The ProSet-Linda Approach to Prototyping Parallel
Systems?

Wilhelm Hasselbring

Department of Computer Science, University of Dortmund4R221 Dortmund, Germany

Parallel programming is conceptually harder to undertake and to understand than sequential
programming, because a programmer often has to manage the coexistence and coordina-
tion of multiple parallel activities. Prototyping is used to explore the essential features of
a proposed system through practical experimentation before its actual implementation to
make the correct design choices early in the process of software development. Approaches
to prototyping parallel algorithms with very high-level parallel programming languages intend
to alleviate the development of parallel algorithms. To make parallel programming easier,
early experimentation with alternate algorithm choices or problem decompositions for par-
allel applications is suggested. This paper presents the ProSet-Linda approach which has
been designed for prototyping parallel systems.

1 INTRODUCTION

There has been particular attention on parallel progrargraimd processing within the computer
science community during the last years. Several motiaatfor programming parallel applications
exist:

1. Decreasing the execution time for an application program
2. Increasing the fault-tolerance.
3. Exploiting explicitly the inherent parallelism of an djgation.

Achieving speedup through parallelism is a common motvefdr executing an application program
on a parallel computer system. Another motivation is adhgVault-tolerance: for critical applica-
tions like controlling a nuclear power plant, a single pissm® may not be reliable enough. Distributed
computing systems are potentially more reliable: as thegssors are autonomous, a failure in one
processor does not affect the correct function of the othergssors. Fault-tolerance can, therefore,
be increased by replicating functions or data of the apfiioaon several processors. If some of the
processors crash, the others can continue performingttsks.

However, the main motivation for integrating explicit pbelism into a prototypinglanguage is
to provide means for explicitly modeling inherently paehlapplications. Consider, for instance,
parallel systems such as air-traffic-control and airliaservation applications, which must respond
to many external stimuli and which are therefore inhereptyallel. To deal with nondeterminism
and to reduce their complexity, such applications are pabfg structured as independent parallel
processes.

Combining parallel programming with prototyping intendsdtileviate parallel programming on
the basis of enabling the programmer to practically expenimvith ideas for parallel applications on

!Preprint of a paper to appearThe Journal of Systems and Software

a high level neglecting low-level considerations of spegifarallel architectures in the beginning of
program development. Prototyping parallel algorithmsias to bridge the gap between conceptual
design of parallel algorithms and practical implementatio specific parallel systems.

To be useful, prototypes must beilt rapidly, and designed in such a way that they camiogli-
fiedrapidly. Therefore, prototypes should be built in very highiel languages to make them rapidly
available. Consequently, a prototype is usually not a véfigient program since the language should
offer constructs which are semantically on a very high leaatl the runtime system has a heavy bur-
den for executing these highly expressive constructs. blogexmentioned primary goal of parallel
programming — decreasing the execution time for an applingtrogram — is not the first goal
with prototyping parallel algorithms. The first goal is tgpeximent with ideas for parallel algorithms
before mapping programs to specific parallel architectto@ghieve high speedups.

The prototyping language ProSet-Linda and some introguaramples are presented in Sec-
tions 2 and 3, respectively. The implementation of ProSetha is discussed in Section 4. Section 5
discusses some related work and Section 6 summarizes tbe pap

2 THE PROTOTYPING LANGUAGE PROSET-LINDA

ProSet-Linda combines the sequential prototyping langugSet (Doberkat et al., 1992) with the
coordination language Linda (Gelernter, 1985; Carrierd @elernter, 1992) to obtain a parallel pro-
gramming language as a tool for prototyping parallel aldponis (Hasselbring, 1994b). ProSet is an
acronym for PR@OTYPING WITH SETS. The procedural, set-oriented language ProSet is a suc-
cessor to SETL (Kruchten et al., 1984). The high-level $tnes that ProSet provides qualify the
language for prototyping. Refer to (Kruchten et al., 19&t)d case study using SETL for prototyp-

ing.

2.1 Basic Concepts

ProSet provides the data types atom, integer, real, stBoglean, tuple, set, function, and module.
As a prototyping language, ProSet is weakly typed, i.e.type of an object is in general not known
at compile time. Atoms are unigue with respect to one macaimkeacross machines. They can only
be created and compared for equality. Tuples and sets anparord data structures, the components
of which may have different types. Sets are unordered ditles while tuples are ordered. There is
also the undefined valumemwhich indicates undefined situations.

