
The ProSet-Linda Approach to Prototyping Parallel
Systems1

Wilhelm Hasselbring
Department of Computer Science, University of Dortmund, D-44221 Dortmund, Germany

Parallel programming is conceptually harder to undertake and to understand than sequential
programming, because a programmer often has to manage the coexistence and coordina-
tion of multiple parallel activities. Prototyping is used to explore the essential features of
a proposed system through practical experimentation before its actual implementation to
make the correct design choices early in the process of software development. Approaches
to prototyping parallel algorithms with very high-level parallel programming languages intend
to alleviate the development of parallel algorithms. To make parallel programming easier,
early experimentation with alternate algorithm choices or problem decompositions for par-
allel applications is suggested. This paper presents the ProSet-Linda approach which has
been designed for prototyping parallel systems.

1 INTRODUCTION

There has been particular attention on parallel programming and processing within the computer
science community during the last years. Several motivations for programming parallel applications
exist:

1. Decreasing the execution time for an application program.

2. Increasing the fault-tolerance.

3. Exploiting explicitly the inherent parallelism of an application.

Achieving speedup through parallelism is a common motivation for executing an application program
on a parallel computer system. Another motivation is achieving fault-tolerance: for critical applica-
tions like controllinga nuclear power plant, a single processor may not be reliable enough. Distributed
computing systems are potentially more reliable: as the processors are autonomous, a failure in one
processor does not affect the correct function of the other processors. Fault-tolerance can, therefore,
be increased by replicating functions or data of the application on several processors. If some of the
processors crash, the others can continue performing theirtasks.

However, the main motivation for integrating explicit parallelism into aprototypinglanguage is
to provide means for explicitly modeling inherently parallel applications. Consider, for instance,
parallel systems such as air-traffic-control and airline-reservation applications, which must respond
to many external stimuli and which are therefore inherentlyparallel. To deal with nondeterminism
and to reduce their complexity, such applications are preferably structured as independent parallel
processes.

Combining parallel programming with prototyping intends to alleviate parallel programming on
the basis of enabling the programmer to practically experiment with ideas for parallel applications on

1Preprint of a paper to appear inThe Journal of Systems and Software.

1

a high level neglecting low-level considerations of specific parallel architectures in the beginning of
program development. Prototyping parallel algorithms intends to bridge the gap between conceptual
design of parallel algorithms and practical implementation on specific parallel systems.

To be useful, prototypes must bebuilt rapidly, and designed in such a way that they can bemodi-
fiedrapidly. Therefore, prototypes should be built in very high-level languages to make them rapidly
available. Consequently, a prototype is usually not a very efficient program since the language should
offer constructs which are semantically on a very high level, and the runtime system has a heavy bur-
den for executing these highly expressive constructs. The above-mentioned primary goal of parallel
programming — decreasing the execution time for an application program — is not the first goal
with prototyping parallel algorithms. The first goal is to experiment with ideas for parallel algorithms
before mapping programs to specific parallel architecturesto achieve high speedups.

The prototyping language ProSet-Linda and some introductory examples are presented in Sec-
tions 2 and 3, respectively. The implementation of ProSet-Linda is discussed in Section 4. Section 5
discusses some related work and Section 6 summarizes the paper.

2 THE PROTOTYPING LANGUAGE PROSET-LINDA

ProSet-Linda combines the sequential prototyping language ProSet (Doberkat et al., 1992) with the
coordination language Linda (Gelernter, 1985; Carriero and Gelernter, 1992) to obtain a parallel pro-
gramming language as a tool for prototyping parallel algorithms (Hasselbring, 1994b). ProSet is an
acronym for PROTOTYPING WITH SETS. The procedural, set-oriented language ProSet is a suc-
cessor to SETL (Kruchten et al., 1984). The high-level structures that ProSet provides qualify the
language for prototyping. Refer to (Kruchten et al., 1984) for a case study using SETL for prototyp-
ing.

2.1 Basic Concepts

ProSet provides the data types atom, integer, real, string,Boolean, tuple, set, function, and module.
As a prototyping language, ProSet is weakly typed, i.e., thetype of an object is in general not known
at compile time. Atoms are unique with respect to one machineand across machines. They can only
be created and compared for equality. Tuples and sets are compound data structures, the components
of which may have different types. Sets are unordered collections while tuples are ordered. There is
also the undefined valueom which indicates undefined situations.

