The Simple Object Access Protocol

(SOAP) [23] is an XML based protocol that consists of three
parts: an envelope that defines a framework for describing
what is in a message and how to process it, a set of en-
coding rules for expressing instances of application-defined
data types, and a convention for representing remote pro-
cedure calls and responses. The web service technology is
based on SOAP as communication protocol, the Web Ser-
vice Definition Language (WSDL) for interface description,
and the Universal Description, Discovery and Integration
(UDDI) protocol to dynamically find and use web services
over the Internet [23].

Other communication mechanisms would be possible in
this context, such as JCA [32].

Clients

Java

Rich

Client

Processes
(Sessions)

Data
(Entities)

K
D

O
 In

te
rfa

c
e

K
D

O
 In

te
rfa

c
e

RMI + SSL /

SOAP + OSCI

Business Logic

Application Server

Legacy ServerClients

data

base

m
o

to
r v

e
h

ic
le

re
g

is
tra

tio
n

vt100 or

Tcl/Tk

UI
telnet / 4Js

SOAP

4
G

L
 A

d
a
p

te
r

E
J
B

 A
d

a
p

te
r

Figure 5. Finally selected approach for a mi-
gration architecture.

This preferred approach of accessing legacy informa-
tion systems via application programming interface is well
known from many other projects where legacy systems had
to be integrated [28, 48].

4. The Dublo Pattern: DUal Business LOgic

The presentation of the Dublo pattern follows the way ar-
chitecture patterns are described in [12]: first a definition of
problem and context is given, followed by a description of
the solution structure, and completed with a discussion of
limitations.

4.1 Problem and Context

Legacy systems often differ from state-of-the-art enter-
prise architectures as they do not distinguish different tiers.
Hence, presentation logic is often intermixed with business
logic and database access code. With the advent of multi-
tier architectures, separating these different concerns be-
came common practice. However, one of the main reasons

5

for the fact that many legacy systems do not separate these
layers is that the system or language used to implement the
business logic also offers powerful data access functions
as well as the possibility to implement user interfaces (ei-
ther textual interfaces or graphical user interfaces generated
by tools). Remarkably, neither COBOL nor more current
fourth generation programming languages [49] differ in this
respect (besides differences in user interface design). We
discussed such an example architecture in Section 2.2.

These programming systems allow for the integration
of presentation, business logic and data logic in one sin-
gle layer. As discussed in Section 3, one is now inter-
ested in migrating these systems into multi-tier architec-
tures. This migration process strongly depends on the way
(and whether) the legacy system is integrated into the new
system. Different solutions for integration and migration
exist:

• “Big-bang” replacement of the old monolithic system
by a multi-tier architecture: Obviously this “strategy”
is only applicable for very small systems which op-
erate in a well documented fashion and in a well un-
derstood domain. As this is rarely the case for most
legacy systems, this strategy is usually not considered
for good reasons. However, if its preconditions apply,
it has the benefit that it is simple to manage and re-
quires no redundant code to write.

• Replacement of client and business logic at one point
in time, direct access of the newly introduced middle
tier to the database: This strategy keeps the old da-
tabase and replaces the old combined presentation /
business / data access layers by separate presentation
and business logic layers. On the positive side, this
strategy immediately results in a three-tier architecture
with well separated concerns for presentation, business
logic and data access. However, on the negative side,
this approach necessitates the full replacement of all
the business and presentation logic. As the business
logic in the majority of cases represents a major cost
factor and constitutes the kernel of enterprise infor-
mation systems, a complete substitution in one step is
hardly achievable.

• Keep business logic in legacy code, add new busi-
ness logic to the new middle tier, access database via
adapter to the legacy code: this strategy allows the
reuse of the existing legacy business logic to some de-
gree. This approach separates concerns in multi-tier
architectures to a lesser extent than the previous ap-
proaches, since it keeps business logic at two places:
the old legacy system and the new business logic tier.
Anyway, this approach offers the smoothest migration
strategy, as it decouples the development of new busi-
ness logic and the new presentation layer from the op-

Client

Novel

GUIs

and

Portals

Application Server

P
re

s
e
n

ta
tio

n
tie

r
In

te
rfa

c
e

b
u

s
in

e
s
s

lo
g

ic
In

te
rfa

c
e

remote

communicaton

protocol

business logic

Server: business tier

ServerClient

KFZ-

DB

UVN-

KFZ
Client

User Interface

Frontend

legacy client communication

data-

base

Legacy-

systemL
e
g

a
c
y
 A

d
a
p

te
r

local

communication

protocol

M
id

d
le

w
a

re
A

d
a
p

te
r

Figure 6. Structural View on the Dublo Pattern

eration of the existing system. This is the Dublo pat-
tern as presented in the following subsection.