As an example consider the expresdidi23, "abc", true, {1.4, 1.5}] which creates
a tuple consisting of an integer, a string, a Boolean, and afdavo reals. This is an example of
what is called duple former As another example consider thet formingexpressio{2*x: x in
[1..10] | x>5} whichyieldsthe sef12, 14, 16, 18, 20}. The quantifiers of predicate
calculus are providedi(V). The control structures have ALGOL as one of its ancestors.

2.2 Parallel Programming

To support prototyping of parallel algorithms, a prototypianguage must provide simple and pow-
erful means for dynamic creation and coordination of pafg@itocesses. In ProSet-Linda, the concept
for process creation via Multilisp’s (Halstead, 1985) fetsiis adapted to set-oriented programming
and combined with Linda’s (Gelernter, 1985) concept forcdynnization and communication. Pro-
cess communication and synchronization in ProSet-Lindadgced to concurrent access to a shared
data pool, thus relieving the programmer from the burdenafiig to consider all process inter-
relations explicitly. The parallel processes are decalipietime and space in a simple way: pro-

cesses do not have to execute at the same time and do not rieeairt@ach other’s addresses (this
is necessary with synchronous point-to-point messagernugss

221 ProcessCreation Process creation in ProSet-Linda is provided through tteyuoperator

| | , which may be applied to a function call. A new process willdpawned to compute the value
of this expression concurrently with the spawning procésslar to futuresin Multilisp (Halstead,
1985). If thisprocess creatof | is applied to an expression that is assigned to a varialdesghwn-
ing process continues execution without waiting for thenieation of the newly spawned process. At
any time thevalueof this variable is needed, the requesting process will spasnded until the future
resolveqthe corresponding process terminates) thus allowinguwoency between theomputation
and theuseof a value. Consider the following statement sequence tasexample:

x =11 pO); - - Statement 1
- - Some computations without access to
y 1= Xx + 1; - - Statement 2

After statement 1 is executed in the above example, prqoessuns in parallel with the spawning
process. Statement 2 will be suspended yott)l terminates. I1fp() resolves before statement 2 has
started execution, then the resulting value will be assigmenediately.

In summary: parallel execution is achieved only at creatiore of a process and maintained
through immediately assigning to a variable, storing in saddructure, returning as a result from a
procedure, and depositing in tuple space (this is discusskev). Every time one tries to obtain a
copy one has to wait for the termination of the correspongingess and obtains the returned value
only then. Additionally, the following statement, whichaspns a new process, is allowed:

I pO);

The return value of such a process will be discarded. This beagompared with &or k in the
UNIX™ operating system. Side effects and write parameters ar@logted for parallel processes in
ProSet-Linda. Synchronization and communication is dorlg wa tuple-space operations.

2.2.2 Synchronization and Communication Linda is a coordination language which extends a
sequential language by means for synchronization and caoneation through so-calleliple spaces
(Gelernter, 1985). Synchronization and communicationroSet-Linda are carried out through sev-
eral atomic operations on tuple spaces: addition, remosading, and updates of individual tuples
in tuple space. Linda and ProSet both provide tuples; thisgsguite natural to combine both models
to form a tool for prototyping parallel algorithms. The assanitin tuple space is the tuple. Reading
access to tuples in tuple spacaisociativeand not based on physical addresses, but rather on their
expected content describedtiemplates This method is similar to the selection of entries from a
data base. ProSet-Linda supports multiple tuple spaceger&dibrary functions are provided for
handling multiple tuple spaces dynamically (Hasselbrirg94b).

ProSet-Linda provides three tuple-space operationsdElp@si t operation deposits a tuple into
a tuple space:

deposit ["pi", 3.14] at TS end deposit;

TS is the tuple space at which the tuple” pi ", 3. 14] has to be deposited. Thet ch opera-
tion tries to fetch and remove a tuple from a tuple space:

fetch ("name", ? x | (type $(2) = integer)) at TS end fetch;

This template only matches tuples with the stringane” in the first field and integer values in the
second field. The symb& may be used as a placeholder for the values of corresponaiohestin
tuple space. The expressi®fi) then selects thieth element from these tuples. Indexing starts with
1. As usual in ProSet, meanssuch that The optional-values specified in the formals (the variable
X in our example) are assigned the values of the correspondpig fields, provided matching suc-
ceeds. Formals are prefixed by question marks. The selagiéslis removed from tuple space. It
is allowed to specify multiple templates andelns e-part within such a statement as will be done in
the examples of Section 3.