As an example consider the expression[123, "abc", true, f1.4, 1.5g] which creates
a tuple consisting of an integer, a string, a Boolean, and a set of two reals. This is an example of
what is called atuple former. As another example consider theset formingexpressionf2*x: x in
[1..10] | x>5g which yields the setf12, 14, 16, 18, 20g. The quantifiers of predicate
calculus are provided (9, 8). The control structures have ALGOL as one of its ancestors.

2.2 Parallel Programming

To support prototyping of parallel algorithms, a prototyping language must provide simple and pow-
erful means for dynamic creation and coordination of parallel processes. In ProSet-Linda, the concept
for process creation via Multilisp’s (Halstead, 1985) futures is adapted to set-oriented programming
and combined with Linda’s (Gelernter, 1985) concept for synchronization and communication. Pro-
cess communication and synchronization in ProSet-Linda isreduced to concurrent access to a shared
data pool, thus relieving the programmer from the burden of having to consider all process inter-
relations explicitly. The parallel processes are decoupled in time and space in a simple way: pro-

2

cesses do not have to execute at the same time and do not need toknow each other’s addresses (this
is necessary with synchronous point-to-point message passing).

2.2.1 Process Creation Process creation in ProSet-Linda is provided through the unary operator
||, which may be applied to a function call. A new process will bespawned to compute the value
of this expression concurrently with the spawning process similar to futuresin Multilisp (Halstead,
1985). If thisprocess creator|| is applied to an expression that is assigned to a variable, the spawn-
ing process continues execution without waiting for the termination of the newly spawned process. At
any time thevalueof this variable is needed, the requesting process will be suspended until the future
resolves(the corresponding process terminates) thus allowing concurrency between thecomputation
and theuseof a value. Consider the following statement sequence to seean example:

x := || p(); -- Statement 1
... -- Some computations without access tox
y := x + 1; -- Statement 2

After statement 1 is executed in the above example, processp() runs in parallel with the spawning
process. Statement 2 will be suspended untilp() terminates. Ifp() resolves before statement 2 has
started execution, then the resulting value will be assigned immediately.

In summary: parallel execution is achieved only at creationtime of a process and maintained
through immediately assigning to a variable, storing in a data structure, returning as a result from a
procedure, and depositing in tuple space (this is discussedbelow). Every time one tries to obtain a
copy one has to wait for the termination of the correspondingprocess and obtains the returned value
only then. Additionally, the following statement, which spawns a new process, is allowed:

|| p();

The return value of such a process will be discarded. This maybe compared with afork in the
UNIX TM operating system. Side effects and write parameters are notallowed for parallel processes in
ProSet-Linda. Synchronization and communication is done only via tuple-space operations.

2.2.2 Synchronization and Communication Linda is a coordination language which extends a
sequential language by means for synchronization and communication through so-calledtuple spaces
(Gelernter, 1985). Synchronization and communication in ProSet-Linda are carried out through sev-
eral atomic operations on tuple spaces: addition, removal,reading, and updates of individual tuples
in tuple space. Linda and ProSet both provide tuples; thus, it is quite natural to combine both models
to form a tool for prototyping parallel algorithms. The access unit in tuple space is the tuple. Reading
access to tuples in tuple space isassociativeand not based on physical addresses, but rather on their
expected content described intemplates. This method is similar to the selection of entries from a
data base. ProSet-Linda supports multiple tuple spaces. Several library functions are provided for
handling multiple tuple spaces dynamically (Hasselbring,1994b).

ProSet-Linda provides three tuple-space operations. Thedeposit operation deposits a tuple into
a tuple space:

deposit ["pi", 3.14] at TS end deposit;

TS is the tuple space at which the tuple["pi", 3.14] has to be deposited. Thefetch opera-
tion tries to fetch and remove a tuple from a tuple space:

3

fetch ("name", ? x | (type $(2) = integer)) at TS end fetch;

This template only matches tuples with the string"name" in the first field and integer values in the
second field. The symbol$ may be used as a placeholder for the values of corresponding tuples in
tuple space. The expression$(i) then selects theith element from these tuples. Indexing starts with
1. As usual in ProSet,| meanssuch that. The optionall-values specified in the formals (the variable
x in our example) are assigned the values of the correspondingtuple fields, provided matching suc-
ceeds. Formals are prefixed by question marks. The selected tuple is removed from tuple space. It
is allowed to specify multiple templates and anelse-part within such a statement as will be done in
the examples of Section 3.