4.2 Solution

4.2.1 Structure

The Dublo solution structure is illustrated in Figure 6. The
basic idea is: Formulate business logic in a new business
logic tier; write a legacy adapter for access by the new busi-
ness logic to the existing legacy business logic; use this
adapter for database access. Consequently, the database is
accessed only via the existing legacy (business) code. This
existing code acts as a functional access layer to the data-
base. Functionality implemented in the new business logic
tier is managed by a new presentation tier.

4.2.2 Migration

In the Dublo pattern old business logic and existing user
interfaces can be reused as long as they provide function-
ality useful in the new application context. The old logic
can be replaced step-by-step by a the new business logic
tier. In many cases, the replacement of old user interfaces
by integrated new client technology is at least as important
as new business logic. The Dublo pattern supports the fast
update of client user interfaces by wrapping legacy busi-
ness logic by means of an adapter. Hence, the new business
tier can simply pass through requests of a new presentation
tier to the legacy system without implementing the business
logic itself. This bypass to the old legacy code by the new
business logic tier decouples the development of the new
presentation tier from porting legacy code to the business
logic tier. Since the transition from legacy textual user in-
terfaces to new graphical user interfaces in a presentation

6

tier is often of high relevance, the migration towards a new
presentation tier is discussed below in greater detail.

4.2.3 Benefits

The application of the Dublo pattern is reasonable, if the
following benefits provided by this pattern are of relevance:

• Smooth migration: incremental replacement of old
business logic and client software by new middle-tier
business logic. In particular, if the migration cannot be
performed in a short time interval, this issue becomes
essential.

• Database consistency: as no additional database is
introduced, no consistency or updating problems be-
tween new and legacy databases arise.

• Database independence: a new DBMS can be intro-
duced without changing the middle tier. However, this
may not be possible with all legacy systems.

• Reuse of existing legacy business logic by accessing it
through an adapter and possibly forwarding it to mid-
dle tier.

The consequences of the latter advantage deserve some at-
tention: Forwarding access to the old legacy system through
the new business tier results in transparency for modernized
clients on whether business logic is already implemented in
the new middle tier or still in old legacy code. Therefore,
the transition of old user interfaces (implemented in legacy
code and intertwined with data access code and business
logic) toward a new presentation layer can be done in three
steps:

1. Retain less frequently used old user interfaces: When
considering typical usage profiles, only a fraction of
all user interface forms is used frequently. As many
business processes are executed in a regular, but in-
frequent manner (such as inventory updates, annual or
quarterly financial statements, etc), the corresponding
user interface forms are also used infrequently. In the
Dublo pattern these user interface forms do not have to
be changed as long as the underlying legacy business
logic is valid.

2. Replace old user interfaces by new user interfaces in
the presentation tier without re-implementing the busi-
ness logic. The new interfaces can access a proxy of
business logic in the business logic tier which simply
forwards the calls to the existing legacy code.

3. Replace legacy business code by new business logic.
As the new business logic adheres to the interface be-
tween business logic tier and presentation tier, this
transition is transparent to the user interface code.

Note that the two latter steps do not have to take place in
parallel. This is a result of the aforementioned decoupling
of business code and presentation code development, gained
by keeping the legacy code. This decoupling gives a new
degree of freedom in the migration process.

