
Reference Architecture Modeling with the UML and Vital:
A Comparative Study

Willi Hasselbring
Software Engineering Group, University of Oldenburg

D-26111 Oldenburg, Germany
Tel: +49 441/798-4517

Email: hasselbring@informatik.uni-oldenburg.de

ABSTRACT
Software reference architectures aim at supporting software
product lines, describing thecommonalitiesas well as the
variabilities among individual products in a family. Many
notations for architectural representation do exist, but only a
few explicitly support modeling of softwarereferencearchi-
tectures.

The Variability and Dependency Model (Vital) offers such a
notation which is specifically designed for describing soft-
ware product line reference architectures [7]. Vital com-
plements existing notations by focusing on issues only rel-
evant to reference architectures and assuming that all other
required architectural information is properly described by
other means.

We present a comparative case study for reference architec-
ture modeling. Exemplarily, the generic reference architec-
ture for schemas in federated database systems is described
in the UML and in Vital. The goal is to see how the UML
can be employed and possibly extended forreferencearchi-
tecture modeling. The comparison of the UML with a no-
tation that was explicitly designed for reference architecture
modeling should deliver appropriate input for further devel-
opment of the UML standard.

Keywords
Software Architecture, Reference Architecture, Architecture
Description.

1 INTRODUCTION
Software architectures support reuse by serving as frame-
works for understanding families of systems, which may be
calledproduct lines[4, 6, 9]. Domain engineeringis an ac-
tivity for building reusable components, whereby the sys-
tematic creation of domain models and architectures is ad-
dressed. Domain engineering aims at supportingapplication
engineeringwhich uses the domain models and architectures
to build concrete systems. The emphasis is on reuse and

Position paper submitted to the 1st ICSE Workshop on Describing
Software Architecture with UML.

product lines.

The Domain-Specific Software Architecture (DSSA) engi-
neering process was introduced to promote a clear distinction
between domain and application requirements [13]. A DSSA
consists of a domain model and a reference architecture, and
guides in reusing components for developing product lines
as modeled in Figure 1. Appropriate management of com-
ponent libraries is essential for successful reuse. The DSSA
process consists of domain analysis, architecture modeling,
design and implementation stages.

2 SOFTWARE REFERENCE ARCHITECTURES
FOR PRODUCT LINES

When describing a reference architecture for a product line,
it is required to cover a variety of similar systems. This is
an important difference to describing the architecture of in-
dividual software systems. Anyway, a reference architec-
ture should be described inonemodel with a generic nature.
Every member of the product line represents an instantia-
tion of this generic structure [10]. The reference architec-
ture represents all possible architectural elements together
with the rules for instantiating the individual product line
members. Therefore, reference architectures describe invari-
ant and variable elements. Dependencies between those el-
ements may exist: there can be existence dependencies and
elements may exclude each other. The reference architec-
ture has to represent all valid family members and must not
represent invalid members.

3 AN EXAMPLE PRODUCT FAMILY:
FEDERATED DATABASE SYSTEMS

Federated database systems are a research topic for many
years, and database systems in general are a well-understood
research area with a reasonable formal underpinning. There-
fore, we selected this product family as an example.

A federated database system integrates heterogeneous, au-
tonomous database systems, whereby both local applica-
tions and global applications accessing multiple component
database systems are supported [12]. Such a federated
database system is a complexsystem of systemswhich re-
quires a well designed organization at the software architec-
ture level. A problem that federated database systems face,
is the organization of schemas in a schema architecture.

1



Reference
Architecture

Domain Expert

re-use

re-use

re-use
m

anage

Reusable
Components

specify

Domain Analyst

Exemplar 
Systems

interview analyze

Software

Librarian

Programmer

Architect
Requirements

Engineer

Domain-Specific Software Architecture

Domain
Model

mapping

problem solution design

realized by

implementation

Figure 1: Relations between some roles and artifacts in the DSSA engineering process. Reference architectures for product
lines are essential in this context. We use the UML notation for actors to model the roles [3].

