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Abstract

Combining parallel programming with prototyping is aimed at alleviating parallel program�
ming by enabling the programmer to make practical experiments with ideas for parallel algorithms
at a high level� neglecting low�level considerations of speci�c parallel architectures in the begin�
ning of program development� Therefore� prototyping parallel algorithms is aimed at bridging
the gap between conceptual design of parallel algorithms and practical implementation on speci�c
parallel systems�

The essential prototyping activities are programming� evaluation and transformation of proto�
types� This paper gives a report on some experience with implementing parallel algorithms based
on prototype evaluation and transformation employing the ProSet�Linda approach�

� Introduction

Parallel programming is conceptually harder to undertake and to understand than sequential pro�
gramming� because a programmer often has to cope with the coexistence and coordination of multiple
parallel activities� Prototyping is used to explore the essential features of a proposed system through
practical experimentation before its actual implementation to make the correct design choices early
in the process of software development� Early experimentation with alternate algorithm choices or
problem decompositions for parallel applications is suggested to make parallel programming easier�

To be useful� prototypes must be built rapidly� and designed in such a way that they can be modi�ed
rapidly� Therefore� prototypes should be built in very high�level languages to make them rapidly
available� Consequently� a prototype is usually not a very e�cient program since the language should
o�er constructs which are semantically on a very high level� and the runtime system has a heavy
burden for executing these highly expressive constructs� The primary goal of parallel programming�
decreasing the execution time for an application program�is not the �rst goal with prototyping
parallel algorithms� The �rst goal is to experiment with ideas for parallel algorithms before mapping
programs to �t for speci�c parallel architectures to achieve high speedups�

Prototypes may be classi�ed as throwaway� experimental or evolutionary 	

�� A throwaway prototype
describes a product designed to be used only to help identify requirements for a new system� Exper�
imental prototyping focuses on the technical implementation of a development goal� In evolutionary
prototyping� a series of prototypes is produced that complies with an acceptable behavior� according






to the feedback from prototype evaluations� Once the series has converged� the result may be turned
into a software product by transformations�

This raises issues of software engineering� once we are satis�ed with the prototype� how do we trans�
form it systematically into a production�e�cient program
 This question is fairly di�cult for sequen�
tial programs 	���� but not satisfactorily solved as yet for prototypes of parallel algorithms� Therefore�
such transformations are usually accomplished manually� Before building transformation tools it
seems to be reasonable to gain some knowledge about the requirements on such tools through prac�
tical experience and to develop a theoretical foundation for such tools� The present paper discusses
the systematic manual transformation of ProSet�Linda prototypes into e�cient message�passing
programs �PVM and MPI� and shared�memory programs on multi�processor workstations�

Various experience with developing sequential software systems using prototyping has been made
	
��� This paper presents some experience with implementing parallel algorithms for computer vision
�Section �� and for the Salishan�Cowichan problems �Section �� based on prototype evaluation and
transformation� Section � discusses related work and Section � draws some conclusions� The ProSet�
Linda prototyping approach is presented in Appendix A which should be consulted �rst when this
approach is new to the reader�

� Developing Parallel Algorithms for Computer Vision

The ProSet�Linda approach has been applied to the development of parallel algorithms for high�
level three�dimensional computer vision 	
��� To give a report on the experience made� �rst three�
dimensional computer vision and interpretation�tree search for model matching within this context is
discussed� Parallel interpretation�tree search with ProSet�Linda� the evaluation of the prototypes
and the transformation of the most promising prototype into e�cient implementations is discussed in
the subsequent subsections�

��� Three�Dimensional Computer Vision

Computer vision is commonly divided into several levels� With three�dimensional computer vision 	
���
low�level vision is concerned with processing range data acquired by a laser range scanner to eliminate
noise� Medium�level vision is concerned with identifying geometric surfaces� High�level vision tries�
for example� to identify the shape and position of data objects using matched model features� In
high�level vision� �rst the model invocation process pairs likely model and data features for further
consideration� Model matching then uses the candidate matches proposed by the invocation to form
consistent groups of matches� Fig� 
 illustrates this process�

��� Interpretation�Tree Search for Model Matching

The classical control algorithm for symbolic model matching in computer vision is the Interpretation�
Tree search algorithm 	
��� The algorithm searches a tree of potential data�to�model correspondences�
such that each node in the tree represents one correspondence and the path of nodes from the current
node back to the root of the tree is a set of simultaneous pairings� This model matching algorithm
is a specialized form of the general AI tree search technique� where branches are pruned using a set
of consistency constraints according to some �geometric� criterion� The goal of the search algorithm
is to maximize the set of consistent data�to�model correspondences in an e�cient manner� Finding
these correspondences is a key problem in model�based vision� and is usually a preliminary step to
object recognition� pose estimation� or visual inspection�

Unfortunately� this algorithm has the potential for combinatorial explosion� To reduce the complexity�
techniques for pruning the trees have been developed� thus limiting the number of candidate matches
considered 	
��� However� even with these e�ective forms of pruning� the algorithm still can have
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Figure 
� The role of model matching in three�dimensional computer vision for model acquisition from
multiple range views�

exponential complexity� making the standard interpretation�tree search algorithm unsuitable for use
in scenes with many features�

As many of the nodes in the standard interpretation�tree algorithmarise because of the use ofwildcards�
an alternative search algorithm explores the same search space� but it does not use a wildcard model
feature to match otherwise unmatchable data features 	��� The tree in Fig� � displays an example
non�wildcard interpretation tree� In a sequential algorithm� the tree is searched depth��rst following
the leftmost branches �rst �no pruning is shown here to illustrate the shape of the tree�� The tuple
� is the output of model invocation� The segmented surfaces in Fig� 
 are the data features and
the current partial model consists of the model features� Model invocation uses the model and data
properties to pair likely model and data features� It produces a sorted list of consistent data�to�model
pairs �datai�modeli� Ai� where Ai is the compatibility measure �plausibility� of the features datai and
modeli� The list is initially sorted with larger Ai values at the top� Model matching uses � to build
the interpretation tree�

��� Parallel Interpretation�Tree Search with ProSet�Linda

Parallelism in a tree search algorithm can be obtained by searching the branches of a tree in parallel�
A simple approach would be to spawn a new process for each subtree to be evaluated� This approach
would not work well since the amount of parallelism is determined by the input data and not by�
for instance� the number of available processors� The programs which will be discussed below are
master�worker applications �also called task farming�� In a master�worker application� the task to be
solved is partitioned into independent subtasks� These subtasks are placed into a tuple space� and
each process in a pool of identical workers then repeatedly retrieves a subtask description from the
tuple space� solves it� and puts the solutions into a tuple space� The master process then collects the
results� An advantage of this programming approach is easy load balancing because the number of
workers is variable and may be set to the number of available processors�
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Figure �� The interpretation tree for � � 	�d��m��� �d��m��� �d��m��� �d��m���� The di are data
features and the mi are model features� The root of the interpretation tree has no pairings� Each data
feature appears �in order� at most once in a branch� At each node at level k in the tree� therefore�
there is a hypothesis with k features matched�

Four parallel variations of non�wildcard interpretation�tree search have been investigated as feasibility
studies for e�cient parallelization 	
��� The evaluation of the prototypes serves to select the most
promising way to parallelize the search� Based on this evaluation� the best parallel algorithm has
been re�ned into e�cient implementations 	���� Below� only this algorithm is presented� because it
has been transformed into e�cient implementations� In this paper� only small parts of the code can
be presented� Refer to 	
�� and 	��� for more detailed presentations�

The so�called parallel best��rst search tree algorithm is based on the sequential best��rst search tree
algorithm which assumes that it is possible to evaluate how well sets of model features match sets of
data features �based on the plausibilities from the model invocation and consistency measures as the
set sizes grow� 	��� As any real problem is likely to provide some useful heuristic ordering constraints�
the potential for speeding up the matching process is large� The best��rst search tree algorithm
searches for the �rst plausible solution �usually not the optimal solution��

Fig� � displays the coarse structure of the master�worker program for this best��rst search tree algo�
rithm� Arrows indicate access to the tuple spaces� These access patterns are only shown for one of the
identical worker processes� The program uses two tuple spaces� One for the work tasks �WORK� and
one for the results �RESULT�� The master �the main program� spawns a number of worker processes
to do the work� This number is an argument to the main program� The initial task tuples� which
represent the nodes at the �rst level of the interpretation�tree� are deposited at tuple space WORK�
Each worker executes in a loop in which it �rst checks whether there are more task tuples in tuple
space WORK� and terminates when there is no more work to do� Synchronization between the mas�
ter and the workers is achieved when the �rst satisfactory match has been deposited by a worker at
RESULT�

Each extension of a branch in the interpretation�tree is formed by appending new entries from ��
subject to the constraints that �
� each data feature appears at most once on a path through the tree
and ��� the data features are used in order �with gaps allowed�� The condition in the following loop
of the worker ensures that these constraints are satis�ed�

for Entry � Hypotheses j �� x � MyPath j �Entry�
� � x�
��� do
if Consistent �MyPath� Entry� then
deposit 	MyPath � Entry� at TargetTS end deposit�

end if �
end for�

The hypotheses from the model invocation are stored in the tuple Hypotheses� The set of pairs
MyPath represents the current partial branch in the tree� The condition �Entry�
� � x�
�� enforces
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Figure �� The coarse structure of the master�worker program for the parallel best��rst search tree
algorithm�

the data feature ordering constraint� Only extensions that satisfy the normal binary constraints are
accepted �the Boolean function Consistent checks this�� A match is satisfactory when the termination
number of matched features has been reached� Extension stops when this threshold is reached� The
threshold is a program argument� Beforehand� TargetTS has been set to indicate whether we have a
new incomplete work task �TargetTS is WORK� or a new satisfactory result �TargetTS is RESULT��

The central data structure for this algorithm is a distributed priority queue of entries of the following
form� sorted by the estimated evaluation of the next potential extension�

�Si � fpairi� � pairi�� � � � pairing� g�Si��m� f�Si � fpairmg��

where Si is a set of n mutually compatible data�to�model pairs �a partial branch in the tree�� g�Si� is
the actual evaluation of Si� m indicates that pairm is the next extension of Si to be considered� and
f�Si �fpairmg� is the estimated evaluation of that extension� The priority queue is sorted with larger
f�� values at the top�

In addition to putting the initial task tuples into tuple space WORK� the master initializes the top
of the priority queue at tuple space WORK with components �fg� 
��� 
� A���

deposit 	 
� �� fg� 
��� 
� Hypotheses�
���� � at WORK end deposit�

The expression �Hypotheses�
����� selects the plausibility for the highest rated hypothesis from the
model invocation �this is A��� The hypotheses are initially sorted by the model invocation� �Hy�
potheses�
��
�� selects the data feature and �Hypotheses�
����� selects the model feature from the �rst
hypothesis�

Each entry of the priority queue is stored as a tuple in WORK� The �rst component indicates the
pointer to the corresponding entry� The integer � indicates the top of the queue� The second com�
ponent refers to the next entry� The integer � indicates the end of the queue� Fig� � illustrates the
structure of this queue�

Each worker executes in a loop and �rst pops the top of the priority queue �Si� g�Si��m� f�Si �
fpairmg�� at tuple space WORK� After popping the top of the priority queue� other worker processes
can work in parallel on the tail of the queue to allow parallel access to the distributed queue in tuple
space� provided that there exists a tail�

If not rejected by consistency checks� early termination or non�existence of further hypotheses� the
worker generates the next descendant of the successful extension�

�Si � fpairmg� g�Si � fpairmg��m� 
� f�Si � fpairmg � fpairm��g��
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Figure �� The distributed priority queue for parallel best��rst search� The integer values � and � are
used to indicate the top and the end of the queue� respectively� The intermediate entries are identi�ed
by the contained atoms� We use black circles to represent the atoms� A link between two atoms means
that these two atoms are equal� Note� that the atoms are not the addresses of the respective entries�
but rather the identi�cation of the entries �distributed pointers which are independent of memory
addresses to allow access from di�erent processors��

plus the next descendant of the parent�

�Si� g�Si��m � 
� f�Si � fpairmg��

to be inserted into priority queue�

The algorithm needs two evaluation functions� f�� for the estimated new state evaluation and g�� for
the actual state evaluation� The f�� evaluation function gives longer branches higher evaluations to
direct the workers to search the tree depth��rst�

The priority queue is stored as a distributed data structure 	��� in tuple space WORK� Distributed
data structures may be examined and manipulated by multiple processes simultaneously� In this
case� multiple processes can work independently on di�erent partitions of the queue� The individual
entries are linked together by means of ProSet�s atoms� ProSet does not support pointers as they
are known in Modula� C or similar procedural languages� As mentioned before� atoms are unique
with respect to one machine and across machines �they contain the host and process identi�cation�
creation time� and an integer counter�� Atoms can only be created and compared for equality� We use
them as distributed pointers which are independent of the processor�s memory addresses� Note� that
multiple processes can work independently on di�erent partitions of the queue� A variety of other
data structures� such as distributed priority sorted heaps or distributed sorted trees� could be used to
implement the priority queue�

��� Evaluation of the Prototypes

For testing the parallel algorithms� the output from the low� and medium�level components of the
IMAGINE� 	
�� system for range images of workpieces is used� Some experimental results with the
ProSet�Linda prototype for the parallel best��rst search algorithm are displayed in Fig� �� Fig� �a
shows the number of visited nodes in relation to the number of workers and Fig� �b shows the number
of visited nodes per worker in relation to the number of workers� T is the termination threshold for
satisfactory matches� The zigzag line is due to non�determinism� but the tendency is obvious� The
number of visited nodes per worker converges to approximately T

�
as the number of workers increases�

Therefore� the addition of worker processes increases the search space�

The parallel best��rst algorithm is not necessarily much faster than the sequential best��rst algorithm�
but can produce better results within the same or even a shorter time� The f�� function for the
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Figure �� The experimental results for the ProSet�Linda implementation of the parallel best��rst
search algorithm�

estimated new state evaluations directs the workers to search the tree depth��rst� which increases the
probability of �nding a satisfactory match earlier� The workers are guided by the plausibilities to follow
the most promising branches� Therefore� the experimental evaluation showed that the parallel best�
�rst search algorithm is the most promising way to parallelize model matching for three�dimensional
computer vision� Refer to 	
�� for a more detailed description of the evaluation�

Another main observation to make at this point is� because the sequential variations of interpretation�
tree model matching algorithms were presented in a set�oriented way 	��� it was quite straightforward
to implement them and the alternative parallel implementations in ProSet�Linda and then compare
them� in only a few weeks� The prototypes for the developed algorithms could be regarded as executable
speci�cations�

��� Transforming the Most Promising Prototype into E�cient Implemen�
tations

As a consequence of the evaluation� the prototype of the parallel best��rst algorithm has been trans�
formed into e�cient implementations 	���� The ProSet�Linda prototype is �rst transformed into a
C�Linda implementation� With Linda� it is easy to program with di�erent styles� e�g� with distributed
data structures� active data structures and message passing 	��� The transformations between C�Linda
styles are discussed in 	��� Then� the C�Linda implementation has been transformed into a message�
passing style to serve as a preliminary step for a message�passing implementation� In this project� a
MPI library �Message Passing Interface� is used 	��� The transformation from message�passing style
C�Linda programs into MPI programs is straightforward� only the coordination part is changed�

For an e�cient implementation with MPI� the implementation of the priority queue needs to work
e�ciently on distributed memory machines� Parallelizing a priority queue requires the processing
of several request in parallel� Classical sequential algorithms use a heap for maintaining a priority
queue� Early approaches tried to use parallel priority queue algorithms developed for shared memory
machines on distributed memory machines� too� by simulating the required shared memory 	�
�� This
results in imbalanced load of the processors� memories� Load balancing processes are required which
produce additional simulation overhead�

Thus� new algorithms for distributed memory were investigated� These algorithms use local sequential
priority queues on each processor to maintain a global parallel priority queue 	���� Early attempts
in this direction proposed algorithms that do not guarantee the selection of the element with global
maximum priority� The semantics of a priority queue changed in a way not acceptable for many ap�
plications� Recently published algorithms provide real parallel priority queues for distributed memory
without the above mentioned problems 	����
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Figure �� The coarse structure of the distributed priority queue in the low�level C�Linda and MPI
implementations�

Our parallel algorithm uses an n�ary global heap consisting of local priority queues residing on each
processor 	���� The global heap property is kept across all local priority queues� i�e� in a minimum�
heap each node locally maintains a priority queue containing only elements that are smaller than the
elements kept at the children nodes� Due to the use of an n�ary heap and a simple load balancing
scheme this algorithm is easily scalable to the number of available processors�

The distributed priority queue �DPQ�� which has been implemented with C�Linda and MPI� uses
a divide�and�conquer model� The DPQ is a distributed heap with a root node and several worker
processes connected in a tree structure �see Fig� ��� According to the heap property� all items stored
at one particular node have a larger priority than all those stored at any of its children� Each process
of the DPQ stores its items in a local heap� Items are inserted or deleted on a particular node in a
round�robin scheme which provides a perfectly balanced distribution of the data�

The DPQ is accessed at the DPQ server process which invokes the appropriate actions to maintain
the heap property of the whole distributed heap� For every request � push or pop � the DPQ server
process determines the host process which actually has to change its number of stored items� Then�
the work is propagated down the path to this host� The DPQ server process is able to process the
next request as soon as the previous request is handed over to a DPQ node at a lower level of the
distributed heap� Due to the distribution scheme� congestion along a path in the distributed heap is
avoided by choosing another subtree each time a request is relayed down the heap�

Fig� �a shows the total elapsed execution times of the C�Linda �message�passing style� and MPI
implementations on a network of six SparcStationsTM connected by an Ethernet network� The C�
Linda program uses the Network�C�Linda system from SCA 	���� and the MPI implementation uses
CHIMP�MPI �Common High�Level Interface to Message Passing� from the Edinburgh Parallel Com�
puting Centre 	
�� The elapsed times include the time required for starting the processes over the
network� With both implementations� the number of evaluated nodes of the search tree increases with
the number of workers as predicted by the prototype� Fig� �b shows also that the evaluation times for
each node in the interpretation tree decreases when the number of workers is increased� the quality
of the result is improved while the total execution times of model matching remains approximately
constant� even when the number of workers exceeds the number of available processors�

At least with the C�Linda implementation� the total execution time decreases as long as the number
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Figure �� Comparison of the total execution times and the times per node for the transformed C�Linda
and the MPI implementations on a network of six SparcStationsTM� The termination threshold for
satisfactory matches for the displayed times is T � ��

of workers does not exceed the number of available processors� Fig� �a shows that the execution time
remains almost constant for �fteen or more workers with both implementations� The results are di�er�
ent for less than �fteen workers because the C�Linda system applies automatic load balancing for the
available hosts� CHIMP�MPI assigns processes to hosts in a strict round�robin scheme� Despite the
load balancing� the C�Linda implementation is not as fast as the MPI implementation� The commu�
nication procedures of MPI are on a lower level than the C�Linda primitives� allowing optimizations
to a greater extent� Refer to 	��� for a detailed discussion of the tranformed implementations�

� Developing Parallel Algorithms for the Salishan�Cowichan
Problems

The Salishan 	�� and the Cowichan 	��� problems are suites for assessing the usability of parallel
programming systems� They have been implemented with the ProSet�Linda approach 	�
�� To save
space� only the experience with one problem� viz� Hamming�s Problem� are reported in the present
paper�

Input to Hamming�s Problem is an ordered list of prime numbers p�� � � �� pk and an integer n� Ham�
ming�s Problem is to produce the ordered stream containing integers lower or equal to n matching the
product�

p
i�
� � pi�� � � � � � pikk

with ij � N� for j � f
� � � � � kg� These numbers are called hamming numbers and the problem is
called extended hamming problem� The simple version restricts the problem to the primes �� �� and
�� Another formulation for the problem is to �nd all integers between 
 and n with all prime factors
occuring in the given list of primes�

The steps for transforming the prototype solutions for this problem into e�cient implementations are
illustrated in Fig� �� After the evaluation of prototypes for di�erent parallelizations� the prototypes
are transformed within ProSet�Linda itself to arrive at a conceptual level of C�Linda 	���� In the
next step� the ProSet�Linda prototype is transformed into a C�Linda implementation� With the step
from ProSet�Linda to C�Linda� the transformation of the sequential parts�in particular the data
structures�is the �rst task� The transformation of the coordination part is straightforward�

With the transformation from C�Linda to the Multi�Thread Architecture 	���� the tuple space is simply
stored in shared memory� The Multi�thread implementation is directly derived from the �rst C�Linda
implementation� The Multi�thread implementation allows parallel execution on multi�processor Sparc�
StationsTM�

�



C-Linda with message-passing style

Multi-Thread Architecture

ProSet-Linda

C-Linda

PVM

Figure �� The transformation steps from ProSet�Linda to low�level programming systems which
have been applied to the Salishan�Cowichan problems�

For the transformation fromC�Linda into PVM� �rst the C�Linda implementation is transformed into a
message�passing style C�Linda program� as discussed in subsection ���� Again� the transformation from
message�passing style C�Linda programs into PVM programs is straightforward� only the coordination
part is changed� PVM �Parallel Virtual Machine� is a popular message�passing library which is
available on workstation networks as well as several parallel computer systems 	
���

The experimental results for the transformed low�level implementations are displayed in Fig� �� The C�
Linda and PVM implementations are measured on a network of six SparcStation 
� �single processor�
and the Multi�thread implementation is measured on a SparcStation 
���
� with two processors� The
execution times for the PVM and Multi�thread implementations decrease even when more worker
processes are spawned than processors are available� These good speedups are achieved because
process creation is cheap with the PVM and Multi�thread implementations and because the work is
better distributed among the processes� The speedups through improved load balancing are eliminated
with the C�Linda implementation by the high costs for process creation� For a detailed discussion of
these transformations and evaluations refer to 	�
��

� Related Work

Various approaches to prototyping parallel algorithms with very high�level parallel programming lan�
guages intend to alleviate the development of parallel algorithms in quite di�erent ways� Some trans�
formations of parallel prototypes into e�cient implementations are discussed in the literature� The
transformation of sequential programs is discussed in 	����

In 	���� high�level parallel algorithm speci�cations are re�ned within PSETL� which is a data�parallel
extension to SETL� High�level PSETL code is successively transformed manually into lower�level
architecture�speci�c PSETL code�

The Crystal 	�� approach starts from a high�level functional problem speci�cation� through a sequence
of optimizations tuned for particular parallel machines� leading to the generation of e�cient target
code with explicit communication and synchronization� This approach to automation is to design a
compiler that classi�es source programs according to the communication primitives and their cost on
the target machine and that maps the data structures to distributed memory� and then generates
parallel code with explicit communication commands� Regarding those classes of problems for which
the default mapping strategies of the compiler are inadequate� Crystal provides special language
constructs for incorporating domain speci�c knowledge by the programmer and directing the compiler
in its mapping�
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Figure �� The experimental results for the transformed low�level implementations for Hamming�s
Problem�

Transformation techniques have been developed for the Proteus prototyping language 	���� Proteus�
semi�automatic re�nement system is based on algebraic speci�cation techniques and category the�
ory to transform prototypes to implementations on speci�c architectures� For the time being� these
transformations are restricted to the data�parallel constructs of Proteus 	���� 	��� discusses the trans�
formation of data�parallel Proteus programs to low�level systems such as High Performance Fortran
�HPF� and message�passing libraries� In addition to the data�parallel constructs� Proteus provides
some constructs for control parallelism� but transformations of control�parallel prototypes are not
discussed�

The automatic or semi�automatic transformation of control�parallel prototypes into e�cient low�level
programs is still an unsolved problem and subject to further research�

� Conclusions

To build a parallel system� you should start with executable prototypes to study the feasibility of
ideas for parallelization �neglect the execution performance in the �rst instance�� Powerful tools are
needed to make prototyping of parallel algorithms and systems feasible�

This paper reports on the experience with the development of parallel algorithms for computer vi�
sion applications and for the Salishan�Cowichan problems employing the ProSet�Linda approach�
Prototypes for several parallel algorithms have been developed� evaluated and transformed� The eval�
uation showed that not all algorithmic variations are good candidates for e�cient parallelization� An
application area for prototyping is to carry out feasibility studies� If we had implemented the al�
gorithms directly with a production language� for example C with extensions for message passing�
the implementation e�ort would have been higher� because the e�ort to practically evaluate ideas for
parallelization with low�level languages is higher than it is with a prototyping language�
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A Prototyping Parallel Algorithms with ProSet�Linda

ProSet�Linda combines the sequential prototyping language ProSet 	�� with the coordination lan�
guage Linda 	�� to obtain a parallel programming language as a tool for prototyping parallel algorithms
	
�� 
��� The procedural� set�oriented language ProSet 	�� is a successor to SETL 	���� ProSet is
an acronym for PROtotyping with SETs� The high�level structures that ProSet provides qualify
the language for prototyping� Refer to 	��� for a case study using SETL for prototyping�

A�� Basic Concepts

ProSet provides the data types atom� integer� real� string� Boolean� tuple� set� function� and module�
As a prototyping language� ProSet is weakly typed� i�e�� the type of an object is in general not known
at compile time� Atoms are unique with respect to one machine and across machines� They can only
be created and compared for equality� Tuples and sets are compound data structures� the components
of which may have di�erent types� Sets are unordered collections while tuples are ordered� There is
also the unde�ned value om which indicates unde�ned situations�

As an example consider the expression 	
��� �abc�� true� f
��� 
��g� which creates a tuple consisting
of an integer� a string� a Boolean� and a set of two reals� This is an example of what is called a tuple
former� As another example consider the set forming expression f� � x � x � 	
��
��jx � �g which
yields the set f
�� 
�� 
�� 
�� ��g� The quanti�ers of predicate calculus are provided ��� ��� The control
structures have ALGOL as one of its ancestors�

A�� Parallel Programming

To support prototyping of parallel algorithms� a prototyping language must provide simple and power�
ful means for dynamic creation and coordination of parallel processes� In ProSet�Linda� the concept
for process creation via Multilisp�s futures 	
�� is adapted to set�oriented programming and combined
with Linda�s 	
�� concept for synchronization and communication� Process communication and syn�
chronization in ProSet�Linda is reduced to concurrent access to a shared data pool� thus relieving
the programmer from the burden of having to consider all process inter�relations explicitly� The par�
allel processes are decoupled in time and space in a simple way� processes do not have to execute at
the same time and do not need to know each other�s addresses �this is necessary with synchronous
point�to�point message passing��

A���� Process Creation

Process creation in ProSet�Linda is provided through the unary operator ��� which may be applied
to a function call� A new process will be spawned to compute the value of this expression concurrently
with the spawning process similar to futures in Multilisp 	
��� If this process creator �� is applied to
an expression that is assigned to a variable� the spawning process continues execution without waiting
for the termination of the newly spawned process� At any time the value of this variable is needed� the
requesting process will be suspended until the future resolves �the corresponding process terminates�
thus allowing concurrency between the computation and the use of a value� Consider the following
statement sequence to see an example�

x �� �� p��� �� Statement �
� � � �� Some computations without access to x
y �� x � 
� �� Statement �

After statement 
 is executed in the above example� process p�� runs in parallel with the spawning
process� Statement � will be suspended until p�� terminates� If p�� resolves before statement � has
started execution� then the resulting value will be assigned immediately�


�



Side e�ects and write parameters are not allowed for parallel processes in ProSet�Linda� Synchro�
nization and communication is done only via tuple�space operations�

A���� Synchronization and Communication

Linda is a coordination language which extends a sequential language by means for synchronization and
communication through so�called tuple spaces 	
��� Synchronization and communication in ProSet�
Linda are carried out through several atomic operations on tuple spaces� addition� removal� reading�
and updates of individual tuples in tuple space� Linda and ProSet both provide tuples� thus� it is
quite natural to combine both models to form a tool for prototyping parallel algorithms� The access
unit in tuple space is the tuple� Reading access to tuples in tuple space is associative and not based
on physical addresses� but rather on their expected content described in templates� This method is
similar to the selection of entries from a data base� ProSet�Linda supports multiple tuple spaces�
Several library functions are provided for handling multiple tuple spaces dynamically�

ProSet�Linda provides three tuple�space operations� The deposit operation deposits a tuple into a
tuple space�

deposit 	 �pi�� ��
� � at TS end deposit�

TS is the tuple space at which the tuple 	 �pi�� ��
� � has to be deposited� The fetch operation tries
to fetch and remove a tuple from a tuple space�

fetch � �name�� � x � at TS end fetch�

This template only matches tuples with the string �name� in the �rst �eld and integer values in
the second �eld� The optional l�values speci�ed in the formals �the variable x in our example� are
assigned the values of the corresponding tuple �elds� provided matching succeeds� Formals are pre�xed
by question marks� The selected tuple is removed from tuple space� The meet operation is the same
as fetch� but the tuple is not removed and may be changed�

meet � �pi�� � x � at TS end meet�

Changing tuples is done by specifying expressions for values into which speci�c tuple �elds will be
changed� Consider

meet � �pi�� � into ��� � ��
� � at TS end meet�

where the second element of the met tuple is changed into the value of the expression ��� � ��
��
Tuples which are met in tuple space may be regarded as shared data since they remain in tuple space
irrespective of changing them or not� With meet� in�place updates of speci�c tuple components are
supported�

A�� An Introductory Example	 the Dining Philosophers Problem

As an introductory example� we present the complete parallel solution to the dining philosophers
problem� The dining philosophers problem is a classical problem in parallel programming which has
been posed by Dijkstra 	��� It is often used to test the expressivity of new parallel languages�

The ProSet�Linda solution in Figure 
� is derived from the C�Linda version in 	��� In the C�Linda
version� the philosophers �rst fetch their left and then their right chopsticks� In the ProSet�Linda
version� this order is not speci�ed� This is accomplished by the use of multiple templates for one
fetch statement� The fetch statement suspends until a matching tuple is available� Then� the
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program DiningPhilosophers�
visible constant n �� �� �� Number of philosophers

TS �� CreateTS ��� �� New tuple space
begin

for i in 	 � � � � n�
 � do
�� Deposit chopsticks and room tickets at the tuple space�
deposit 	 �chopstick�� i � at TS end deposit�
if i �� n�
 then �� One ticket less than the number of philosophers
deposit 	 �room ticket� � at TS end deposit�
�� phil�i�� �� Spawn the next philosopher

end if �
end for�
phil�n�
�� �� The main program becomes the last philosopher

procedure phil �i��
begin

loop

think ���
fetch � �room ticket� � at TS end fetch�
�� Fetch left and right chopstick in arbitrary order�
fetch � �chopstick�� i � �

�� Left chopstick fetched� fetch the right one�
fetch � �chopstick�� �i�
� mod n � at TS end fetch�

xor � �chopstick�� �i�
� mod n � �
�� Right chopstick fetched� fetch the left one�
fetch � �chopstick�� i � at TS end fetch�

at TS
end fetch�
eat ���
�� Return the fetched chopsticks and the room ticket�
deposit 	 �chopstick�� i � at TS end deposit�
deposit 	 �chopstick�� �i�
� mod n � at TS end deposit�
deposit 	 �room ticket� � at TS end deposit�

end loop�
end phil�

end DiningPhilosophers�

Figure 
�� Solution for the dining philosophers problem� The function CreateTS creates a new tuple
space� The templates are enclosed in parentheses and not in brackets in order to set the templates
apart from tuples
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enclosed statement which is speci�ed for the selected template is executed� The program works for
arbitrary n � 
�

To prevent deadlock� only four philosophers �or one less than the total number of philosophers� are
allowed into the room at any time to guarantee to be at least one philosopher who is able to make
use of both� his left and his right chopstick� In 	�� this is demonstrated with the pigeonhole principle�
in every distribution of the n chopsticks among the n	 
 philosophers with table tickets� there must
be at least one philosopher who gets two chopsticks� For a detailed discussion of prototyping parallel
algorithms with ProSet�Linda refer to 	
���
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