Themeet operation is the same asfetch, but the tuple is not removed and may be changed:

meet ("pi", ? x) at TS end meet;

Changing tuples is done by specifying expressions for valuesinto which specific tuple fields will
be changed. Consider

meet ("pi", ? into 2.0*3.14) at TS end meet;

where the second element of the met tuple is changed into the value of the expression2.0*3.14.
Tuples which are met in tuple space can be regarded as shared objects since they remain in tuple space
irrespective of changing them or not. Withmeet, in-place updates of specific tuple components are
supported. For a detailed discussion of prototyping parallel algorithms with ProSet-Linda refer to
(Hasselbring, 1994b).

3 INTRODUCTORY EXAMPLES

As introductory examples, we present the complete parallelsolutions to the classical dining philoso-
phers problem and to the traveling salesman problem.

3.1 The Dining Philosophers Problem

The dining philosophers problem is a classical problem in parallel programming which has been
posed by (Dijkstra, 1971). It is often used to test the expressivity of new parallel languages.

The ProSet-Linda solution in Figure 1 is derived from the C-Linda version in (Carriero and Gelern-
ter, 1990). In the C-Linda version, the philosophers first fetch their left and then their right chopsticks.
In the ProSet-Linda version, this order is not specified. This is accomplished by the use of multiple
templates for onefetch statement. Thefetch statement suspends until a matching tuple is avail-
able. Then, the enclosed statement which is specified for theselected template is executed. The
program works for arbitraryn > 1.

To prevent deadlock, only four philosophers (or one less than the total number of philosophers) are
allowed into the room at any time to guarantee to be at least one philosopher who is able to make use
of both, his left and his right chopstick. In (Carriero and Gelernter, 1990) this is demonstrated with
thepigeonhole principle: in every distribution of then chopsticks among then� 1 philosophers with
table tickets, there must be at least one philosopher who gets two chopsticks.

4

program DiningPhilosophers;
visible constant n := 5, -- Number of philosophers

TS := CreateTS (); -- New tuple space
begin

for i in [0 .. n-1] do
-- Deposit chopsticks and room tickets at the tuple space:
deposit ["chopstick", i] at TS end deposit;
if i /= n-1 then -- One ticket less than the number of philosophers

deposit ["room ticket"] at TS end deposit;
|| phil(i); -- Spawn the next philosopher

end if;
end for;
phil(n-1); -- The main program becomes the last philosopher

procedure phil (i);
begin

loop
think ();
fetch ("room ticket") at TS end fetch;
-- Fetch left and right chopstick in arbitrary order:
fetch ("chopstick", i) =>

-- Left chopstick fetched, fetch the right one:
fetch ("chopstick", (i+1) mod n) at TS end fetch;

xor ("chopstick", (i+1) mod n) =>
-- Right chopstick fetched, fetch the left one:
fetch ("chopstick", i) at TS end fetch;

at TS
end fetch;
eat ();
-- Return the fetched chopsticks and the room ticket:
deposit ["chopstick", i] at TS end deposit;
deposit ["chopstick", (i+1) mod n] at TS end deposit;
deposit ["room ticket"] at TS end deposit;

end loop;
end phil;

end DiningPhilosophers;

Figure 1. Solution for the dining philosophers problem. The functionCreateTS creates a new tuple
space. The templates infetch operations are enclosed in parentheses and not in brackets in order to
set the templates apart from tuples.

5

3.2 The Traveling Salesman Problem

As a second introductory example, we present the complete parallel solution to the traveling salesman
problem in which it is desired to find the shortest route that visits each of a given set of cities exactly
once. We want to compute an optimal route for some cities in the Ruhrgebiet, an area in Germany
named after the river Ruhr. The selected cities with their connections and distances are displayed in
Figure 2. The salesman should start in Essen.