For federated database systems, the traditional three-level
database schema architecture must be extended to support
the dimensions of distribution, heterogeneity, and autonomy.
The generally accepted reference architecture for schemas
in federated database systems is presented in [12]. As re-
ported in [5], this reference schema architecture is generally
accepted as the basic structure in federated database systems
or at least for comparison with other specific architectures.

A reference architecture for those schemas is useful to clarify
the various issues and choices within complex federated sys-
tems. It provides the framework in which to understand, cat-
egorize and compare different architectural options for de-
veloping specific systems. Reference architectures are the
structures used to build systems in aproduct line.

In [8], we relate the concepts of this reference architecture to
those realized in some specific federated database manage-
ment systems. The purpose was to show how the reference
architecture can be compared to the architectures of various
federated database systems. Such a representation supports
the task of studying and comparing these systems. In the
present paper, we only consider the generic reference archi-
tecture and compare its representation in the UML and in
Vital. The goal is to see how the UML can be employed and
possibly extended for reference architecture modeling. The
comparison with a notation that was explicitly designed for
reference architecture modeling is expected to deliver input

for this task.

4 THE UML SPECIFICATION
Figure 2 displays the reference schema architecture for fed-
erated database systems described in the UML notation for
class diagrams [3]. In this model, some of the constraints
and options for the architecture, which are informally dis-
cussed in [12], are defined by means of themultiplicitiesat
the associations and other notational means.

The different schema types in Figure 2 are:

Local Schema: A Local Schema is the conceptual schema
of a component database system which is expressed in
the (native) data model of that component.

Component Schema:A Component Schema is a Local
Schema transformed into the (canonical) data model of
the federation layer.

Export Schema: An Export Schema is derived from a
Component Schema and defines an interface to the local
data that is made available to the federation.

Federated Schema:When Exported Schemas are semanti-
cally heterogeneous, it is necessary to integrate them
using another level. A Federated Schema on this higher
level is the result of the integration of multiple Export
Schemas; thus, providing an integrated view.

2



transformed into
filtered and

Federated_Schema

Component_Schema

Export_Schema

tr
an

sf
or

m
ed

, f
ilt

er
ed

 a
nd

 in
te

gr
at

ed
 in

to

fil
ter

ed
 in

to

filtered and integrated into

Local_Schema

transformed into

tr
an

sf
or

m
ed

 a
nd

fi
lte

re
d 

in
to* *

* *

External_Schema

*

*
*

*

*

*
*

in
te

gr
at

ed
 in

to

* *

tr
an

sf
or

m
ed

 a
nd

 f
ilt

er
ed

 in
to

Figure 2: Extract of the UML class diagram for the 5-level reference schema architecture for federated database systems.

External Schema: An External Schema is a specific view
on a Federated Schema or on a Local Schema. Exter-
nal Schemas may base on a specific data model differ-
ent from the canonical data model. Basically, Exter-
nal Schemas serve as specific interfaces for applications
(local or global).

This schema architecture, which is managed by the feder-
ated database management system, specifies the dependen-
cies/correspondences among the individual schemas. Sev-
eral options and constraints in the schema architecture are
available, some of which are:

� Any number of External Schemas can be defined.

� Any number of Federated Schemas can be defined.

A federated database system with multiple federations
allows the tailoring of the use of the federated database
system with respect to multiple classes of global feder-
ation users with different data access requirements.

� Schemas on all levels, except the Local and Federated
Schemas, are optional.

Note, that a schema architecture which consists of just

one Federated Schema and some Local Schemas con-
curs with the 5-level schema architecture of [12]. The
other levels contain no schemas in this case.

� A component database system can participate in more
than one federation and continue the operation of local
applications. Thus, Local Schemas may be mapped to
several Component, Export, and External Schemas.

Some additional constraints, which are not specified in the
UML model, are:

� Federated Schemas are required to be integrated from
at least oneLocal, Component or Export Schema. I.e.,
Federated Schemas must be connected ‘to the ground’
and not levitate.

� Each Export Schema is filtered from at least one Com-
ponent or Local Schema.

� Each External Schema is derived from either one Fed-
erated or one Local Schema.

Those additional constraints cannot be specifiedgraphically
within this class diagram. It is necessary to specify them

3



textually by means of additional informal prose and/or the
UML Object Constraint Language [3].