The existence of business logic at two places (the old
legacy system and the new business logic tier) does not
allow for the clear separation of concerns as promised by
multi-tier architectures. Alternatively, and in contrast to
the Dublo pattern, one could access the legacy database di-
rectly. While this still preserves the benefit of not duplicat-
ing databases (and hence avoiding consistency problems),
in the following we discuss why we argue for the functional
access layer and the presence of legacy code:

• Possibility of exchanging old DBMS (while keeping
the legacy layer). Even when directly accessing the da-
tabase, it is reasonable to use an adapter, since adding
new code to a legacy database is usually problematic.

• Reuse of existing business logic implemented in the
legacy system. As motivated before, the complete im-
mediate transition to a new system is in any large sys-
tem impossible, hence keeping parts of the old code
and following a migration path recommended by a pat-
tern is beneficial.

• If the legacy system makes use of a DBMS which al-
lows for direct access, the possibility to access the da-
tabase directly without using legacy code still remains
as an option. This is the case because the Dublo pat-
tern uses an adapter between the new business logic
tier and the legacy layer.

4.3 Comments and Limitation

The application of the Dublo pattern is greatly simplified
by the existence of a functional access layer to databases
in legacy code. If this functional access layer is absent,
the effort of its addition has to be justified by the benefit
of reusing legacy code.

In general, the degree of reuse is application specific and
underlies many different concerns. However, it is an advan-
tage of this pattern to be applicable with various levels of
legacy business logic reuse.

Application of the Dublo pattern will typically result in
some redundant code and extra effort compared to an im-
mediate transition of all legacy business logic:

• The adapter between legacy layer and new business
logic tier.

• The functional access layer within the legacy system
for database access (if not present in the legacy sys-
tem).

7

• Performance. When adding layers, you usually reduce
the performance of a system. So far, the experience
shows that the overhead is acceptable in our context.
The gained flexibility is more important.

• Possible duplication of legacy code. As new system re-
quirements (in particular non-functional requirements)
may have a radical influence on the business logic de-
sign, it may happen that old legacy code cannot be
reused and has to reimplemented immediately in the
business logic tier.

Of course, the latter issue is a well-known problem for many
legacy integration projects. Hence, the costs imposed by the
previous factors limit the use of the Dublo pattern.

5. Identifying Legacy Web Services

When integrating legacy systems it is a challenging problem
to identify chunks in the business logic of the legacy system
that can become the components or the objects in the new
business logic. The alternative approaches for identifying
(web) services may be categorized as follows [47]:

1. Data driven: Identifying services based on the legacy
data structures.

2. Function driven: Identifying services based on the
(business) functions realized by the legacy system.

3. Object driven: Specification of a new object-oriented
model of the legacy’s data and functions.

In our context, data and object driven approaches [44] are
not really appropriate: the legacy data structures have de-
generated over time. Instead we selected a function-driven
approach [35], whereby use cases in the legacy system are
identified based on user interaction with the systems. For
details, we refer to [42].

6. Related Work

All aspects of software systems, their development and
their deployment are suitable topics of individual patterns
or comprehensive pattern languages. The design patterns
of Gamma et al [17] are patterns for object-oriented de-
sign and programming, often relying on inheritance from
abstract classes. Our Duplo pattern is an architecture pat-
tern, whereby relationships among components, not among
classes, are described. Inheritance is a problematical rela-
tionship for components [40].

Fowler et al [16] present a set of patterns for enterprise
application architectures organized around the presentation,
business logic, and data tier. These patterns present a very

good overview of different design alternatives and their so-
lutions with their benefits and disadvantages as well as de-
scriptions of their contexts of applicability. The integration
of legacy code is not treated specifically.

The process and patterns described in Adams et al [1]
for e-business applications are also applicable to our do-
main of enterprise application systems in general, but do
not focus on legacy system integration. However, their “ap-
plication integration pattern” could be used for integrating
legacy applications with new code. Anyhow, legacy integra-
tion aspects, such as migration paths, etc. are not of major
concern.

Emmerich et al [14] present the TIGRA pattern for en-
terprise application integration. This pattern is suitable for
integrating one or several legacy application(s) with one or
several new application(s). Its major concern is the mini-
mization of the number of adapters by introducing an inter-
mediate common data format. This work is related to our
context, since their pattern (called architectural style [33])
also emerged in an industrial project context, but the solved
problem is different.