The problem can be solved usingbranch-and-bound(Lawler and Wood, 1966). It uses a tree to
structure the search space of possible solutions. The root of the tree is the city in which the salesman
should start. Each path from the root to a node represents a partial tour for the salesman. Leaf nodes
represent either partial tours without connections to not yet visited cities or complete tours. Complete
tours visit each city exactly once. Figure 3 displays the search tree for our selection of cities. The
complete tours, in which each city is visited, are set off through thick lines. In general, it is not
necessary to search the entire tree: abounding ruleavoids searching the entire tree. For the traveling
salesman problem, the bounding rule is simple. If the lengthof a partial tour exceeds the length of an
already known complete tour, the partial tour will never lead to a solution better than what is already
known.

Parallelism in a branch-and-bound algorithm is obtained bysearching the tree in parallel. The main
program in Figure 4 stores the cities with their connectionsin the global constant setDistTable.
This set is a map which maps pairs of cities to their distance.The distances are specified for each
direction. The distances between two cities may be different for different directions (e.g. for one-way
connections). The setNodes contains the cities involved. The stringStart indicates the starting
point.

This program is a master-worker applications (also calledtask farming). In a master-worker appli-
cation, the task to be solved is partitioned into independent subtasks. These subtasks are placed into
a tuple space, and each process in a pool of identical workersthen repeatedly retrieves a subtask de-
scription from the tuple space, solves it, and puts the solutions into a tuple space. The master process
then collects the results. An advantage of this programmingapproach is easy load balancing because
the number of workers is variable and may be set to the number of available processors.

The master (the main program in Figure 4) first deposits thecurrent minimal distance together
with the corresponding route into the tuple spaceRESULT. This minimal distance is initially the sum
over all distances inDistTable (an upper limit), and the corresponding route is an empty tuple.
Then, the master deposits the initial routes into tuple spaceWORK, and spawnsNumWorker worker
processes in active tuples to compute the search tree in parallel. This number is an argument to the
main program. These workers execute in an infinite loop, in which tasks are fetched from tuple space
WORK, and results are computed and added at tuple spaceRESULT.

After spawning the workers, the master waits until all workers have done their work, and then the
master fetches the optimal distance together with the corresponding route from tuple spaceRESULT.
Here, Multilisp’s future concept is applied to synchronizethe master with the workers: the workers are
spawned as components ofactivetuples (Hasselbring, 1994b). Since only passive tuples canmatch a
template, the master waits for the termination of the workers, and only then fetches the results. The
workers need not terminate in a specific order because each one resolves into the passive tuple[0]
in tuple spaceRESULT. Tuple spaces are multisets.

Each worker (Figure 5) first checks whether there are more task tuples in tuple spaceWORK, and
terminates when there is no more work to do. Then each worker checks whether its partial route
(then stored inMyRoute) exceeds the length of an already known complete route: thenthe worker
discards this partial route (according to the bounding rule) and continues to fetch another task tuple.
If the length of the partial route does not exceed the length of an already known complete route, the

6

Duisburg Essen DortmundBochum

Oberhausen Gelsenkirchen

14 13

5 10

15

8
8

23

16

Figure 2. Some cities in the Ruhrgebiet with their connections and distances.

Duisburg Oberhausen Gelsenkirchen Bochum

Oberhausen Duisburg Gelsenkirchen

Gelsenkirchen

Bochum Dortmund

BochumDortmund

Oberhausen

Duisburg

Bochum

Dortmund

Bochum

Dortmund

Bochum Dortmund

BochumDortmund

Dortmund

GelsenkirchenOberhausen

Duisburg

Dortmund

Gelsenkirchen

Oberhausen

Duisburg

Essen

Figure 3. The search tree for our selection of cities in the Ruhrgebiet.

