
Prototyping Parallel Algorithms

in a

Set�Oriented Language

Dissertation

zur Erlangung des Grades des

Doktors der Naturwissenschaften

der Universit�at Dortmund

am Fachbereich Informatik

von

Wilhelm Hasselbring

Dortmund

����

Tag der m�undlichen Pr�ufung� �� Februar ����

Dekan� Prof� Dr� Peter Marwedel

Gutachter� Prof� Dr� Ernst	Erich Doberkat
Prof� Dr� Franz Stetter

Ada is a registered trademark of the US Government
 Ada Joint Program O�ce�
Ethernet is a registered trademark of Xerox Corporation�
Linda is a registered trademark of Scienti�c Computing Associates�
Miranda is a registered trademark of Research Software Ltd�
NetBIOS is a registered trademark of International Business Machines Corporation�
SEGRAS is a registered trademark of GMD�
Strand is a registered trademark of Arti�cial Intelligence Limited�
SunOS is a registered trademark of Sun Microsystems
 Inc�
Transputer and occam are registered trademarks of INMOS Limited�
TupleScope is a registered trademark of Yale University�
Unix is a registered trademark of ATT�

Contents

Abstract vii

� Introduction �

��� Prototyping Parallel Algorithms �

��� A Look at Software Construction �

����� Informal and Formal Speci�cations �

����� Formal Speci�cations and Prototyping �

��� Overview �

��� Acknowledgments �

I Setting �

� Prototyping ��

��� Goals of Prototyping ��

��� Approaches to Prototyping ��

��� Summary ��

� Parallel Programming ��

��� Goals of Parallel Programming ��

��� Approaches to Parallel Programming ��

����� Data Parallelism ��

����� Parallel Object	Oriented Programming ��

����� Parallel Functional Programming ��

����� Parallel Logic Programming ��

����� Unbounded Nondeterministic Iterative Transformations � � � � � � � � � � � � � ��

����� Multiset Transformations ��

����� Virtual Shared Memory ��

����� The Shared Data	Object Model ��

����� Generative Communication ��

������ Evaluation ��

��� Summary ��

i

II Generative Communication in Set�Oriented Prototyping ��

� The Prototyping Language ProSet ��

��� Data Structures ��

��� Control Structures ��

��� Introductory Examples ��

��� Exception Handling ��

��� Persistence ��

��� Modules ��

��� Summary ��

� Informal Semantics of ProSet�Linda ��

��� Process Creation ��

��� Program and Process Termination ��

��� Handling Multiple Tuple Spaces ��

��� Tuple	Space Operations ��

����� Depositing Tuples ��

����� Fetching Tuples ��

����� Meeting Tuples ��

����� Nondeterminism and Fairness while Matching ��

��� Summary ��

� Example Programs ��

��� A Master	Worker Application with Limited Tuple Spaces � � � � � � � � � � � � � � � � ��

��� The Queens� Problem Revisited ��

��� Parallel Matrix Multiplication ��

��� The Traveling Salesman Problem ��

��� The Dining Philosophers Problem ��

��� Summary ��

	 Discussion of Other Approaches to Generative Communication and Some Design
Alternatives 	�

��� Shortcomings of C	Linda ��

��� Comparison of ProSet�s and C	Linda�s Tuple	Space Operations � � � � � � � � � � � � ��

��� Customized Matching ��

��� Selective Matching ��

��� Aggregate and Accumulative Matching ��

��� Limited Tuple Spaces and Non	blocking Matching ��

��� Fair Matching ��

��� Extending the Type System for Matching ��

��� Formals and Templates with First	Class Rights ��

ii

���� Update Operations on Tuples in Tuple Space ��

���� Process Creation and Process Identities ��

���� Multiple Tuple Spaces and Tuple	Space Identities ��

���� Data Parallelism in Generative Communication ��

���� Fault	tolerance ��

���� Persistence ��

���� Overloading Prede�ned Operators ��

���� Summary ��

 Formal Semantics of ProSet�Linda
	

��� Basic De�nitions ��

����� Abstractions for the Embedding into the Computation Language � � � � � � � � ��

����� Types and Values ��

����� Tuples ��

����� Formals and Templates ��

��� Matching ��

��� Tuple Spaces ��

��� Programs and Processes ��

��� Exceptions ��

��� Handling Multiple Tuple Spaces ��

����� CreateTS ��

����� ExistsTS ��

����� ClearTS ���

����� RemoveTS ���

����� The Tuple	Space Library ���

��� Tuple	Space Operations ���

����� Some Preliminary De�nitions ���

����� Depositing Tuples ���

����� Fetching Tuples ���

����� Meeting Tuples ���

����� Fairness of the Tuple	Space Operations ���

��� Program Execution ���

��� Summary ���

iii

III Implementation ���

� Re�ning the Formal Speci�cation ��	

��� Semantics versus Implementation Design ���

��� Data Re�nement ���

��� Operation Re�nement ���

����� Some Preliminary De�nitions ���

����� Depositing Tuples ���

����� Fetching Tuples ���

����� Meeting Tuples ���

��� Correctness of the Re�nement ���

����� Modeling Bags by Sequences ���

����� Satisfaction of the Fairness Properties ���

��� Summary ���

� A Prototype Implementation ���

���� The Compiler ���

���� The Tuple	Space Management ���

������ Handling Multiple Tuple Spaces ���

������ Tuple	Space Operations ���

���� Summary ���

�� Some General Issues for Implementations of ProSet�Linda ���

���� Some Existing Implementations of Linda Variants ���

���� Implementation Techniques ���

���� Optimizations ���

������ Partitioning the Tuple Space ���

������ In	place Updates ���

������ Hardware Support ���

������ Data Structure Selection ���

���� The Unpredictable Performance of Linda ���

���� Summary ���

IV R�esum�e and Outlook ���

�� R�esum�e ���

�� Outlook ���

���� Extending Matching to Uni�cation ���

���� An Implementation of a Graphical Debugger ���

���� An Implementation on a Local Area Network ���

���� Optimizing Analysis of Tuple	Space Access ���

iv

V Appendices ���

A The Abstract Grammar for the Tuple�Space Operations ��	

B The Speci�cation Language Object�Z ���

B�� Schemas ���

B�� Axiomatic Descriptions ���

B�� Generic Descriptions ���

B�� Free Type De�nitions ���

B�� Expressions ���

B�� Classes ���

B�� Remarks Concerning the Usability of Z and Object	Z ���

C Types of All Names De�ned Globally ���

Indices �	�

Index of Formal De�nitions ���

Index of Explained Object	Z Symbols and Keywords ���

General Index ���

Bibliography �
�

v

List of Figures

��� Speci�cation part of an abstract data type in Orca� ��

��� Implementation part of an abstract data type in Orca� � � � � � � � � � � � � � � � � � � ��

��� Tuple	space communication in C	Linda� ��

��� The queens� problem� ��

��� The non	attacking positions for n � � queens� ��

��� Topologically sorting the nodes of a directed graph� ��

��� The topological order for the input set� ��

��� A simple Module� ��

��� Instantiating a Module� ��

��� A master	worker program with limited tuple spaces� ��

��� Parallel solution for the queens� problem� ��

��� Parallel matrix multiplication� ��

��� Some cities in the Ruhrgebiet with their connections and distances� � � � � � � � � � � � ��

��� The search tree for our selection of cities in the Ruhrgebiet� � � � � � � � � � � � � � � � ��

��� Solution for the traveling salesman problem� ��

��� Form of mutual exclusion solution� ��

��� Solution for the dining philosophers problem� ��

��� The class hierarchy for the library functions to handle multiple tuple spaces� � � � � � � ��

��� The class hierarchy for the tuple	space operations� ���

��� The entire class hierarchy for our formal speci�cation� � � � � � � � � � � � � � � � � � � ���

��� The queue for blocking fetch and meet operations� ���

��� The queue for processes which are blocked on full tuple spaces� � � � � � � � � � � � � � ���

���� The main part of the ProSet implementation for the tuple	space management� � � � � ���

���� The library functions for handling multiple tuple spaces� � � � � � � � � � � � � � � � � � ���

���� Depositing tuples� ���

���� Fetching tuples� ���

���� Meeting tuples� ���

vi

Abstract

The subject of this thesis is to provide means for prototyping parallel algorithms� if one wants to
model an inherently parallel system
 it is reasonable to have features for specifying �coarse	grained�
processes that communicate and synchronize via a simple communication medium
 and not to force
such inherent parallelism into sequences� We propose here a new high	level language for prototyp	
ing parallel algorithms and applications� Our approach to designing and implementing this tool is
somewhat unconventional
 as it relies on formal speci�cation and prototyping�

vii

viii

Chapter �

Introduction

Parallel programming is conceptually harder to undertake and to understand than sequential program	
ming
 because a programmer often has to focus on more than one process at a time� Furthermore

programmers are forced on most of today�s parallel machines to program on a low level to obtain
acceptable performance � ease of use is sacri�ced for e�ciency� Consequently
 developing parallel
algorithms is in general considered an awkward undertaking� The goal of our work is to overcome this
nuisance by providing a tool for prototyping parallel algorithms�

��� Prototyping Parallel Algorithms

Prototyping means constructing a model� Since applications which are inherently parallel should be
programmed in a parallel way
 it is most natural to incorporate parallelism into the process of model
building� Opportunities for automatic detection of parallelism in existing programs are limited �see
Sect� ���� and furthermore
 in many cases the formulation of a parallel program is more natural and
appropriate than a sequential one� Most systems in real life are of a parallel nature
 thus the intention
for integrating parallelism into a prototyping language is not only that of increasing performance� Our
intention is to provide means for prototyping parallel algorithms�

As has been observed
 no matter how e�ective the system software and hardware of a parallel machine
are at delivering performance
 it is only from new algorithms that orders of magnitude improvements
in the complexity of a problem can be achieved�

�An idea that changes an algorithm from n� to n log n operations
 where n is proportionate
to the number of input elements
 is considerably more spectacular than an improvement
in machine organization
 where only a constant factor of run	time is achieved�� �Cocke

����
 page ����

Thus
 enabling rapid prototyping of parallel algorithms may serve as the basis for developing parallel

high	performance applications�

Most current programming environments for distributed memory architectures
 which are usually
based on some kind of message passing
 provide inadequate support for mapping applications to the
machine� In particular
 the lack of a global name space forces algorithms to be speci�ed at a relatively
low level
 since it is complicated to simulate shared memory� This greatly increases the complexity of
programs
 and also �xes algorithm design choices
 inhibiting experimentation with alternate algorithm
choices or problem decompositions� This makes programming such machines very di�cult
 since the
programmer has to explicitly encode all the low	level details required to implement the algorithm�
The resulting programs are complex and in�exible�

�

� ��� Prototyping Parallel Algorithms

Parallel computers are traditionally divided into two broad subcategories� tightly coupled and loosely
coupled systems� In a tightly coupled system at least part of the primary memory is shared � All
processors have direct access to this shared memory� In a loosely coupled �distributed� system

processors only have access to their own local memories� processors can communicate by sending
messages over some kind of communication channel� Tightly coupled systems have the advantage
of fast communication through shared memory� Distributed systems
 on the other hand
 are much
easier to build
 especially if a large number of processors is required� Initially
 programming language
and operating system designers strictly followed the above classi�cation
 resulting in two parallel
programming paradigms� shared variables �for tightly coupled systems� and message passing �for
distributed systems��

Meanwhile
 the techniques of parallel programming are evolving slowly� Initially
 parallel programs
were a collection of sequential programs written in traditional sequential languages� These languages
were extended with communication instructions to enable message	passing communication� Such
synchronizing communication is feasible in problems with completely regular patterns of execution

but it is di�cult to control in areas where the execution pattern is strongly data	dependent and
irregular�

Therefore
 it is clear that changes in programming languages are needed � in particular it should be
possible to dynamically create computations
 to synchronize them and to allow information exchange
between them� Several languages have been proposed with this goal in mind� for instance C�A�R�
Hoare proposed an in�uential model called CSP �Communication Sequential Processes� allowing the
de�nition
 activation and synchronization of communicating processes �Hoare
 ������ However
 it is
very di�cult to build parallel programs with this approach� This is mainly due to the fact that the
programmer has to mentally manage several threads of control simultaneously instead of one at the
time�

During the past years several high	level languages with mechanisms for parallel programming have
been developed to alleviate parallel programming� Even though such high	level languages were de	
signed to express parallelism
 they are mostly intended to be implemented and used on ordinary
computers with only one central processing unit� Parallel programming is then used as a conve	
nient way of expressing logical relationships between di�erent parts of a complex program
 and only
secondary for increasing the execution speed�

However
 parallel programming is still in its infancy� At present
 there is a wide gap between formal
approaches to algorithm speci�cation and practical approaches to algorithm implementation� We
are developing an approach to parallel algorithm implementation
 which exploits the strength of a
set	oriented language to program design through rapid prototyping�

Historically
 parallelism has been introduced as a means of gaining speed during execution� However

the issue of parallelism as an abstraction mechanism for structured design and programming has gained
importance� For instance
 in the Parallel Program Design approach of �Chandy and Taylor
 �����
parallelism is used as the main mechanism for achieving programmodularity� The focus of the Parallel
Program Design approach is the development of programs by the parallel composition of simpler
components
 in such a way that the resulting programs preserve the properties of the components
that they compose� Generalizing this approach
 in �Carriero and Gelernter
 ����� parallelism is used
as a coordination mechanism and
 accordingly
 programming is split in two separate activities� a
sequential language is used to build single	threaded computations
 whereas a coordination language is
used to coordinate the activity of several single	threaded computations� Thus parallel programming
consists of putting together programs and letting them cooperate�

To summarize
 our hypothesis is that

� prototyping of parallel algorithms is a pro�table basis for constructing parallel software which
meets users� demands and which is amenable to evolving requirements
 and that

� generative communication integrated into a set	oriented language is an adequate device to enable
rapid prototyping of parallel algorithms�

��� A Look at Software Construction �

��� A Look at Software Construction

Within the computer science community
 it is a well	known fact that the cost to correct an error in a
computer system increases dramatically as the system life cycle progresses �Boehm
 ������ The cost
of correcting an error increases by orders of magnitude as the system moves from the development
stages of analysis and design
 to become most expensive during the maintenance and operation phase�
Formal speci�cation and prototyping help to eliminate many of these errors in the very early stages
of a project before any production	level code has been written�

In the ����s
 many programs were designed to make optimum use of some speci�c feature of the
hardware� Programs were written to exploit a particular machine	language command or the number
of bits in a computer word� Today we know that such optimizations are best left to the last stages
of program design
 or best left out altogether� Parallel programs today are designed much as the
sequential programs were designed in the ����s� to exploit the message	passing primitives of a language
or the network	interconnection structure of an architecture� Experience tells us that it is best to
postpone such optimizations until the very end of program development� Issues of performance should
be considered
 but only at the appropriate time�

�The basic problem in programming is the management of complexity� We cannot address
that problem as long as we lump together concerns about the core problem to be solved

the language in which the program is written
 and the hardware on which the program is
to execute� Program development should begin by focusing attention on the problem to
be solved
 postponing considerations of architecture and language constructs�� �Chandy
and Misra
 ����
 page ��

In order to achieve this goal we should be able to built in the �rst place an abstract version of a
program in a high	level language�

A goal of this thesis is to construct a tool for prototyping parallel algorithms� We shall build this
piece of software in a somewhat unconventional way� the informal speci�cation is followed by a formal
speci�cation
 which serves as the basis for a prototype implementation before the production	level
implementation is undertaken� We will motivate this approach to language design and implementation
in the following subsections�

�	
	� Informal and Formal Speci�cations

Speci�cation of the requirements is the phase in software construction which is concerned with the
analysis of the tasks to be performed by the intended software system� Programs
 especially parallel
programs
 are often described informally� Problems such as the dining philosophers problem �see also
Sect� ����
 are posed without using a formal notation� There are advantages to informal descriptions�
A problem can be studied without the acquaintance with a formal notation which may turn out to be
a burden� Also
 pictures such as philosophers sitting around a table exchanging forks are vivid and
helpful�

Informal speci�cations have the advantage that natural	language requirements can be read and ap	
proved directly by customers� They can also form the basis of a legal contract� On the other hand

informal requirements are notorious for their incompleteness
 inconsistency
 and ambiguity� Indeed

these are the problems which �rst led computer scientists to look for speci�cations that were formal

and therefore subject to automated checks on their consistency� Mathematical descriptions
 however

cannot stand alone� At minimum
 prose is needed to relate concepts modeled in mathematics to
real	world entities�

The main advantage of natural	language texts is their understandability� One concentrates on this
asset rather than trying to use natural language for precision and rigor
 qualities for which it is
inadequate� Understandability is seriously hindered when natural	language requirements become in	
adequately long� The length of many requirements documents in actual practice often extending over

� ��� A Look at Software Construction

hundreds or even thousands of pages indicates this misuse of natural language� Natural	language
descriptions should remain reasonably short� the exact description of �ne points
 special cases
 precise
details
 etc�
 should be left to a formal speci�cation� The advantages of brevity cannot be overem	
phasized� Formal methods could be a response to the increasing complexity and quality requirements
software development industry is confronted with� Some of the better known speci�cation methods
such as VDM �Jones
 ����� and Z �Spivey
 ����b� have already been used in industry �Craigen et al�

������

An objection that is often voiced against formal speci�cations relates to the needs of end	users
 who
request easily understandable documents� Such an objection
 we think
 is based on an inadequate
expectation of what speci�cation is about� There is a need for requirement documents that must
be read
 checked
 and discussed by non	computer scientists
 but there is also a need for technical
documents used by computer scientists� The di�erence is very similar to the di�erence between user
requirements and engineering speci�cations in other engineering disciplines�

Much recent work has been devoted to �nding more rigorous mathematical methodologies which �
though less accessible � are complete and unambiguous� One methodology is denotational semantics�
in this approach each program phrase is given a denotation
 or a meaning
 as an object of some
mathematical domain� It is compositional in the sense that the meaning of each phrase is a function
of the meaning of its subphrases� A second methodology is operational semantics� in this approach
rules are given for the evaluation of each phrase� Operational semantics is also compositional since
the evaluation of each phrase is de�ned in terms of the evaluation of its subphrases� An operational
semantics has the advantage of suggesting a possible implementation
 and of easing comparisons with
other languages having analogous formal semantics�

Formal speci�cations can help to expose ambiguities and contradictions
 because they force the speci	
�er to describe features of the problem to be solved precisely and rigorously� Formal methods are used
to reveal ambiguity
 incompleteness
 and inconsistency in a system� When used early in the system
development process
 they can reveal design �aws that otherwise might be discovered only during the
costly testing and debugging phases �Wing
 ������ An interesting result of a formal speci�cation is
not only the speci�cation itself but the insight gained about the speci�ed system�

Let us now take a closer look at the de�nition and implementation of programming languages
 since
our intention is to design and implement a language for parallel programming� Usually
 the syntax
�not the semantics� of programming languages is formally described with syntax diagrams or with
Backus Naur Form� Therefore
 they appear to be good candidates for a formal treatment� To discuss
the advantages of formal speci�cations in the development of a new language
 we brie�y evaluate the
development of the parallel programming language C	Linda�

The de�nition of C	Linda has been presented informally �Gelernter
 ����� and has included several
ambiguities� �Narem
 ����� summarizes four basic types of process creation used in implementations
of C	Linda�s eval operation� These are di�erent interpretations of the informal speci�cation of the
eval operation� Additional discussions of problems with the semantics of the eval operation may
also be found in �Leichter
 ����� and in Sect� ��� of this thesis� This situation demands a more precise
de�nition� However
 informal descriptions are very valuable because it is easy to grasp the gist of their
semantics without much e�ort� The popularity of Linda can in part be ascribed to this property�

To overcome the problems caused by the informal speci�cation
 several formalizations of the coordi	
nation language Linda have been undertaken� These approaches use structured operational rules such
as Plotkin�s Structural Operational Semantics �SOS� or Milner�s Calculus of Communicating Systems
�CCS�
 Petri Nets
 the Chemical Abstract Machine
 Term Rewriting Systems
 Communicating Horn
Clause Logic
 Algebraic Speci�cations
 and the formal speci�cation language Z�

SOS� CCS �Hazelhurst
 ����� Jensen
 ����� Callsen et al�
 ����� Ciancarini et al�
 �����
Jensen
 �����

Petri Net �Ciancarini et al�
 �����

Chemical Abstract Machine �Ciancarini et al�
 �����

����� Informal and Formal Speci�cations �

Term Rewriting System �Jagannathan
 ����� �for Scheme	Linda�

Communicating Horn Clause Logic �Bosschere and Wulteputte
 �����
�for Multi	Prolog�

Algebraic Speci�cations �Anderson et al�
 ����� �for TS	Prolog�

Z �Butcher
 �����

A comparative study of some approaches may be found in �Ciancarini et al�
 ������ To avoid the
problems which may be caused by an inconsistent informal speci�cation
 we shall present in Chap� �
the formal semantics of our approach to parallel programming in a set	oriented language by means
of the formal speci�cation language Object	Z �Duke et al�
 ������ Our approach combines the set	
oriented language ProSet �Chap� �� with generative communication in Linda �Sect� ������ to form
the parallel programming language ProSet	Linda�

Object	Z is an object	oriented extension to Z� Z is a speci�cation language based on mathematical set
theory and logic �Spivey
 ����b�� It has been developed at Oxford University for use in the speci�cation
of state	based programs
 and has now matured into a valuable and widely used development tool� For
example
 IBM UK Laboratories at Hursley have used Z to develop new code for the CICS system �the
main IBM System ��� on	line transaction processing system�� They obtained a signi�cant reduction
in the volume of software quality defects for ultimately little additional development cost �Wordsworth

������

The formal speci�cation language Z was chosen as a means for presenting the formal semantics of
ProSet	Linda for several reasons� Firstly
 Z has many similarities with ProSet� both languages
are based on set theory and predicate calculus� This alleviates the access to the formal speci�cation
for readers who are familiar with ProSet� Consequently
 we capitalize on the similarities when
constructing prototypes in ProSet from Z speci�cations� Furthermore
 there are some tools available
to support the construction of speci�cations in Z �Parker
 ������

A preliminary speci�cation of ProSet	Linda using plain Z has been presented in �Hasselbring
 ����a��
Inferring the operation schemas that may a�ect a particular state schema requires examining the
signatures of all operation schemas in plain Z� In large speci�cations this is impracticable� This
problem and the absence of temporal logic notation in plain Z led us to consider the use of object	
oriented extensions of Z to improve our preliminary speci�cation� We shall later use the name Z when
both languages
 plain Z and Object	Z
 are concerned�

There exist several object	oriented extensions of plain Z� �Stepney et al�
 ����� is a collection of papers
describing various object	oriented approaches for Z � for example Hall�s Style
 ZERO
 the Schuman
 Pitt Approach
 MooZ
 OOZE
 ZEST
 Z��
 and Object	Z � mainly written by the methods�
inventors
 and all specifying the same two examples� Hall�s Style and ZERO provide conventions for
writing object	oriented speci�cations in plain Z� The Schuman Pitt Approach is more concerned
with fundamental issues of composition of schemas and reasoning about the resulting composition
than with specifying object	oriented systems
 or specifying systems in an object	oriented way�

Object	Z extends Z by introducing a class structure which encapsulates a single state schema with the
operations which may a�ect that state� Object	Z uses the class concept to incorporate a description
of an object�s state with related operations� Classes
 and hence state operations
 can be inherited by
other classes� The model for a class is based on the idea of a history which captures the sequences of
operations and state changes undergone by an instance �object� of the class� One of the advantages
of Object	Z is that it enables such constraints to be incorporated directly within the model� Within
plain Z
 to specify liveness properties
 histories must be explicitly de�ned separately from the state
and operation schemas as it has been done in �Hasselbring
 ����a�� Appendix B provides a short
introduction to Object	Z�

Z�� �Lano and Haughton
 ����� is very similar to Object	Z� Z�� also provides history predicates
using temporal logic and therefore is an interesting candidate for our purposes� However
 Z�� does
not have a graphical display for schemas and classes� The idiosyncratic syntax is unfamiliar for readers
knowing the Z notation� This drawback leads us to the use of Object	Z� MooZ
 OOZE and ZEST

� ��� A Look at Software Construction

are other object	oriented extensions of Z
 but they do not support history predicates with temporal
logic� As the use of history predicates simpli�es our speci�cation in Chap� � signi�cantly
 we actually
preferred Object	Z�

Z has no features for specifying parallelism� However
 this does not prevent us from specifying a par	
allel programming language with Z� we shall model concurrency by arbitrary interleaving of atomic
transactions which are performed by the acting processes �see also Sect� ����� The goal of our for	
mal speci�cation is not specifying as much parallelism as possible
 but rather providing a precise
speci�cation of the semantics of generative communication in ProSet�

An Object	Z speci�cation consists of a combination of a formal text and a natural language description�
The formal text provides the precise speci�cation while the natural language text introduces and
explains the formal parts� The formal text has two parts� classes and schemas
 which provide a means
of structuring the speci�cation
 and the mathematical language
 which allows for the preciseness of
the speci�cation� The mathematical language is based largely on set theory and enables an abstract
mathematical view of the objects being speci�ed to be taken� The object	oriented features enable
speci�cations of large systems to be broken into more manageable sections�

The combination of natural language for explanation
 and of the classes and schemas for structurization
produces speci�cations that are more readable than only mathematical formulas� In addition
 the
mathematical nature of the speci�cations enables implementors to use mathematical proofs to ensure
the correspondence of their implementations with the speci�cation�

We do not advocate formal speci�cations as a replacement for natural	language requirements� rather

we view them as a complement to natural	language descriptions
 and as an aid in improving the
quality of natural	language speci�cations� Formal speci�cations can serve as a starting point for more
precise natural	language requirements� This is so because formal notations lead the speci�er to raise
questions that might have remained unasked
 and thus unanswered
 in an informal approach�

Apart from the clear advantage of writing the semantics in a mechanically checkable formalism
 a
formal speci�cation discloses subtleties as well as di�culties that are otherwise swept under the car	
pet of an imprecise notation� The formal speci�cation emerges as a contract � stating rights and
obligations � between language designer and implementor
 and it is an abstract
 detailed language
manual for the programmer�

�	
	
 Formal Speci�cations and Prototyping

Once we have a formal speci�cation
 what can we do with it! Relying on the speci�cation as a basis
for the next phases of the software development process is the most obvious use� Formal speci�cations
are needed as an intermediate step between requirement analysis and design�

Traditionally
 most large software development projects are conducted along the lines of so	called
life	cycle plans �Boehm
 ������ In life	cycle plans
 the principle of proceeding �from the general to the
concrete� or �from the problem to the solution� is applied to the organization of a software project�
Each activity is viewed as an input	process	output step� Only minimal provision is made for feedback
cycles� We refer to �Blum
 ����� Floyd
 ����� Zave
 ����� Doberkat and Fox
 ����� Budde et al�
 �����
for critical assessments of the traditional life	cycle approach� Some of the reported problems are�

� Users are excluded from system development�

� Maintenance is unplanned system development�

� Life	cycle plans are unsuitable for project control�

To avoid these problems
 we do not try to construct a production	quality program directly from our
formal speci�cation� Instead we intentionally build a prototype �rst �see Chap� ����

Richard Kemmerer calls this �testing formal speci�cations� �Kemmerer
 ������ It is necessary to test
speci�cations early to develop systems which meet their critical requirements and provide the desired

��� Overview �

functionality� Some of the functional requirements may not be known at design time� In fact
 some
functional requirements may only arise while evaluating the prototype�

First
 a prototype helps the speci�cation writer to debug the speci�cation� It also helps a potential
user to experience the capabilities of the system� It is often only through this type of experience
that the necessary functional requirements can be discovered� Furthermore
 it is better to have the
user discover needs early in the production process
 and not after the system has been completely
implemented and delivered� The prototype provides the user with a vehicle which can be exercised to
see if it meets the �sometimes fuzzy� requirements�

Prototyping is used for requirements engineering
 risk reduction
 speci�cation validation
 increased
user acceptance
 and simpli�ed maintenance of software systems� See Chap� � for a more detailed
discussion of prototyping�

��� Overview

This thesis is organized as follows� Part I presents the setting of our work� This is prototyping
�Chap� �� in connection with parallel programming �Chap� ��� We shall conclude this part with an
evaluation of several approaches to high	level parallel programming concerning their suitability for
prototyping parallel algorithms in a set	oriented language�

Part II presents our approach to generative communication in set	oriented prototyping� We start in
Chap� � with a brief introduction to the prototyping language ProSet� Chap� � then presents an
informal speci�cation for the integration of generative communication into ProSet� We extend this
presentation by means of some example programs in Chap� �
 and continue with a discussion of other
proposed approaches to extending Linda and some design alternatives to our approach in Chap� ��
The presentation of the formal semantics of generative communication in ProSet by means of the
formal speci�cation language Object	Z in Chap� � is the glue to Part III
 which is concerned with
the implementation of ProSet	Linda� We will re�ne the formal speci�cation into an implementation
design in Chap� �
 and continue in Chap� �� with a prototype implementation in ProSet
 which is
directly constructed from the formal speci�cation� Chapter �� discusses some general issues concerning
implementing ProSet	Linda� Part IV presents our r"esum"e and an outlook to directions for future
research�

The appendices in Part �� present the abstract grammar for the tuple	space operations in ProSet
�Appendix A�
 the formal speci�cation language Object	Z �Appendix B�
 and the types of all names
de�ned globally in the formal speci�cation of Chap� � and � �Appendix C�� The index of formal
de�nitions provides a summary of the names de�ned in the formal speci�cation� There is also an
index of explained Object	Z symbols and keywords� The general index and the bibliography can be
found at the end of this document�

��� Acknowledgments

The discussions on various aspects of this work with Henri Bal
 Nick Carriero
 Mike Factor
 Michael
Goedicke
 Jerry Leichter
 Greg Wilson
 and many others were very helpful� Furthermore
 the dis	
cussions on formal semantics with Stephen Gilmore and Keld Kondrup Jensen were very helpful to
improve our preliminary formal speci�cations� Last but not least
 the encouragement and continuous
support by Ernst	Erich Doberkat is gratefully acknowledged�

� ��� Acknowledgments

Part I

Setting

�

Chapter �

Prototyping

One of the more recent approaches for complementing the traditional model of software production
using the life cycle approach is rapid prototyping� Prototyping refers to the well de�ned phase in the
production process of software in which a model is constructed which has all the essential properties of
the �nal product
 and which is taken into account when properties have to be checked
 and when the
further steps in the development have to be determined �Floyd
 ������ In this chapter
 we will sketch
goals and approaches to prototyping� Chapter � will later present a short introduction to the basic
concepts of the prototyping language ProSet� We want to note that for us a prototype is a model

and that this model taken as a program has to be executable so that at least part of the functionality
of the desired end product may be demonstrated on a computer� Therefore
 prototyping involves
producing early working versions �prototypes� of the future application system and experimenting
with them�

It is important to note that the material of this chapter is not the original work of the author of this
thesis� This chapter is essentially compiled from the standard literature to prototyping �Dearnley and
Mayhew
 ����� Budde et al�
 ����� Hekmatpour and Ince
 ����� Doberkat and Fox
 ����� Budde et al�

������ We intend to provide a short introduction to goals and approaches to prototyping
 and a guide
to further reading� To make �uent reading easier we do not indicate the source for each argument�

��� Goals of Prototyping

Software prototypes are used somewhat di�erently from hardware prototypes� For the most part

hardware prototypes are used to measure and evaluate aspects of proposed designs that are di�cult
to determine analytically� For example
 simulation is widely used to estimate throughput and device
utilization in proposed hardware architectures� Although software prototypes can be used likewise to
determine time and memory requirements
 they usually focus on evaluating the accuracy of problem
formulations
 exploring the range of possible solutions
 and determine the required interactions be	
tween the proposed system and its environment� The nature of a software prototype is also di�erent
from
 for example
 an architectural model� a software prototype actually demonstrates features of
the target system in practical use
 and is not merely a simulation of them� We will use the term
prototyping as a synonym for software prototyping in the remainder of this thesis� Typical properties
of prototypes are�

� Prototypes are not intended to be the �nal system�

� Prototypes are not necessarily representative of a complete system� They are miniature models
of proposed systems�

� Prototypes are functional after a reasonable amount of e�ort�

��

�� ��� Goals of Prototyping

� Prototypes are �exible
 i�e�
 modi�cations require minimal e�ort�

� Prototypes are an executable speci�cation for the developer�

� Prototypes are a model used to determine design appropriateness�

� Prototypes are a feasibility study�

� Prototypes are a means for providing users of a proposed application with a functional repre	
sentation of key parts of the system before system implementation�

� Prototypes are a basis for discussion and an aid to decision	making� They are something that
promotes communication between developers and users�

Typical applications of prototyping are�

Requirements engineering Prototyping improves communication through demonstra	
tion� This enables an earlier and more e�ective dialogue between users and developers

helps to expose unstated assumptions
 and triggers some of the inevitable require	
ments changes early in the process of software engineering� Consequently
 prototyping
reduces rebuilding�

The traditional approach to requirements engineering is to interview potential users
and prepare a requirements document
 which is reviewed and modi�ed until there are
no more objections� This approach has not worked well in practice
 because users have
not been e�ective in discovering requirements errors when they review the document

which often leaves room for misunderstandings�

A common problem with software products is that the users of the system may not
be fully aware of what they require and they may be unable to communicate their
desires to the development team� Using a prototype
 the user can interact with the
system and can discover requirements de�ciencies early
 enabling rapid correction of
the requirements�

Risk reduction Prototyping reduces risks by making communication between users and
developers more speci�c
 by helping to determine a proposed design�s unknown prop	
erties
 and by providing a basis for assessing the feasibility and performance of alter	
nate designs� A prototype can be used as a feasibility study�

Speci�cation validation Prototyping is a way to validate speci�cations� Validation at	
tempts to ensure that all parties � users and developers � interpret the speci�cation
in the same way� Without this assurance
 developers run a high risk of developing and
testing software built on inadequate speci�cations� Prototyping should be integrated
with the formulation and recording of speci�cations and assessment of a design�s fea	
sibility� The opportunity for inadequate functional speci�cations is greatly reduced
with prototyping�

User acceptance With the traditional life cycle
 users continue to complain that systems
are late
 contain errors
 and are often not what they wanted and thought they asked
for� This is like talking to the stars� at the time when the answer arrives
 the question
has been forgotten �Blum
 ������ With prototyping
 a what you see is what you get
approach eliminates the bulk of the communication problems� It allows delivery
of systems as quickly as possible and permits the correction of errors due to bad
speci�cations in early relatively inexpensive phases�

When users are forced to participate
 they can gain con�dence in a system� They see
�rst	hand the problems and errors
 and they also see the mistakes getting resolved
quickly before the mistakes haunt the system for life� When users command the
system directly
 there is little chance for communication problems to arise between
user and developer� Prototypes can also serve to train users of future systems�

��� Approaches to Prototyping ��

Maintenance Prototyping can also provide many of the same bene�ts when a system�s
requirements change after delivery� Especially when the proposed changes are so
drastic that they fundamentally alter a system�s goals
 the production program may
not be a good basis for evaluating them� In these cases
 prototyping can reduce
uncertainty and the number of times the production program must be changed before
a satisfactory result is obtained�

It is better to base maintenance changes on the �exible prototype instead on the
optimized implementation
 because optimizing transformations often introduce con	
ceptual dependencies that increase the fraction of the code a�ected by a change in
the requirements�

Prototyping has been developed as an answer to de�ciencies in the traditional life cycle model
 but
it should not be considered as an alternative to this model� It is rather optimally useful when it
complements the life cycle model� It is plausible that prototyping may be used during the early
phases of the design� For a discussion of the relation between prototyping and the life cycle model we
refer to �Dearnley and Mayhew
 ����� Doberkat and Fox
 ����� Budde et al�
 ������

��� Approaches to Prototyping

The idea of prototyping is being adopted in software engineering for di�erent purposes� prototypes are
used exploratively to arrive at a feasible speci�cation
 experimentally to check di�erent approaches

and evolutionary to build a system incrementally� Prototypes may be classi�ed as follows �see also
�Dearnley and Mayhew
 ����� Floyd
 ����� Doberkat and Fox
 ����� Budde et al�
 �������

Throwaway A throwaway prototype describes a product designed to be used only to
help the customer identify requirements for a new system� All elements of the work	
ing prototype will be discarded
 as intended
 after system requirements have been
identi�ed� Only the derived requirements will be maintained
 paving the way for
work on the real system� Such exploratory prototyping is used where the problem at
hand is unclear� Initial ideas are used as a basis for clarifying user and management
requirements with respect to the future system�

Throwaway prototypes are sometimes perceived as a waste of e�ort� The reason is
that developing code that will be thrown away is considered a waste of resources�
It is true that prototype code is often too ine�cient and insu�ciently general to be
directly incorporated into a �nal product� But this argument ignores the fact that
production	quality code often must be discarded
 because it is based on incorrect
requirements� It is most cost	e�ective to correct the requirements by evaluating and
discarding a relatively inexpensive prototype instead of an expensive product�

The main contribution of throwaway prototypes is not code
 but the insight they give
analysts into correct system behavior and the structure of a feasible design�

However
 the reliance of throwaway prototypes signals insu�cient technological sup	
port for recording
 transforming
 and implementing speci�cations and designs�

Experimental This form of prototyping focuses on the technical implementation of a
development goal� By means of experimentation
 users are able to further clarify their
ideas about the type of computer support required� The developers
 for their part

are provided with a basis for appraisal of the suitability and feasibility of a particular
application system� An essential aspect here is the communication between users and
developers on technical problems and questions relating to software features
 which
cannot be clari�ed analytically�

Evolutionary In evolutionary prototyping
 a series of prototypes is produced that con	
verges to an acceptable behavior
 according to the users� feedback from prototype

�� ��� Summary

demonstrations� Parts of the description and design of each version are re�ned in
the next version to the extent that the two versions share common requirements

subfunctions
 and data� Once the series has converged
 the result may be turned into
a software product by transformations�

Here
 prototyping is not merely used as a device in the context of a single development
project� Evolutionary prototyping is rather a continuous process for adapting the
model of an application system to changing organizational constraints�

Note that exploratory prototyping is not restricted to the development of throwaway prototypes�
Another classi�cation of prototyping is the subdivision into horizontal and vertical prototyping� In
horizontal prototyping
 only speci�c layers of the system are built
 e�g�
 the graphical user inter	
face layer or functional core layers� In vertical prototyping
 a selected part of the target system is
implemented completely� This technique is appropriate where the system�s functionality and imple	
mentation options are not su�ciently de�ned yet�

The approach to prototyping with ProSet is an evolutionary development in versions� This approach
is reasonable
 because the developed product may manipulate the environment in which it is used�
Introducing a new system often triggers organizational restructuring
 changing how the organization
does its business� This restructuring may change users� responsibilities and procedures
 thus triggering
changes in the evolving system� Therefore
 the system itself becomes a driving force for changes in
its requirements� Thus the prototype has to evolve in accordance with the changing environment�
The ordering of development steps in the traditional life cycle model is mapped here into succes	
sive development cycles� Users are involved in the system development process which supports the
communication between users and developers�

Prototypes should be built in high	level languages to make them rapidly available� To be useful

prototypes must be built rapidly
 and designed in such a way that they can be modi�ed rapidly� Con	
sequently
 a prototype is usually not a very e�cient program since the language should o�er constructs
which are semantically on a very high level
 and the runtime system has a heavy burden for execut	
ing these highly expressive constructs� To obtain a more e�cient production level version program
transformations are desirable to re�ne the prototype design into a production	quality product �CIP

����� Partsch
 ������ ProSet contains a Pascal	like subset that facilitates evolutionary prototyping
by allowing a program to be re�ned into successively �ner detail while staying within the language�

Chapter � will present a brief introduction to the prototyping language ProSet� For comparative
discussions of high	level languages such as Lisp
 PROLOG or SETL
 which may be used to develop
prototypes
 we refer to �Doberkat and Fox
 ����� Budde et al�
 ������

��� Summary

This chapter presents a short introduction to goals and approaches to prototyping
 and a guide to
further reading� Prototyping constitutes the �rst part of the setting for this thesis�

Chapter �

Parallel Programming

There has been particular attention on parallel programming and processing within the computer
science community in the last years� In this chapter
 we will sketch goals and approaches to parallel
programming and processing in general and approaches to high	level parallel programming models
and languages in particular� We shall conclude with an evaluation of these approaches to high	level
parallel programming concerning their suitability for prototyping parallel algorithms in a set	oriented
language�

��� Goals of Parallel Programming

There are two schools of thought regarding the proper approach to parallel programming and process	
ing� the �program in sequential languages and let the compiler extract the parallelism� school and
the �provide constructs for expression of parallelism� school�

The �rst school sidesteps the issue altogether� Instead of proposing new software models
 it relies on
the automatic generation of parallel versions of ordinary sequential programs �Banerjee et al�
 ������
This is the detection of implicit parallelism� Driven primarily by the colossal investment of time and
money represented by existing programs much e�ort has been invested for developing compilers that
automatically transform sequential programs into parallel machine code� A parallelizing compiler
�nds the parallelism hidden in a sequential program by analyzing its structure for operations that in
fact can be done simultaneously
 even though the program speci�es they be done one by one� It then
generates code that re�ects the implicit parallelism it has found�

A parallelizing compiler can often tell by inspection whether loop iterations really must be done
sequentially
 as the program prescribes� If each new calculation depends on values calculated in a
previous iteration
 sequentiality is required� Otherwise the compiler might well be able to convert the
loop into parallel machine code
 allowing the computer to do all calculations simultaneously�

Data	�ow computers �Srini
 ����� o�er another way to take advantage of implicit parallelism� These
machines are usually aimed at functional programming languages and data	�ow languages �Acker	
mann
 ������ Functional languages make it easier for the machine to decompose the program into
parallel activities
 since side e�ects are not allowed� Languages for data	�ow computers often allow
assignments
 but the value of a variable can be set once only� After a variable�s value has been set

other parts of the program can use the variable freely and simultaneously
 because its value cannot
change� Implicit parallelism is also present in logic programming languages �see Sect� �������

If parallelism can be found automatically
 why to create new
 explicitly parallel software models!
In fact automatic transformations work well only for certain kinds of programs� A parallelizing
compiler
 for example
 transforms a sequential program in parallel machine code on the basis of
the program�s expected behavior� Many programs � numerical computations in particular � do

��

�� ��� Goals of Parallel Programming

unfold in a predictable way
 and so a compiler can reliably determine which parts of the task can be
done in parallel� However
 most programs � symbolic computations such as discrete optimization
problems �Grama and Kumar
 ����� in particular � have execution patterns that are complicated or
unpredictable
 and here the implicit parallelism is harder to discover�

Parallelizing compilers are often used because of the high investment in existing application software�
Similar to digitizing old recordings
 which cannot produce the quality of new digital recordings
 par	
allelizing sequential algorithms does not work as well as algorithms genuinely conceived for parallel
implementations� Automatic parallelization can discover the parallelism latent in an existing algo	
rithm
 but it cannot invent new parallel algorithms� Programmers who can express their ideas in
a parallel way sometimes invent entirely new ways of solving problems� In order to embody their
inventions in working programs they need languages that allow parallelism to be expressed explicitly
� languages based on parallel software models�

Opportunities for automatic detection of parallelism in existing programs are
 therefore
 limited and
furthermore
 in many cases the formulation of a parallel program is more natural and appropriate than
a sequential one� Programming explicitly parallel programs is not much harder than programming
sequential programs
 if the problem lends itself to a parallel solution� Consequently
 we argue that the
best way to get a parallel program is to write a parallel program# Hence
 there does not remain the
question if we should provide explicit parallelism to the programmer at all� The remaining question
is� How to provide explicit parallelism! We shall address this subject in Sect� ����

There exist several motivations for programming parallel applications�

�� Decreasing the execution time for an application program�

�� Increasing the fault	tolerance�

�� Exploiting inherent parallelism of the application�

Achieving speedup through parallelism is a common motivation for executing an application program
on a parallel computer system� Another motivation is achieving fault	tolerance� for critical applica	
tions like controlling a nuclear power plant
 a single processor may not be reliable enough� Parallel
computing systems are potentially more reliable� as the processors are autonomous
 a failure in one
processor does not a�ect the correct functioning of the other processors� Fault	tolerance can
 there	
fore
 be increased by replicating functions or data of the application on several processors� If some of
the processors crash
 the others can continue the job� We will return the this subject in Sect� �����

The main motivation for integrating explicit parallelism into a prototyping language is to provide
means for modeling inherently parallel applications� Consider
 for instance
 distributed systems such
as air	tra�c	control and airline	reservation applications
 which must respond to many external stim	
uli and which are therefore inherently parallel� To deal with nondeterminism and to reduce their
complexity
 such applications are usually structured as independent parallel processes� Similarly
 a
company with multiple o�ces and factories may need a computing system which enables people and
machines at di�erent sites to communicate with each other� Such a system has to run on distributed
hardware and
 thus has to be programmed in a parallel way�

Consequently
 a prototyping language emphasizes logical parallelism rather than physical parallelism�
We quote for a de�nition of logical parallelism and physical parallelism�

�Physical parallelism is related to the implementation� it corresponds to the distribution of
tasks on several processors� By logical parallelism
 we mean the possibility of describing a
program as a composition of several independent tasks� Of course
 a particular implemen	
tation can turn logical parallelism into physical parallelism
 but these two notions have
very di�erent natures� the former is a program	structuring tool
 whereas the latter is an
implementation technique�� �Ban$atre and M"etayer
 ����
 page ���

Therefore
 logical parallelism is the potential for physical parallelism� Sometimes the term concurrency
is used for logical parallelism �Ben	Ari
 ������ As we are mainly interested in logical parallelism
 we
shall use the terms concurrency and parallelism as synonyms for logical parallelism in this thesis�

��� Approaches to Parallel Programming ��

��� Approaches to Parallel Programming

There are two issues which must be addressed in designing a language for parallel programming�

� How to achieve parallel execution!

� How to coordinate parallel executing parts of a program!

The �rst issue is concerned with process creation and termination
 and the second issue is concerned
with communication and synchronization between cooperating parallel processes� An issue related to
synchronization is nondeterminism� A process may want to wait for information from any of a group
of other processes
 rather than from one speci�c process� Since it is not known in advance which
member �or members� of the group will provide its information �rst
 such behavior appears to be
nondeterministic for the waiting process� To program such behavior
 a notation is needed to express
and control nondeterminism� As we shall see
 each of these issues may be addressed to some degree
in a given language
 and they may be resolved in quite di�erent ways�

Many languages for parallel programming have evolved during the last years
 making the choice
of the most suitable language for prototyping parallel algorithms a di�cult one� More important
the underlying models of the languages di�er widely� Below
 we shall take a closer look at several
high	level parallel programming models and languages which may be suitable for prototyping parallel
algorithms and applications� We conclude with an evaluation in Sect� ������� The models we consider
for presentation and evaluation are�

�� Data parallelism �Sect� ������

�� Parallel object	oriented programming �Sect� ������

�� Parallel functional programming �Sect� ������

�� Parallel logic programming �Sect� ������

�� Unbounded nondeterministic iterative transformations �Sect� ������

�� Multiset transformations �Sect� ������

�� Virtual shared memory �Sect� ������

�� The shared data	object model �Sect� ������

�� Generative communication �Sect� ������

As we shall see
 mainly models which emphasize some kind of shared data were considered� Our
presentation excludes the basic model of message passing � This basic model is that of a group of
sequential processes running in parallel and communicating through passing messages� This model di	
rectly re�ects the distributed memory architecture
 consisting of processors connected through a com	
munications network� Many variations of message passing have been proposed� With asynchronous
message passing
 the sender continues immediately after sending the message� With synchronous mes	
sage passing
 the sender must wait until the receiver accepts the message� Remote procedure call and
rendezvous are two	way interactions between two processes� Broadcast and multicast are interactions
between one sender and many receivers� Languages based on the message passing model include CSP

occam
 Ada
 SR
 and many others� As these languages with their variations of message passing have
been studied extensively in the literature
 we refer to �Bal et al�
 ����� for an overview
 and do not
discuss them in detail here� However
 we shall include this model in our evaluation in Sect� �������
Note
 however
 that the parallel object	oriented languages
 which shall be discussed in Sect� �����
 rely
on message passing as their device for communication�

As the prototyping language ProSet �Chap� ��
 which is a successor to SETL �Schwartz et al�
 �����

is an essential basis for Part II of this thesis
 we mention two message	passing variations of SETL�

�� ��� Approaches to Parallel Programming

PARIS �for PARallel Interpretation of Setl� extends SETL with simple primitives for sending and
receiving messages �Korneev et al�
 ������ PAISLey is a set	based functional programming language
whose set	based aspects are similar to SETL �Zave and Schell
 ������ Parallelism in PAISLey is based
on a model of event sequences and used to specify functional and timing behavioral constraints for
asynchronous parallel processes� The processes communicate via exchange functions� An exchange
function consists of a pair of function calls
 one in each of two di�erent processes� During execution

when the two processes both reach the evaluation of their half of the exchange function
 the argument
of one function is passed as the return value to the other and vise versa �i�e�
 they exchange their
arguments�� The connection between the two functions is established via channel attributes of the
function calls� Exchange functions may be compared with Ada�s rendezvous concept �Bal et al�
 ������

There exist some approaches to develop prototypes for parallel programs on the basis of Petri	nets
�Reisig
 ����� or data	�ow diagrams �DeMarco
 ������ Petri	Nets and data	�ow diagrams can be
regarded as graphical representations of message	passing systems� Therefore
 they are often used to
build prototypes for message	passing programs� For instance
 prototypes for occam programs are
developed in �Br"eant and Pavoit	Adet
 ����� with Petri	nets and in �Jones et al�
 ����� with data	�ow
diagrams� In �Ma and Hintz
 �����
 Petri	nets in combination with data	�ow diagrams are used to
develop prototypes for occam programs� Extended data	�ow diagrams are used in �Levy and Pavlides

����� to support prototyping of distributed systems� The language SEGRAS �Kr�amer
 ����� is based
on an integration of algebraic speci�cations and high	level Petri	nets� Data objects are speci�ed as
abstract data types
 while dynamic behavior is speci�ed graphically by means of high	level Petri	nets�
A subset of the language is executable to support speci�cation	level prototyping� Execution is based
on the operational semantics of the language combining term rewriting and Petri	net simulation�

For some applications
 the basic model of message passing may be just what is needed� This is
 for
example
 the case for an electronic mail system� For other applications
 however
 this basic model
may be too low	level and in�exible� In particular
 the lack of a global name space forces algorithms to
be speci�ed at a relatively low level
 since it is complicated to simulate shared memory� This greatly
increases the complexity of programs
 and also restricts algorithm design choices
 inhibiting experi	
mentation with alternate algorithm choices or problem decompositions� Therefore
 several alternative
models have been designed for parallel programming
 which provide higher	level abstractions� These
languages emphasize some kind of shared data�

The traditional method for communication and synchronization with shared data is through shared
variables� The use of shared variables for coordination of parallel processes with
 e�g�
 semaphores or
critical sections has been studied extensively� We assume a familiarity with this material and refer
the uninitiated reader to �Andrews and Schneider
 ����� or �Andrews
 ������ For instance
 Proteus
�Mills et al�
 ����� is a SETL	like language where the communication between parallel processes is
through shared variables� We regard shared variables as a low	level medium for coordination
 because
the synchronization
 which is necessary to prevent multiple processes from simultaneously changing
the same variable �avoiding lost updates�
 is di�cult� Several other coordination models based on
shared data exist
 however
 which are better suited for parallel programming�

A well developed coordination device is the distributed data structure� Distributed data structures
are data structures that can be manipulated simultaneously by several processes� A distributed
data structure is
 therefore
 a shared data object to which many processes may append and remove
information� Processes communicatingvia distributed data structures do so with minimal coordination
and book	keeping� processes may deposit data without being aware of the receivers who will access
it� Processes may access data without being aware of the producers who generated it� This implies
asynchronous behavior
 since the generation of information is decoupled from its consumption�

Distributed data structures are found in a number of languages� Distributed data structures in
form of arrays provide a shared memory model �Sect� ������� Concurrent object	oriented languages
that permit an object to receive messages simultaneously from several processes also support a form
of distributed data structure
 since the state of such an object may be visible to many processes
concurrently �Sect� ������� Multilisp�s futures �Sect� ������ support distributed data structures since a
complex structure
 whose elements are futures
 may be examined and manipulated by many processes

����� Data Parallelism ��

simultaneously� The write	once shared logical variables �Sect� ������ can also be viewed as distributed
data structures� an attempt to access a shared logical variable blocks until the shared logical variable
is set� The Unity model �Sect� ������ provides distributed data structures in form of sets of mutable
variables
 and theGamma model �Sect� ������ provides distributed data structures in form of multisets�
Distributed data structures can also be built in virtual shared memory �Sect� ������� Orca �Sect� ������
supports distributed data structures through the use of shared data	objects�

However
 the most well	developed use of distributed data structures is found in the Linda programming
model of generative communication� The fundamental mechanismby which distributed data structures
are built and manipulated in Linda is the tuple space
 a data abstraction which resembles a shared
associative memory� We shall discuss generative communication in detail in Sect� ������

�	
	� Data Parallelism

Data parallelism extends conventional programming languages so that some operations can be per	
formed simultaneously on many pieces of data� All the elements in a list or in an array can be updated
at the same time
 for example
 or all items in a data base are scanned simultaneously to see if they
match some criterion� Data	parallel operations appear to be done simultaneously on all a�ected data
elements� This kind of parallelism is opposed to control parallelism that is achieved through multiple
threads of control
 operating independently� According to Flynn�s taxonomy of computer architec	
tures
 the data	parallel programming model is based on the single�instruction�stream�multiple�data�
stream �SIMD� model as opposed to the multiple�instruction�stream�multiple�data�stream �MIMD�
model� The SIMD programming model is synchronous because all active processing elements execute
the same operation simultaneously�

Several proposals involve annotating sequential imperative languages �e�g� FORTRAN� with directives
for mapping processes and data to processors� An example in Kali �Mehrotra and Rosendale
 ������

processors procs�p�
real A�n�� B�n�� C�n�
dist A�block�� B� cyclic�� C�block cyclic�b��

Given a processor array
 the programmer must specify the distribution of data structures across the
processors� Here
 the arrays A
 B
 and C are distributed across the p processors of the one	dimensional
processor array procs� Array A is distributed by blocks such that each processor receives a contiguous
block of elements of the array� Conversely
 array B has its rows cyclically distributed� Array C is
distributed in a block	cyclic fashion with size b� That is
 the elements of C are �rst divided into
blocks of size b
 and then these blocks are cyclically distributed across the set of processors� Parallel
operations on these distributed data structures are then speci�ed by doall loops�

doall �	 i
�� n on owner�A�i��
A�i�
 � � �
���

�	 continue

The iterations of a doall loop must not have inter	iteration dependencies� That is
 any memory
location assigned to in one iteration cannot be accessed or modi�ed in any other iteration� This
allows the iterations to be executed in parallel� There is an implied synchronization at the beginning
and at the end of the parallel loop� all threads start concurrently and have to �nish execution of their
iterations before any statement following the loop is executed� The on clause speci�es the processor
on which each loop invocation is to be executed� The system	de�ned function owner yields the home
processor of its argument� Such programs are usually executed on vector processors and processor
arrays �Duncan
 ������

�� ��� Approaches to Parallel Programming

An approach to data	parallel image processing can be found in Paragon �Reeves
 ����� which provides
data	parallel operations on so	called Parrays �parallel arrays�� Data	parallel operations in Paragon
are applied as function calls on the Parrays
 and not in parallel loops to avoid overspeci�cation of
loops over such parallel arrays� Another approach to data	parallel image processing which is based
on the computational model of cellular automata can be found in CELIP �Hasselbring
 �����
 where
the data	parallel operations are applied through overloading prede�ned operators� These approaches
avoid the explicit use of parallel loops
 because parallel loops have fundamentally di�erent semantics
compared to sequential loops�

Since ProSet is a successor to SETL
 we take a closer look at a data	parallel extension of SETL for
a comparison with our work� In Parallel SETL �Hummel et al�
 �����
 parallelism is introduced into
SETL through the use of parallel iterators
 which are used in explicit and implicit loops over sets and
tuples� For example
 the instructions in the following loop are executed in parallel and not executed
in sequential iterations�

for i par over ��������� do

statements
end do�

There is no explicit tasking like futures in Multilisp �Sect� ������ or eval in Linda �Sect� ������ in
Parallel SETL� If parallel loop iterations in Parallel SETL update the same global variable
 then one
wins
 and the others are lost� In Parallel SETL
 multiple writes are not considered harmful and enable
chaotic algorithms to be expressed� This may cause the well known problems with lost updates of
shared variables
 because access to shared variables is not synchronized�

�After code written in Parallel SETL has been veri�ed on a uniprocessor
 there is no
guarantee that the algorithm and code will work on a multiprocessor� The ability to
execute the code on a uniprocessor provides one level of testing and analysis
 but will not
exercise the synchronization facilities
 nor permit the discovery of race conditions or other
potential problems with parallel code�� �Hummel et al�
 �����

In our approach to parallel programming
 which will be presented in Part II
 the e�ects of access	
ing shared data are well de�ned and thus our programs shall run with the same functionality on a
uniprocessor as they do on a multiprocessor �but probably not with the same speed�� Note
 however

that in Parallel ISETL �Jozwiak
 �����
 which is another data	parallel extension of SETL
 access to
shared variables is synchronized by the explicit use of semaphores to avoid lost updates and
 therefore

chaotic algorithms�

Bibliographic Notes

For an account to data parallel algorithms see �Hillis and Steele
 ����� and for an account to data	
parallel programming see �Quinn and Hatcher
 ������ Flynn�s taxonomy of computer architectures is
published in �Flynn
 ������ The example in Kali is from �Mehrotra and Rosendale
 ������

�	
	
 Parallel Object�Oriented Programming

An approach to imperative programming which has gained widespread popularity is that of object	
oriented programming� In this approach
 an object is used to integrate both data and the means of
manipulating that data� Objects interact exclusively through message passing and the data contained
in an object is visible only within this object itself� Objects are used for structuring programs�

As already noted
 we do not present the classical model of messages passing in detail� Instead we take
a closer look at parallel object	oriented languages where communication between objects is always

����� Parallel Object�Oriented Programming ��

accomplished through message passing because sharing data among objects violates the encapsulation
principle�

The behavior of an object is de�ned by its class
 which comprises a list of operations that can be
invoked by sending a message to an object� All objects must belong to a class� Objects in a class have
the same properties and can be manipulated using similar operations� The de�nition of an object
class can act as a template for creating instances of the class� Each instance has a unique identity

but has the same set of data properties and the same set of operations which can be applied to it�

Inheritance allows a class to be de�ned as an extension of another �previously de�ned� class� Typically
when a new class is created
 a place for it is de�ned within the class hierarchy� The e�ect of this is
that the new class inherits the state and operations of its superclass in the hierarchy� Objects may
inherit features from more than one class in some approaches �multiple inheritance��

There are several possibilities for the introduction of parallelism into object	oriented languages
 viz��

� Objects are active without having received a message�

� Objects continue to execute after returning results�

� Messages are sent to several objects at the same time�

� Senders proceed in parallel with receivers�

These possibilities can be realized by associating a process with each object� Just as a parallel	
processing environment implies multiple processes
 a parallel object	oriented system spawns multiple
objects
 each of which can start a thread of execution� Objects and processes
 however
 are independent
of each other� Processes invoke operations in objects� Objects are usually addressed by an object
reference �returned upon creation of the object� or by a global object name�

Parallel object	oriented languages use three types of communication� synchronous
 asynchronous
 and
eager invocation� Synchronous communication uses remote procedure calls� It is easiest to implement

but sometimes wastes time because of the requirement for both the sender and receiver to rendezvous�
Asynchronous communication eliminates the wait for synchronization and can increase concurrent
activity� Eager invocation
 or the futures method
 is a variation of asynchronous communication �see
also our discussion of futures in Multilisp in Sect� ������� As in asynchronous operation
 the sender
continues executing
 but a future variable holds a place for the result� The sender processes until it
tries to access the future variable� If the results have been returned
 the sender continues� if not
 it
blocks and waits for the results�

In object	oriented programming
 communication and computation are subsumed by objects and their
operations �also called methods�� The model is inherently distributed
 since it emphasizes distinct

independent objects communicating via messages rather than centralized control constructs� Facilities
for synchronization and mutual exclusion are usually supplied in form of semaphores and monitors
�Andrews and Schneider
 ������ Sloop �Lucco
 ����� supports indivisible objects
 for which only one
operation invocation at a time is allowed to execute�

Inheritance complicates synchronization� When a subclass inherits from a base class
 programs must
sometimes rede�ne the synchronization constraints of the inherited method� If a single centralized
class explicitly controls message reception
 all subclasses must rewrite this part each time a new
operation is added to the class� The subclass cannot simply inherit the synchronization code
 because
the highest	level class cannot invoke the new operation�

Bibliographic Notes

The book �Yonezawa and Tokoro
 ����� is a collection of papers on various parallel object	oriented
languages
 and �Wyatt et al�
 ����� is a more recent survey of parallel object	oriented languages� We
refer to these publications for an overview about parallel object	oriented languages�

�� ��� Approaches to Parallel Programming

Concurrent Smalltalk �Horwat et al�
 �����
 for example
 de�nes all messages as asynchronous
 and
synchronization for their return values is provided by the explained future method� Several methods
may execute concurrently on an object
 but synchronization across tasks is managed by the program	
mer using locks and semaphores� Concurrent Smalltalk introduces the concept of a distributed object
with a single name but a distributed state�

Parallelism is achieved in Emerald �Jul et al�
 ����� by making objects active� Emerald provides
a shared name space for objects
 together with a location	transparent invocation mechanism� It is
unusual in that it supports task and object migration�

The actor model �Agha
 ����� is not object	oriented as is does not support any form of inheritance�
It is more appropriately considered to be object�based � An actor is simply an object which responds
to messages
 but it can only respond to a single message at a time� Parallelism is supported in many
ways� Messages can be sent to several actors
 so that each is responding to its own message� An actor
responds to exactly one message
 then dies� One of the things that it must do before it dies is to
specify a replacement which will handle any additional messages sent to that actor� A message queue
is associated with each actor to hold incoming messages in the order of arrival�

�	
	� Parallel Functional Programming

A functional program comprises a set of equations describing functions and data structures which a
user wishes to compute� The application of a function to its arguments is the only control structure
in pure functional languages� Functions are regarded in the mathematical sense in that they do not
allow side e�ects� As a consequence a value of a function is determined solely by the values of its
arguments
 a property which is referred to as referential transparency � The absence of side e�ects
accounts for the well	known Church�Rosser Property
 which essentially states that no matter what
order of computation is chosen in evaluating an expression list
 the program is guaranteed to give the
same result �assuming termination��

Therefore
 functional programs are inherently parallel� Because they are free of side e�ects
 each
function invocation can evaluate all of its arguments and possibly the function body in parallel� The
only delay may occur when a function must wait on a result being produced by another function�
The real problem is not discovering parallelism but reducing it so as to keep the overhead on an
acceptable level� Parallel functional languages address this problem by allowing the programmer to
insert annotations which specify when to create new threads of control�

Multilisp is such a parallel functional language �Halstead
 ������ Multilisp augments Scheme with
the notion of futures where the programmer needs no knowledge about the underlying process model

inter	process communication or synchronization to express parallelism� He only indicates that he does
not need the result of a computation immediately �but only in the �future�� and the rest is done by
the runtime system� Instead of returning the result of the computation
 a placeholder is returned
as result of process spawning� The value for this placeholder is unde�ned until the computation has
�nished� Afterwards the value is set to the result of the parallel computation� the future resolves
to the value� Any process that needs to know a future�s value will be suspended until the future
resolves thus allowing concurrency between the computation of a value and the use of that value� The
programmer is responsible for ensuring that potentially concurrently executing processes in Multilisp
do not a�ect each other via side e�ects� An example�

�let ��x �future expr�		
�y expr�		

� body 		

The value for x
 which will be the result value of expr�
 is evaluated concurrently to expr� and body�
The value for y
 which will be the result value of expr�
 is evaluated before the evaluation of body
will be started� When body needs the value of x
 and x is not yet resolved
 it touches the future of x
and is suspended until the future resolves� Most operations
 for example arithmetic
 comparison
 type

����� Parallel Logic Programming ��

checking
 etc�
 touch their operands� This is opposed to simple transmission of a value from one place
to another which does not touch the value
 for example by assignment
 passing as a parameter to a
procedure
 returning as a result from a procedure
 and incorporating the value into a data structure�
Transmission can be done without waiting for the value� The semantics of futures is based on lazy
evaluation
 which means that an expression is not evaluated until its result is needed�

Bibliographic Notes

Collections of papers on several parallel functional languages may be found in �Ito and Halstead

����� Szymanski
 ������ �Schreiner
 ����� provides an annotated bibliography on parallel functional
programming� The Church�Rosser Property is proven in �Barendregt
 ����� for the �	calculus�

There exist approaches to futures very similar to Multilisp�s futures
 for instance
 in Qlisp �Gabriel and
McCarthy
 ������ The object	oriented parallel language COOL �Chandra et al�
 ����� adds futures to
C%%� Concurrent Smalltalk �Horwat et al�
 ����� adds futures to Smalltalk �see also Sect� �������

So	called para�functional programming in ParAl� �Hudak
 ����� is another approach to parallel func	
tional programming� ParAl� is a functional language which provides mechanisms for mapping a
program onto speci�c multiprocessor topologies� The mapping is accomplished by annotating expres	
sions so as to indicate the processor on which they will be executed� An expression �future expr	
in Multilisp is written in ParAl� as �expr
on proc	
 which declares that expr is to be computed
on the processor identi�ed by proc� The expression proc must evaluate to a processor identi�cation�
It is assumed in ParAl� that processor identi�cations are integers and that there is some prede�ned
mapping from those integers to the physical processors they denote�

�	
	� Parallel Logic Programming

Logic programming languages
 of which PROLOG is best known
 express programs as a set of clauses

which may be read procedurally or declaratively� For instance
 the following clauses�

A �� BCD

A �� EF

can be interpreted as �to do A
 do either B
 C
 and D
 or do E and F�� Alternatively
 we can view it as
�A is true
 if either B
 C
 and D are true
 or E and F are true��

PROLOG programs express two distinct forms of parallelism� Firstly
 several di�erent clauses may be
evaluated separately� This is called OR	parallelism
 since only one of them must succeed� Secondly

each subgoal �in the above example B
 C
 D
 E
 and F are subgoals� can be executed in parallel
 although
data dependencies may limit the extent of parallelism� This is called AND	parallelism
 since all of the
subgoals must succeed for the clause to succeed� AND	parallelism is the simultaneous reduction of
several di�erent subgoals in a goal� OR	parallelism is the simultaneous evaluation of several clauses for
the same goal� AND OR	parallelism is implicit parallelism similar to the implicit parallelism found
in functional languages
 which does not give additional expressiveness�

Similar to functional programs
 for logic programs the real problem is not discovering parallelism but
reducing it so as to keep the overhead on an acceptable level� In the Aurora approach �Lusk et al�

����� PROLOG has been extended with the predicate parallel
 which de�nes a rule explicitly as
OR	parallel executable� This approach is similar to Multilisp�s annotations which specify when to
create new threads of control �see Sect� �������

AND	parallel committed choice logic is a new approach to parallel logic languages which uses guards
in the clauses �Shapiro
 ������ Subgoals are uni�ed in parallel� This approach uses shared logical
variables as a communication medium� The di�erence to PROLOG is that the clauses in the program
must be written in a way that avoids backtracking
 as this is not allowed in committed choice logic�
In OR	parallel committed choice logic all clauses that match a goal are tried in parallel and when one

�� ��� Approaches to Parallel Programming

can be uni�ed
 the execution commits to this clause� If more clauses can be uni�ed
 one is chosen
nondeterministically� The committed choice logic approaches imply a new programming technique
compared to PROLOG
 because the ability to backtrack is missing� A clause in committed choice
logic has the structure�

A �� G� ��� Gm � B� ��� Bn

G� ��� Gm are guards
 and the rest is like ordinary PROLOG clauses� For reasons of e�ciency

the guards are �at in the sense that they may only consist of a prede�ned set of �relatively simple�
operations� Such a clause includes a commit operator � �omitted if the guard is empty� used to
separate the right	hand side of the clause into a conjunction of guard conditions and a conjunction
of subgoal predicates� The guard conditions must evaluate to true to enable the evaluation of the
subgoals� The commit expresses don�t�care nondeterminism
 i�e�
 the termination of the OR	parallel
evaluation of alternative clauses� if more than one clause can apply to reduce a subgoal
 one is chosen
arbitrarily and no backtracking can take place if that choice later results in a failure� For instance

given the following program fragment and the goal A��	

A�X	 �� X � � � B

A�X	 �� X � � � C

both guards are satis�ed
 so one is chosen arbitrarily and A��	 is reduced to B or C� This fragment
shows also the di�erence between don�t�know nondeterminism and don�t�care nondeterminism� If the
above committed choice logic clauses were PROLOG clauses
 then when the chosen clause fails by
backtracking �i�e�
 a solution is not obtained� the other clause is later chosen� So in PROLOG
 since we
do not know which clause will be successful
 all must be tried� Conversely
 in committed choice logic
programming we do not care which clause is chosen
 and no backtracking is activated if a committed
clause fails in the body�

The essence of don�t	know nondeterminism is that failing computations do not count and only suc	
cessful computations may produce a result� The essence of don�t	care nondeterminism is that once a
transition has been taken the computation is committed to it and cannot backtrack or explore in par	
allel other alternatives� The guards imply an important di�erence from PROLOG when considering
OR	parallelism
 since when trying a goal in parallel
 only one clause is chosen and execution is then
committed to this clause
 i�e�
 the choice cannot be undone�

In committed choice logic
 only one mechanism of communication among processes is allowed� uni�	
cation of shared logical variables� The value of a shared logical variable can be set once only �single	
assignment property�� Communication in committed choice logic is associative and asynchronous�
The goal

�� A�X	 B�X	�

de�nes two processes that communicate by asynchronously accessing the shared logical variable X� This
can contain a simple value
 or a complex data structure� Processes communicate by instantiation of
a shared logical variable and synchronize by waiting until a shared logical variable is instantiated�

Operationally
 the committed choice logic model of computation consists of a dynamic set of paral	
lel processes
 communicating by instantiating shared logical variables
 synchronizing by waiting for
variables to be instantiated
 and making nondeterministic choices
 possibly based on the availability
of values of variables� This general runtime structure is the same for Flat Concurrent Prolog �FCP�

Parlog
 and Guarded Horn Clauses �GHC�� The main di�erences lie in the way uni�cation is used

and in the prede�ned predicates in the guards o�ered by each language� See �Shapiro
 ����� for a
discussion of the di�erences�

Delta	Prolog �Cunha et al�
 ����� is another parallel logic language
 which being based on CSP �Hoare

����� supports a parallel model very di�erent from that of the above discussed parallel logic languages�
Delta	Prolog o�ers both forms of nondeterminism� committed choice �don�t care� and backtrackable

����� Unbounded Nondeterministic Iterative Transformations ��

choice �don�t know�� Synchronous event goals are the Delta	Prolog counterpart of CSP�s communi	
cation operations� A Delta	Prolog program without events is a PROLOG program� A Delta	Prolog
program with events maintains a PROLOG �avor
 since events are backtrackable� This implies the
need for a mechanism for distributed backtracking � When a process tries to backtrack an event goal

it must inform its partner process which also has to engage in backtracking to that event� This is
necessary to guarantee a complete search in the solution space of the problem�

Bibliographic Notes

For a full account to PROLOGwe refer the reader to �Clocksin and Mellish
 ������ The �rst PROLOG	
example of this section is from �Anderson et al�
 ������ �Ciancarini
 ����� is a survey of several parallel
logic languages� For a full account to parallel committed choice logic we refer to �Shapiro
 ������ Strand
�Foster and Taylor
 ����� is a commercial parallel programming system based on committed choice
logic which comprises a language
 a development environment and parallel programming libraries�

�	
	� Unbounded Nondeterministic Iterative Transformations

The computational model of Unity is unbounded nondeterministic iterative transformations of the
program state �Chandy and Misra
 ������ A Unity program is essentially a declaration of a set of
variables
 a speci�cation of their initial values
 and a set of multiple	assignment statements� Program
execution starts from any state satisfying the initial condition and consists in selecting nondetermin	
istically some assignment statement
 executing it
 and repeating forever� The set of statements and
variables in a Unity program is �xed at compile time� Unity is based on the array data structure�
Nondeterministic selection of statements is constrained by the following fairness rule� every statement
is selected in�nitely often� This is unconditional fairness according to �Kwiatkowska
 ����� �see also
our discussion of fairness in Sect� �������

Unity programs terminate by reaching a xed point � A program reaches a �xed point in its execution
if the execution of any statement does not change the state of the program� Therefore
 one way to
implement termination for a Unity program is to halt it after it reaches a �xed point�

To illustrate the language
 we present a solution to the problem of �nding the earliest meeting time
acceptable to every member of a group of people� Time is integer valued and nonnegative� We take
a group of three people� F
 G
 and H � Associated with the persons F
 G
 and H are functions f
 g

and h �respectively�
 which map times to times� The meaning of f is as follows �and the meanings of
g and h follow by analogy�� For any t
 f �t� � t holds� person F can meet at time f �t� and cannot
meet at any time u where t � u � f �t�� Note that f �f �t�� � f �t� holds
 and t � f �t� means that
F can meet at time t � Thus f �t� is the earliest time at or after t at which person F can meet� We
assume for simplicity that there exists some common meeting time for the involved persons� In the
following program
 the symbol is used to separate the assignment statements� The initial condition
is speci�ed under initially�

Program Meeting
initially r � �
assign r �� f �r�

r �� g�r�
r �� h�r�

end fMeetingg

This program has three assignments� r �� f �r�
 r �� g�r�
 and r �� h�r�� Computation proceeds by
executing any one of the assignments
 selected nondeterministically� The selection obeys the fairness
rule� every assignment is executed in�nitely often� Initially the proposed meeting time is zero� Any
of the participants � F
 G
 or H � increases the value of the proposed meeting time to the next

�� ��� Approaches to Parallel Programming

possible time
 if he cannot meet at that time� At �xed point
 r is a common meeting time� Fair
selection is necessary to guarantee that r is the common meeting time at the �xed point�

Such a Unity program can be viewed as a restriction of Dijksta�s guarded command notation �Dijkstra

�����
 allowing programs to contain only a single repetitive construct� All the guards are true and
the commands are the assignments� However
 guarded commands do not guarantee fairness�

Unity�s goal is to unify seemingly disparate areas of programming with a simple theory consisting
of a model of computation and an associated proof system� Its computational model is built upon
a traditional imperative foundation
 a state	transition system with named variables to express the
state and multiple	assignment statements to express the state transitions� On top of that foundation

however
 Unity follows a more radical design� all �ow	of	control and communication constructs have
been eliminated from the notation�

The resulting computational model is that a program generates a set of execution sequences �sequences
of states�� When the program is executed on a parallel machine
 some statements could be executed in
parallel� The Unity notation intends to avoid specifying sequential dependencies which are not inherent
in the problem to be solved� Unlike sequential languages the order of execution of the assignment
statements has no relation to the order in which they are written� Assignments to di�erent variables
could be executed in parallel
 but assignments to the same variable must occur atomically and thus
in sequence�

A Unity program describes what should be done in the sense that it speci�es the initial state and
the state transformations �i�e�
 the assignments�� A Unity program does not specify precisely when
an assignment should be executed � the only restriction is a rather weak fairness constraint� every
assignment is executed in�nitely often� Neither does a Unity program specify where �i�e�
 on which
processor� an assignment is to be executed
 nor to which process an assignment belongs� Also
 a Unity
program does not specify how assignments are to be executed or how an implementation may halt
a program execution� Termination is regarded as a feature of an implementation� Concerns between
what on one hand
 and when
 where
 and how on the other are separated� The what is speci�ed
in a program
 whereas the when
 where
 and how are speci�ed in a mapping to a particular target
architecture� We refer to �Chandy and Misra
 ����� for a description of mappings to particular target
architectures in Unity�

The main objective of Unity is the systematic development of programs which may be implemented
on di�erent architectures� Program development is carried out in two basic steps� �rst a correct
program is derived from a speci�cation
 then this program is adapted to the target architecture� This
adaptation is achieved by successive transformations of the original program in order to make control
explicit� The multiple	assignment statement is used to express the mapping onto synchronous shared	
memory architectures
 and the mapping onto asynchronous architectures is achieved by partitioning
the statements of the program� Unity uses sets of assignment statements to avoid overspeci�cation of
control �ow
 and maps from statements to processors in order to specialize an algorithm to a particular
topology�

Bibliographic Notes

�Chandy and Misra
 ����� describe the language Unity and its associated proof system� The problem
and solution of �nding the earliest meeting time acceptable to every member of a group of people is
from this book�

We �nd a fundamental di�erence between Unity and committed choice logic languages �Sect� ������
in the notion of a variable� In Unity
 variables are mutable� therefore
 transitions must exclude
other transitions from writing variables they read from
 and from accessing variables they write to�
In committed choice logic languages
 variables are single	assignment� therefore
 no mutual exclusion
mechanisms are required when reading a variable� However
 the Parallel Program Design approach
of �Chandy and Taylor
 ����� is derived in part from the Unity model and the model of committed
choice logic�

����	 Multiset Transformations ��

�	
	 Multiset Transformations

The Gamma formalism �Ban$atre and M"etayer
 ����� has been proposed to allow the description of
programs without arti�cial sequentiality� Sequentiality is considered arti�cial when it is not implied
by the logic of the program� Gamma is a minimal language based on one data structure
 the multiset

and the corresponding control structure
 the chemical reaction�

Therefore
 Gamma implements the idea of a chemical reaction of the elements in a multiset� Some
elements which ful�ll a certain predicate �also called reaction condition� may be taken from the
multiset and replaced by new elements which are generated by combining the selected elements using
the so	called reaction function� For example
 a very simple Gamma program computing the largest
set S included in a multiset M is �written in guarded commands like syntax��

S �� M �
do
� x � S � � y � S � fxg� x � y �� S �� S � fxg

od

An intuitive way of describing the meaning of a Gamma program is the metaphor of the chemical
reaction� the multiset can be seen as a chemical solution� The guard ��� x � S � � y � S � fxg� x � y�
in our example� is the reaction condition which is a property to be satis�ed by reacting elements�
The action ��S �� S � fxg� in our example� describes the product of the reaction� The computation
terminates when a stable state is reached
 that is to say when no elements of the multiset satisfy the
reaction condition� In Gamma
 multisets are enclosed within fg since Gamma does not support sets�

The above example also serves as an illustration of the di�erences between sets and multisets� As
another example
 consider the following program which returns the set of prime numbers smaller than
number N �

prime numbers�N� � P�f�� � � � � N g� where
P�M� � do

replace x� y � M
if multiple �x�y�
by y

od

This program proceeds by removing from the multiset f�� � � � � N g elements that are multiples of an
other element in the multiset� The function multiple �x�y� yields true
 if x is a multiple of y �

If several reaction conditions hold for several subsets of a multiset at the same time
 the choice which
is made among them is nondeterministic� As a consequence
 if the reaction condition holds for several
disjoint subsets
 the reactions can be carried out independently �and simultaneously�� This property
is the basic reason why Gamma programs do generally exhibit a lot of potential parallelism� Since
all reactions operate on disjoint elements
 they can take place simultaneously
 and Gamma programs
can be naturally executed in a data	parallel way�

Gamma is not intended as a programming language in the usual sense of the term� It is designed as
an intermediate language between speci�cations and programs� it is possible to express in Gamma

the idea of an algorithm without any detail about the execution order or the memory management�
Gamma programs are executable but any straightforward implementation would be extremely ine�	
cient� These features make Gamma a candidate for prototyping parallel algorithms�

Bibliographic Notes

The program computing the largest set included in a multiset is from �Mussat
 ����� and the program
which returns the set of prime numbers is from �Ban$atre and M"etayer
 ������

�� ��� Approaches to Parallel Programming

The chemical abstract machine model �Berry and Boudol
 ����� is based on the concepts of Gamma�
It elaborates the original Gamma language by presenting molecules in a systematic way as terms of
algebras
 and re�ning the classi�cation of rules� Molecules encapsulate subsolutions�

�	
	� Virtual Shared Memory

Virtual shared memory in its most general sense refers to a provision of a shared address space on
distributed memory hardware� It intends to combine the scalability of network	based architectures
with the convenience of shared	memory programming� The shared	memory abstraction gives these
systems the illusion of physically shared memory and allows programmers to use the shared	memory
paradigm� Such architectures contain no physically shared memory� Instead the distributed local
memories collectively provide a virtual address space shared by all the processors� Virtual shared
memory is
 therefore
 essentially an emulation of shared memory on a distributed memory parallel
computer� It combines the bene�ts of the ease of programming found in shared	memory multiproces	
sors with the scalability of message	passing multiprocessors� The implementations of virtual shared
memory vary from software	based schemes
 integrated into the operating system
 to hardware	based
schemes which employ conventional caching algorithms� Virtual shared memory systems have been
implemented using three approaches �some systems use more than one approach��

�� hardware implementations that extend traditional caching techniques to scalable architectures

�� operating system and library implementations that achieve sharing and coherence through
memory	management mechanisms
 and

�� compiler implementations where shared accesses are automatically converted into synchroniza	
tion and coherence primitives�

The address space in virtual shared memory systems is usually divided into �xed	size pages
 which
are distributed among the processors� Processes either have no
 read or read�write access to a page�
Read pages can be replicated on multiple processors to reduce access times� Mutual	exclusion syn	
chronization can be implemented by locking pages�

A conventional virtual memory system pages data between the main memory of a processor and disks�
A virtual shared memory system pages data between the main memories of individual processors� The
size of the pages is an important consideration to gain acceptable performance� A suitable compromise
in granularity is the typical page used in conventional virtual memory implementations �Li and Hudak