Stevens and Pooley [34] coin the term “re-engineering
patterns” emphasizing on process patterns for migration
paths. Their patterns concern modularization, compiler-
motivated restructurings (as externalization of internal rep-
resentations or backend abstraction) and interface changes.
The description of a migration path instead of a target archi-
tecture reflects the importance of the migration. However,
in this paper we prefer the other way around: the descrip-
tion of the structural architecture pattern emphasizes the de-
grees of freedom for migration paths. In contrast to the re-
engineering patterns, we focus on the problem of making
the transition from a typical monolithic information system
to a modern multi-tier architecture.

Bergey et al [4] describe a framework for the “disci-
plined evolution of legacy systems.” This framework pro-
vides guidelines (mainly in the form of checklists) on how
to transform a legacy system into a modern target architec-
ture and discusses the various driving forces to be resolved
during system evolution. The framework takes a compre-
hensive view on legacy system evolution, but does not con-
centrate on specific legacy or target architectures.

7. Summary

The Dublo pattern was presented as an architectural pat-
tern easing the migration from monolithic legacy systems
towards modern multi-tier architectures in the domain of
enterprise information systems, exemplary for municipal
information systems. The benefits as well as the limita-
tions, and the application domain are discussed. The pattern
was applied in several legacy system integration projects, of
which one was described in greater detail. Besides the pat-

8

tern and the related migration strategies, we report also on
technology and architecture selection processes.

To summarize: The emerged Dublo pattern does not re-
ally describe a complex or astonishing architectural style.
We think that this is a desirable property of any pattern.
However, the presented rationale for the pattern is not as
simple as the pattern itself.

8. Future Work

After migrating to a multi-tier architecture the development
of an enterprise information system does not end. New re-
quirements emerge in our project context, such as:

Portal technology: Currently, the municipal information
systems at KDO are operated by the public servants
on behalf of the citizens. Many tasks, such as reg-
istering for dog license fees, could be done directly
by the citizens via the Internet without moving to the
town halls. Our middle tier, which is an application
server, could then be accessed by some web container,
whereby the web container serves a web browser at the
citizen’s home. The employed OSCI (Online Services
Computer Interface) [29] allows for a certified secure
communication. The advantage of our flexible archi-
tecture is that it allows for such extensions.

Automatic generation of GUIs: Porting user interfaces is
challenging for several reasons. Firstly, users need
GUIs offering ease of use and an integrated view on
different information services. Furthermore, the sheer
number of forms to be translated into modern GUIs
causes problems. For example, at KDO approximately
2000 user interfaces have to be migrated form 4GL/4Js
to Java. Any tool support for generating user inter-
faces from an abstract specification would be of great
help. Portal technology could also allow for display-
ing the legacy Tcl/Tk GUIs of 4Js applications in a
web browser, similar to embedding Java applets in web
pages [41].

Migration from Visual Basic for desktop applications:
J2EE is a server-side component technology. An
alternative for stand-alone desktop applications is
a transition towards the J2SE [37] with the ad-
vantage of employing Java throughout the product
portfolio. However, we expect that both Java and
.NET will co-exist and interoperate (and compete) in
the medium-term future such that we do not need to
commit ourselves immediately to only one technology.

During the course of our projects, we identified the follow-
ing areas requiring further research:

Architecture selection: The selection of an architecture
can be seen as a multi-dimensional optimization prob-
lem. Several factors have to be balanced. In addi-
tion to functional requirements, one also has to bal-
ance non-functional requirements, such as maintain-
ability (in particular, extensibility), performance and
availability. While modern development processes of-
fer a more or less systematic way of refining functional
requirements into system designs, methods for system-
atically dealing with non-functional properties are still
missing.

Architecture migration: Meanwhile, designing new sys-
tems according to functional requirements is well un-
derstood. In practice, most software development
projects have to face constraints caused by the exis-
tence of legacy systems to be integrated. Therefore,
development strategies have not only to deal with new
requirements but also need to take legacy systems into
account by offering migration strategies.