Theneet operation is the same &t ch, but the tuple is not removed and may be changed:

neet ("pi", ? x) at TS end neet;

Changing tuples is done by specifying expressions for ilue o which specific tuple fields will
be changed. Consider

nmeet ("pi", ? into 2.0*3.14) at TS end neet;

where the second element of the met tuple is changed intoallne vf the expressiod. 0* 3. 14.
Tuples which are met in tuple space can be regarded as shHaesisssince they remain in tuple space
irrespective of changing them or not. Witteet , in-place updates of specific tuple components are
supported. For a detailed discussion of prototyping palrallgorithms with ProSet-Linda refer to
(Hasselbring, 1994b).

3 INTRODUCTORY EXAMPLES

As introductory examples, we present the complete parsdlieitions to the classical dining philoso-
phers problem and to the traveling salesman problem.

3.1 The Dining Philosophers Problem

The dining philosophers problem is a classical problem iralpel programming which has been
posed by (Dijkstra, 1971). It is often used to test the exgivey of new parallel languages.

The ProSet-Linda solution in Figure 1 is derived from the iGela version in (Carriero and Gelern-
ter, 1990). In the C-Linda version, the philosophers firsthieheir left and then their right chopsticks.
In the ProSet-Linda version, this order is not specified.sThiaccomplished by the use of multiple
templates for onéet ch statement. Théet ch statement suspends until a matching tuple is avail-
able. Then, the enclosed statement which is specified foselexted template is executed. The
program works for arbitrarp > 1.

To prevent deadlock, only four philosophers (or one less tha total number of philosophers) are
allowed into the room at any time to guarantee to be at leaspbriosopher who is able to make use
of both, his left and his right chopstick. In (Carriero and@&eter, 1990) this is demonstrated with
thepigeonhole principlein every distribution of the: chopsticks among the— 1 philosophers with
table tickets, there must be at least one philosopher wisotgetchopsticks.

program Di ni ngPhi | osophers;
visible constant n := 5, -- Number of phil osophers
TS := CreateTS (); -- New tuple space
begi n
for i in[O.. n-1] do
-- Deposit chopsticks and roomtickets at the tuple space:
deposit ["chopstick", i] at TS end deposit;
if i /=n-1then -- One ticket |less than the nunber of philosophers
deposit ["roomticket"] at TS end deposit;

|| phil(i); -- Spawn the next phil osopher
end if;
end for;
phil(n-1); -- The nmain program becones the |ast phil osopher

procedure phil (i);
begi n
| oop
think ();
fetch ("roomticket") at TS end fetch
-- Fetch left and right chopstick in arbitrary order
fetch ("chopstick", i) =>
-- Left chopstick fetched, fetch the right one:
fetch ("chopstick", (i+1) nod n) at TS end fetch
xor ("chopstick", (i+1) mod n) =>
-- Right chopstick fetched, fetch the [eft one:

fetch ("chopstick"”, i) at TS end fetch
at TS
end fetch;
eat ();
-- Return the fetched chopsticks and the roomticket:
deposit ["chopstick”, i] at TS end deposit;

deposit ["chopstick”, (i+1) nod n] at TS end deposit;
deposit ["roomticket"] at TS end deposit;
end | oop;
end phil
end Di ni ngPhi | osophers;

Figurel. Solution for the dining philosophers problem. The func® eat e TS creates a new tuple
space. The templatesiiret ch operations are enclosed in parentheses and not in braokaiddr to
set the templates apart from tuples.

3.2 The Traveling Salesman Problem

As a second introductory example, we present the complesdi@lesolution to the traveling salesman
problem in which it is desired to find the shortest route thsity each of a given set of cities exactly
once. We want to compute an optimal route for some citiesénRbhrgebiet, an area in Germany
named after the river Ruhr. The selected cities with theimaetions and distances are displayed in
Figure 2. The salesman should start in Essen.