7

program tsp;
visible constant DistTable :=

{[["Duisburg","Essen"], 14], [["Essen","Duisburg"], 14],
[["Duisburg","Oberhausen"], 5], [["Oberhausen","Duisburg"], 5],
[["Oberhausen","Essen"], 10], [["Essen","Oberhausen"], 10],
[["Oberhausen","Gelsenkirchen"], 15],
[["Gelsenkirchen","Oberhausen"], 15],
[["Essen","Gelsenkirchen"], 8], [["Gelsenkirchen","Essen"], 8],
[["Essen","Bochum"], 13], [["Bochum","Essen"], 13],
[["Bochum","Dortmund"], 16], [["Dortmund","Bochum"], 16],
[["Bochum","Gelsenkirchen"], 8], [["Gelsenkirchen","Bochum"], 8],
[["Dortmund","Gelsenkirchen"], 23],
[["Gelsenkirchen","Dortmund"], 23]},

Nodes := domain (domain DistTable) + range (domain DistTable);
constant WORK := CreateTS(), -- For the workers and the work tasks

RESULT := CreateTS(), -- For the actual minimal route and distance
NumWorker := argv(2); -- Program argument: number of workers

begin
Start := "Essen";
-- The minimal distance is initially the sum over all distances:
Max := +/ [x(2): x in DistTable];
deposit [[], Max] at RESULT end deposit; -- Initialize the result

-- Deposit the initial routes into tuple space WORK:
for Entry in DistTable | Entry(1)(1) = Start do

deposit [Entry(1), Entry(2)] at WORK end deposit;
end for;

for i in [1..NumWorker] do -- Spawn the worker processes in active tuples:
deposit [|| Worker (WORK, RESULT)] at RESULT end deposit;

end for;

for i in [1..NumWorker] do -- Wait for the workers to finish
fetch (0) at RESULT end fetch;

end for;
fetch (? route, ? distance) at RESULT end fetch; -- The work has been done

if route = [] then
put("There exists no route for the traveling salesman!");

else
put("Tour de Ruhr = ", route);
put("Distance = ", distance);

end if;
end tsp;

Figure 4. Solution for the traveling salesman problem: main programas master process. The unary
operatordomain yields the domain of a map (a set of pairs). Accordingly,range yields the range
of a map. For sets,+ is the set union. The unary operator+/ yields the sum over all elements in
a compound data structure (a tuple in our example). The function CreateTS creates a new tuple
space.

8

procedure Worker (MyWORK, MyRESULT);
begin
loop
fetch (? MyRoute, ? MyDistance) at MyWORK
else return 0; -- Terminate and return 0 into the comprising tuple

-- (become passive)
end fetch;

meet (?, ? Distance) at MyRESULT end meet; -- to check whether we can continue
if Distance <= MyDistance then

continue; -- There exists already a shorter or equal long route:
-- we prune this subtree according to the bounding rule

end if;

if #MyRoute >= #Nodes then
-- We have a complete route. Change the minimum to our route if it is
-- still the shortest one:
meet (? into MyRoute, ? into MyDistance | $(2) > MyDistance)
xor (?, ? | $(2) <= MyDistance)
at MyRESULT

end meet;
else

-- Deposit a new task for each route which is a connection of MyRoute
-- with a node that is not in MyRoute:
for Entry in DistTable | (Entry(1)(1) = MyRoute(#MyRoute) and

Entry(1)(2) notin MyRoute) do
deposit [MyRoute with Entry(1)(2), MyDistance + Entry(2)]

at MyWORK
end deposit;

end for;
end if;

end loop;
end Worker;

Figure 5. Solution for the traveling salesman problem: procedure for the worker processes. The
unary operator# returns the number of elements in a compound data structure.The binary operator
with adds an element to a compound data structure.

worker checks whether its partial route is already a complete route. If the partial route is already
a complete route, the worker changes the minimal route in tuple spaceRESULT to the given route,
provided that the given route is still the shortest one. If the partial route is not a complete route,
the worker deposits new task tuples into tuple spaceWORK for each route which is a connection of
the given route with a node that is not in the given route. There has to be a connection defined in
DistTable between the last node in the given route and the next node thatis not in the given route
to constitute a new extended route.

Figure 6 displays the coarse structure of the master-workerprogram. Arrows indicate access to the
tuple spaces. These access patterns are only shown for one ofthe identical worker processes. The
program in Figures 4 and 5 prints out:

Tour de Ruhr = ["Essen", "Duisburg", "Oberhausen", "Gelsenkirchen",
"Bochum", "Dortmund"]

Distance = 58

For simplicity we assume that there exists at least one complete route that visits each of a given set of
cities exactly once. If such a complete route does not exist,the program prints the message “There

9

master

worker

worker
. . . .