Adapter construction and generation: On the technical
side, many adapters are required to integrate different
data formats of streams and files, for bridging techni-
cal incompatibilities caused by proprietary program-
ming systems and platforms. Incompatibilities have to
be bridged by adapters. Adapters are also used for en-
capsulating design decisions. However, most adapters
consist of relatively simple code or are just parame-
terizations of templates. Although template parame-
terization as an adapter generation mechanism can be
supported by tools, additional research for (semi-) au-
tomated adapter generation is expected to reduce the
costs for adaptation. Standards-based adapters may
help, but legacy systems usually do not follow stan-
dards.

References

[1] J. Adams, S. Koushik, G. Vasudeva, and G. Galambos. Pat-
terns for e-business: A Strategy for Reuse. IBM-Press, 2001.

[2] D. Alur, J. Crupi, and D. Malks. Core J2EE Patterns: Best
Practices and Design Strategies. Prentice Hall, 2nd edition,
2003.

[3] BEA Systems, http://www.bea.com/products/weblogic/.
BEA Weblogic. Retrieved 2003-08-25.

[4] J. K. Bergey, L. M. Northrop, and D. B. Smith. Enterprise
framework for the disciplined evolution of legacy systems.
Technical Report CMU/SEI-97-TR-007, Carnegie Mellon
University/Software Engineering Institute, Oct. 1997.

[5] C. Berry, J. Carnell, M. Juric, M. Kunnumpurath, N. Nashi,
and S. Romanosky. J2EE Design Patterns Applied. Wrox
Press, 2002.

[6] A. Bien. J2EE Patterns. Addison-Wesley, 2002.
[7] Borland Software Corporation, http://www.borland.com/

jbuilder/. JBuilder. Retrieved 2003-08-25.

9

[8] Borland Software Corporation, http://www.borland.com/ to-
gether/. Together. Retrieved 2003-08-25.

[9] M. Brodie and M. Stonebraker. Migrating Legacy Systems:
Gateways, Interfaces and The Incremental Approach. Mor-
gan Kaufmann, San Francisco, 1995.

[10] D. Broemmer. J2EE Best Practices: Java Design Patterns,
Automation, and Performance. Wiley, 2002.

[11] A. W. Brown. Large-Scale Component-Based Development.
Prentice Hall, Englewood Cliffs, NJ, USA, 2000.

[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal. Pattern-Oriented Software Architecture – A System
of Patterns. Wiley & Sons, New York, NY, USA, 1996.

[13] T. Downing. Java RMI: Remote Method Invocation. Hungry
Minds, 1998.

[14] W. Emmerich, E. Ellmer, and H. Fieglein. TIGRA: An ar-
chitectural style for enterprise application integration. In
Proc. 23rd International Conference on Software Engeneer-
ing (ICSE-01), pages 567–576, May 2001.

[15] Four J’s, http://www.4js.com. Four J’s Development Tools.
Retrieved 2003-08-25.

[16] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and
R. Stafford, editors. Patterns of Enterprise Application Ar-
chitecture. Addison-Wesley, 2002.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns – Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, MA, 1995.

[18] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers
of replication and a solution. In Proceedings of the 1996
ACM SIGMOD International Conference on Management
of Data, pages 173–182. ACM Press, 1996.

[19] W. Hasselbring. Federated integration of replicated infor-
mation within hospitals. International Journal on Digital
Libraries, 1(3):192–208, Nov. 1997.

[20] W. Hasselbring. Information system integration. Communi-
cations of the ACM, 43(6):33–38, 2000.

[21] IBM, http://www-3.ibm.com/software/data/informix/tools/4gl/.
Informix 4GL product family. Retrieved 2003-08-25.

[22] KBSt, http://www.kbst.bund.de/saga. Standards und Ar-
chitekturen für eGovernment-Anwendungen (in German).
Retrieved 2003-08-25.

[23] D. Linthicum. Next Generation Application Integration:
From Simple Information to Web Services. Addison-Wesley,
2003.

[24] F. Marinescu. EJB Design Patterns: Advanced Patterns,
Processes, and Idioms. Wiley, 2002.

[25] Microsoft Corporation, http://www.microsoft.com/com/
tech/activex.asp. ActiveX Controls. Retrieved 2003-08-25.

[26] Microsoft Corporation, http://www.microsoft.com/net/.
Getting startet with .NET. Retrieved 2003-08-25.