The problem can be solved usibganch-and-boundLawler and Wood, 1966). It uses a tree to
structure the search space of possible solutions. The fabearee is the city in which the salesman
should start. Each path from the root to a node representgialgaur for the salesman. Leaf nodes
represent either partial tours without connections to mbtysited cities or complete tours. Complete
tours visit each city exactly once. Figure 3 displays thedeaee for our selection of cities. The
complete tours, in which each city is visited, are set ofbtlgh thick lines. In general, it is not
necessary to search the entire treéoanding ruleavoids searching the entire tree. For the traveling
salesman problem, the bounding rule is simple. If the lengthpartial tour exceeds the length of an
already known complete tour, the partial tour will neverd¢a a solution better than what is already
known.

Parallelism in a branch-and-bound algorithm is obtainegdarching the tree in parallel. The main
program in Figure 4 stores the cities with their connectione global constant s& st Tabl e.
This set is a map which maps pairs of cities to their distaridee distances are specified for each
direction. The distances between two cities may be diftefiardifferent directions (e.g. for one-way
connections). The s&odes contains the cities involved. The striigj ar t indicates the starting
point.

This program is a master-worker applications (also catiestk farming. In a master-worker appli-
cation, the task to be solved is partitioned into indepetdebtasks. These subtasks are placed into
a tuple space, and each process in a pool of identical woitkensrepeatedly retrieves a subtask de-
scription from the tuple space, solves it, and puts the gbigtinto a tuple space. The master process
then collects the results. An advantage of this programmapgoach is easy load balancing because
the number of workers is variable and may be set to the nunflermadable processors.

The master (the main program in Figure 4) first depositscilmeent minimal distance together
with the corresponding route into the tuple spRESULT. This minimal distance is initially the sum
over all distances i st Tabl e (an upper limit), and the corresponding route is an emptjetup
Then, the master deposits the initial routes into tuple sp@RK, and spawndlumor ker worker
processes in active tuples to compute the search tree ifigbaiehis number is an argument to the
main program. These workers execute in an infinite loop, iftlvtasks are fetched from tuple space
WORK, and results are computed and added at tuple SRBSELT.

After spawning the workers, the master waits until all woskieave done their work, and then the
master fetches the optimal distance together with the spareding route from tuple spa&&SULT.
Here, Multilisp’s future concept is applied to synchrortize master with the workers: the workers are
spawned as componentsatitivetuples (Hasselbring, 1994b). Since only passive tuplesregoh a
template, the master waits for the termination of the waskand only then fetches the results. The
workers need not terminate in a specific order because eachegnlves into the passive tuple]
in tuple spac&kESULT. Tuple spaces are multisets.

Each worker (Figure 5) first checks whether there are molletigses in tuple spac®ORK, and
terminates when there is no more work to do. Then each wothecks whether its partial route
(then stored iy Rout e) exceeds the length of an already known complete route: ttreemworker
discards this partial route (according to the bounding)rafed continues to fetch another task tuple.
If the length of the partial route does not exceed the len§inalready known complete route, the

15

Oberhausen Gesenkirchen
Duisburg Bochum Dortmund

Figure 2. Some cities in the Ruhrgebiet with their connections astadices.

Essen

Duisburg Oberhausen Gelsenkirchen Bochum

SN INC N

Oberhausen ; ;
Duisburg Gelsenkirchen Oberhausen Dortmund portmund Gelsenkirchen

| | /
/ \ Duisburg Bochum | ~ Dortmund
Gelsenkirchen Gelsenkirchen
Bochum Dortmund Bochum
/ \ | | | | Ober hausen
Oberhausen

Bochum Dortmund Dortmund Bochum Dortmund

| | | Duisburg
Dortmund Bochum Duisburg

Figure 3. The search tree for our selection of cities in the Ruhrgebie

program t sp;
visible constant DistTable :=
{[["Duisburg", "Essen"], 14], [["Essen","Duisburg"], 14],