[task]

WORK

RESULT

[task]
deposit

deposit

m
ee

t

fetch

fetch

deposit

[0]

re
tu

rn

fetch

[path, max]

Figure 6. The coarse structure of the master-worker program for the traveling salesman problem.

exists no route for the traveling salesman!”. Often it is assumed in solutions
for the traveling salesman problem that there exists a connection between each pair of cities. Our
program does not have this assumption, and also solves problems where the distances between two
cities may depend on the direction.

4 IMPLEMENTATION OF PROSET-LINDA

This section briefly discusses the implementation of ProSet-Linda itself. We implement ProSet-Linda
in a somewhat unconventional way: the informal specification is followed by a formal specification,
which serves as the basis for a prototype implementation before the production-level implementation
is undertaken (Hasselbring, 1994b). Applying formal methods early in the design stage of software
systems can increase the designer’s productivity by clarifying issues and eliminating errors in the
design. A formal development process is more expensive in terms of time and education, but much
cheaper in terms of maintenance. There may be bugs, but they are less likely to be at the conceptual
level.

The formal specification of the semantics of ProSet-Linda has been defined by means of the formal
specification language Object-Z and a prototype for a subsethas been implemented from the formal
specification with ProSet itself (Hasselbring, 1994a; Hasselbring, 1994b). This prototype allowed
immediate validation of the specification by execution. Theprototype enabled us to avoid the large
time lag between specification of a system and its validationin the traditional model of software
production using the life cycle approach (Ghezzi et al., 1991).

In the first C implementation of ProSet-Linda, the SunOSTM LightweightProcesses Library (Sun Mi-
crosystems Inc, 1990) is used to implement process creationand synchronization. This Lightweight
Processes Library only allows quasi-parallel execution onsingle processor workstations. The C im-
plementation is transformed from the ProSet prototype implementation. The next implementation was
developed under SolarisTM using the Multi-thread Architecture (Powell et al., 1991).This implementa-
tion also allows real parallel execution on multi-processor SparcStationsTM. On these multi-processor
SparcStationsTM the tuple spaces are stored in shared memory.

10

The latest implementation has been performed on a local areanetwork (Waltenberg, 1996). On
distributed memory architectures, a general problem for implementations of Linda is to provide a
map from the virtual shared memory model to physical distributed memory architectures. Therefore,
efficient and reliable implementations of Linda on physicaldistributed memory architectures are in
general a great challenge for the implementor. Implementation techniques for physical distributed
memory architectures range from those where the tuple spaceis replicated on each node to those
where each tuple resides on exactly one node. The implementation techniques may be classified as
follows:

1. Central store with server process

2. Replication of the entire tuple space at each node

3. Distribution of the tuple space over the net with unique copies of each tuple

4. Mixture of these techniques

A central store may very quickly become both a computationaland a communicational bottleneck.
A distribution of tuple spaces over the nodes in a parallel system in one form or another is the most
promising implementation technique on distributed memoryarchitectures for Linda’s tuple spaces.
This is due to several reasons. First, memory is saved and second, the overhead for guaranteeing
the consistency of the replicated tuple spaces is absent. Furthermore, any Linda implementation
that can scale to large machinesmustdistribute tuple space, so as to avoid node contention. This
distributes the cost of handling tuple operations across all nodes in the system. The remaining problem
is how to distribute the tuple space. Multiple tuple spaces, as they are supported in ProSet-Linda,
provide a direct approach for distributing the tuple spaceson a distributed memory architecture. A
distributed hashing mechanism has been implemented for ProSet-Linda’s tuple spaces (Waltenberg,
1996). This new implementation allows improved performance predictions compared to the former
implementations.