[27] Microsoft Corporation, http://msdn.microsoft.com/vbasic/.
Visual Basic. Retrieved 2003-08-25.

[28] H. Niemann, W. Hasselbring, T. Wendt, A.Winter, and
M. Meierhofer. Kopplungsstrategien für Anwendungssys-
teme im Krankenhaus (Coupling strategies for application
systems in hospitals). Wirtschaftsinformatik, 44(5):425–
434, 2002.

[29] OSCI, http://www.osci.de. Online Services Computer Inter-
face. Retrieved 2003-08-25.

[30] J. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley,
1994.

[31] T. Ravichandran and M. Rothenberger. Software reuse
strategies and component markets. Commun. ACM,
46(8):109–114, Aug. 2003.

[32] R. Sharma, B. Stearns, and T. Ng. J2EE Connector Archi-
tecture and Enterprise Application Integration. Addison-
Wesley, 2002.

[33] M. Shaw. Comparing architectural design styles. IEEE Soft-
ware, 12(6):27–41, Nov. 1995.

[34] P. Stevens and R. Pooley. Systems reengineering patterns. In
Proceedings of the ACM SIGSOFT 6th International Sympo-
sium on the Foundations of Software Engineering (FSE-98),
volume 23, 6 of Software Engineering Notes, pages 17–23,
New York, Nov. 1998. ACM Press.

[35] E. Stroulia, M. El-Ramly, and P. Sorenson. From legacy to
web through interaction modeling. In Proceedings of the
International Conference on Software Maintenance (ICSM
’02), pages 320–329. IEEE Press, Oct. 2002.

[36] Sun Microsystems, http://java.sun.com/j2ee/. Java 2 Plat-
form, Enterprise Edition (J2EE). Retrieved 2003-08-25.

[37] Sun Microsystems, http://java.sun.com/j2se/. Java 2 Plat-
form, Standard Edition (J2EE). Retrieved 2003-08-25.

[38] Sun Microsystems, http://java.sun.com/products/javawebstart/.
Java Webstart. Retrieved 2003-08-25.

[39] Sun Microsystems, http://java.sun.com/blueprints/patterns/.
Sun Java Center J2EE Patterns. Retrieved 2003-08-25.

[40] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley, second edition
edition, 2002.

[41] Tcl Developer Exchange, http://www.tcl.tk/software/ plu-
gin/. Tcl/Tk Web Browser Plug-in. Retrieved 2003-08-25.

[42] T. Teschke, H. Jaekel, S. Krieghoff, M. Langnickel, W. Has-
selbring, and R. Reussner. Funktionsgetriebene Integration
von Legacy-Systemen mit Web Services (Function-driven
integration of legacy systems with web services). In Proc.
Workshop Enterprise Application Integration (EAI 2004),
pages 19–28. GITO Verlag, Feb. 2004.

[43] C. Thilmany. .NET Patterns: Architecture, Design, and Pro-
cess. Addison-Wesley, 2003.

[44] A. van Deursen and T. Kuipers. Identifying objects using
cluster and concept analysis. In Proceedings of the 1999
International Conference on Software Engineering (ICSE
’99), pages 246–255, Los Angeles, USA, May 1999. ACM.

[45] P. Vitharana. Risks and challenges of component-based
software development. Commun. ACM, 46(8):67–72, Aug.
2003.

[46] M. Völter, A. Schmid, and E. Wolff. Server Component Pat-
terns: Component Infrastuctures illustrated with EJB. Wi-
ley, 2002.

[47] T. Wiggerts, H. Bosma, and E. Fielt. Scenarios for the iden-
tification of objects in legacy systems. In Proceedings of
the 4th Working Conference on Reverse Engineering (WCRE
’97), pages 24–32, Oct. 1997.

[48] I. Wijegunaratne and G. Fernandez. Distributed Applica-
tions Engineering: Building new applications and managing
legacy applications with distributed technologies. Springer-
Verlag, London, 1998.

[49] W. Wojtkowski and W. Wojtkowski. Applications Soft-
ware Programming With Fourth-Generation Languages.
Wadsworth Publishing, 1990.

10