[["Dui sburg", " Cberhausen"], 5], [["Qoerhausen", "Duisburg"], 5],
"oer hausen", "Essen"], 10], [["Essen","Qberhausen"], 10],
"oer hausen", " Gel senki rchen"], 15],
" el senki rchen", " Cber hausen"], 15],
"Essen", " CGel senkirchen"], 8], [["Cel senkirchen", "Essen"], 8],
"Essen", " Bochunmt], 13], [["Bochuni, "Essen"], 13],
"Bochunt', "Dort mund"], 16], [["Dortmund","Bochuni], 16],
"Bochuni', "Gel senkirchen"], 8], [["Celsenkirchen","Bochuni], 8],
"Dortmund", " CGel senkirchen"], 23],

[
[
[
[
[
[
{
[[" Gel senkirchen","Dortmund"], 23]},

—————————

Nodes := domain (dormain DistTable) + range (domain D stTable);
constant WORK := CreateTS(), -- For the workers and the work tasks
RESULT := CreateTS(), -- For the actual mnimal route and distance
Numorker := argv(2); -- Program argument: nunber of workers
begi n
Start := "Essen";

-- The minimal distance is initially the sumover all distances:
Max := +/ [x(2): x in D stTable];
deposit [[], Max] at RESULT end deposit; -- Initialize the result

-- Deposit the initial routes into tuple space WRK
for Entry in DistTable | Entry(1)(1) = Start do
deposit [Entry(1), Entry(2)] at WORK end deposit;

end for;

for i in [1..NumArker] do -- Spawn the worker processes in active tuples:
deposit [|| Worker (WORK, RESULT)] at RESULT end deposit;

end for;

for i in [1..NumAMrker] do -- Wait for the workers to finish
fetch (0) at RESULT end fetch;
end for;
fetch (? route, ? distance) at RESULT end fetch; -- The work has been done

if route =[] then
put ("There exists no route for the traveling salesman!");

el se
put ("Tour de Ruhr =", route);
put ("Di stance = ", distance);
end if;
end tsp;

Figure 4. Solution for the traveling salesman problem: main progeanmaster process. The unary
operatordomai n yields the domain of a map (a set of pairs). Accordingnge yields the range
of a map. For setst is the set union. The unary operatef yields the sum over all elements in
a compound data structure (a tuple in our example). The ifum€r eat eTS creates a new tuple
space.

procedure Wrker (MWORK, MRESULT);

begi n
| oop
fetch (? M/Route, ? M/Distance) at MyWORK
else return 0; -- Terminate and return O into the conprising tuple
-- (becone passive)
end fetch;
neet (?, ? Distance) at MYRESULT end neet; -- to check whether we can continue
if Distance <= MyDistance then
continue; -- There exists already a shorter or equal |ong route:
-- we prune this subtree according to the bounding rule
end if;

if #M/Route >= #Nodes then
-- W have a conplete route. Change the mininumto our route if it is

-- still the shortest one:
neet (? into M/Route, ? into M/Distance | $(2) > M/Di stance)
xor (2, ? | $(2) <= WyDistance)
at MyRESULT
end neet;
el se

-- Deposit a new task for each route which is a connection of M/Route
-- with a node that is not in M/Route:
for Entry in DistTable | (Entry(1)(1) = M/Route(#M/Route) and
Entry(1)(2) notin M/Route) do
deposit [M/Route with Entry(1)(2), M/Di stance + Entry(2)]
at MYWORK
end deposit;
end for;
end if;
end | oop;
end Wrker;

Figure 5. Solution for the traveling salesman problem: procedurettie worker processes. The
unary operato# returns the number of elements in a compound data struciine binary operator
wi t h adds an element to a compound data structure.

worker checks whether its partial route is already a coneptetite. If the partial route is already
a complete route, the worker changes the minimal route itetspaceRESULT to the given route,
provided that the given route is still the shortest one. # gartial route is not a complete route,
the worker deposits new task tuples into tuple spaBBK for each route which is a connection of
the given route with a node that is not in the given route. €Hes to be a connection defined in
Di st Tabl e between the last node in the given route and the next nodésthat in the given route
to constitute a new extended route.