5 RELATED WORK

Some approaches to prototyping parallel algorithms with very high-level parallel programming lan-
guages intend to alleviate the development of parallel algorithms in quite different ways. Because
of the problems with the low-level programming models for message passing, many models which
emphasize some kind ofshared datahave been developed that intend to deliver a higher level of ab-
straction to alleviate parallel programming. These high-level programming models appear to be good
candidates for prototyping parallel algorithms. Such high-level languages are set-based data-parallel
approaches and specific extensions to logical, functional,and object-oriented languages as well as
coordination languages which extend sequential languages. Examples are:� Proteus (Goldberg et al., 1994) is a data-parallel variation of SETL (Kruchten et al., 1984) that

supports control and data parallelism for prototyping parallel algorithms. A semi-automatic re-
finement system has been developed for the Proteus language which is based on algebraic spec-
ification techniques and category theory to transform prototypes to implementations on specific
architectures. For the time being, these transformations are restricted to the data-parallel con-
structs of Proteus.� The Crystal (Chen et al., 1991) approach starts from a high-level functional problem speci-
fication, through a sequence of optimizations tuned for particular parallel machines, leading

11

to the generation of efficient target code with explicit communication and synchronization.
This approach to automation is to design a compiler that classifies source programs according
to the communication primitives and their cost on the targetmachine and that maps the data
structures to distributed memory, and then generates parallel code with explicit communication
commands.� PROLOG programs express two distinct forms of implicit parallelism: AND-parallelism is
the simultaneous reduction of several different subgoals in a goal and OR-parallelism is the
simultaneous evaluation of several clauses for the same goal. Parallel variations of logic pro-
gramming languages appear to be candidates for prototypingparallel algorithms (Huntbach and
Ringwood, 1995).� RAPIDE (Luckham et al., 1993) is a parallel object-orientedlanguage specifically designed for
prototyping parallel systems that combines the partially ordered event set (poset) computation
model with an object-oriented type system for the sequential components.� With composition and coordination languages, parallel systems are described in terms of pro-
cesses that comprise a system together with the communication and control interconnections
between these processes. Acoordination languageprovides means for process creation and
inter-process communication which may be combined with sequentialcomputation languages
to constitute aparallel programming language(Carriero and Gelernter, 1992). Compositional
C++ (Chandy and Kesselman, 1993) is such a language designedfor prototyping. ProSet-Linda
belongs to this category, too.

6 SUMMARY

To build a parallel system, you should start with executableprototypes to validate the requirements
and study the feasibility (neglect the execution performance in the first instance). Powerful tools are
needed to make prototyping of parallel algorithms and systems feasible. Our goal is to make parallel
program design easier through prototyping parallel algorithms. The high level of ProSet-Linda’s
constructs for parallel programming enables us to rapidly develop prototypes of parallel programs
and to experiment with parallel algorithms.

The idea of prototyping is being adopted in software engineering for different purposes: proto-
types are usedexplorativelyto arrive at a feasible specification,experimentallyto check different
approaches, andevolutionaryto build a system incrementally. The order of development steps in the
traditional life cycle model is mapped here into successivedevelopment cycles. Note that a proto-
type is a model, and that this model taken as a program has to beexecutable so that at least part of
the functionality of the desired end product may be demonstrated on a computer. Prototyping has
been developed as an answer to deficiencies in the traditional life cycle model, the waterfall model
(Ghezzi et al., 1991), where each phase is completed before the next phase is started; but it should
not be considered as an alternative to this model. It is rather optimally useful when it complements
the life cycle model. It is plausible that prototyping may beused during the early phases of software
development. In (Hasselbring and Kröber, 1998), the combination of our prototyping approach with
an object-oriented modeling method is discussed.

This paper presents the prototyping language ProSet-Lindawith some introductory examples.
Applications experience with parallelizing high-level computer vision algorithms (Hasselbring and
Fisher, 1995), cooperative planning of independent agents(Doberkat et al., 1996) and the require-
ments analysis for a hospital communication server (Hasselbring and Kröber, 1998) are discussed
elsewhere.

12

REFERENCES

Carriero, N., and Gelernter, D.,How to write parallel programs, The MIT Press, Cambridge, Mas-
sachusetts, 1990.

Carriero, N., and Gelernter, D., Coordination languages and their significance,Communications of
the ACM35, 96–107 (1992).

Chandy, K., and Kesselman, C., CC++: A declarative concurrent object-oriented programming nota-
tion, in Research Directions in Concurrent Object-Oriented Programming(G. Agha, P. Wegner,
and A. Yonezawa, eds.), The MIT Press, Cambridge, Massachusetts, 1993, pp. 281–313.