5 THE VARIABILITY AND DEPENDENCY MODEL
VITAL

Vital, focuses on the variabilities of product lines [7]. It
is meant to complement other architectural views reflecting
other essential architectural information, such as could be
provided by the UML.

Vital offers both a textual description language and a graphi-
cal representation. Both have the same expressiveness. Here,
only the graphical representation is employed which offers
the following notational elements (the explanation is adopted
from [7]):

� Rectangles represent elements of the software system.

– A white rectangle represents a mandatory ele-
ment. Mandatory elements are prescribed within
their scope of definition. On the top-level they
constitute the commonality of a product family.

– A shaded rectangle stands for an optional architec-
tural element. It manifests a variable part within a
software system.

– If further refinement is concealed within an ele-
ment then this is marked through a triangle at the
bottom right corner. A solid triangle identifies an
object which contains mandatory elements only.

– An element with a dotted triangle keeps at least
one optional subelement inside. Hence it holds
variability.

Those rectangles are very similar to classes in the UML.
The different types of rectangles could be modeled via
stereotypes.

� Ellipses represent artificial elements used for structur-
ing the system’s architecture. Hence they do not have
corresponding components within the software system.

– A white ellipse represents a mandatory architec-
tural part. As a mandatory element it is prescribed
within its scope of definition.

– A shaded ellipse stands for an optional architec-
tural structure. It comprises variable parts of a
software system.

– Fine grain structures can be hidden from the eye
of the beholder. Virtual elements are then marked
on the right tip. A solid tip defines a virtual object
which contains mandatory elements only.

– A structure with a dotted tip keeps at least one op-
tional subelement inside (i.e., it has been applied
to subsume variable parts).

The UML does not directly support a concept similar
to what these ellipses are intended for. Packages are
somewhat similar, but not identical.

� Lines represent links between two relation points. A
relation consists of two relation points and a link con-
necting both. Multiple solid lines starting from an iden-
tical relation point are connected with a logical AND to
specify inclusive dependency which implies that the in-
clusion of one element requires the inclusion of further
elements. Multiple dashed lines starting from an iden-
tical relation point are connected with a logical XOR to
specify exclusive dependency which expresses incoher-
ences between elements.

In the UML, these lines can be modeled as associa-
tion links, whereby the different kinds of lines could
be specified via stereotypes or constraints.

� Circle and rhombus represent two different kinds of re-
lation points. Elements can only be connected via rela-
tion points. The meaning of the relation is reflected by
the appearance of the relation point.

– A white circle is a relation point that signals no de-
pendency. It is applied to visualize the complete-
ness of the relation. Through keeping the repre-
sentation consistent it facilitates the identification
of incorrect connections.

– A solid circle represents a prerequisite relation.
All incoming links stem from architectural parts
depending on this element. This is used to sup-
port inclusive dependencies.

– Architectural parts connected to a shaded circle
are affected by the corresponding element. The
appearance (existence) of the element has an in-
fluence on their own constitution. Thus a shaded
circle represents the visualization of relations be-
tween variable subelements at a higher hierarchi-
cal level.

– A solid rhombus represents the exclusive depen-
dencies. Only links from other rhombi may be
connected.

In the UML, these symbols would be modeled as dif-
ferent types of association links (e.g., via stereotypes).
Vital does not offer multiplicities as they are offered in
the UML for association links.

� Constraints are used to express complex dependencies
between architectural elements, very similar to con-
straints (OCL) in the UML.

Due to space limitation we cannot present the Vital reference
model for federated database systems in this short position
paper. We can only discuss general commonalities and dif-
ferences. In an extended version, the Vital model and a UML
model — revised on the basis of the Vital model — shall
be presented to illustrate more details of the conclusions on
what the UML should offer for reference architecture mod-
eling.

4



6 SUMMARY
We model the generic reference architecture for schemas in
federated database systems and compare its representation
in the UML and in Vital. The goal is to see how the UML
can be employed and possibly extended for reference archi-
tecture modeling. The comparison with a notation that was
explicitly designed for reference architecture modeling shall
deliver input for this task.