Figure 6 displays the coarse structure of the master-wqmicggram. Arrows indicate access to the
tuple spaces. These access patterns are only shown for @ahe wfentical worker processes. The
program in Figures 4 and 5 prints out:

Tour de Ruhr = ["Essen", "Duisburg", "oerhausen", "GCel senkirchen",

"Bochum', "Dortnund"]
Di stance = 58

For simplicity we assume that there exists at least one cetepbute that visits each of a given set of
cities exactly once. If such a complete route does not existprogram prints the messageher e

9

WWORK

_ [t ask]

66906\\ [task]
pat h, max]

[0]

RESULT

Figure 6. The coarse structure of the master-worker program forréneting salesman problem.

exi sts no route for the traveling sal esman!”. Often it is assumed in solutions
for the traveling salesman problem that there exists a aurorebetween each pair of cities. Our
program does not have this assumption, and also solvesgmnshivhere the distances between two
cities may depend on the direction.

4 |IMPLEMENTATION OF PROSET-LINDA

This section briefly discusses the implementation of Pre.8eta itself. We implement ProSet-Linda
in a somewhat unconventional way: the informal specificaisofollowed by a formal specification,
which serves as the basis for a prototype implementaticoreehe production-level implementation
is undertaken (Hasselbring, 1994b). Applying formal mehearly in the design stage of software
systems can increase the designer’s productivity by giagfissues and eliminating errors in the
design. A formal development process is more expensiverinst®f time and education, but much
cheaper in terms of maintenance. There may be bugs, but tedgss likely to be at the conceptual
level.

The formal specification of the semantics of ProSet-Lindaldeeen defined by means of the formal
specification language Object-Z and a prototype for a suteebeen implemented from the formal
specification with ProSet itself (Hasselbring, 1994a; ledsing, 1994b). This prototype allowed
immediate validation of the specification by execution. Pphatotype enabled us to avoid the large
time lag between specification of a system and its validaitiotine traditional model of software
production using the life cycle approach (Ghezzi et al.,1999

In the first C implementation of ProSet-Linda, the SufOSghtweight Processes Library (Sun Mi-
crosystems Inc, 1990) is used to implement process creatidrsynchronization. This Lightweight
Processes Library only allows quasi-parallel executiosiogle processor workstations. The C im-
plementation is transformed from the ProSet prototype@m@ntation. The nextimplementation was
developed under Solaftsusing the Multi-thread Architecture (Powell et al., 199This implementa-
tion also allows real parallel execution on multi-procesSparcStatiorn’d'. On these multi-processor
SparcStation’d' the tuple spaces are stored in shared memory.

10

The latest implementation has been performed on a localretveork (Waltenberg, 1996). On
distributed memory architectures, a general problem fgslémentations of Linda is to provide a
map from the virtual shared memory model to physical disteéld memory architectures. Therefore,
efficient and reliable implementations of Linda on physitigtributed memory architectures are in
general a great challenge for the implementor. Implememtaechniques for physical distributed
memory architectures range from those where the tuple sisa@plicated on each node to those
where each tuple resides on exactly one node. The impletimmtachniques may be classified as
follows:

1. Central store with server process

2. Replication of the entire tuple space at each node

3. Distribution of the tuple space over the net with uniqueies of each tuple
4. Mixture of these techniques

A central store may very quickly become both a computatiamal a communicational bottleneck.
A distribution of tuple spaces over the nodes in a parallstey in one form or another is the most
promising implementation technique on distributed memanghitectures for Linda’s tuple spaces.
This is due to several reasons. First, memory is saved arahdethe overhead for guaranteeing
the consistency of the replicated tuple spaces is absenthdfmore, any Linda implementation
that can scale to large machinesistdistribute tuple space, so as to avoid node contention. This
distributes the cost of handling tuple operations acrdssales in the system. The remaining problem
is howto distribute the tuple space. Multiple tuple spaces, ag #ne supported in ProSet-Linda,
provide a direct approach for distributing the tuple spames distributed memory architecture. A
distributed hashing mechanism has been implemented f@d®danda’s tuple spaces (Waltenberg,
1996). This new implementation allows improved perfornepeedictions compared to the former
implementations.