Chen, M., Choo, Y., and Li, J., Crystal: Theory and pragmatics of generating efficient parallel code,
in Parallel Functional Languages and Compilers(B. Szymanski, ed.), ACM Press, New York,
N.Y., 1991, pp. 255–308.

Dijkstra, E., Hierarchical ordering of sequential processes,Acta Informatica1, 115–138 (1971).

Doberkat, E.-E., Franke, W., Gutenbeil, U., Hasselbring, W., Lammers, U., and Pahl, C., ProSet —
A Language for Prototyping with Sets, inProc. Third International Workshop on Rapid System
Prototyping(N. Kanopoulos, ed.), IEEE Computer Society Press, Piscataway, N.J., 1992, pp.
235–248.

Doberkat, E.-E., Hasselbring, W., and Pahl, C., Investigating strategies for cooperative planning
of independent agents through prototype evaluation, inProc. First International Conference
on Coordination Languages and Models (COORDINATION ’96)(P. Ciancarini and C. Hankin,
eds.), volume 1061 ofLecture Notes in Computer Science, Springer-Verlag, Berlin, 1996, pp.
416–419.

Gelernter, D., Generative communication in Linda,ACM Transactions on Programming Languages
and Systems7, 80–112 (1985).

Ghezzi, C., Jazayeri, M., and Mandrioli, D.,Fundamentals of Software Engineering, Prentice-Hall,
Englewood Cliffs, N.J., 1991.

Goldberg, A., Mills, P., Nyland, L., Prins, J., Reif, J., andRiely, J., Specification and development
of parallel algorithms with the Proteus system, inDIMACS: Specification of Parallel Algorithms
(G. Blelloch, K. Chandy, and S. Jagannathan, eds.), AMS Press, 1994.

Halstead, R., Multilisp: A language for concurrent symbolic computation,ACM Transactions on
Programming Languages and Systems7, 501–538 (1985).

Hasselbring, W., Animation of Object-Z specifications witha set-oriented prototyping language, in
Z User Workshop (Proc. Eighth Z User Meeting)(J. Bowen and J. Hall, eds.), Workshops in
Computing, Springer-Verlag, London, 1994, pp. 337–356.

Hasselbring, W.,Prototyping Parallel Algorithms in a Set-Oriented Language, PhD thesis, Depart-
ment of Computer Science, University of Dortmund, Published by Verlag Dr. Kova�c, Hamburg,
1994.

Hasselbring, W., and Fisher, R., Using the PROSET-Linda Prototyping Language for Investigating
MIMD Algorithms for Model Matching in 3-D Computer Vision, in Parallel Algorithms for
Irregularly Structured Problems(A. Ferreira and J. Rolim, eds.), volume 980 ofLecture Notes
in Computer Science, Springer-Verlag, Berlin, 1995, pp. 301–315.

13

Hasselbring, W., and Kröber, A., Combining OMT with a prototyping approach,The Journal of
Systems and Software, to appear (1998).

Huntbach, M., and Ringwood, G., Programming in concurrent logic languages,IEEE Software12,
71–82 (1995).

Kruchten, P., Schonberg, E., and Schwartz, J., Software prototyping using the SETL programming
language,IEEE Software1, 66–75 (1984).

Lawler, E., and Wood, D., Branch-and-bound methods: a survey, Operations Research14, 699–719
(1966).

Luckham, D., Vera, J., Bryan, D., Augustin, L., and Belz, F.,Partial orderings of event sets and their
application to prototyping concurrent timed systems,The Journal of Systems and Software21,
253–265 (1993).

Powell, M., Kleinman, S., Barton, S., Shah, D., Stein, D., and Weeks, M., SunOS Multi-thread
Architecture, inProc. USENIX Winter ’91 Technical Conference, 1991.

Sun Microsystems Inc,Programming Utilities & Libraries, System Manuals, 1990.

Waltenberg, K., Design and implementation of a distributedruntime system for ProSet-Linda (in
German), Master’s thesis, Department of Computer Science,University of Dortmund, 1996.

14