For large, complex software systems the design of the over-
all system structure (the software architecture) is a central
problem. Thearchitectureof a software system defines that
system in terms of components and connections among those
components [1, 2, 11]. It is not thedesignof that system
which is more detailed. The architecture shows the cor-
respondence between the requirements and the constructed
system, thereby providing some rationale for the design de-
cisions. An architecture embodies decisions about quality
properties. It represents the earliest opportunity for evaluat-
ing those decisions. Furthermore, reusability of components
depends on how strongly coupled they are with other com-
ponents in the system architecture. Performance depends
largely upon the complexity of the necessary coordination,
in particular when the components are physically distributed
processes. For product lines reference architectures are re-
quired.

Such reference architectures need to emphasize on two kinds
of dependency relations that can exist between elements: in-
clusive and exclusive dependencies.

� Inclusive dependency implies that the inclusion of an
optional element requires the inclusion of further ele-
ments.

� Exclusive dependency expresses incoherences between
elements. Thus one variable element may exclude oth-
ers from being integrated within the same application.

Consequently, architectural description notations supporting
reference architectures must be able to express the variabil-
ity and dependency constraints described above. If the UML
is meant to describe software reference architectures, which
aim at supporting software product families, explicit nota-
tions reflecting thecommonalitiesas well as thevariabilities
among individual products in a family should to offered to
the software architect. The forthcoming UML 2.0 should
explicitly support the software architect with modeling ref-
erence architectures for product lines.

REFERENCES

[1] BARROCA, L., HALL , J., AND HALL , P., Eds.
Software Architectures: Advances and Applications.
Springer-Verlag, London, 2000.

[2] BASS, L., CLEMENTS, P., AND KAZMAN , R. Soft-
ware Architecture in Practice. Addison-Wesley, Read-
ing, MA, 1998.

[3] BOOCH, G., RUMBAUGH, J.,AND JACOBSON, I. Uni-
fied Modeling Language User Guide. Object Technol-
ogy Series. Addison-Wesley, Reading, MA, 1999.

[4] BOSCH, J. Design & Use of Software Architec-
tures: Adopting and evolving a product-line approach.
Addison-Wesley, Harlow, England, 2000.

[5] CONRAD, S., EAGLESTONE, B., HASSELBRING, W.,
ROANTREE, M., SALTOR, F., SCHÖNHOFF, M.,
STRÄSSLER, M., AND VERMEER, M. Research Issues
in Federated Database Systems (Report of EFDBS ’97
Workshop). SIGMOD Record 26, 4 (Dec. 1997), 54–
56.

[6] DIKEL , D., KANE, D., ORNBURN, S., LOFTUS, W.,
AND WILSON, J. Applying software product-line ar-
chitecture.Commun. ACM 30, 8 (Aug. 1997), 49–55.

[7] GACEK, C., AND VUKOVIC, A. Vital: Represent-
ing software reference architectures. InProc. Fourth
International Software Architecture Workshop ISAW-4
(Limerick, Ireland, June 2000), pp. 105–109.

[8] HASSELBRING, W. Formalizing and comparing soft-
ware architectures of federated database management
systems. InProc. Fourth International Software Ar-
chitecture Workshop ISAW-4(Limerick, Ireland, June
2000), pp. 126–130.

[9] M ACALA , R., STUCKEY, L., AND GROSS, D. Manag-
ing domain-specific, product-line development.IEEE
Software(May 1996), 57–66.

[10] PERRY, D. Generic architecture descriptions for prod-
uct lines. InProc. Second International Workshop on
Development and Evolution of Software Architectures
for Product Families(1998), no. 1429 in Lecture Notes
in Computer Science, Springer Verlag, pp. 51–56.

[11] SHAW, M., AND GARLAN , D. Software architecture:
perspectives on an emerging discipline. Prentice Hall,
1996.

[12] SHETH, A., AND LARSON, J. Federated database sys-
tems for managing distributed, heterogeneous, and au-
tonomous databases.ACM Computing Surveys 22, 3
(1990), 183–236.

[13] TAYLOR, R., TRACZ, W., AND COGLIANESE, L.
Software development using domain-specific software
architectures. ACM SIGSOFT Software Engineering
Notes 20, 5 (Dec. 1995), 27–38.

5