5 RELATED WORK

Some approaches to prototyping parallel algorithms witly Vegh-level parallel programming lan-
guages intend to alleviate the development of parallelrdtyas in quite different ways. Because
of the problems with the low-level programming models forssege passing, many models which
emphasize some kind shared datéhave been developed that intend to deliver a higher levebof a
straction to alleviate parallel programming. These hig¥el programming models appear to be good
candidates for prototyping parallel algorithms. Such Hig¥el languages are set-based data-parallel
approaches and specific extensions to logical, functiarad, object-oriented languages as well as
coordination languages which extend sequential langu&gesnples are:

e Proteus (Goldberg et al., 1994) is a data-parallel vamadfoSETL (Kruchten et al., 1984) that
supports control and data parallelism for prototyping paralgorithms. A semi-automatic re-
finement system has been developed for the Proteus langusdgeisbased on algebraic spec-
ification techniques and category theory to transform gygqes to implementations on specific
architectures. For the time being, these transformatiomsestricted to the data-parallel con-
structs of Proteus.

e The Crystal (Chen et al., 1991) approach starts from a heghHfunctional problem speci-
fication, through a sequence of optimizations tuned forigadr parallel machines, leading

11

to the generation of efficient target code with explicit conmeation and synchronization.
This approach to automation is to design a compiler thasifias source programs according
to the communication primitives and their cost on the targathine and that maps the data
structures to distributed memory, and then generateslpratie with explicit communication
commands.

e PROLOG programs express two distinct forms of implicit plaiesm: AND-parallelism is
the simultaneous reduction of several different subgoals goal and OR-parallelism is the
simultaneous evaluation of several clauses for the samle Baeallel variations of logic pro-
gramming languages appear to be candidates for prototyairadiel algorithms (Huntbach and
Ringwood, 1995).

o RAPIDE (Luckham et al., 1993) is a parallel object-oriersdjuage specifically designed for
prototyping parallel systems that combines the partialtieced event set (poset) computation
model with an object-oriented type system for the sequictiaponents.

e With composition and coordination languages, paralletesys are described in terms of pro-
cesses that comprise a system together with the commuoricatid control interconnections
between these processes.cdordination languagerovides means for process creation and
inter-process communication which may be combined witlueatjalcomputation languages
to constitute garallel programming languagéCarriero and Gelernter, 1992). Compositional
C++ (Chandy and Kesselman, 1993) is such a language des@rpdtotyping. ProSet-Linda
belongs to this category, too.

6 SUMMARY

To build a parallel system, you should start with executqntgotypes to validate the requirements
and study the feasibility (neglect the execution perforoasim the first instance). Powerful tools are
needed to make prototyping of parallel algorithms and sgstieasible. Our goal is to make parallel
program design easier through prototyping parallel athars. The high level of ProSet-Linda’s
constructs for parallel programming enables us to rapidiyetbp prototypes of parallel programs
and to experiment with parallel algorithms.

The idea of prototyping is being adopted in software engingefor different purposes: proto-
types are useéxplorativelyto arrive at a feasible specificatioexperimentallyto check different
approaches, anelolutionaryto build a system incrementally. The order of developmespisin the
traditional life cycle model is mapped here into succesdmeelopment cycles. Note that a proto-
type is a model, and that this model taken as a program haségdweitable so that at least part of
the functionality of the desired end product may be dematedtron a computer. Prototyping has
been developed as an answer to deficiencies in the traditimaycle model, the waterfall model
(Ghezzi et al., 1991), where each phase is completed béferadxt phase is started; but it should
not be considered as an alternative to this model. It is raspgmally useful when it complements
the life cycle model. It is plausible that prototyping mayused during the early phases of software
development. In (Hasselbring and Krober, 1998), the coatimn of our prototyping approach with
an object-oriented modeling method is discussed.

This paper presents the prototyping language ProSet-Lwitta some introductory examples.
Applications experience with parallelizing high-levelneputer vision algorithms (Hasselbring and
Fisher, 1995), cooperative planning of independent ag@uberkat et al., 1996) and the require-
ments analysis for a hospital communication server (Hagsgl and Krober, 1998) are discussed
elsewhere.

12

REFERENCES

Carriero, N., and Gelernter, DKlow to write parallel programsThe MIT Press, Cambridge, Mas-
sachusetts, 1990.

Carriero, N., and Gelernter, D., Coordination languagektaeir significance Communications of
the ACM35, 96-107 (1992).

Chandy, K., and Kesselman, C., CC++: A declarative conotinkject-oriented programming nota-
tion, in Research Directions in Concurrent Object-Oriented Prograing(G. Agha, P. Wegner,
and A. Yonezawa, eds.), The MIT Press, Cambridge, Massatisu$993, pp. 281-313.

Chen, M., Choo, Y., and Li, J., Crystal: Theory and pragnsatitgenerating efficient parallel code,
in Parallel Functional Languages and CompilgB. Szymanski, ed.), ACM Press, New York,
N.Y., 1991, pp. 255-308.

Dijkstra, E., Hierarchical ordering of sequential proes#\cta Informatical, 115-138 (1971).

Doberkat, E.-E., Franke, W., Gutenbeil, U., Hasselbring,Mdmmers, U., and Pahl, C., ProSet —
A Language for Prototyping with Sets, Broc. Third International Workshop on Rapid System
Prototyping(N. Kanopoulos, ed.), IEEE Computer Society Press, PiseataN.J., 1992, pp.
235-248.

Doberkat, E.-E., Hasselbring, W., and Pahl, C., Investigastrategies for cooperative planning
of independent agents through prototype evaluatiorRriwc. First International Conference
on Coordination Languages and Models (COORDINATION '@&)Ciancarini and C. Hankin,
eds.), volume 1061 dfecture Notes in Computer Scien&pringer-Verlag, Berlin, 1996, pp.
416-419.

Gelernter, D., Generative communication in Lind&M Transactions on Programming Languages
and Systemsg, 80—112 (1985).

Ghezzi, C., Jazayeri, M., and Mandrioli, Dfundamentals of Software Engineerjiyentice-Hall,
Englewood Cliffs, N.J., 1991.

Goldberg, A., Mills, P., Nyland, L., Prins, J., Reif, J., aReely, J., Specification and development
of parallel algorithms with the Proteus systemDIMACS: Specification of Parallel Algorithms
(G. Blelloch, K. Chandy, and S. Jagannathan, eds.), AMSsP1€94.

Halstead, R., Multilisp: A language for concurrent symbalomputation ACM Transactions on
Programming Languages and System501-538 (1985).

Hasselbring, W., Animation of Object-Z specifications watlset-oriented prototyping language, in
Z User Workshop (Proc. Eighth Z User Meetir{d) Bowen and J. Hall, eds.), Workshops in
Computing, Springer-Verlag, London, 1994, pp. 337-356.

Hasselbring, W.,Prototyping Parallel Algorithms in a Set-Oriented LangeaBhD thesis, Depart-
ment of Computer Science, University of Dortmund, Publgshe Verlag Dr. Kov&, Hamburg,
1994.

Hasselbring, W., and Fisher, R., Using thedSeT-Linda Prototyping Language for Investigating
MIMD Algorithms for Model Matching in 3-D Computer VisionniParallel Algorithms for
Irregularly Structured ProblemgA. Ferreira and J. Rolim, eds.), volume 980L&fcture Notes
in Computer Scien¢&pringer-Verlag, Berlin, 1995, pp. 301-315.

13

Hasselbring, W., and Krober, A., Combining OMT with a ptyfmng approachThe Journal of
Systems and Softwate appear (1998).

Huntbach, M., and Ringwood, G., Programming in concurregtd languagedEEE Softwarel2,
71-82 (1995).

Kruchten, P., Schonberg, E., and Schwartz, J., Softwarefyming using the SETL programming
languagelEEE Softwarel, 66—75 (1984).

Lawler, E., and Wood, D., Branch-and-bound methods: a su@perations Research4, 699-719
(1966).

Luckham, D., Vera, J., Bryan, D., Augustin, L., and Belz,Faytial orderings of event sets and their
application to prototyping concurrent timed systeifise Journal of Systems and Softwafe
253-265 (1993).

Powell, M., Kleinman, S., Barton, S., Shah, D., Stein, Dd &veeks, M., SunOS Multi-thread
Architecture, inProc. USENIX Winter '91 Technical Conferend®91.

Sun Microsystems In&?rogramming Utilities & Libraries System Manuals, 1990.

Waltenberg, K., Design and implementation of a distributaatime system for ProSet-Linda (in
German), Master’s thesis, Department of Computer Sciddsiersity of Dortmund, 1996.

14