������

The shared data	object model and the model of generative communication can be regarded as struc�
tured approaches to virtual shared memory� We shall discuss these models in Sects� ����� and �����

respectively�

Bibliographic Notes

For comparative studies of virtual shared memory systems we refer to �Nitzberg and Lo
 ����� Raina

������ Besides being referred to as virtual shared memory
 such architectures have also been given
di�erent names such as shared virtual memory
 distributed shared memory
 or distributed shared virtual
memory � �Hill et al�
 ����� call it cooperative shared memory which is implemented as a combination
of software and hardware intended to provide scalable shared memory�

A critical question for virtual shared memory is� How to retain the consistency on a physically
distributed environment! We refer to �Stumm and Zhou
 ����� for a good evolutionary overview of
algorithms implementing virtual shared memory� These algorithms support static
 migratory
 and
replicated data�

����
 The Shared Data�Object Model ��

�	
	� The Shared Data�Object Model

The shared data	object model is a model for distributed programming using shared data� The pro	
cedural
 statically typed programming language Orca is based on the shared data	object model �Bal
et al�
 ������ It is designed for distributed
 non	shared memory systems
 but provides logically shared
data to the programmer �similar to virtual shared memory
 but in a structured way�� Pointers have in	
tentionally been omitted in Orca to provide security� Also the language lacks global variables� Instead

variables can be passed as reference parameters�

Orca only allows processes to share data	objects of abstract data types� Data	objects are best thought
of as instances �variables� of abstract data types� A data	object is a passive entity� it only contains
data and no process� Such an object can only be manipulated by the operations de�ned by its abstract
data type� Consequently
 access to shared data in Orca always occurs through user	de�ned
 high	level
operations� The shared data	object model is characterized by two important rules�

�� each operation is executed indivisibly
 and

�� each operation is applied only to a single object�

Executing operations indivisibly simpli�es programming
 since the programmers do not have to worry
about mutual exclusion synchronization� Conceptually all operations on a given object are serialized�
However
 an optimizing programming system may execute operations in parallel
 provided that it
obtains the same e�ect as serialized operations�

Operations on multiple shared data	objects are not supported to allow an e�cient implementation�
Such operations can be implemented on top of the shared data	object model
 although the programmer
has to take care of synchronization in this case�

Mutual exclusion synchronization in Orca is done implicitly by executing all operations on objects
indivisibly� Condition synchronization is integrated in the model by allowing operations to block
�wait� until a certain condition becomes true� An operation is only allowed to block initially� Such an
operation consists of a guarded statement
 containing conditions �Boolean expressions� and statement
lists
 very similar to guarded commands� The operation blocks until at least one of the conditions
is true� next
 it chooses one of the guarded statements whose condition is true and executes the
corresponding statement list
 without blocking again� Blocking operations in nested objects require a
somewhat complicated execution model �see �Bal et al�
 ����� for a detailed discussion��

An important semantical issue concerns the ordering of operations on shared data	objects� The model
supports a consistent ordering of operations� it guarantees that all processes will observe operations
on shared objects in the same order�

An abstract data type de�nition in Orca consists of two parts� a speci�cation part and an implemen	
tation part� The speci�cation part gives the operations that can be applied to variables �objects� of
this type� The implementation part contains the data used to represent variables of this type
 the
implementation code of the operations
 and code for initializing variables of the type�

To illustrate the language
 Fig� ��� gives an example of the speci�cation part of a simple abstract data
type
 encapsulating a single integer variable� Fig� ��� shows the implementation part which contains
the data used to represent objects of this type
 the code to initialize the data of new instances of
the type
 and the code implementing the operations� An operation implementation is similar to
a procedure� An operation can only access its own local variables and parameters
 and the local
�internal� data of the object it is applied to�

Parallelism is expressed in Orca through sequential processes� Processes can communicate through
shared data	objects� An object may be passed as a shared parameter to a child process
 as indicated
by the following declaration of the child process�

process child �X� shared IntObject	�

begin ��� end�

�� ��� Approaches to Parallel Programming

object specification IntObject�

operation Value�	� integer� � return current value

operation Assign �val� integer	� � assign a new value

operation Add �val� integer	� � add val to the current value

end�

Figure ���� Speci�cation part of an abstract data type in Orca�

object implementation IntObject�

x� integer� � internal data

operation Value�	� integer�

begin

return x� � return current value

end�

operation Assign �v� integer	�

begin

x �� v� � assign a new value

end�

operation Add �v� integer	�

begin

x �� x�v� � add v to the current value

end�

begin

x �� �� � initialize to zero

end�

Figure ���� Implementation part of an abstract data type in Orca�

A process can be created dynamically by a fork statement� We can declare an object MyObj of
abstract data type IntObject and pass this object as a shared parameter when creating a new child
process�

MyObj� IntObject�

���

fork child �MyObj	�

This is similar to calling a conventional procedure and passing a call�by�reference parameter to it

except that the parent and child will execute in parallel� Any number of child processes can be
created in this way
 and the children may pass the shared objects on to their children
 and so on� So
a hierarchy of processes communicating through shared data	objects can be created� The language
does not provide sharing of data between independent processes �i�e�
 without a common ancestor��

The model is implemented by replicating objects� The idea is to store a local copy of an object
wherever it is needed
 thus read operations on the object can be done locally� An important issue
is how to update the replicas of an object to guarantee the consistent ordering of the operations�
The implementation must guarantee this ordering
 despite using replication� �Bal et al�
 ����� use

����� Generative Communication ��

reliable indivisible broadcasting to guarantee consistent ordering in one implementation and a two	
phase update protocol in another implementation which uses remote procedure calls�

Bibliographic Notes

The shared data	object model has been developed by Henri Bal at the Vrije Universiteit in Amsterdam
�Bal
 ������ The example in Fig� ��� and Fig� ��� is from �Bal et al�
 ������ A new implementation
which uses either full or no replication of objects is presented in �Bal and Kaashoek
 ������ The
decision to replicate objects is based on an integration of compile	time and run	time analysis�

�	
	� Generative Communication

This section presents the model of generative communication with the coordination language Linda
�Gelernter
 ������ Since we took Linda�s concepts as one essential basis for our work
 we shall discuss
it with greater detail than the previously presented languages�

Linda is a coordination language concept for explicitly parallel programming in an architecture inde	
pendent way� Communication in Linda is based on the concept of tuple space
 i�e�
 a virtual common
data space accessed by an associative addressing scheme� Process communication and synchroniza	
tion in Linda is reduced to concurrent access to a large data pool
 thus relieving the programmer
from the burden of having to consider all process inter	relations explicitly� The parallel processes are
decoupled in time and space in a very simple way� processes do not have to execute at the same
time and do not need to know each other�s addresses� This scheme o�ers all advantages of a shared
memory architecture
 such as anonymous communication and easy load balancing� It adds a very
�exible associative addressing mechanism
 a natural synchronization paradigm and at the same time
it avoids the well	known access bottleneck for shared memory systems as far as possible�

The shared data pool in the Linda concept is called tuple space� Its access unit is the tuple
 similar
to tuples in ProSet �Sect� ����� Tuples live in tuple space which is simply a collection of tuples� It
may contain any number of copies of the same tuple� it is a multiset
 not a set� Tuple space is the
fundamental medium of communication� All Linda communication is a three	party operation� sender
interacts with tuple space
 tuple space interacts with receiver� Conversely
 traditional models such as
message passing provide two	party operations�

Process communication and synchronization in Linda is called generative communication
 because
tuples are added to
 removed from
 and read from tuple space concurrently� Synchronization is done
implicitly�

Reading access to tuples in tuple space is associative and not based on physical addresses � in fact

the internal structure of tuple space is hidden from the user� Reading access to tuples is based on their
expected content described in so	called templates� This method is similar to the selection of entries
from a data base� Each component of a tuple or template is either an actual
 i�e�
 holding a value
of a given type
 or a formal
 i�e�
 a declared placeholder for such a value� A formal is pre�xed with
a question mark� Tuples in tuple space are selected by matching
 where a tuple and a template are
de�ned to match
 i� they have the same structure �corresponding number and type of components�
and the values of their actuals are equal to the values of the corresponding tuple �elds�

The combination of the computation language C with the coordination language Linda forms the
parallel programming language C	Linda �Carriero and Gelernter
 ������ C	Linda de�nes six opera	
tors
 which may be added to a sequential computation language� These operators enable sequential
processes
 speci�ed in the underlying computation language
 to access the tuple space� Of the six
operations
 two produce tuples and four consume them�

�� ��� Approaches to Parallel Programming

out ("data", 123);

["p", p()]

eval ("p", p());

in ("data", ? i);
rd ("p", ? x);

["data", 123]

Tuple Space

Figure ���� Tuple	space communication in C	Linda�

Generative Operations

out�tuple	� The speci�ed tuple is evaluated and then added to the tuple space� The
out	executing process continues as soon as the evaluation of the tuple is completed�
The �out��data� ���	�� operation in Fig� ��� deposits the tuple ��data�����

into tuple space�

No speci�ed action is taken in the event that tuple space is full� We will discuss in
Sect� ��� the notion of full tuple spaces�

eval�tuple	� Executing an eval operation causes the following sequence of activities�
First
 bindings for names indicated explicitly in the tuple are established in the en	
vironment of the eval	executing process� At this point
 the eval	executing process
may continue� Each �eld of the tuple argument to eval is now evaluated
 indepen	
dently of and asynchronously with the eval	executing process and each other� The
�elds of an eval tuple are evaluated concurrently yielding one thread of execution
for every �eld� eval deposits active tuples into tuple space
 which are not accessible
to the remaining four operations� Conversely
 out deposits passive tuples into tu	
ple space
 which are accessible to the remaining four operations
 which are discussed
below� When every �eld has been evaluated completely
 the tuple consisting of the
values yielded by each eval	tuple �eld
 in the order of their appearance in the eval

tuple
 becomes available in tuple space� the active tuple converts to a passive one�
The �eval��p�p�		�� operation in Fig� ��� deposits the active tuple ��p�p�	�

containing two processes
 into tuple space�

Some current implementations in fact evaluate all �elds of an eval tuple sequentially
within a single new process� This may cause deadlocks if processes within an eval

tuple communicate with each other� The Yale Linda Implementation would only
spawn one process in the above example
 since only expressions consisting of a single
function call are evaluated within new processes by this implementation �Carriero
and Gelernter
 ����a��

The main program is the only process that lives outside the tuple space in C	Linda�

����� Generative Communication ��

Blocking Extraction Operations

in�template	� The in operation attempts to withdraw a speci�ed tuple from tuple space�
Tuple space is searched for a matching tuple against the template supplied as the
operation�s argument� When and if a tuple is found
 it is withdrawn from tuple
space
 and the values of its actual �elds are bound to any corresponding formals in
the template� Tuples are withdrawn atomically � a tuple can be grabbed by only one
process
 and once grabbed it is withdrawn entirely� If no matching tuple exists in
tuple space
 the process executing the in suspends until a matching tuple becomes
available� If many tuples satisfy the match criteria
 one is chosen arbitrarily� The
�in��data��i	�� operation in Fig� ��� withdraws the tuple ��data����� from
tuple space and assigns ��� to the integer variable i�

rd�template	� The rd operation is the same as in
 with actuals assigned to formals as
before
 except that the matched tuple remains in tuple space� The �rd��p��x	��
operation in Fig� ��� has to wait for the termination of p�	 to read the return value
of p�	� It is presupposed that the return value of p�	 has the same type that the
variable x is declared with�

Non�blocking Extraction Operations

inp�template	 � rdp�template	 These operations attempt to locate a matching tuple
and return � if they fail� otherwise
 they return � and perform actual	to	formal as	
signment as described above� The only di�erence with in rd is that the predicates
will not block if no matching tuple is found�

It may be di�cult to implement these operations on distributed memory architectures
�see also Sect� ��� for a discussion on this subject��

To summarize
 a tuple and a template match in C	Linda i�

� the tuple is passive

� the numbers of �elds are equal

� types and values of actuals in templates are equal to the corresponding tuple �elds
 and

� the types of the variables in the formals are equal to the types of the corresponding tuple �elds�

C	Linda allows formals in deposited tuples� Such formals match with appropriate actuals in templates

but never with formals in templates �see also Sect� ��� for a discussion on this subject��

Bibliographic Notes

Linda has been developed by David Gelernter at Yale University �Gelernter
 ������ We refer to
�Carriero and Gelernter
 ����a� for a full account to parallel programming in Linda� Our description
of the C	Linda operations is derived from �Carriero and Gelernter
 ����a
 Appendix A�� Comparisons
of Linda with other approaches to parallel programming may be found in �Carriero and Gelernter

����� Bjornson et al�
 ����� Matrone et al�
 ������

A coordination language like Linda provides means for process creation and inter	process communi	
cation which may be combined with computation languages like C �Carriero and Gelernter
 ������ A
parallel programming language consists
 therefore
 of a coordination language and a sequential com	
putation language� In Linda
 coordination and computation are two separate issues of equal standing
which together de�ne the problem of building software� The �rst computation language
 in which
Linda has been integrated
 is C �Gelernter et al�
 ����� Ahuja et al�
 ����� Carriero et al�
 �����
Bjornson et al�
 ������ Meanwhile there exist also integrations into higher	level languages such as

�� ��� Approaches to Parallel Programming

C�� �Callsen et al�
 �����

Ei�el �Jellinghaus
 �����

EuLisp �Broadbery and Playford
 �����

Joyce �Pinakis and McDonald
 �����

Lisp �Hutchinson
 ����� Abarbanel
 ����� Yuen et al�
 �����

Maple �Char
 �����

ML �Siegel and Cooper
 �����

Modula�� �Borrman et al�
 ����� Trescher et al�
 ����� Pouget and Burkhart
 �����

PostScript �Leler
 �����

PROLOG �Sutcli�e and Pinakis
 ����� Anderson et al�
 ����� Ciancarini
 ����� Bosschere
and Wulteputte
 ����� MacDonald
 ����� Sutcli�e
 ����� Bosschere et al�
 �����

Russell �Butcher and Zedan
 �����

Scheme �Dourish
 ����� Dahlen and MacDonald
 ����� Jagannathan
 ����� Wack
 �����

Smalltalk �Christiansen et al�
 ����� Matsuoka and Kawai
 ����� Peskin and Segall
 �����

Combinations with operating systems are reported in �Fleckenstein and Hemmendinger
 ����� Leler

������ The combination with Joyce �Pinakis and McDonald
 ����� is remarkable
 because Joyce is
already a parallel language with support for CSP	like synchronous channels for interprocess commu	
nication� In Joyce	Linda the synchronous channels were discarded in favor of the more general Linda
operations�

Linda supports the master	worker model with distributed data structures� one master process interacts
with a collection of identical workers� The master generates task tuples and collects results while the
worker processes repeatedly grab tasks from tuple space
 perform the required actions
 and return
result tuples to tuple space� This model allows easy load balancing� See also Chap� � for examples�
A special instance of the master	worker model is the so	called Piranha model for LAN	connected
workstations
 where computational piranhas attack a cloud of tasks �Carriero et al�
 ������

Programming environments for Linda have been built� TupleScope �Bercovitz and Carriero
 �����
is a graphical visualization and debugging tool for C	Linda programs� Another graphical debug	
ger monitor for Linda is presented in �Sewry
 ������ �Ahmed and Gelernter
 ����� present the Linda
Program Builder
 an Epoch	based editor �Epoch is a multi	windows version of Emacs running un	
der X	Windows�� This system supports incremental development of C	Linda programs� The Linda
Program Builder supports programming paradigms that underlie most parallel programs such as the
master	worker model and the use of distributed data structures�

Also hardware support �see Sect� ������� and fault tolerance �see Sect� ����� have been considered for
implementations of Linda� Some applications experience is discussed in �Carriero and Gelernter
 �����
Bjornson et al�
 ����� Smith
 ����� Cannon
 ������

There exist some approaches which have features in commonwith Linda�s concept for coordination via
tuple space� Ease �Zenith
 ����� combines the ideas of Linda and of message passing� So	called contexts
are the counterparts of channels in message passing
 and Linda	like operations on such contexts are
allowed� However
 the operations on these contexts are restricted to increase the e�ciency in a way that
no runtime matching is required� These restrictions reduce the �exibility for building distributed data
structures signi�cantly� The ActorSpace model �Agha and Callsen
 ����� combines the actor model
�Sect� ������ with pattern	based communication which is very similar to tuple	space communication�

The Swarm model �Roman and Cunningham
 ����� merges the philosophy of Unity �Sect� ������ with
the methods of Linda� Swarm has a Unity	like program structure and the computational model of
Linda	like communication mechanisms� The model partitions its dataspace into three subsets� a tuple
space
 a transaction space �a �nite set of transactions�
 and a synchrony relation �a symmetric relation
on the set of all possible transactions�� Swarm replaces Unity�s �xed set of variables with the tuple

������ Evaluation ��

space and Unity�s �xed set of assignment statements with a set of transactions� The analogue of
executing a statement is executing a transaction which involves making a nondeterministic choice be	
tween all tuples that satisfy a given criterion� The transaction construct reduces both communication
and synchronization to the notion of an atomic transformation of the dataspace� However
 in Swarm
there is no concept of a process
 and there are no sequential programming constructs� Sequencing
is accomplished by de�ning continuations in the form of new transactions to be inserted into the
dataspace�

�	
	�� Evaluation

We studied various models for parallel programming in the preceding subsections� Our study started
with data	parallel approaches followed by extensions to object	oriented
 functional
 and logical lan	
guages� We continued with the fundamentally new concepts of unbounded nondeterministic iterative
transformations and multiset transformations
 and proceeded via virtual shared memory to the shared
data	object model and generative communication� We will now evaluate these models concerning their
suitability for prototyping parallel algorithms in a set	oriented language�

Message Passing

The message	passingmodel envisions a collection of parallel activities
 each resembling a self	contained

sequential process� Each of these processes consists of program structures and data structures� The
program structures are active� they execute instructions on the data structures�

Processes that are collaborating on a problem will ordinarily need to share data
 but in the message	
passing model data structures are sealed within processes
 and so processes cannot access the others
data directly� Instead they exchange messages� When one process has data for another one
 it generates
a message and hands it to a process of a di�erent kind
 a message	delivery process� The message	
delivery process routes the message to its destination� This scheme adds complexity to the program
as a whole� it means that each process must know how to generate messages and where to send them�
We refer to �Bal
 ����� for an extensive discussion of the shortcomings of the message	passing model�

In contrast to the message	passing model
 the shared	memory model allows application programs to
use shared memory as they use normal local memory� The primary advantage of shared memory over
message passing is the simpler abstraction provided to the application programmer
 an abstraction
the programmer already understands well� This allows a more natural transition from sequential to
parallel programming� Message passing is less suitable when several processes need to coordinate
indirectly by sharing global state information�

The message	passing model forces the programmer to be conscious of data movement between pro	
cesses at all times
 since processes must explicitly use communication primitives and channels or
ports� Consequently
 the code written with the shared memory model is usually signi�cantly shorter
and easier to understand than equivalent programs that use message passing�

Most of the problems which arise with message passing exist similarly for graphical approaches based
on Petri	nets or data	�ow diagrams
 because such graphs can be regarded as graphical representations
of message	passing systems�

Data Parallelism

Data parallelism is opposed to control parallelism which is achieved through multiple threads of
control
 operating independently� The data parallel approach lets programmers replace iteration
�repeated execution of the same set of instructions with di�erent data� with parallel execution� It
does not address a more general case
 however� performing many interrelated but di�erent operations
at the same time� This ability is essential in developing complex application programs�

Let us take a closer look at Parallel SETL �Hummel et al�
 ������ Compare the parallel iteration�

�� ��� Approaches to Parallel Programming

for i par over f�������g do

statements
end do�

with a similar sequential iteration�

for i in f�������g do

statements
end do�

Both loops have the same expressiveness concerning the expression of algorithms
 since in both cases
the iteration order is not over	speci�ed� A compiler could replace the in by par over as FORTRAN	
compilers automatically try to parallelize DO	loops �provided that no global variables are changed in
the enclosed statements�� Therefore
 we regard the par over as an aid to a compiler� This construct
indicates where it pays to parallelize an iteration� Thus the motivation for replacing the in by
par over is to increase the execution performance and not the expressiveness of the program� The
in is already implicitly a parallel iteration�

We are searching for appropriate means that enable the expression of new parallel algorithms for
implementing inherently parallel systems
 and not primarily to increase the execution performance of
prototypes�

Our previous work was concerned with developing a language for data	parallel image processing �Has	
selbring
 ������ As the underlying model of this approach uses synchronous communication
 the
programmer often has to think in simultaneities while constructing a program
 because she or he
often has to focus on more than one process at a time�� As noted earlier
 this complicates parallel
programming signi�cantly� A more detailed comparison of this data	parallel approach with generative
communication may be found in �Hasselbring
 ����b��

Parallel Object�Oriented Programming

Parallel object	oriented languages tend to use either message passing or remote procedure calls for
inter	process communication� the object space �the collection of all objects in the program� is not the
communication medium
 and does not constitute a shared object memory in our sense� Additionally

as mentioned in Sect� �����
 probably the most di�cult aspect of integrating parallelism into object	
oriented languages is that inheritance greatly complicates synchronization�

Although
 in some sense
 parallel object	oriented languages allow processes �usually objects� to share
data �also objects�
 their spirit is closer to message passing than to shared variables� Therefore
 most
of the problems which arise with message passing exist similarly for parallel object	oriented languages�

Parallel Functional Programming

Pure functional languages are not suitable for programming cooperating processes� they are deter	
ministic and they do not have variables� Therefore
 processes described as functions cannot include
choices of alternative actions and they cannot remember their states from one action to another�
Nondeterminism would destroy referential transparency in functional programming languages�

Processes sometimes cooperate in a way that cannot be predicted� It is impossible
 for instance
 to
predict from which terminal of a multi	user computing system the next request for a particular service
might come� Moreover
 the system behavior necessarily depends on previous requests�

Both nondeterminism of events and dependence on the process history are strong arguments for
an imperative rather than applicative programming model for cooperating processes� This is due

�In the remainder of this thesis we will not distinguish between males and females� When we say that he could do

something� we mean that she or he could do something�

������ Evaluation ��

to the determinism and the lack of variables which make pure functional languages impractical for
programming parallel systems� Even the parallel functional languages that are presented in Sect� �����
do not support nondeterminism�

Futures in Multilisp provide a method for process creation but no means for synchronization and
communication between processes
 except for waiting for each other�s termination� However
 process
creation via futures provides a high	level abstraction for achieving parallel execution�

Parallel Logic Programming

In �Shapiro
 �����
 it is described how several communication patterns can be expressed using shared
logical variables despite the single	assignment property of such variables� On the other hand
 the
shared logical variable also has its problems� Although it is possible to implement shared data struc	
tures like streams and queues using shared logical variables
 only a single process can add elements to
such data structures� See �Gelernter
 ����� for a discussion of the problems thus caused�

The underlying idea in the family of committed choice parallel logic languages is to model synchro	
nization between processes by imposing some constraints on the uni�cation mechanism� Notably
 the
committed choice logic languages are usually �at languages
 i�e�
 the predicates in the guards cannot
be used to make computations� We quote for the problems thus caused�

�Since the guards cannot be used to make computations
 a deterministic style of pro	
gramming is encouraged
 so that OR	parallelism is usually greatly reduced� �� � � � From
the programmer�s point of view
 uni�cation is a powerful mechanism� Unfortunately
 the
special constraints and idiosyncrasies embedded in the di�erent committed choice logic
languages make them di�cult to use in practice� In fact
 all these languages result verbose
and di�cult to use for the speci�cation of systems where many	to	one communication is
needed �for example
 many clients querying a database�� �� � � �

Another important drawback is that
 although great e�ort has been devoted to clarify
the mathematical aspects of these languages
 their practical use cannot avoid relying on
a number of prede�ned predicates whose formal semantics is often obscure�� �Ciancarini

����
 pages ���&����

Note that the committed choice logic languages which have abandoned backtracking require a di�erent
style of programming compared to PROLOG�

The Delta	Prolog �Cunha et al�
 ����� parallel programming techniques are based on CSP� This implies
that the problems with message passing exist for Delta	Prolog accordingly� Delta	Prolog�s main special
feature lies in the fact that communication is backtrackable� This is a very heavy requirement for its
formal semantics and for an implementation� moreover this feature does not seem to be really useful
for increasing language expressiveness� For instance
 backtrackable input output is rarely needed in
practice �Ciancarini
 ������

Unbounded Nondeterministic Iterative Transformations

Unity uses sets of assignment statements to avoid forcing programmers to overspecify control �ow

and maps from statements to processors in order to specialize an algorithm to a particular topology�
However
 a Unity program has no control �ow
 consisting of a collection of instructions that are exe	
cuted in�nitely often� We believe that abandoning control �ow altogether is too drastic� programmers
are accustomed to imperative languages
 and moreover
 programs generally consist of both sequential
and parallel parts� We prefer a model that allows for a gradual transition from serial to parallel
algorithms�

Additionally
 Unity is static� No dynamic process creation and termination is possible� Computations
are de�ned by a �xed set of statements and variables� Unity intends to model the execution of

�� ��� Approaches to Parallel Programming

programs on various kinds of architectures� We intend to model the execution of programs on a high
level without considering speci�c architectures� Unity pays the price of less elegant solutions for the
advantage of a uni�ed framework which leads to a restricted notation�

Multiset Transformations

The Gamma approach is very similar to that of Unity� The main di�erence between Gamma and
Unity is that the latter is based on the array data structure
 which makes the treatment of dynamically
varying size problems less natural
 whereas the former is based on the more �exible multiset data
structure�

As noted in Sect� �����
 the concept of multiset transformations in Gamma is a candidate for proto	
typing parallel algorithms� However
 some solutions seem inherently di�cult to express in Gamma�
We quote from the designers of Gamma�

�When constructing a Gamma program
 the challenge consists in expressing computation
as a collection of local operations� This unusual view of programming may sometimes
lead to surprising programs
 but some problems turn out to be very di�cult to cast into
this framework� The only known solutions to certain problems rely on control decisions
involving the whole state of computation� �� � � � Of course
 these problems can be solved
in Gamma
 but their expression is inelegant because the control has to be encoded within
the multiset�� �Ban$atre and M"etayer
 ����
 page ����

Additionally
 parallelism is implicit rather than explicit in Gamma� However
 we regard multisets as
a very powerful and �exible device for the coordination of parallel processes�

Virtual Shared Memory

As we mentioned earlier
 it is generally accepted that programming shared	memory multiprocessors is
easier than programming distributed	memory systems� The virtual shared memory approach intends
to combine the advantages of both� the scalability of distributed memory
 and the programmability
of shared memory� However
 virtual shared memory is accessed through low	level read and write
instructions
 and shared memory is partitioned into �xed	size pages� Therefore
 virtual shared memory
is a somewhat low	level realization of the shared memory abstraction� The granulatity of the shared
data is �xed in virtual shared memory systems and is not user	de�ned�

The Shared Data�Object Model

Orca supports user	de�ned
 high	level operations on shared data	objects� The granulatity of the
shared data is chosen by the programmer� However
 in the shared data	object model
 processes are
always organized in a hierarchy� Orca does not provide sharing of data between independent processes�
Conversely
 the programmer is not restricted to hierarchies with generative communication� He can
organize the processes as he sees �t� The access to tuple space is associative� This allows a high
degree of decoupling between the cooperating processes� Conversely
 Orca�s data	objects are accessed
by directly passing as a parameter� This implies a tight coupling�

For cooperating processes
 a �exible device for communication is needed� Access to shared data	
objects in Orca is synchronized through critical regions on these objects� the operations are executed
indivisibly� Therefore
 the access to shared data in Orca is competing rather than cooperating� Con	
versely
 our goal is to provide mechanisms for parallel processes to solve problems cooperatively� See
also our discussion on multiprocessing and multiprogramming in Sect� �����

������ Evaluation ��

Generative Communication

Parallel programming is conceptually harder to undertake and to understand than sequential program	
ming
 because a programmer often has to focus on more than one process at a time� Programming
in Linda provides a spatially and temporally unordered bag of processes� Linda�s global
 associative
object memory supports a highly uncoupled programming style in which processes remain mutually
anonymous� Each task in the computation can be programmed �more	or	less� independently of any
other task� This enables the programmer to focus on one process at a time thus making parallel
programming conceptually the same order of problem	solving complexity as conventional
 sequential
programming� With generative communication each access to shared data is asynchronous� sender and
receiver of a tuple do not have to exists at the same time and do not have to do things synchronously�

The uncoupled and anonymous inter	process communication in Linda is in general not directly sup	
ported by the target architectures� However
 a high�level language must be able to re�ect a particular
top	down approach to building software
 and not a particular machine architecture� This is also im	
portant for supporting portability across di�erent machine architectures� Linda has been implemented
on a wide variety of parallel architectures� shared	memory multi	processors as well as on distributed
memory architectures �see also Sect� ������

Programming with distributed data structures leads to a methodology in which low	level process
synchronization concerns are abstracted to high	level algorithmic design issues involving data structure
access and generation� It is easy
 using Linda
 to build the distributed data structures on which the
application depends� Unlike messages in a message	passing program
 passive tuples are integral parts
of a tuple	space program� they hold its shared data structures� Because tuple space makes it easy for
tasks to be divided on the �y and for a program�s shape to change as it executes
 it is a promising
basis for representing complex and rapidly evolving systems�

Tuple space is perhaps best considered as a memory abstraction that may be used in many program	
ming languages� Tuple space provides the abstraction of a shared
 content	addressable memory which
can be accessed by any process with equal ease� Both scheduling and communication are handled by
the system� Programmers need only specify dependencies�

Multisets are a powerful data structure for parallel programming� A tuple space is a multiset of
tuples and not a set of tuples� A multiset may contain multiple copies of a tuple
 whereas in a set
each element exists exactly once� Because of concurrent access by the cooperating processes to tuple
space
 it is necessary to have multisets and not sets for coordination� it is not easy and even not
desired for coordination to guarantee the uniqueness of tuples� Multisets are
 therefore
 a good basis
for communication between cooperating processes
 because the data �ow is not restricted unnecessar	
ily� Furthermore
 multisets are dynamic data structures that alleviate the treatment of dynamically
varying size problems� The bene�t of using multisets is the possibility of describing compound data
without any form of constraint or hierarchy between its components� This is also the case for sets

but not for data structures such as lists which impose an ordering on the examination of the elements�
Consequently
 multisets allow a high degree of parallelism for cooperating processes� Advanced data
structuring facilities
 such as multisets
 have the potential to simplify parallel programming�

However
 generative communication � as it is realized in C	Linda and many other variants of Linda
� is not without its shortcomings� We will discuss in Chap� � the drawbacks thus caused
 such as
missing support for information hiding
 and how we propose to overcome them� This chapter on
parallel programming discusses related work concerning parallel programming� Chapter � will discuss
related work concerning generative communication�

At the beginning of this section
 we stated two issues which must be addressed in designing a language
for parallel programming� For extending a set	oriented prototyping language for parallel programming

we have chosen the following approaches for parallel execution and coordination�

� Parallel execution is achieved by adaptation of the concept for process creation via Multilisp�s
futures to set	oriented programming�

�� ��� Summary

� Coordination between cooperating parallel processes is achieved by extending Linda�s concept
for synchronization and communication via tuple space�

These two items are our answers to the two questions which were raised at the beginning of Sect� ����
This concept for generative communication in a set	oriented prototyping language is the subject of
Part II of this thesis�

Allowing users to de�ne their own high	level operations on shared data has many advantages
 both
for the ease of programming and for the implementation� Orca
 for example
 supports user	de�ned

high	level operations on shared data	objects
 but C	Linda uses a �xed number of built	in tuple	space
operations to generate
 read and delete tuples in tuple space
 and does not allow users to de�ne
their own high	level operations on shared tuples� We shall overcome this shortcoming by enhancing
generative communicationwith the possibility of changing tuples in tuple space� Furthermore
 our new
approach to integrating futures and generative communication into a prototyping language extends
the basic Linda model with multiple tuple spaces
 the notion of limited tuple spaces
 selection and
customization for matching
 speci�ed fairness of choice
 and other useful features� Linda and ProSet
both provide tuples thus it is quite natural to combine set	oriented programming with generative
communication on the basis of this common feature to form a tool for prototyping parallel algorithms�

��� Summary

Parallel programming constitutes the second part of the setting for this thesis� We evaluated several
approaches to high	level parallel programming concerning their suitability for prototyping parallel
algorithms in a set	oriented language� Therefore
 this chapter serves as a motivation for our approach
to parallel programming in Part II of this thesis and as a discussion of related work concerning the
design of parallel programming languages�

Part II

Generative Communication in

Set�Oriented Prototyping

��

Chapter �

The Prototyping Language PROSET

ProSet is an acronym for Prototyping with Sets� This set	oriented prototyping language is
a successor to SETL �Schwartz et al�
 ����� Doberkat and Fox
 ������ ProSet is actually under
development at the University of Essen �Doberkat et al�
 ����a� Doberkat et al�
 ����b� Franke et al�

������ The kernel of the language was at �rst presented in �Doberkat et al�
 ����a� and the system
in �Doberkat et al�
 ����b�� As ProSet is a successor to SETL
 it was formerly called SETL E�
The name was changed to emphasize the prototyping aspect� A �rst implementation is described in
�Doberkat et al�
 ����c�� The compiler is available from the University of Essen� A typical application
domain for ProSet is the evolutionary development of functional core layers of software systems�
The language is not intended for prototyping graphical user interfaces�

The following sections will present a brief introduction to data and control structures of the lan	
guage and two introductory examples� The advanced features for exception handling
 persistence and
modules are sketched� For a full account to ProSet we refer to �Doberkat et al�
 ����a�� The high	
level structures which ProSet provides qualify the language for prototyping� For a full account to
prototyping with set	oriented languages we refer to �Doberkat and Fox
 ������ A case study for proto	
typing using SETL is documented in �Kruchten et al�
 ������ The application of SETL for prototyping
algorithms for parallelizing compilers is described in �Padua et al�
 ������

��� Data Structures

ProSet provides the �rst	class data types atom
 integer
 real
 string
 boolean
 tuple
 set

function
 modtype
 and instance� It is a higher�order language
 because functions
 modules
 and
module instances have �rst	class rights� First�class means to be expressible without giving a name�
It implies being storable in variables and in data structures
 being comparable for equality with other
values
 and being returnable from or passable to a procedure� Both SETL and ProSet are weakly
typed
 i�e�
 the type of an object is in general not known at compile time� Each variable or constant is
meant to be an object for our terminology� Integer
 real
 string and Boolean values are used as usual�
Atoms are unique with respect to one machine and across machines� They can only be created and
compared for equality� Atoms can be created via a call to the standard library function newat
 which
returns a new
 unique atom� The unary type operator returns a prede�ned type atom corresponding
to the type of its operand�

Atom
 integer
 real
 string
 boolean
 function
 and module values are basic
 because they are not
built from other values� Tuples and sets are compound data structures
 which may be heterogeneous
composed of basic values
 tuples
 and sets� Sets are unordered collections while tuples are ordered�
The following expression
 for example
 creates a tuple consisting of an integer
 a string
 a Boolean

and a set of two reals�

����� �abc�� true� f���� ��	g

��

�� ��� Data Structures

Such expressions are called tuple former� Sets consisting only of tuples of length two are called maps�
There is no genuine data type for maps
 because set theory suggests handling them this way� The
following statement assigns a set
 which is also a map
 to the variable M�

M �� f ����s��
� ����s��
� ����s��
 g

Now the following equalities hold�

domain�M� � f�� �� �g
range�M� � f�s��� �s��� �s��g

M��� � �s��

Mf�g � f�s��g

Domain and range of a map may be heterogeneous� Mf�g is the multi�map selection for relations�

There is also the unde�ned value om which indicates
 for example
 selection of an element from an
empty set� om itself may not be element of a set
 but of a tuple� Conceptually a tuple is an in�nite
vector with almost all components equal to the unde�ned value om� Indexing of tuple components
starts with the index ��

There is a distinction between the meaning of identi�ers on the left and right sides of an assignment�
The terms l	value and r	value refer to values that are appropriate on the left and right sides of an
assignment
 respectively �Aho et al�
 ������ That is
 r	values are what we usually think of as values

while l	values are locations� A tuple of l	values is called multiple l�value� A tuple has to be assigned
to a multiple l	value� the tuple components are assigned to the individual l	values according to their
position in the tuple�

ProSet has value semantics� All parameters of procedures are transferred by copying
 not by refer�
ence� Di�erences between parameter	passing to procedures are based primarily on whether an actual
parameter may represent an r	value or an l	value�

call by value The default parameter transmission in ProSet is call by value
 i�e�
 on
procedure invocation
 the formal parameter will be initialized with the value of the
actual parameter�

call by result With call by result the formal parameter obtains om as an initial value�
On exit from the procedure
 the current value of the formal parameter will be copied
into the actual parameter�

call by value�result With call by value�result the formal parameter is initialized with
the actual parameter� When the procedure terminates
 the l	value of the actual
parameter is determined and the current value of the formal parameter is assigned to
the l	value of the actual parameter�

A call	by	value parameter is declared with the keyword rd� A call	by	result parameter is declared
with the keyword wr� A call	by	value result parameter is declared with the keyword rw� Indicating
no mode is equivalent to rd �the default��

ProSet distinguishes between �rst	class functions and second	class procedures� Only �rst	class func	
tions may be assigned to variables� An important di�erence is that second	class procedures may have
side e�ects on global variables� Global variables are declared with the keyword visible� First	class
functions cannot have side e�ects� To convert a second	class procedure into a �rst	class function one
applies the closure constructor to the procedure name� When the closure constructor is applied to
a procedure name
 the binding of each global name n used inside the procedure to the actual value
v of this object is stored �freezing the values�� This binding associates n with v � At the beginning
of each invocation of the resulting �rst	class function this binding is restored in such a way that n
behaves like an initialized variable which is declared as visible in the resulting function� It is not
allowed to apply the closure constructor to procedures with write parameters� Consequently
 side
e�ects and write parameters are not possible for �rst	class functions�

��� Control Structures ��

��� Control Structures

The control structures show that the language has ALGOL as one of its ancestors� There are if

case
 loop
 while and until statements as usual and in addition some structures that are custom
tailored to the compound data structures� First have a look at expressions forming tuples and sets�

T �� �� �� ��

S �� f��x� x in T � x � 	g �� result� f��� ��� ��� ��� ��g

The iteration �x in T� implies a loop in which each element of the tuple T is successively assigned
to x� The visibility of x is bound to the set former� For all elements of T
 which are satisfying the
condition �x � �� the result of the expression ���x� is added to the initially empty set� As usual in
set theory � means such that� With this knowledge the meaning of the following for loop should be
obvious�

for x in S � x � �	 do �statements� end for

The iteration proceeds over a copy
 which is created �rst� The statements are executed for each
iteration� The quanti�ers ��
 �� of predicate calculus are provided
 e�g��

if exists x in S � p�x� then �statements� end if

Additionally
 ProSet provides the whilefound loop�

whilefound x in S � p�x� do �statements� end whilefound

The loop body is executed each time an existentially quanti�ed expression with the same iterator
would yield true� The loop terminates when an existentially quanti�ed expression with the same
iterator would yield false� The bound variables are local to the whilefound loop as they are in for

loops and in quanti�ed expressions� Unlike for loops the iterator is reevaluated for every iteration�

��� Introductory Examples

To provide a �rst impression of ProSet we present two small example programs� In Fig� ��� a solution
for the so	called queens� problem is given� Informally
 the problem may be stated as follows�

Is it possible to place n queens �n � N� on an n 	 n chessboard in such a way that they do
not attack each other�

Anyone familiar with the basic rules of chess also knows what attack means in this context� in order
to attack each other
 two queens are placed in the same row
 the same column
 or the same diagonal�

The program in Fig� ��� does not solve the above problem directly� It prints out the set of all positions
in which the n queens do not attack each other� If it is not possible to place n queens in non	attacking
positions
 this set will be empty� We denote �elds on the chessboard by pairs of natural numbers
for convenience �this is unusual in chess
 where characters are used to denote the columns�� ����

denotes the lower left corner� The program in Fig� ��� with n � � produces the following set as a
result�

ff���� ���� ���� ����g
f���� ���� ���� ����gg

�� ��� Introductory Examples

program Queens

constant N �� �

begin

fields �� ��x�y
� x in ����N
� y in ����N
�

put ��NextPos� NextPos in npow�N� fields� � NonConflict�NextPos���

procedure NonConflict �Position�

begin

return forall F� in Position� F� in Position �

��F� �� F�� �implies

�F���� �� F���� and �� Different columns�

F���� �� F���� and �� Different rows�

abs�F�����F����� �� abs�F�����F�����

�� Different diagonals�

��

end NonConflict

procedure implies �a� b�

begin

return not a or b

end implies

end Queens

Figure ���� The queens� problem�
npow�k� s� yields the set of all subsets of the set s which contain exactly k elements� NonConflict

checks whether the queens in a given position do not attack each other� It is possible to use

procedures with appropriate parameters as user�de�ned operators by pre�xing their names with

the ��� symbol� This is done here with the procedure implies� The prede�ned function abs

yields the absolute value of its integer argument� T�i� selects the ith element from tuple T�

2

2

3

4

1
1 3 4

2

2

3

4

1
1 3 4

Figure ���� The non	attacking positions for n � � queens�

��� Exception Handling ��

Since sets are unordered collections
 the program may print the elements in di�erent orders� Fig� ���
displays the non	attacking positions for n � � queens� Note that there are no explicit loops and that
there is no recursion in the program� All iterations are done implicitly� One may regard this program
also as a �executable� speci�cation of the queens� problem�

The program in Fig� ��� for topologically sorting the nodes of a directed graph provides a second
example� A directed edge between the nodes x and y is indicated by listing the pair �xy� in the set
edges� Thus edges is a multi	valued map
 assigning each node x the set edgesfxg of its successors�
The edges could also be read in from the terminal or constructed in other ways
 instead of using a
set former�

The program checks at �rst if the given graph contains a cycle� If the graph contains a cycle
 we
cannot compute a topological order� If the graph does not contain a cycle
 the nodes are ordered in
the initially empty tuple SortTup� The nodes without predecessor �the roots� are successively added
to SortTup� One possible result would be the following tuple in SortTup�

�� �a� � �b� � �c� � �d� ��

Fig� ��� displays the topological order given by the input set edges�

��� Exception Handling

An exception is a situation
 which
 once detected
 interrupts the execution of the operation by which
it is raised and which subsequently has to be communicated to the caller of that operation� With the
notion of raising an exception it is merely described that the occurrence of an exception is communi	
cated to the caller and that control is handed over to an exception handler� Exception handlers are
similar to procedures
 except that they are only invoked by raising exceptions and that they determine
the �ow of control in a di�erent way� A handler can either terminate the signaling procedure with
the return statement or resume the signaler with the resume statement �return the control to the
signaler��

ProSet supports the following forms of raising exceptions by a signaler �

signal� The signaling procedure allows the handler to either terminate or resume it�

notify� The caller obtains a progress report of the evaluation or is requested to carry
out some evaluations not implemented by the signaler� This mechanism is akin to
coroutines�

The signaler must be resumed by the handler�

escape� The signaler must be terminated by the handler�

It is possible to specify a handler for an exception by annotating a statement with a binding between
exception name and handler name�

statement when MyException use MyHandler�

We refer to �Goodenough
 ����� for a discussion of exception handling in general and to �Doberkat et
al�
 ����a� for a discussion of exception handling in ProSet�

��� Persistence

Persistence of data is characterized by the fact that these data outlive the program that generated
them� this is in contrast to volatile data which vanish once the program ceases running� Persistence

�� ��� Persistence

program TopSort

begin

edges �� �����
� ����
� ����
� ���	
� ��a���b�
� ��b���c�
� ��b���d�
�

if ContainsCycle �edges� then

put ��The graph contains a cycle��

else

SortTup �� �

nodes �� domain�edges� � �� ��������a���b��

range�edges� �� �������	��b���c���d��

�� Successively adding remaining roots to SortTup

�� and remove them from edges and nodes�

whilefound x in nodes � not �exists y in nodes � �x in edges�y���

do

SortTup with�� x

edges lessf�� x

nodes less�� x

end whilefound

put �SortTup�

end if

procedure ContainsCycle �edges�

begin

nonleafs �� domain �edges� �� ��������a���b��

�� Successively remove nonleafs that do not point to nonleafs�

whilefound x in nonleafs � �edges�x� � nonleafs � � ��

do

nonleafs less�� x

end whilefound

return �nonleafs �� � ��

end ContainsCycle

end TopSort

Figure ���� Topologically sorting the nodes of a directed graph�
The binary operators with and less add elements to and remove elements from sets and tuples�
respectively� lessf removes all pairs from a map whose �rst element is the speci�ed one� Set
union and intersection are denoted by the binary operators � and �� respectively�

1

2

3 4

5

"a"

"c" "d"

"b"

Figure ���� The topological order for the input set
f���� ���� ���� ���� ��a��b�� ��b��c�� ��b��d��g �

��	 Modules ��

is an orthogonal property of values in ProSet� Each value enjoying �rst	class rights may be made
persistent using the name with which it has been de�ned as a handle� Making use of a persistent value
requires indicating this fact in the scope where this is to happen� This scope is implicitly a critical
section on the indicated persistent value for invocations of the corresponding program or procedure�
Persistence in ProSet is discussed in �Doberkat
 ����� and the relation with ProSet�s support for
generative communication is discussed in �Doberkat et al�
 ����� �see also Sect� ������

��� Modules

ProSet makes modules as templates available� Using a module requires instantiating the correspond	
ing template� Instantiation requires providing values for the parameters imported by the module� It
has the e�ect of

� executing the template�s initialization code

� making the exported items available

� returning an instantiation of the template�

Consider the simple module IntMod in Fig� ���� The module exports the procedure increment� The
module has the static variable i which is visible in all local procedures and which will be initialized to
� as speci�ed in the initialization part� This part contains code to be executed exactly once at the time
the module is instantiated� The procedure increment increments i� The module is instantiated as
shown in Fig� ��� which executes the initialization code and makes the procedure MyInst�increment

available� The procedures in the export list are available after instantiation by pre�xing their names
with the name of a module instance
 provided that they are imported on instantiation�

Modules form scopes of their own
 and their visibility follows the scope rules of the language� This is
similar to procedures� in particular the following properties are observed�

� names declared as visible in an enclosing scope are visible to the module
 hence to all local
procedures
 modules and exception handlers
 all other names in an enclosing scope are not
accessible to the module

� names local to the module and visible in the module�s body retain their respective bindings
across invocations of procedures exported from a module�

The latter property represents the characterizing di�erence between modules and collections of nested
procedures� The closure operator has the e�ect of freezing the values of non	local names visible to
the module and making them visible to the module
 and it results in a value of type modtype�

��� Summary

We presented a brief introduction to the basic concepts of ProSet and two introductory examples�
The advanced features for exception handling
 persistence and modules were sketched� In the remain	
der of Part II of this thesis we will present and discuss the integration of generative communication
into ProSet�

�� �� Summary

module IntMod export increment�

visible i� �� static variable for module instances

begin

i �� �� �� initialization code

procedure increment �	�

begin

i �� i � ��

end increment�

end IntMod�

Figure ���� A simple Module�

MyInst �� instantiate closure IntMod

import increment�

end instantiate�

Figure ���� Instantiating a Module�

Chapter �

Informal Semantics of

PROSET�Linda

This chapter presents an informal speci�cation of generative communication inProSet� The following
sections will discuss process creation and termination
 the management of multiple tuple spaces

and the tuple	space operations in ProSet� Tuple spaces are regarded primarily as a device for
synchronization and communication between processes
 and only secondarily for process creation in
our approach� Consequently
 process creation in ProSet is not a tuple	space operation as it is in C	
Linda �see also Sect� ��� for a discussion on this subject�� However
 process creation may be combined
with the tuple	space operations as will be sketched in Sect� ������ Process creation and tuple	space
communication are orthogonal concepts in ProSet� Orthogonality means that any composition of
basic primitives should be allowed �Ghezzi and Jazayeri
 ������

��� Process Creation

In this section we will present an adaptation of the approach for process creation known fromMultilisp
to set	oriented programming
 where new processes may be spawned inside and outside of tuple space�
Futures in Multilisp and the concept of touching �see Sect� ������ provide a method for process creation
but no means for synchronization and communication between processes
 except for waiting for each
other�s termination� In our approach the concept for process creation via futures is adapted to set	
oriented programming�

Multilisp is based on Scheme �Abelson et al�
 �����
 which is a dialect of Lisp with lexical scoping� Lisp
and Scheme manipulate pointers� This implies touching in a value	requiring context and transmission
in a value	ignoring context� This is in contrast to ProSet that uses value semantics
 i�e�
 a value
is never transmitted by reference� However
 there are a few cases where we can ignore the value
of an expression� if the value of an expression is assigned to a variable
 we do not need this value
immediately
 but possibly in the future�

Process creation in ProSet is provided through the unary operator ��
 which may be applied to an
expression �preferably a function call�� A new process will be spawned to compute the value of this
expression concurrently with the spawning process analogously to futures in Multilisp�

If this process creator �� is applied to an expression that is assigned to a variable
 the spawning process
continues execution without waiting for the termination of the newly spawned process� At any time
the value of this variable is needed
 the requesting process will be suspended until the future resolves
�the corresponding process terminates� thus allowing concurrency between the computation and the
use of a value� Consider the following statement sequence to see an example�

��

�� ��� Process Creation

x �� �� p�	� �� Statement �
��� �� Some computations without access to x

y �� x� �� Statement �

We assume for simplicity that p is a �rst	class function� If it is a second	class procedure
 the closure
constructor of ProSet must be applied to the procedure name to yield a �rst	class function �see
Sect� ����� Consequently
 side e�ects and write parameters are not allowed for parallel processes�
Communication and synchronization is done only via tuple	space operations� We shall use the term
procedure synonymous to function where it is not necessary to distinguish�

After statement � is executed in the above example
 process p�	 runs in parallel with the spawning
process� Statement � will be suspended until p�	 terminates
 because a copy is needed �value seman	
tics�� This is in contrast to Lisp where an assignment would copy the address and ignore the value�
If p�	 resolves before statement � has started execution
 then the resulting value will be assigned
immediately�

Additionally
 if a compound data structure is constructed via a set or tuple forming enumeration
 and
this data structure is assigned immediately to a variable
 we do not need the values of the enumerated
components immediately
 thus the following statement allows concurrency as above�

x �� f �� p�	 ��� �� q�	 g�

If we replace statement � in the previously discussed statement sequence by this statement
 then
concurrency would be achieved as before� Such parallel set or tuple forming expressions may be
compared with constructing lists via the function cons in Multilisp
 where the list components are
also not touched �Halstead
 ����
 page ����� Compound data structures in ProSet are always touched
as a whole� Access to tuple or set components as in

x �� � �� p�	 �� q�	 ��

y �� x��	�

touches the whole tuple or set
 thus both
 p�	 and q�	
 have to terminate before x��	 is accessible�
This is in contrast to
 for example
 I	Structures �Arvind et al�
 ����� which provide special kinds of
arrays
 whose components are evaluated in parallel� With I	Structures
 access to array components
touches only the requested components and not the array as a whole� It is not really necessary for
tuples to be touched as a whole in ProSet
 but to handle compound data structures similar to
I	Structures would cause problems for selections from sets� We decided to touch compound data
structures always as a whole to retain consistency for tuples and sets�

Returning an expression
 which is pre�xed by ��
 with ProSet�s return statement achieves con	
currency according to the context of the corresponding procedure invocation� Conversely
 the actual
parameters for procedures as in the procedure call

anyproc � �� p�	 �� q�	 	�

are evaluated concurrently to each other
 but before anyproc is invoked� This is due to the value	
passing semantics of procedure invocations in ProSet
 where all actual parameters have to be eval	
uated before the procedure is started �Sect� �����

If the process creator �� is applied in an expression that is an operand to any operator
 then this
operator will wait for the return value of the created process� Operators always need the values of
their operands
 and thus have to wait for the termination of processes which compute their operands�
For instance
 in the following expressions the return values are needed�

� � �� p�	

��x�� � ��� p�	�

��� Program and Process Termination ��

As any other operator
 the process creating operator �� touches the value of its operand� Hence

an expression such as ��� �� p�	� does not make much sense� the leftmost �� has to wait for the
termination of p�	� However
 it is syntactically correct�

In summary� concurrency is achieved only at creation time of a process and maintained on immediately
assigning to a variable
 storing in a data structure
 returning as a result from a procedure
 and
depositing in tuple space �this is discussed in Sect� ������� Every time one tries to obtain a copy one
has to wait for the termination of the corresponding process and obtains only then the returned value�

Process�Spawning Statements

Also the following statement
 which spawns a new process
 is allowed�

�� p�	�

The return value of such a process will be discarded� The general form of such a process	spawning
statement is as follows�

Statement �
�
���
�
�� Expr �

�
��
�
��

Note that processes have no �rst	class rights in ProSet �see also Sect� ���� for a discussion on this
subject�� The type operator �see Sect� ���� has to wait for termination as any other operator�

��� Program and Process Termination

Analogously to statements
 concurrency is achieved in declarations like

constant c �� �� p�	�

visible x �� � �� p�	 ��

If
 after such a declaration or a similar statement
 x is assigned a new value
 then the corresponding
spawned process will be abandoned provided it is still running� Note that killing processes has to
be done with care� especially when such processes are still doing tuple	space operations� Tuple	space
operations only have e�ects when they could be completed�

ProSet�s stop statement terminates the execution of a process or of an application program�

Statement �
�
�stop

�
��

�

� Expr �

�

�
�
��
�
��

We distinguish two cases�

�� When executed in a spawned process
 this process will be terminated in the same way
 as if a
return statement with the same expression had been executed in the main procedure of this
process� If no expression is speci�ed
 then om will be returned as usual in ProSet�

�� ��� Handling Multiple Tuple Spaces

�� When executed in a main program
 which has been started from the operating system
 the whole
application is terminated and the value of the optional expression is passed to the operating
system� Its meaning depends on the operating system� If no expression is speci�ed
 a success
code is passed to the operating system by default� All spawned processes of this application will
be terminated� There exists implicitly a �stop�� statement at the end of every main program�

A concurrent program terminates when all its sequential processes have terminated� Termination of
the main program terminates the entire application and thus all spawned processes�

��� Handling Multiple Tuple Spaces

ProSet supports the use of multiple tuple spaces� Atoms are used to identify tuple spaces� As
mentioned in Sect� ���
 atoms are unique for one machine and across machines� They have �rst	class
rights� ProSet provides four library functions to handle multiple tuple spaces�

CreateTS�limit	� Calls ProSet�s standard function newat to return a fresh atom� The
tuple	space manager is informed to create a new tuple space represented identi�ed
by this atom� The atom will be returned by CreateTS� Therefore
 we can only use
atoms that were created by CreateTS to identify tuple spaces�

Since one has exclusive access to a freshly assigned tuple	space identity
 CreateTS
provides the basis for information hiding to tuple	space communication�

The integer parameter limit speci�es a limit on the expected or desired size of the
new tuple space� This size limit denotes the total number of passive and active tuples

which are allowed in a tuple space at the same time� CreateTS�om	 would instead
indicate that the expected or wanted size is unlimited regarding user	de�ned limits

not regarding physical limits� A negative limit is equivalent to � �no tuples may be
deposited into such a tuple space��

In C	Linda from Scienti�c Computing Associates the size for the global tuple space is
speci�ed in byte blocks �Sci
 ������ The level of such a unit is too low for a prototyping
language�

ExistsTS�TS	� Yields true
 if TS is an atom that identi�es an existing tuple space� else
false�

ClearTS�TS	� Removes all active and passive tuples from the speci�ed tuple space� This
operation is executed indivisible for the speci�ed tuple space�

This function appears to be useful
 for instance
 in a master	worker application� when
the work has been done
 the master can remove garbage and abandon the workers�
See also the examples in Chap� � for applications of ClearTS�

RemoveTS�TS	� Calls ClearTS�TS	 and removes the speci�ed tuple space from the list of
existing tuple spaces�

If the functions ExistsTS
 ClearTS
 or RemoveTS are invoked with actual parameters which are not
atoms
 or if the function CreateTS is invoked with an actual parameter which is not an integer or
om
 the prede�ned exception type mismatch will be raised� If the functions ExistsTS
 ClearTS
 or
RemoveTS are called with an atom
 which is not a valid tuple	space identity
 then the prede�ned
exception ts invalid id will be raised�

By way of introduction
 a �rst	class tuple	space identity is a coordination capability which may be
bound to variables
 passed as an argument �or returned as a result from� procedures
 or embedded
within compound data structures�

Every ProSet program has its own tuple	space manager� Tuple spaces are not persistent� They
exist only until all processes of an application have terminated their execution� Consequently
 tuple

��� Tuple�Space Operations ��

space communication in ProSet as presented here is designed for multiprocessing �single application
running on multiple processors� as opposed to multiprogramming �separate applications�� See also
Sect� ���� for a discussion on this subject�

��� Tuple	Space Operations

ProSet provides three tuple	space operations for communication and synchronization of parallel
processes�

Statement

�

��

�

� Deposit �
�
�end
�
�
�
�
�deposit

�
�

� Fetch �
�
�end
�
��
�
�fetch

�
�

� Meet �
�
�end
�
��
�
�meet

�
�

�

��

�

�
�
��
�
��

The deposit operation deposits a new tuple into a tuple space
 the fetch operation fetches and
removes a tuple from a tuple space
 and the meet operation meets and leaves a tuple in a tuple space�
It is possible to change the tuple�s value while meeting it� A concise overview of the abstract grammar
for the tuple	space operations is presented in Appendix A using BNF �Backus Naur Form��

There is no di�erence between ProSet	tuples and passive Linda	tuples� Passive Linda	tuples contain
only evaluated values and
 therefore
 no active processes �see also Sect� ������� Linda and ProSet

both provide tuples thus it is quite natural to combine them on the basis of this common feature�
However
 a tuple space is a multiset of tuples
 whereas the type system of ProSet does not directly
provide the notion of multisets or bags� One could model multisets
 for example
 via maps from
tuples to counts
 but this would not re�ect the matching provided by tuple spaces� We will discuss
the introduction of a type �tuple space� in Sect� �����

�	�	� Depositing Tuples

The deposit operation deposits a tuple into a speci�ed tuple space� We distinguish between passive
and active tuples in tuple space� If there are no executing processes in a tuple
 then this tuple is
added as a passive one�

deposit � ��� �mystring� ���� � at TS end deposit�

This statement deposits the tuple � ��� �mystring� ���� �� TS is the tuple space at which the
speci�ed tuple has to be deposited� The expression after the keyword at within tuple	space operations
has to yield a valid tuple	space identity� If not
 the exception ts invalid id will be raised� Note
that the exception type mismatch and not ts invalid id will be raised if an expression after the
keyword at within tuple	space operations yields not an atom�

If processes are spawned in a tuple
 then this tuple is added as an active one to the tuple space�

deposit � �myprocess� �� p�	 � at TS end deposit�

Depositing a tuple into a tuple space does not touch the value �see also Sect� ����� When all processes
in an active tuple have terminated their execution
 then this tuple converts into a passive one with
the return values of these processes in the corresponding tuple �elds� Active tuples are invisible to

�� ��� Tuple�Space Operations

the other tuple	space operations until they convert into passive tuples� The other two tuple	space
operations apply only to passive tuples�

Note that the following statement sequence deposits a passive tuple�

x �� � �myprocess� �� p�	 ��

deposit x at TS end deposit�

The deposit operation copies the value of x
 and thus has to wait for the termination of p�	 �see also
Sect� �����

The syntax for the deposit operation is as follows�

Deposit �
�
�deposit

�
�� Expr �

�
�at
�
�� Expr �

����blockiffull
�
�

�

�

�

As indicated above
 the �rst expression must yield a tuple to be deposited at the tuple space and
the second expression must yield a valid tuple	space identity� If not
 the exception type mismatch or
ts invalid id will be raised�

Here
 a rather aesthetical question arises� The syntax for ProSet�s tuple	space operations contains
some redundancies� A deposit operation such as

deposit ����� at TS end deposit �

could simply be written without the tail�

deposit ����� at TS �

Conversely
 all complex constructs of ProSet are enclosed within head tail pairs like

anyconstruct ��� end anyconstruct

To retain consistency
 we include the end	tails in the tuple	space operations�

Limited Tuple Spaces

Because every existing computing system has only �nite memory
 memory for tuple spaces will also
be limited� Usually
 tuple	space communication does not deal with full tuple spaces� ideally
 there is
always enough room available� Thus most runtime systems for Linda hide the fact of limited memory
from the programmer �see also Sect� ��� for a discussion on this subject��

In ProSet
 the prede�ned exception ts is full will be raised by default if no memory is available
for a deposit operation� This exception is raised with ProSet�s signal statement� Signal exceptions
permit the function raising the exception to be either terminated or resumed at the handler�s discretion
�see also Sect� ����� It is possible to specify a handler for an exception by annotating a statement with
a new binding between exception name and handler name�

deposit � x �

at TS

end deposit when ts�is�full use MyHandler�

����� Fetching Tuples ��

If the associated handler then executes a return statement
 the statement following the deposit will
be executed and the tuple of the respective deposit will not be deposited� If the handler executes
a resume statement
 the deposit operation tries again to deposit the tuple� See Sect� ��� for an
example�

The exceptions ts invalid id and type mismatch are always raised with ProSet�s escape state	
ment
 which prohibits resuming �see Sect� �����

Optionally
 the programmer may specify that a deposit operation will be suspended on a full tuple
space until space is available again�

deposit � x
 at TS

blockiffull

end deposit

A new binding between the prede�ned exception ts is full and another handler name should not be
speci�ed together with blockiffull
 because ts is full would never be raised when blockiffull

is speci�ed� The compiler rejects this�

The suitable handling of full tuple spaces depends on the application one has to program� Thus
a general setting does not seem to be appropriate� Blocking is useful
 for example
 in a producer	
consumer application� In a producer	consumer application a producer produces data for a consumer
�Andrews
 ������ The producer would wait when the consumer cannot consume the data fast enough�
In a master	worker application �see Sect� ���� one might prefer to collect some results by an own
handler before producing more tasks
 when the tuple space is full� In Sects� ��� and ��� master	worker
applications with limited tuple spaces will be presented�

�	�	
 Fetching Tuples

A fetch operation tries to fetch and remove exactly one tuple from a tuple space� It is possible to
specify several templates for the speci�ed tuple space in a statement
 but only one template may be
selected nondeterministically �see also Sect� ������� We start with a �rst example for a fetch operation
with a single template�

fetch � �name� � x ��type
��	 � integer	 	 at TS end fetch�

This template only matches tuples with the string �name� in the �rst �eld and integer values in
the second �eld� The symbol
 may be used like an expression as a placeholder for the values of
corresponding tuples in tuple space� The expression
�i	 then selects the ith element from these
tuples� Indexing starts with �� It is only allowed to use the symbol
 this way in expressions that
are parts of templates� As usual in ProSet
 � means such that� The Boolean expression after � may
be used to customize matching by restricting the set of possibly matching tuples� ProSet employs
conditional value matching and not type matching known from C	Linda and similar embeddings of
Linda into statically typed languages� A tuple and a template match i� all the following conditions
hold�

� The tuple is passive�

� The arities are equal� The arity of a tuple or template is the largest index of a tuple or template
component which is not the unde�ned value om� As usual
 indexing starts with ��

� Values of actuals in templates are equal to the corresponding tuple �elds�

� The Boolean expression after � in the template evaluates to true� If no such expression is
speci�ed
 then true is the default�

�� ��� Tuple�Space Operations

The l	values �Sect� ���� speci�ed in the formals �the variable x in our example� are assigned the values
of the corresponding tuple �elds provided matching succeeds� The selected tuple is removed from tuple
space� If no else statements are speci�ed as in the above example then the statement suspends until
a match occurs� If statements are speci�ed for the selected template
 these statements are executed�
An example with multiple templates
 associated statements
 and an else statement follows�

fetch � �name�� � x ��type ���� � integer� � �� put��Integer fetched��

xor � �name�� � x ��type ���� � set� � �� put��Set fetched��

at TS

else put��Nothing fetched��

end fetch

Here both templates consist of an actual �the expression �name��
 a formal preceded by a question
mark
 and a template condition� The templates are enclosed in parentheses and not in brackets in
order to set the templates apart from tuples� The else statement will be executed if none of the
templates matches�

The syntax for the fetch operation is as follows�

Fetch �
�
�fetch

�
�
� TempList �

�
�at
�
�
� Expr � Else �

The expression must yield a valid tuple	space identity as before� The syntax for the template list is
as follows�

TempList �

�

� Template

�

�

�
�
���
�
�
� Stmts �

�

�
�xor
�
��

�

�

�

We use the keyword xor �exclusive or� and not or to separate the individual alternatives to emphasize
that only one template may be selected� The optional statements are preceded by the symbol ��

because the same syntax was chosen forProSet�s case statement �Doberkat et al�
 ����a�� A template
then consists of a list of ordinary expressions �the actuals�
 formals
 and a template condition �after ���

Template �
�
��
�
�

�

��

�

�
��
�

� Expr

� Formal

�
��
�

�
��
�
��

�

�

�

��

�����
�
�� Expr

�

�

�
�
��
�
��

The Boolean expression after �
 which may be used to customize matching
 is placed within the
parentheses of the templates to make the implicit scope of
 explicit� These Boolean expressions have
to be side	e�ect free
 because it depends on the implementation how often such a condition is evaluated

����� Meeting Tuples ��

while the tuple	space manager tries to match tuples and templates� Note that the ProSet	Compiler
can check at compile	time if a procedure has side e�ects or not�

The actuals are the expressions in the template list� They are �rst evaluated in arbitrary order� Note
that a template may be empty to match the empty tuple � �� The �elds that are preceded by a
question mark are the formals of the template�

Formal �
�
��
�
��

�� LValue

�

�

�

The l	values speci�ed in the formals are assigned the values of the corresponding tuple �elds provided
matching succeeds� If an l	value is speci�ed more than once
 it is not determined which one of the
possible values is assigned� If an l	values also occurs in the expressions of templates
 then these
expressions are evaluated with the corresponding old values of these l	values� If no l	value is speci�ed

then the corresponding value will not be available� A formal without an l	value may be regarded as
a �don�t care� or �only take care of the condition� �eld�

Note that the template ��om	 matches the tuple ���� The equation �������om�� holds in ProSet
�see Sect� ����� Note also that the template �om�	 does not match the tuple ����

Non�blocking Matching

It is possible to specify else statements to be executed
 if none of the templates matches�

Else �

����else
�
�� Stmts

�

�

�

We will use the notion non�blocking matching if else statements are speci�ed as opposed to blocking
matching if no else statements are speci�ed� In Sect� ��� a discussion on this subject can be found�

�	�	� Meeting Tuples

The meet operation tries to meet and leave exactly one tuple in a tuple space� It is possible to change
the tuple while meeting it� Except for the fact that a meet operation
 which does not change the
tuple met
 leaves the tuple it found in tuple space
 it works like the fetch operation� Exchanging the
keyword fetch with meet and the nonterminal Formal with

� Formal �

����into
�
�� Expr

�

�

�

in the syntax diagrams of Sect� �����
 one obtains the syntax for the meet operation� The complete
abstract grammar for the tuple	space operations is presented in Appendix A� An example for the
meet operation follows�

�� ��� Tuple�Space Operations

meet � �name�� � x ��type ���� � integer� � �� put��Integer met��

xor � �name�� � x ��type ���� � set� � �� put��Set met��

at TS

else put��Nothing met��

end meet

The expressions are evaluated as usual
 the formals are used to create templates
 which are used for
matching as with the fetch operation� If no else case is speci�ed
 then the statement suspends until
a match occurs� The values of the tuple �elds that were fetched for the corresponding formals of
the template are assigned to the corresponding l	values� If statements are speci�ed for the selected
template
 these statements are executed �only for this template��

If there are no intos speci�ed as in this example
 then the selected tuple is not removed from tuple
space� This case may be compared with the rd rdp operations of C	Linda �see Sect� ������� Except
for the fact that the meet operation without intos leaves the tuple it found in tuple space
 the
construction works like the fetch operation�

Changing Tuples

The absence of support for user	de�ned high	level operations on shared data in Linda is criticized
�Bal
 ������ We agree that this is a shortcoming� For overcoming it we allow to change tuples while
meeting them in tuple space� This is done by specifying expressions into which speci�c tuple �elds
will be changed� Tuples
 which are met in tuple space
 may be regarded as shared data since they
remain in tuple space irrespective of changing them or not�

If there are intos speci�ed
 then the tuple is at �rst fetched from the tuple space as it would be done
with the fetch operation� Afterwards a tuple will be deposited into the same tuple space
 where all
the tuple �elds without intos are unchanged and all the tuple �elds with intos are updated with the
values of the respective expressions� Consider

meet � �name� � into
��	�� 	 at TS end meet�

which is equivalent to the series of statements with x as a fresh name�

fetch � �name� � x 	 at TS end fetch�

deposit � �name� x�� � at TS end deposit�

Indivisibility is guaranteed
 because fetching the passive tuple at starting and depositing the new
passive or active one at the end of the user	de�ned operation on shared data are atomic operations�
Note that the tuple is not really removed from the tuple space� The above equivalence is only
introduced to specify the semantics
 not the implementation�

Therefore
 with the meet operation expensive copying of compound data may be avoided� Conse	
quently
 the meet operation will not raise ts is full when a tuple space is full while depositing a
changed tuple
 when the number of allowed tuples in this tuple space is exceeded �see also Sect� �����
The place for the met tuple will be reserved for the entire operation� However
 if the changed tuple
exceeds a physical memory limit
 this will raise ts is full�

It is not necessary to specify l	values for changing tuple �elds� However
 they may be used�

meet � �name� � x into
��	�� 	 at TS end meet�

Here x is assigned the value of the corresponding tuple �eld before the change takes place� Remember
that it is only allowed to use the symbol
 this way in expressions that are parts of templates�

����� Nondeterminism and Fairness while Matching ��

�	�	� Nondeterminism and Fairness while Matching

There are two sources for nondeterminism while matching�

�� Several matching tuples exist for a given template� one tuple will be selected nondeterministi	
cally�

�� A tuple matches several templates� one template will be selected nondeterministically�

If in any case there is only one candidate available
 this one will be selected� There are several ways
for handling fairness while selecting tuples or templates that match if there are multiple candidates
available� We assume a fair scheduler to guarantee process fairness
 which means that no single process
is excluded of CPU time forever� We will now discuss fairness of choice which is important for handling
the nondeterminism derived from matching� There exist some fairness notions �Kwiatkowska
 ������

Unconditional Fairness Every process will be selected in�nitely often�

Weak Fairness If a process is enabled continuously from some point onwards then it
eventually will be selected� Weak Fairness is also called justice�

Strong Fairness If a process is enabled in�nitely often then it will be selected in�nitely
often�

Since unconditional fairness applies only to nonterminating processes we do not consider it for our ap	
proach� In ProSet the following fairness guarantees are given for the two sources for nondeterminism
as mentioned above�

�� Tuples will be selected without any consideration of fairness�

�� Templates will be selected in a weakly fair way�

Fairness is also important for processes which are blocked on full tuple spaces�

�� Processes which are blocked on full tuple spaces are selected in a weakly fair way when tuples
are fetched from the respective tuple spaces�

In cases ���� and ���� processes are involved and enabled after selection
 whereas in case ���� this is not
the case for deposited tuples� Fairness is a liveness property �Ben	Ari
 ����� Andrews
 ������ Liveness
properties specify that something good will happen �e�g�
 termination�� Our fairness properties specify
that every blocked process which may be selected in�nitely often is selected eventually� We could also
select deposited tuples in a fair way
 but this would not increase the liveness of ProSet programs�
Therefore
 it is reasonable to employ weakly fair selection in cases ���� and ����
 and unfair selection
in case ����� These fairness properties are speci�ed formally by means of temporal logic in Sect� ���
and discussed in Sect� ����

Weakly fair selection of templates applies only to blocking matching� if a template
 which is used for
non	blocking matching
 does match immediately then this one is excluded of further matching and
the corresponding process is informed of this fact� This applies accordingly to non	blocking matching
with multiple templates
 too� Templates �respectively processes�
 which are suspended because no
tuple matches them are weakly fair matched with tuples later deposited� The implementation has to
guarantee this�

��� Summary

We presented the integration of generative communication into ProSet informally by means of simple
examples
 syntax diagrams
 and explanatory text� We will extend this presentation by means of
some example programs in Chap� �
 and continue with a discussion of other proposed approaches to
extending Linda and some design alternatives to our approach in Chap� ��

�� ��� Summary

Chapter �

Example Programs

In Chap� � we present the informal semantics of generative communication in ProSet� Now we
illustrate this presentation by means of some example programs� To be more precise
 we shall present
the parallel solutions for a master	worker application with limited tuple spaces
 the queens� problem

matrix multiplication
 the traveling salesman problem
 and the dining philosophers problem� Our
intention is to present the features of ProSet	Linda�

��� AMaster	Worker Application with LimitedTuple Spaces

A master	worker application with limited tuple spaces
 where the master makes some new tasks
dependent on some results produced by the workers will now be presented to discuss the semantics of
non	blocking matching in correlation with limited tuple spaces� See also Sect� ��� for a discussion of
this relation�

In a master	worker application
 the task to be solved is partitioned into independent subtasks� These
subtasks are placed into the tuple space
 and each process in a pool of identical workers then repeatedly
retrieves a subtask description from the tuple space
 solves it
 and deposits the solutions into the tuple
space� The master process then collects the results� An advantage of this programming approach is
easy load balancing because the number of workers is usually variable�

The program in Fig� ��� consists of a master �the main program�
 a worker procedure
 and an exception
handler� The master spawns NumWorker worker processes outside the tuple space� This number is an
argument to the main program� These workers execute in an in�nite loop
 in which tasks are fetched
from tuple space WORK
 and results are computed and deposited at tuple space RESULT� A worker is
suspended if there is no more space available for depositing results �blockiffull�
 since a worker
does not know what to do in this case� The master repeatedly deposits tasks into tuple space WORK� If
there is no more space available for new tasks
 the exception ts is full will be raised by the deposit
operation and the handler fetchResults will be activated to fetch some results �see also Sect� �����
At least one result will be fetched by the exception handler and probably some more
 before resuming
the deposit operation� The master becomes temporary a worker while executing the handler� It is
not important how many results are fetched� It is only important that some results are fetched to
enable the workers�

The program could be made more e�cient if only one tuple space would be used
 since fetchResults
may be called earlier and thus the workers are suspended for a shorter time� However
 we use two
tuple spaces to simplify matching� The master could do something with the results if he wants� He
also would have to fetch remaining results when the whilefound loop terminates� Notice that the
handler fetchResults changes the visible set tasks� This is not allowed for the spawned workers�

This program presents only a template for such a master	worker application� It is not a complete
program� Section ��� will present a speci�c instance with some minor modi�cations�

��

�� 	�� A Master�Worker Application with Limited Tuple Spaces

program MasterWorker�

constant NumWorker �� argv��	� �� program argument

visible constant WORK �� CreateTS �����	

RESULT �� CreateTS ����	�

visible tasks �� � some task tuples ��

begin

for i in ����NumWorker� do

�� closure Worker �	� �� start the workers outside of tuple space

end for�

whilefound next in tasks do

deposit next

at WORK

end deposit when ts�is�full use fetchResults�

end whilefound�

�� fetch remaining results ���

procedure Worker �	�

begin

loop

fetch � � MyTask 	 at WORK end fetch�

�� compute MyResult ���

deposit � MyResult � at RESULT

blockiffull

end deposit�

end loop�

end Worker�

handler fetchResults �	�

begin

�� fetch at least one result�

fetch � � firstResult 	 at RESULT end fetch�

�� fetch some more results�

loop

fetch � � nextResult 	 at RESULT

else tasks ��� � some new task tuples ��

resume� �� the deposit operation

end fetch�

�� do something with the result ���

end loop�

end fetchResults�

end MasterWorker�

Figure ���� A master	worker program with limited tuple spaces�
The keyword visible declares the respective objects as visible for the local procedure and the
handler� The default scope rules of ProSet declare an object as hidden for local procedures� Note
that the closure constructor has to be applied here to convert the second�class procedure Worker

into a �rst�class function �see Sects� 	�
 and ��
�� However� the resulting �rst�class function will
be identical to the original procedure� because Worker has no side eects on global variables�

	�� The Queens� Problem Revisited ��

We consider non	blocking matching useful to handle limited tuple spaces
 because we do not know the
exact number of results we had to fetch in this example �see the else statements in fetchResults��
We argue that the semantic problems with supporting the notion of limited tuple spaces and non	
blocking matching are related� See also Sect� ��� for a discussion on this subject�

��� The Queens
 Problem Revisited

In Sect� ��� the queens� problem was introduced and a sequential solution presented� In Fig� ��� a
parallel solution based on the master	worker model
 which has been introduced in Sect� ���
 is given�

The resulting set of non	con�icting positions is built up in tuple space RESULT via changing meet

operations� The master program spawns NumWorker worker processes� One could pass this number as
an argument to the main program according to the available processors� The counter in tuple space
RESULT is necessary to let the master wait until all positions are evaluated� Tuple space WORK is cleared
after work has been done thus also terminating the workers� It would be more e�cient to deposit the
positions directly into the tuple space instead of �rst constructing the set Positions�

The speci�cation of a limit for the tuple spaces is primary intended here to obtain a facility for load
balancing between producers and consumers of tuples �not necessary load balancing between hardware
processors
 but between processes��

��� Parallel Matrix Multiplication

The program in Fig� ��� on page �� presents parallel matrix multiplication� Since ProSet does not
provide arrays
 we use tuples of tuples to represent two	dimensional matrices� The tuple space WORK is
used to deposit the rows of matrix A
 the columns of B
 and the workers� The result matrix C is built
up in tuple space RESULT via changing meet operations� The counter attached to the result matrix is
necessary to let the master wait until all elements are computed� Tuple space WORK is cleared after
work has been done thus also terminating the workers

This program does not support load balancing
 because the number of workers is �xed as the number
of elements in the result matrix �the number of rows in A multiplied by the number of columns in B��
One could reduce the number of workers as it has been done in �Ahuja et al�
 ����
 page ����

��� The Traveling Salesman Problem

In this section we consider the traveling salesman problem in which it is desired to �nd the shortest
route that visits each of a given set of cities exactly once� We want to compute an optimal route for
some cities in the Ruhrgebiet� The selected cities with their connections and distances are displayed
in Fig� ��� on page ��� The salesman should start in Essen�

The problem can be solved using branch�and�bound �Lawler and Wood
 ������ It uses a tree to
structure the search space of possible solutions� The root of the tree is the city in which the salesman
should start� Each path from the root to a node represents a partial tour for the salesman� Leaf nodes
represent either partial tours without connections to not yet visited cities or complete tours� Complete
tours visit each city exactly once� Fig� ��� on page �� displays the search tree for our selection of
cities� The complete tours
 in which each city is visited
 are set o� through thick lines� In general
 it
is not necessary to search the entire tree� a bounding rule avoids searching the entire tree� For the
traveling salesman problem
 the bounding rule is simple� If the length of a partial tour exceeds the
length of an already known complete tour
 the partial tour will never lead to a solution better than
what is already known�

Parallelism in a branch	and	bound algorithm is obtained by searching the tree in parallel� Our program
in Fig� ��� on page �� stores the cities with their connections in the global set DistTable� This set

�� 	�� The Traveling Salesman Problem

program ParallelQueens

constant N �� �� NumWorker �� argv��� �� program argument

visible constant WORK �� CreateTS �������

RESULT �� CreateTS �	���

begin

Positions �� npow�N� ��x�y
� x in ����N
� y in ����N
��

for i in �� �� NumWorker
 do �� spawn the worker processes

deposit � �� closure Worker��
 at WORK end deposit

end for

deposit � ��
 at RESULT end deposit �� initialize the result set

deposit � �
 at RESULT end deposit �� initialize the position counter

for NextPosition in Positions do

deposit � NextPosition

at WORK

end deposit when ts�is�full use DoSomeWork

end for

fetch � �Positions � at RESULT end fetch �� wait for the work to be done

fetch � � ResultPos ��type ���� � set� � at RESULT end fetch

put �ResultPos�

ClearTS�WORK�

procedure Worker �� begin

loop

fetch � � MyPosition ��type ���� � set� � at WORK end fetch

EvalPosition �MyPosition�

end loop

end Worker

handler DoSomeWork �� begin

fetch � � MyPosition ��type ���� � set� � at WORK end fetch

EvalPosition �MyPosition�

loop

fetch � � MyPosition ��type ���� � set� � at WORK

else resume �� the deposit operation

end fetch

EvalPosition �MyPosition�

end loop

end DoSomeWork

procedure EvalPosition �Position� begin

if NonConflict �Position� then

meet � � into ����� with Position� ��type ���� � set� �

at RESULT

end meet

end if

meet � � into ����� � �� ��type ���� � integer� �

at RESULT

end meet

end EvalPosition

end ParallelQueens

Figure ���� Parallel solution for the queens� problem�
See Fig� 	�
 on page 	� for the procedure NonConflict� The master program spawns NumWorker
worker processes� This number is an argument to the main program� The unary operator �

returns the number of elements in a compound data structure� When there is no more space
available for more tasks� the exception ts is full will be raised and the handler DoSomeWorkwill
be activated to do some work� the master becomes temporary a worker�

	�� The Traveling Salesman Problem ��

program matrix

visible constant WORK �� CreateTS�om��

RESULT �� CreateTS�om�

begin

A �� � ��� �� �
�

��� 	� �

B �� � � � �� !� ��
�

���� ��� ��� ��
�

��	� ��� � � ��

C �� � �
� �

for i in � � �� �A
 do

deposit � �A�� i� A�i�
 at WORK end deposit

end for

for i in � � �� �B���
 do

ithColumn �� � B�j��i�� j in �� �� �B

deposit � �B�� i� ithColumn
 at WORK end deposit

end for

deposit � �C�� C� �
 at RESULT end deposit

for i in � � �� �A
� j in � � �� �B���
 do

deposit � �� closure worker�i�j�
 at WORK end deposit

end for

fetch � �C�� � C� �A � �B��� � at RESULT end fetch

ClearTS �WORK�

procedure worker �i� j�

begin

meet � �A�� i� � row � at WORK end meet

meet � �B�� j� � column � at WORK end meet

Dot �� DotProduct �row� column�

meet � �C�� � into AddDot������i�j�Dot�� � into ������ �

at RESULT

end meet

procedure DotProduct �row� column�

begin

sum �� �

for i in �����row
 do

sum ��� row�i��column�i�

end for

return sum

end DotProduct

procedure AddDot�C� i� j� Dot�

begin

C�i��j� �� Dot

return C

end AddDot

end worker

end matrix

Figure ���� Parallel matrix multiplication�

�� 	�� The Traveling Salesman Problem

Duisburg Essen DortmundBochum

Oberhausen Gelsenkirchen

14 13

5 10

15

8
8

23

16

Figure ���� Some cities in the Ruhrgebiet with their connections and distances�

Duisburg Oberhausen Gelsenkirchen Bochum

Oberhausen Duisburg Gelsenkirchen

Gelsenkirchen

Bochum Dortmund

BochumDortmund

Oberhausen

Duisburg

Bochum

Dortmund

Bochum

Dortmund

Bochum Dortmund

BochumDortmund

Dortmund

GelsenkirchenOberhausen

Duisburg

Dortmund

Gelsenkirchen

Oberhausen

Duisburg

Essen

Figure ���� The search tree for our selection of cities in the Ruhrgebiet�

	�� The Traveling Salesman Problem ��

program tsp

visible constant DistTable ��

����Duisburg���Essen�
� ��
� ���Essen���Duisburg�
� ��
�

���Duisburg���Oberhausen�
� 	
� ���Oberhausen���Duisburg�
� 	
�

���Oberhausen���Essen�
� ��
� ���Essen���Oberhausen�
� ��
�

���Oberhausen���Gelsenkirchen�
� �	
� ���Oberhausen���Gelsenkirchen�
� �	
�

���Essen���Gelsenkirchen�
� �
� ���Essen���Gelsenkirchen�
� �
�

���Essen���Bochum�
� ��
� ���Bochum���Essen�
� ��
�

���Bochum���Dortmund�
� ��
� ���Dortmund���Bochum�
� ��
�

���Bochum���Gelsenkirchen�
� �
� ���Gelsenkirchen���Bochum�
� �
�

���Dortmund���Gelsenkirchen�
� ��
� ���Gelsenkirchen���Dortmund�
� ��
��

Nodes �� ��Duisburg�� �Essen�� �Bochum�� �Dortmund�� �Oberhausen�� �Gelsenkirchen���

Minimum �� CreateTS �om�

begin

Start �� �Essen�

deposit � om� �

 at Minimum end deposit �� The minimum is not yet defined �om�

NumWorker �� � �� Number of spawned workers

for Entry in DistTable � Entry������ � Start do

�� Spawn a worker for each initial route�

deposit � �� closure Worker �Entry���� Entry����
 at Minimum end deposit

NumWorker ��� �

end for

for i in ����NumWorker
 do

fetch � � � at Minimum end fetch �� wait for the workers

end for

fetch � � distance� � route � at Minimum end fetch

put��Tour de Ruhr � �� route�

put��Distance � �� distance�

procedure Worker �MyRoute� MyDistance�

begin

meet � � distance� � � at Minimum end meet �� to check if we can return

if distance �� om and distance "� MyDistance then

return �� there exists already a shorter or equal long route� we prune this subtree

end if

if �MyRoute � �Nodes then

�� We have a complete route� Change the minimum to our route if it is

�� still the shortest one�

meet � � into MyDistance� � into MyRoute

� ����� � om or ���� � MyDistance � �

at Minimum

end meet

else

�� Call a worker for each route which is a connection of MyRoute with a

�� node that is not in MyRoute�

for Entry in DistTable � �Entry������ � MyRoute��MyRoute� and

Entry������ notin �x� x in MyRoute�� do

Worker �MyRoute with Entry������� MyDistance � Entry����

end for

end if

end Worker

end tsp

Figure ���� Solution for the traveling salesman problem�

�� 	�� The Dining Philosophers Problem

is a map which maps pairs of cities to their distance� The distances are speci�ed for each direction�
The distances between two cities may be di�erent for di�erent directions �for one	way connections��
The set Nodes contains the cities involved� The string Start indicates the starting point� We deposit
the current minimal distance together with the corresponding route in the tuple space Minimum� This
minimal distance is initially unde�ned �om	 and the corresponding route is an empty tuple� The main
program spawns for each initial route a worker process to compute the search tree in parallel� After
spawning the workers
 the main program waits until all workers have done their work
 and then the
main program fetches the optimal distance together with the corresponding route�

Each worker �rst checks whether its partial route �the parameter MyRoute� exceeds the length of an
already known complete route� Then the worker terminates �according to the bounding rule�� If the
length of the partial tour does not exceed the length of an already known complete route
 the worker
checks if its partial route is already a complete route� If the partial route is already a complete route

the worker changes the minimal route in the tuple space Minimum to the given route
 provided that
the given route is still the shortest one� If the partial route is not a complete route
 the worker calls
itself recursively for each route which is a connection of the given route with a node that is not in the
given route� There has to be a connection de�ned in DistTable between the last node in the given
route and the next node that is not in the given route to constitute a new extended route�

The program in Fig� ��� on page �� prints out�

Tour de Ruhr � ��Essen�� �Duisburg�� �Oberhausen�� �Gelsenkirchen�� �Bochum�� �Dortmund�

Distance � 	�

For simplicity we assume that there exists at least one complete route that visits each of a given set
of cities exactly once� If such a complete route does not exist
 the program prints out�

Tour de Ruhr � �

Distance � om

Often it is assumed in solutions for the traveling salesman problem that there exists a connection
between each pair of cities� Our program does not have this assumption
 and also solves problems
where the distances between two cities depend on the direction�

��� The Dining Philosophers Problem

We conclude this chapter with a classical problem in parallel programming� The dining philosophers
problem was posed originally by Dijkstra �Dijkstra
 �����
 and is often used to test the expressivity of
new parallel languages� We quote for a description of this problem�

�The 'dining philosophers� problem goes like this� a round table is set with some number
of plates �traditionally �ve�� there�s a single chopstick between each two plates
 and a bowl
of rice in the center of the table� Philosophers think
 then enter the room
 eat
 leave the
room and repeat the cycle� A philosopher can�t eat without two chopsticks in hand� the
two he needs are the ones to the left and the right of the plate at which he is seated��
�Carriero and Gelernter
 ����a
 page ����

The original problem speci�cation uses a bowl of spaghetti and the utensils were forks �Dijkstra
 �����

but it does not seem immediately reasonable why two forks are needed to eat spaghetti thus we use
the above speci�cation� The dining philosophers problem is a popular instance of selective mutual
exclusion problems
 where parallel processes compete for common resources� Fig� ��� presents the
general form of a solution for the mutual exclusion problem �see also �Ben	Ari
 ����� Andrews
 �������

Some extensions to the dining philosophers problem were proposed�

	�� The Dining Philosophers Problem ��

loop

Non Critical Section

Pre Control

Critical Section

Post Control

end loop

Figure ���� Form of mutual exclusion solution�

� The drinking philosophers problem
 where neighbors are allowed to drink simultaneously pro	
vided that they are drinking from di�erent bottles �Chandy and Misra
 ������

� The evolving philosophers problem with change management
 where a philosopher can leave the
table
 a new philosopher can join the table
 or a philosopher can move from one part of the table
to another �Hazelhurst
 ������

� The problem of the restaurant for dining philosophers with multiple tables and change manage	
ment �Ciancarini
 ������

In this paper we consider the plain dining philosophers problem� The solution in ProSet in Fig� ���
is derived from the C	Linda version in �Carriero and Gelernter
 ����a�� In the C	Linda version the
philosophers �rst fetch their left and then their right chopsticks� In our ProSet	Linda version this
order is not speci�ed� The program works for arbitrary n � �� To prevent deadlock
 only four
philosophers �or one less than the total number of plates� are allowed into the room at any time
to guarantee to be at least one philosopher who is able to make use of both
 his left and his right
chopstick� In �Carriero and Gelernter
 ����a� this is shown with the pigeonhole principle�

The C	Linda solution does not guarantee fairness of choice
 it relies on a fair runtime system� With
the fairness assumptions made in Sect� ����� we can prove that no individual starvation can occur

i�e�
 the solution is fair�

Sketch of proof� If a philosopher wants to eat
 he tries to fetch a room ticket�

� If there is a matching one available he will fetch it and continue�

� If there is no one available he will be suspended because all the other philosophers have
fetched one� The others will eventually �nish eating �general assumption for critical sec	
tions� and thus return the room tickets after �nite periods of time� The suspended philoso	
pher will eventually obtain a room ticket
 since the tuple	space manager handles match	
ing between new deposited tuples and templates of suspended processes in a fair way
�Sect� �������

The same fairness assumptions apply to fetching the chopsticks
 thus a philosopher who wants
to eat will eventually start eating� This is a su�cient assumption to avoid individual starvation�

�

The possibility of a particular philosopher being starved to death by a conspiracy of his two neighbors

which is contained in the solution in �Dijkstra
 �����
 is not present in our solution� Note that eating
is considered to be a critical section which will eventually terminate and that a fair process scheduler
is presupposed� We sketch some constraints that solutions for selective mutual exclusion problems
must satisfy�

� Deadlock freedom�

� Fairness�

�� 	�	 Summary

program DiningPhilosophers

visible constant n �� 	� �� �philosophers

TS �� CreateTS�om�

begin

for i in � � �� n��
 do

deposit � �chopstick�� i
 at TS end deposit

if i �� n�� then

deposit � �room ticket�
 at TS end deposit

�� closure phil�i� �� spawn a philosopher

end if

end for

phil�n��� �� the main program becomes the last philosopher

procedure phil �i�

begin

loop

think ��

fetch � �room ticket� � at TS end fetch

fetch � �chopstick�� i � ��

fetch � �chopstick�� �i��� mod n � at TS end fetch

xor � �chopstick�� �i��� mod n � ��

fetch � �chopstick�� i � at TS end fetch

at TS

end fetch

eat ��

deposit � �chopstick�� i
 at TS end deposit

deposit � �chopstick�� �i��� mod n
 at TS end deposit

deposit � �room ticket�
 at TS end deposit

end loop

end phil

end DiningPhilosophers

Figure ���� Solution for the dining philosophers problem�

� Processes that fail within their non	critical sections do not prevent others from eating� A process
may halt in its non	critical section� It may not halt during execution of its protocols or critical
section� If one process halts in its non	critical section
 it must not interfere with other processes
�Ben	Ari
 ����� Andrews
 ������

� Symmetry
 in that all philosophers obey precisely the same rules� However
 the system has
sometimes to prefer speci�c philosophers to guarantee fairness� Perfectly symmetrical solutions
to problems in concurrent programming are impossible because if every process executes exactly
the same program
 they can never 'break ties� �Ben	Ari
 ������

� Concurrency �non	neighboring philosophers may eat simultaneously��

� No assumptions concerning the relative speeds�

� E�cient behavior under absence of contention�

��� Summary

We extended the informal presentation of generative communication in ProSet of Chap� � by means
of some example programs� We will continue with a discussion of other proposed approaches to
extending Linda and some design alternatives in Chap� ��

Chapter �

Discussion of Other Approaches to

Generative Communication and

Some Design Alternatives

In this chapter we discuss other approaches to extending Linda proposed in the literature and indicate
some design alternatives for generative communication in ProSet as proposed in Chap� �� In the
next two sections we begin with a sketch of the shortcomings of C	Linda and compare C	Linda�s
tuple	space operations with ProSet�s tuple	space operations� We then proceed with discussions on�

� Customized matching �Sect� ����

� Selective matching �Sect� ����

� Aggregate and accumulative matching �Sect� ����

� Limited tuple spaces and non	blocking matching �Sect� ����

� Fair matching �Sect� ����

� Extending the type system for matching �Sect� ����

� Formals and templates with �rst	class rights �Sect� ����

� Update operations on tuples in tuple space �Sect� �����

� Process creation and process identities �Sect� �����

� Multiple tuple spaces and tuple	space identities �Sect� �����

� Data parallelism in generative communication �Sect� �����

� Fault	tolerance �Sect� �����

� Persistence �Sect� �����

� Overloading prede�ned operators �Sect� �����

��

�� �� Comparison of ProSet�s and C�Linda�s Tuple�Space Operations

��� Shortcomings of C	Linda

Despite its strength
 as discussed in Sect� ���
 the C	Linda model of generative communication is not
without its weaknesses� Some of the concerns are �see also �Kaashoek et al�
 ����� Bal
 ����� Wilson

�������

� Di�cult data structures such as sets are not easy to store in tuple space�

This is no problem in ProSet�

� The expressiveness is limited� some operations which are simply expressed in other systems � in
particular update operations � are di�cult to express using C	Linda�s tuple	space operations�

ProSet�s meet operation provides arbitrary update operations on tuples in tuple space to solve
this problem�

� C	Linda�s global tuple space does not support modularity� This causes disadvantages for infor	
mation hiding and optimizations�

Multiple tuple spaces solve this problem�

� An associative tuple space cannot deliver as high a performance as
 for example
 direct message
passing�

If an application actually needs the functionality of associative addressing
 then the cost of
it must be paid
 no matter what kind of system is being used� The advantage of generative
communication is that programmers do not have to implement the mechanisms of associative
addressing themselves�

� The performance is unpredictable �see also Sect� ������

� The behavior is not well	de�ned� there is not a standard semantics for the tuple	space operations
in C	Linda�

We solve this problem by providing a formal speci�cation of generative communication in
ProSet in Chap� ��

��� Comparison of ProSet
s and C	Linda
s Tuple	Space Op	

erations

After sketching some shortcomings of the tuple	space operations in C	Linda and indicating partial
remedies
 we now compare the tuple	space operations in ProSet �see Sect� ���� with the tuple	space
operations in C	Linda�

The deposit operation comprises the out and eval operations of C	Linda� One might compare
depositing of active tuples by deposit with C	Linda�s eval
 but this is not the same
 however

because all �elds of an eval tuple are executed in parallel and not only �elds which were selected by
the programmer� This is a noteworthy di�erence� according to the semantics of eval each �eld of
a tuple is evaluated in parallel� But probably no system will create a new process to compute
 for
example
 a plain integer constant� In the Yale Linda Implementation
 only expressions consisting of
a single function call are evaluated within new processes �Carriero and Gelernter
 ����a�� The system
has to decide which �elds to compute in parallel and which sequentially� Similar problems arise in
automatic parallelization of functional languages� here one has to reduce the existing parallelism to
a reasonable granularity� In our approach the programmer communicates his knowledge about the
granularity of his application to the system�

Additionally
 the semantics of eval is not well	de�ned and
 therefore
 not always understood� some
current implementations in fact evaluate all �elds of an eval tuple sequentially within a single new

�� Customized Matching ��

process� This may cause deadlocks if processes within an eval tuple communicate with each other�
�Narem
 ����� summarizes four basic types of process creation used in implementations of C	Linda�s
eval operation� They are di�erent interpretations of the informal speci�cation of the eval operation�
Furthermore
 it is not well	de�ned what has to happen if processes
 which were spawned by eval

perform side e�ects on global variables� See also �Leichter
 ����
 Sects� ��� and ������ for a discussion
on this subject�

The eval operation � i�e�
 process creation � was not included in early C	Linda versions �Gelernter

������ Process creation and generative communication are conceptually di�erent� The eval operation
has been added later to encompass process creation within the tuple	space operations� We did not
follow this approach in ProSet to retain orthogonality between process creation and generative
communication� In a similar approach it has been proposed to replace eval in PROLOG	Linda by
parallel committed choice logic �Anderson et al�
 ����� �see also Sect� �������

To conclude this section
 we note that the fetch operation combines the select construct of Ada
�Barnes
 ������ and in respectively inp of C	Linda� The meet operation combines select of Ada
 rd
and rdp of C	Linda
 and allows for changing tuples in tuple space� Note
 however
 that a template
may be empty in ProSet to match the empty tuple � �� This is neither allowed for tuples nor for
templates in C	Linda�

��� Customized Matching

The Boolean expression after � within templates may be used in ProSet to customize matching by
restricting the set of possibly matching tuples� Several other approaches to customize the matching
process were proposed�

� �Schoinas
 ����� and �Anderson and Shasha
 ����� provide range accessing � formals are extended
to match only values in a speci�ed range �for example� in�� i �������	���

� �Abarbanel
 ����� provides so	called satises forms
 viz� predicate functions
 which are attached
to formals to be evaluated during the matching process�

� Boolean expressions are attached in �Anderson et al�
 ����� to the Linda operations in PROLOG	
style to customize matching�

� In �Jagannathan
 ����� individual tuple spaces are accessed indirectly via so	called policy clo�
sures
 which may customize the matching process�

� �Broadbery and Playford
 ����� allow to rede�ne matching methods�

Range accessing may be implemented in ProSet through appropriate conditions
 for example�

fetch �� i � ��� ��
��	 and
��	 �� ��	 	 end fetch�

The approaches in �Abarbanel
 ����� Anderson et al�
 ����� are similar to our approach� The ap	
proaches in �Jagannathan
 ����� Broadbery and Playford
 ����� go beyond our approach� However

the programmer needs knowledge about the internal representation of policy closures and matching
methods
 respectively�

��� Selective Matching

The fetch and meet operations allow to specify multiple templates in one statement� This way a
process can easily wait for one of multiple events� We call such a behavior selective matching � Selective

�� �	 Limited Tuple Spaces and Non�blocking Matching

matching supports
 for example
 distributed implementations of backtracking
 such as branch	and	
bound applications
 where selective waiting for multiple events is often desired �Kaashoek et al�

������

Other proposals for selective matching operations were made�

� �Abarbanel
 ����� proposes so	called tuple grouping which provides a selective matching facility
very similar to out approach�

� The Linda Program Builder �Ahmed and Gelernter
 ����� supports a so	called or�in abstraction
for plain C	Linda� This is no language extension
 but rather a simulation of selective matching
through multiple ins and C�s switch statement �Kernighan and Ritchie
 ������ The editor
supports a program template in which the or�in becomes an in of a bit vector to check which
tuples may be available� This in is followed by a conditional which checks which bit is on
 and
based on that
 reads the appropriate tuple� The bit vector has to be generated whenever one
of the tuples of the or�in is used in an out or eval� The or�in abstraction intends to enable
programmers to use and test a proposed language extension before it has actually been added
to C	Linda�

��� Aggregate and Accumulative Matching

We considered adding the facility for specifying multiple templates in a list to avoid unnecessary
sequences for fetching and meeting tuples as in

meet � �name�� � x� 	 and � �name�� � x� 	

�� put��name� and name� met�	�

at TS

end meet�

But it is intuitively not obvious
 whether both templates have to match tuples at the same time or
during an interval of time �between starting and �nishing the meet or fetch operation�� For instance

in �Anderson and Shasha
 ����� multiple templates are allowed for rd and rdp operations
 which set
read	locks on the involved tuples to guarantee simultaneous matching� Conversely
 in �Broadbery and
Playford
 ����� accumulate matching for multiple templates is discussed
 where matching must take
place between starting and �nishing the respective operation� the involved tuples do not have to be at
the same time in the tuple space� Due to the unclear semantics we decided not to support aggregate
and accumulative matching� the above statement is not allowed in ProSet�

��� Limited Tuple Spaces and Non	blocking Matching

There exists some �minor� vagueness concerning the notions of limited tuple spaces and non	blocking
matching� Firstly
 the meaning of raising ts is full when a tuple space is full as introduced in
Sect� ����� is not really satisfying� while the handler is executed
 there might already be some space
available� Blocking on full tuple spaces is new to pure tuple	space communication� However
 we prefer
to make the programmer aware of the problem of �nite memory
 instead of hiding it in the system�

Most runtime systems for Linda hide the fact of limited memory from the programmer� For instance

in �Hutchinson
 ����� out is suspended until space is available again� This might cause deadlocks which
otherwise would not occur� Conversely
 programs running with the runtime system from Scienti�c
Computing Associates print the message �out of tb�s� and exit when the tuple space is exhausted
�Sci
 ������

�Carriero and Gelernter
 ����a
 page ���� propose a �high watermark low watermark� approach to
control the amount of sequence data in tuple space with C	Linda� This approach requires additional

� Fair Matching ��

explicit synchronization with extra tuples� We argue that ProSet�s limited tuple spaces provide
a higher	level approach to balancing the amount of data in tuple space
 because the programmer
simply speci�es a limit on the expected or desired size of a tuple space instead of providing additional
synchronization�

Secondly
 there exist also problems with non	blocking matching� The non	blocking operations inp and
rdp of C	Linda are considered harmful by some people �see e�g� �Leichter
 ����
 Sect� ������ Especially
in a distributed environment matching tuples may become available while the else statements of a
non	blocking fetch or meet operation are executed in ProSet� This is so because of concurrent
access to tuple space� Thus the meaning of these statements is not really satisfying� Generally it is
hardly possible to make any meaningful statement on the state of a tuple space
 like �This tuple is not
in tuple space#�� The state can change while it is checked� It is recommended not to use non	blocking
matching
 if the vagueness implied constitutes a problem�

As one can see in the examples of Sects� ��� and ���
 we consider non	blocking matching useful to
handle limited tuple spaces
 because we do not know the exact number of results we had to fetch� We
argue that the semantic problems with supporting the notion of limited tuple spaces and non	blocking
matching are related� Our conclusion�

We should support the notion of limited tuple spaces if and only if we also provide non	
blocking matching�

The speci�cation of a limit for a tuple space is primary intended here to obtain a facility for load
balancing between producer and consumer� If we regard limited tuple spaces as a device to in�uence
load balancing
 then the vagueness introduced by limited tuple spaces and non	blocking matching is
not a problem� one deposits some tasks
 thereupon one fetches some results
 and so on� This leads
us to the following conclusions�

� Limited tuple spaces and non	blocking matching appear to be useful for handling load balancing
between processes�

� In applications where these vagueness might be a problem
 one should not use non	blocking
matching
 not specify limits for tuple spaces
 and not customize the behavior on reaching full
tuple spaces�

��� Fair Matching

Weakly fair selection of pending processes has been speci�ed for ProSet in Sect� ������ Deposited tu	
ples are selected without any consideration of fairness� Since deposited tuples are no longer associated
to processes
 it is reasonable to select them without any consideration of fairness� Linda�s semantics
does not guarantee tuple ordering � this aspect remains the responsibility of the programmer� If a
speci�c order in selection is necessary
 it has to be enforced via appropriate tuple contents�

If we would guarantee strongly fair selection of templates then the system would have to retain non	
blocking matching operations of processes
 for which no matching tuples were available� However

a requesting process cannot be put into a queue because it does not wait� we cannot enable an
executing process� One has to be aware that busy waiting with polling methods
 which use non	
blocking matching operations for example in loops
 are not handled in a fair way�

Other proposals for fair matching operations were made�

� �Leichter
 ����
 section ����� proposes probabilistic tuple	space operations with random selection
of tuples �not templates�� This is probabilistic fairness according to �Kwiatkowska
 ������

This approach is somewhat the opposite to our approach
 since it speci�es fair selection of tuples
and not fair selection of templates�

�� �� Formals and Templates with First�Class Rights

� �Sutcli�e
 ����� uses a wait queue for the implementation of in and rd requests which could not
be satis�ed immediately�

This approach is very similar to the approach in our implementation design in Chap� ��

�Dijkstra
 ����� argues that �fairness
 being an unworkable notion
 can be ignored with impunity�
because �nite experiments cannot distinguish between fair and unfair implementations� Conversely

we view fairness as a simplifying assumption to increase abstraction� Concepts that cannot be veri�ed
by �nite experiments
 such as liveness properties
 are introduced to make program design simpler�
Fairness is such a liveness property
 which allows us � among other things � to reason about pro	
gram termination in the presence of nondeterminism� Another approach to abstraction is the use of
real numbers to specify numerical calculations� even though they cannot be represented exactly by
computers
 real numbers provide a convenient language for describing calculations which the computer
will carry out approximately�

To emphasize the practical relevance of fairness in generative communication
 we quote Bob Bjornson�s
experience with an unfair implementation of C	Linda�

�When this program was �rst run
 we noticed a very strange behavior� some workers
received no tasks
 while others received theirs with no apparent contention� As the granu	
larity was decreased
 the number of 'starving� workers increased� This marked unfairness
was due to the way templates were stored in tuple space� last	in	�rst	out queues� As con	
tention arose
 some templates languished at the bottom of the queue
 and the workers that
had issued them starved� Partly motivated by this experience
 we chose to store templates
�rst	in	�rst	out
 making ins and rds fairer�� �Bjornson
 ����
 page ���

Note
 however
 that this is an informal fairness notion�

��� Extending the Type System for Matching

As Linda relies heavily on type matching
 the type system of the computation language has a notable
e�ect on tuple	space semantics and implementation� For example in C
 the equivalence of types
is not that obvious� Under which conditions are structures respectively unions equivalent! Are
pointers equivalent to array	names! See for example �Narem
 ����� for an informal discussion of type
equivalence in C	Linda� In �Leichter
 �����
 it has been proposed to extend the type system of C to
overcome some of the problems thus caused� each expression has two distinct types associated with
it
 its C type and its Linda type� The Linda type follows stricter rules and is signi�cant only in tuple
matching
 thus these type extensions only in�uence the matching process and not the type system of
C�

In ProSet there is no necessity for extending the type system for obtaining a smooth integration
of Linda� �rstly
 since ProSet provides a well	formed type system with clear semantics for type
equivalence
 there exists no necessity to extend the basic type system for tuple matching� Secondly

since there exist no di�erence between ProSet	tuples and passive Linda	tuples
 a combination on
the basis of this common feature becomes straightforward�

��� Formals and Templates with First	Class Rights

One could introduce a new data type for formals� Tuples that contain formals would be templates

thus making formals and templates �rst	class objects� However
 objects of these types would only be
useful in tuple	space operations
 and therefore it does not seem to be justi�ed to introduce such new
types� Formals in deposited tuples would extend the matching rules� such formals would match with
appropriate actuals in templates
 but never with formals in templates� For the time being
 we see no
substantial advantages of such an extended matching procedure�

��� Update Operations on Tuples in Tuple Space ��

Conversely
 in C	Linda formal �elds may be outed� When used
 matching will be performed using
the usual rules
 but no assignment is made for that �eld �Narem
 ������ This is inconsistent
 since
formals in tuples are not treated in the same way as formals in templates�

��� Update Operations on Tuples in Tuple Space

C	Linda does not provide update operations on tuples in tuple space� To simulate updates
 a tuple
must be removed and the updated tuple must be inserted� To increment a shared counter
 for instance

the following sequence of operations has to be programmed�

in � �counter� � i 	�

out � �counter� i�� 	�

This approach has two disadvantages�

�� The programmer cannot directly display his intention� he wants to update a shared datum
 but
has to remove an old datum and insert a new one�

�� In	place updates would be implemented more e�ciently �see also Sect� ��������

What the programmer usually intends is an atomic modi�cation of the tuple contents� removing and
replacing the tuple
 though ine�cient
 is the only way to accomplish this in C	Linda�

ProSet provides arbitrary update operations on tuples in tuple space to overcome these shortcomings
�see Sect� ������� Some other proposals for adding in	place update operations to Linda were made�

� In a similar approach
 �Anderson and Shasha
 ����� propose an in�out operation for accom	
plishing in	place updates�

� �Wilson
 ����� proposes in	place update operations on tuples in tuple space
 but restricts them
to scalar operations� This restriction does not remove the absence of support for user	de�ned
high	level operations on shared data in Linda �Bal
 �����
 which is removed in ProSet�

���� Process Creation and Process Identities

In C	Linda
 there exists an inherent distinction between at least two classes of processes� Processes
live inside and outside of tuple space� the main program is not part of an active tuple �thus it lives
outside of tuple space�
 and all additional processes are created via eval as part of active tuples hence
they live inside the tuple space�

But often it is not desired to put the return values of spawned processes �if after all available� into
tuples in tuple space� This is for instance the case if a worker process executes in an in�nite loop and
deposits result tuples into a tuple space instead of returning only one result� It seems to be arti�cial to
put such a worker process into an active tuple� In ProSet
 the approach for process creation known
from Multilisp is adapted to set	oriented programming �Sect� ����� Here
 new processes may be
spawned inside and outside of tuple space� This way
 process creation and tuple	space communication
became orthogonal concepts in ProSet�

Processes have no �rst	class rights in ProSet� As ProSet uses value semantics
 it must be possible
to obtain copies of objects with �rst	class rights
 but running processes can exist only once� It is not
possible to get a copy of a running process� the copied process may do other things than the original
process because of race conditions� Both processes �original and copy� would not be identical any

�� ��� Multiple Tuple Spaces and Tuple�Space Identities

longer contradicting the requirement that the value of a copy has to be equal to the original value
after copying�

One could introduce process identities with �rst	class rights that would be returned by the process
creator ��� The programmer could test
 if the value is evaluated or not� After evaluation
 the returned
value would replace the process identity� It would be necessary to replace all copies of such a process
identity� This approach is proposed in �Leichter
 ������ We quote one important characteristic of
futures as an agreeable argument against such an approach�

�Also
 no special care is required to use a value generated by future� Synchronization
between the producer and the user of a future�s value is implicit
 freeing the programmer�s
mind from a possible source of concern�� �Halstead
 ����
 page ����

We decided not to sacri�ce this simplicity� Other proposals for combining Linda with futures were
made�

� BaLinda	Lisp �Yuen et al�
 ����� provides a notion for futures for process creation
 but this is
like a fork in Unix� A touch does not guarantee a deterministic result in BaLinda	Lisp
 because
blocking is not applied when a future is touched�

� �Wilson
 ����� proposes future	like variants of C	Linda�s in and rd operations
 but restricts this
enhancement to these operations�

� �Landry and Arthur
 ����� propose to automatically replace in and rd operations based on
compile	time analysis by their respective future	like variants� These future	like variants of the
in and rd operations are similar to the ones proposed in �Wilson
 �����
 but not explicitly
available to the programmer�

���� Multiple Tuple Spaces and Tuple	Space Identities

The idea of splitting the tuple space into multiple spaces is frequently applied� New data types or
classes are often proposed to organize them �Matsuoka and Kawai
 ����� Leler
 ����� Abarbanel
 �����
Ciancarini
 ����� Wilson
 ����b� Zettler
 ����
 and many others�� Some advantages of multiple tuple
spaces over the �at tuple space in C	Linda are�

� Multiple tuple spaces allow the programmer to partition the communication medium according
to the application�

� The representation of individual tuple spaces may be customized based on their contents�

� The compile	time analysis is simpli�ed with respect to partitioning the tuple space �see also
Sect� ��������

� Individual tuple spaces may obtain di�erent properties� For example
 a replication
 which makes
read operations cheap and write operations more expensive
 could be chosen for selected tuple
spaces� Read operations could be done locally on a processor without the need for communication
�see also Sect� ������

� Information hiding is supported�

The small examples presented in Chap� � did not fully demonstrate the advantages of manipulating
multiple tuple spaces� However
 in more sophisticated problem domains such as process trellises
�Factor
 ����� the advantage of information hiding is obvious
 since processes may communicate within
isolated tuple spaces independent of communication in other tuple spaces�

��� Multiple Tuple Spaces and Tuple�Space Identities ��

In most proposals for introducing multiple tuple spaces
 values of objects of these types are usually used
as identi�ers references to tuple spaces and not as the value of a tuple space itself� These approaches
may be compared with our approach to use atoms to identify tuple spaces� in �Jagannathan
 �����
the function make�ts returns a reference to a representation structure of a newly created tuple space�
Group identi�ers are used in �Anderson
 ����� as optional parameters for the tuple	space operations
to split the tuple space into multiple groups� If no group identi�er is speci�ed
 the operation applies
to the default tuple space
 which is a global
 �at tuple space as in plain C	Linda�

In �Gelernter
 ����� and �Hupfer
 ����� multiple
 �rst	class tuple spaces are hierarchically structured
like �les in Unix� Current default tuple spaces are provided similar to the current working directory
in Unix� In addition to using path names of tuple spaces
 operations on tuple spaces as �rst	class
objects are supported �for example suspension�� Concerning the data type ts in Melinda
 Susanne
Hupfer writes�

�Though the type ts is an essential theoretical component in Melinda
 and we can have
ts	typed variables
 we have no physical conception of a ts	typed object
 no operations
that we can perform upon it
 and indeed no way of representing the value of such an
object textually
 for example as a ts constant ���� �Hupfer
 ����
 page ���

Conversely
 �Ciancarini
 ����� provides tuple	space constants for the creation of tuple spaces�

However
 because of concurrent access it is rarely possible to make any sensible statement with respect
to the actual value of a tuple space� A tuple space may be viewed as the dynamic envelope of a
growing and shrinking multiset of passive and active tuples that controls the communication and
synchronization of parallel processes� This dynamic communication device has no �rst	class rights
in ProSet� Atoms as tuple	space identities already have �rst	class rights� We see no necessity and
justi�cation to introduce a new data type with �rst	class rights for tuple	space identities in ProSet�

There remains another important question concerning multiple tuple spaces� How to organize multiple
tuple spaces! Hierarchical tuple spaces are proposed in �Gelernter
 ����� Hupfer
 ����� Wilson

������ This organization is superior to �atly organized multiple tuple spaces if strings are used to
open the tuple spaces for access� If one allows unrestricted navigation in hierarchical tuple spaces

which are opened via string handles
 one will not have real information hiding �but structured
 global
information�� If the same strings are used accidentally by two software components to open tuple
spaces on the same level of a hierarchy
 this may cause problems� Conversely
 if one has something
like ProSet�s atoms to identify tuple spaces
 it is not necessary to restrict the organization of multiple
tuple spaces to hierarchies� The programmer can organize multiple tuple spaces as he sees �t
 and
real information hiding is possible�

A tuple	space identity may be regarded as a capability �Tanenbaum
 ����
 Sect� ������ to a shared
associative memory� Processes that have access to this capability can perform operations on this
shared memory� This model suggests a non	hierarchical relation among tuple spaces� the elements
of a tuple space are tuples whose component �elds are never tuple spaces themselves� A tuple can
contain the identity of a tuple space
 never the tuple space itself�

The absence of any rigid structural constraints on the contents and organization of the tuple spaces
has other implications as well� Since tuple spaces contain processes as well as passive data
 there
is no process structure imposed on a ProSet program� such programs can con�gure themselves
automatically and dynamically based on the number of tuple spaces created and the contents found
within them� To build a set of related processes
 the processes are encapsulated within the same tuple
space� Data values that need to be accessed by a known collection of processes are deposited within
a tuple space accessible only to these processes�

The motivation for incorporating multiple tuple spaces is in part technical and in part conceptual�
By permitting tuple spaces to be named
 we allow the programmer to partition the communication
medium as is appropriate� Partitioning of this kind permits the compiler in turn to customize the
representation of individual tuple spaces based on their contents� Of course
 a clever optimizing
compiler can infer a partitioning scheme of a designated �eld within a tuple to serve the role of a hash

�� ��� Data Parallelism in Generative Communication

key � all tuples containing the same hash key would be placed in the same partition of tuple space
�see also Sect� �������� Multiple tuple spaces simplify the complexity of compile	time analysis in this
respect� Moreover
 the speci�cation of the optimizations underlying the customization of a tuple space
becomes amenable to formal description
 because tuple spaces themselves constitute a distinguished
type� the same analysis underlying the optimization and use of other data types in the base language
can be applied to tuple spaces as well�

Other proposals for enhancing generative communication with information hiding have been made�

� �Pinakis
 ����� introduces information hiding through directed communication in tuple space
similar to Internet connections via pairs of Internet address and port number� New types for
tickets and addresses are introduced
 which must not be used with formals while matching� This
approach is similar to the Amoeba distributed operating system�s implementation of public and
private ports �Tanenbaum et al�
 ������

� The approach in �Tolksdorf
 ����� is similar to the approach in �Pinakis
 �����
 but the tickets
are not visible to the processes� They are inserted by the runtime system�

� In �Patterson et al�
 �����
 a hide interface routine is proposed
 which gives an application the
capability to make a tuple or group of tuples invisible to other processes�

���� Data Parallelism in Generative Communication

Data parallelism is discussed as an approach to parallel programming in Sect� ������ It has been
proposed to combine generative communication with data parallelism� As one instance
 �Anderson
and Shasha
 ����� propose operations on all tuples in tuple space which match a given template�

int i sum � ��

���

inp ��count� � i	 all f sum �� i� g�

This example would sum the second �eld of every tuple in tuple space matching the template
 including
duplicates� The code in the block of the command is executed
 with the formal	variables bound to
the matching tuple�s values
 each time a new tuple is retrieved� Except for the guarantee that each
tuple is retrieved only once
 the semantics is that of a loop with the tuple	space operator at the head
and the code block as the body�

int i sum � ��

���

while �inp ��count� � i		 f sum �� i� g�

Conversely
 in most data	parallel systems
 data	parallel operations appear to be done simultaneously
on all a�ected data elements �see Sect� ������� Consequently
 we anticipate serious problems with
adding data	parallel operators to generative communication systems concerning the semantics�

What happens if multiple processes try to change the same set of tuples simultaneously!
Is the entire set locked by one process for the duration of the data	parallel operation or
are the tuples locked successively!

One could de�ne it in both ways
 but for us it is not clear which one is the natural way�

�Abarbanel
 ����� proposes variations of in and rd that return all tuples in tuple space which match

but in an atomic transaction �as opposed to �Anderson and Shasha
 �����
 where the semantics is that
of a loop�� Rob Abarbanel mentions the following problem thus caused�

��� Fault�tolerance ��

�These functions con�ict with the simple Linda model� They introduce a concept of time�
They return all the tuples that match at the time of the transaction� The basic Linda
model has no such concept� In fact
 the ability to program without explicit handling of
orderings of events is one of the best features of Linda� In basic Linda
 there is no way to
tell whether a returned tuple was produced in the past
 or even in the future�� �Abarbanel

����
 page ���

�Leichter
 ����
 Sect� ������� sketches a complicated implementation technique for loops over all tuples
matching some template� In this proposal
 the iteration proceeds successively and not atomically�
�Anderson and Shasha
 ����� make the following remark concerning such an approach�

�The all variation of a command is not atomic� the set of tuples that match the pattern
can change before the command completes� We could have used 'snapshot� semantics
requiring that when the command is issued all tuples currently matching the pattern are
retrieved
 but we felt that this was too di�cult to implement e�ciently� We are interested
in reactions of potential users�� �Anderson and Shasha
 ����
 pages ���&����

Because of these problems we do not consider to extend generative communication in ProSet with
data	parallel operations� Such an extension would cause serious problems both for the de�nition of
the semantics and for the implementation�

���� Fault	tolerance

Fault	tolerance for implementations of Linda has been considered�

� In �Xu and Liskov
 �����
 fault	tolerance is achieved by a replication of tuple space on a small
subset of available processors in a network� The replication is completely hidden from the
programmer� Tuple space is uniformly replicated
 that is
 each replica contains an entire copy of
the tuple space� Fault	tolerance is guaranteed with respect to node crashes and network failures�

� In �Kambhatla and Walpole
 �����
 data is made highly available through replication
 and pro	
cesses are made recoverable through periodic checkpointing of process states�

� In �Patterson et al�
 �����
 tuples are replicated among so	called subspaces of the tuple space�
The tuple space is not uniformly replicated�

These approaches to fault	tolerance in Linda assume fail	stop processors
 wherein a processor may
suddenly halt and kill all executing processes� This concept excludes so	called Byzantine failures
where processes malfunction and emit spurious and even contradictory results�

�Bakken and Schlichting
 ����� propose a conditional atomic tuple swap operator to facilitate fault	
tolerance in master	worker applications� In the following statement�

in�template	
 out�tuple	�

the out operation is executed atomically with the in operation
 that is
 in such a way that there is
no visible intermediate state of the tuple space that contains the result of the in operation
 but not
the result of the out operation� Arguments assigned by the call of the in operation are available to
the call of the out operation� The programmer must explicitly use such atomic swap operations in
the worker processes
 and it is necessary to write a monitor process which regenerates subtask tuples
of failed workers� A stable Linda implementation as proposed in �Xu and Liskov
 ����� Kambhatla
and Walpole
 ����� Patterson et al�
 ����� is assumed
 which can survive detectable processor failures
su�ered by fail	stop processors that execute the worker processes�

Note that such an atomic in�out operation has some ideas in common with changing tuples via
ProSet�s meet operation �Sect� ������� Note also that for a prototyping language fault	tolerance is a
minor concern �see also Sect� �����

�� ��	 Overloading Prede�ned Operators

���� Persistence

The addition of persistence to generative communication has been considered� For instance
 in �An	
derson and Shasha
 ����� the tuple space is made persistent
 i�e�
 it survives the execution of an
application program�

Tuple spaces in ProSet are not persistent� They exist only until all processes of an application have
terminated their execution� Consequently
 tuple	space communication in ProSet is designed for
multiprocessing �single application running on multiple processors� as opposed to multiprogramming
�separate applications��

Multiprogramming in ProSet is programmed with a mechanism for handling persistent data
 which
is based on critical sections on the persistent data values �see Sect� ����� Persistent data values survive
the execution of an application program� A typical application domain for multiprogramming is a
database system� Database systems contain persistent data�

Generative communication in ProSet is designed to enable multiprocessing
 where multiple processes
execute as components of a single application program �logical parallelism�� These multiple processes
may execute on multiple processors �physical parallelism�� See Sect� ��� for a de�nition of logical and
physical parallelism�

In multiprocessing
 multiple processes solve a problem cooperatively
 whereas in multiprogramming

multiple programs work to a large extent independently and access only occasionally shared data�
The access to shared data in multiprogramming is competing rather than cooperating� Consequently

critical sections on the persistent data values are an appropriate means for managing the access to
these values and retaining a consistent persistent store�

For multiprocessing
 a �exible device for communication is needed� A tuple space is a multiset of tuples
and not a set of tuples� Because of concurrent access by the cooperating processes to tuple space

it is necessary to have multisets and not sets for coordination� it is not easy and even not desired
for coordination to guarantee the uniqueness of tuples� Multisets are
 therefore
 a suitable data
structure for communication between cooperating processes
 because the data �ow is not restricted
unnecessarily� Consequently
 multisets allow a high degree of parallelism for cooperating processes�

Access to tuple space is associative� This allows a high degree of decoupling between the cooperating
processes� Conversely
 ProSet�s persistent data values are accessed by name� To conclude this
section we note that in ProSet there is a smooth separation of concerns for multiprocessing and
multiprogramming �both concepts are orthogonal��

� Parallelism is the exception for competing programs
 therefore coordination is only necessary
to retain the consistency of the persistence store in multiprogramming� Critical sections are an
appropriate means for avoiding lost updates�

� Parallelism is the rule for cooperating processes
 therefore coordination needs an e�cient and
�exible medium in multiprocessing� Tuple spaces are an appropriate device for cooperation�

���� Overloading Prede�ned Operators

It has been considered to replace the tuple	space operations proposed in Sect� ��� syntactically through
overloading of prede�ned operators� For instance
 a deposit operation such as�

deposit ����� at TS end deposit�

could be replaced by the following assignment�

TS �� TS with ������

�� Summary ��

Hence
 ProSet�s with operator would not only be de�ned for sets and tuples
 but also for atoms�
ProSet�s with operator adds an element to a set or tuple �Doberkat et al�
 ����a�� As one result of
such a replacement
 for atoms the following equation would always hold�

�TS with �����	 � TS

This is in general not the case for tuples and sets thus yielding inconsistent behavior for the with

operator� The reason for this strange behavior is that the with operator is applied to a tuple	space
identity and not to a tuple space� Note also that
 for the time being
 the unique binary operation for
ProSet�s atoms is comparison for equality� However
 such a replacement of the deposit operation
does not produce too many problems
 but there are more serious problems with replacing a fetch

operation such as

fetch ����	 at TS end fetch�

by
 for example

TS �� TS less ����	�

ProSet�s less operator removes an element from a set� Two essential problems arise with such a
replacement�

�� It would be necessary to have templates with �rst	class rights� This problem is discussed in
Sect� ����

�� To replace fetch by less
 the less operator needs the capability to block� For the time being

none of ProSet�s prede�ned operators has the capability to block�

Our conclusions are that overloading existing operators in a computation language for obtaining tuple	
space operations may be a nice way to keep the language as small as possible� In ProSet
 the existing
operators do not seem to be appropriate for overloading them this way� To avoid confusion derived
from overloading prede�ned operators we argue that it is a more appropriate choice introducing the
three new tuple	space operations and make them statements syntactically�

���� Summary

We discussed other approaches to extending Linda and some design alternatives to our approach which
has been proposed in Chap� �� Therefore
 this chapter serves as a motivation for our approach to
generative communication and as a discussion of related work concerning the extension of Linda�

�� �� Summary

Chapter 	

Formal Semantics of PROSET�Linda

This chapter presents a formal speci�cation of generative communication in ProSet by means of the
formal speci�cation language Object	Z �Duke et al�
 ������ Appendix B provides a short introduc	
tion to the speci�cation language Object	Z� The reader may refer to this appendix� The informal
speci�cation of generative communication in ProSet is presented in Chap� ��

The present presentation is meant to be self	contained and no previous knowledge of Object	Z is
required to understand it � at least we hope so� Where necessary
 we provide notes to explain the
notation used �enclosed in the symbols Z and Z �� The index of explained Z symbols and keywords at
the end of this document refers to these explanations� The presented speci�cation has been developed
with the fuzz package �Spivey
 ����a�� The fuzz package contains a type	checker for plain Z and not
for Object	Z� Therefore
 the object	oriented extensions to Z have not been type	checked� Appendix C
provides a summary of all names de�ned globally in the speci�cation with their associated types as
fuzz sees it� the class structure is not visible in this list�

Notational convention� components of ProSet programs are displayed in typewriter font to set
them apart from Z speci�cations
 which are displayed in slanted font� We display identi�ers in sans

serif font when we use them as in�x relation or operation symbols�

��� Basic De�nitions

The basic
 given types are Expression
 LValue
 Process
 Statement
 and Value� Some additional basic
types are based on these types and introduced via free type de�nitions�

�	�	� Abstractions for the Embedding into the Computation Language

We specify generative communication in ProSet and not the entire language� Therefore
 we need
for the embedding in the computation part interfaces to some basic concepts of ProSet� At �rst we
need basic types for describing l	values and unevaluated expressions�

�Expression�LValue�

For a detailed discussion of expressions and l	values
 and their relationship in ProSet we refer to
�Doberkat et al�
 ����a� �see also Sect� ����� Note that l	values are not typed� Additional necessary
basic types are statements and processes�

�Statement �Process�

Each process is unique� New processes may be spawned and existing ones may terminate� Note that
processes have no �rst	class rights in ProSet� We shall need a notion for execution of statements�

��

��
�� Basic De�nitions

Execute � � Statement

Z The underscore indicates the position of operands thus Execute is an unary predicate�
A predicate is identi�ed with the set of objects for which the predicate holds� � yields the
power set of its operand� Z

This way we model the execution of statements
 and that statements do not yield values in ProSet�
There is nothing more to be said about the execution of statements in our formal speci�cation�

�	�	
 Types and Values

We have to know a few speci�c things about types and values in our speci�cation� The unary operator
type yields a prede�ned type	atom according to the type of its operand �see Sect� ����� The following
equations hold in ProSet�

type � � integer

type integer � atom

type type type � � atom

No particular basic type for the type	names atom
 boolean
 integer
 real
 string
 tuple
 set

function
 modtype
 and instance is needed in our Z speci�cation� ProSet does not employ the
type matching known from C	Linda and similar embeddings of Linda into statically typed languages�
Instead
 conditional value matching as described in Sects� ����� and ��� is employed� It is su�cient to
model types in ProSet through the type operator and the prede�ned type	atoms
 which are values�

�Value�

Values have the following properties in ProSet�

atom� boolean� integer � real � string � tuple� set � function�modtype� instance � Value
TRUE �FALSE � Value
om � Value
ValuesOfType � Value��Value

ValuesOfType boolean � fTRUE �FALSEg
domValuesOfType �

fatom� boolean� integer � real � string � tuple� set � function�modtype� instanceg
domValuesOfType � ValuesOfType atom

�f om �� fomg g f t � domValuesOfType � t �� ValuesOfType t g� partition Value

Z X � Y is the set of partial injections from X to Y � dom yields the domain of a
relation� A set S is a proper subset of a set T �S � T � if every member of S is also
a member of T and if in addition S is di�erent from T � The subset relation symbol is
S � T � The notation x �� y is a graphical way of expressing the ordered pair �x � y�� Z

The Boolean values are true and false as usual� We use capital letters for TRUE and FALSE
in our speci�cation
 because true and false are prede�ned in Z� Every value in ProSet
 except for
om
 belongs to exactly one type set �de�ned by the last property�� Each type atom is mapped by
ValuesOfType to the set of values which belong to the type it denotes� The type atoms themselves
are atoms� The unde�ned value om
 which indicates unde�ned situations
 has no type� Applying the
unary operator type to om is unde�ned
 and thus yields the unde�ned value �type om � om�� The
corresponding function is Type�

���� Tuples ��

Type � Value�Value

boolean � Type TRUE � Type FALSE

atom � Type atom � Type boolean � Type integer � Type real � Type string �
Type tuple � Type set � Type function � Type modtype � Type instance

om � Type om

� x � Value j x �� om �
x � ValuesOfType �Type x �

Z X �Y is the set of total functions from X to Y � Z

For our purposes it is not necessary to specify the types ofProSet through an additionally given
 basic
type� It is su�cient to specify the semantics of the type operator� The remainder of our speci�cation
would not change if we remove or add some type names �except for atom
 boolean
 integer
 and tuple��

Partial functions modeling the evaluation of expressions and the return values of processes
 respec	
tively
 shall be needed later�

Evaluate � Expression�Value
ProcRetVal � Process� Value

Z X �Y is the set of partial functions from X to Y � Z

These are partial functions because the evaluation of expressions and processes might not terminate

and thus not produce a result� We also need a relation denoting the assignment of values to l	values�

IsAssigned � LValue�Value

Z X �Y is the set of binary relations between X and Y � Z

For every pair �lhs� rhs�
 which is related by IsAssigned
 an assignment of the value of rhs to lhs is
modeled� We do not need a more detailed speci�cation of assignment in our speci�cation�

�	�	� Tuples

Tuples in ProSet have their usual mathematical meaning as ordered sequences of values� a value
may appear multiply in a tuple
 the order of components appearing in the tuple is relevant� Tuple
components may be passive values or executing processes in our speci�cation�

TupleComp ��� TupleValue�Value� j TupleProcess�Process�

Conceptually a tuple inProSet is an in�nite vector with almost all components equal to the unde�ned
value om� Indexing of tuple components starts with the index �� The length returned by the � operator
of ProSet is the largest index of a component di�erent from om
 thus ���om� � � and ��om�� �

� hold �see also Sect� ����� Since almost all components in a tuple are equal to the unde�ned value
om
 tuples have a �nite representation and we are able to model active and passive tuples via �nite
sequences�

APTuple �� seqTupleComp

Z seqX is the set of �nite sequences over X � These are �nite functions from N to X
whose domain is a segment � � �n for some natural number n � N�� N� � Nn f�g
 where n
is the set di�erence operation� If a and b are integers
 a � � b is the set of integers between
a and b inclusive� If a � b then a � � b is empty
 thus sequences may be empty� Z

��
�� Basic De�nitions

Note that only passive tuples are �rst	class objects in ProSet� However
 in our speci�cation for the
basic type APTuple we do not distinguish between passive and active tuples for simplicity� As we
shall see in Sect� ���
 the matching procedure will distinguish between passive and active tuples�

Note also that the following equations hold in ProSet�

�om� � ��

��om� � ���

�om�� �� ���

The prede�ned function (for �nite sets in Z will not work well to specify the unary � operator for
tuples in ProSet
 because the � operator yields the largest index of a component di�erent from om�

��om� � �

(homi � �

We de�ne the generic function Arity instead�

�X �
Arity � �Value� X �� �seqX �N�

� tup � seqX � Xvalue � Value� X �
Arity Xvalue tup � max �f�g f i � N j tup i �� Xvalue om g�

Z f i � N j pred g is an abbreviation for f i � N j pred � i g� max yields the maximum of a
set of integers� Note that function application associates to the left in Z
 so f x y means
�f x � y � Z

Arity is generic
 because it applies to tuples in the same way as it shall apply to templates� TupArity
then works for tuples�

TupArity � APTuple� N

TupArity � Arity TupleValue

TupArity yields the largest index of an APTuple component which is di�erent from the TupleValue
of om�

�	�	� Formals and Templates

Tomodel formalswe need auxiliary type de�nitions for optional l	values and optional into expressions�

OptLValue ��� NoLValue j IsLValue�LValue�
OptInto ��� NoInto j IsInto�Expression�

Formals then consist of optional l	values and optional into expressions�

Formal
Destination � OptLValue
Into � OptInto

Components of templates are formals or values�

TempComp ��� TempValue�Value� j TempFormal�Formal�
Templates consist of a sequence of template components and a conditional expression�

���� Formals and Templates ��

Template
List � seqTempComp
Condition � Expression

If no condition is speci�ed in a template
 the ProSet	expression true is assumed as a condition� We
will need the function TempArity for matching�

TempArity � seqTempComp� N

TempArity � Arity TempValue

It applies to template lists in the same way as TupArity applies to tuples�

A notion for assignment of tuple components to formals of templates shall be needed�

FormalAssign � Template� APTuple

let FormalOf �� TempFormal���
ValueOf �� TupleValue���
LValueOf �� IsLValue�� �

� temp � Template� tup � APTuple j (temp�List � (tup � ran tup � ranTupleValue �
temp FormalAssign tup �

�� i � dom temp�List j temp�List�i� � ranTempFormal �
�FormalOf �temp�List i���Destination � ran IsLValue �

LValueOf ��FormalOf �temp�List i���Destination� IsAssigned ValueOf �tup i��

Z let introduces local de�nitions with nested scoping for predicates or for expressions�
R�� is the relational inverse of the relationR� S �C is the notation for selecting a component
C from a binding of a schema S � Z

For every pair �temp� tup� which is related by FormalAssign an optional assignment to the Destinations
of temp is modeled� The assignment takes place for each formal which contains an l	value� These
l	values are then assigned the corresponding tuple �elds� A notion for evaluation of into expressions
shall be needed�

EvalIntos � �Template 	APTuple�� APTuple

let FormalOf �� TempFormal���
ExprOf �� IsInto�� �

� temp � Template� tup� newtup � APTuple j (temp�List � (tup �
ran tup � ranTupleValue �

�temp EvalIntos tup � newtup��
(tup � (newtup �
�� i � dom temp�List j temp�List�i� � ranTempValue �

newtup i � tup i� �
�� i � dom temp�List j temp�List�i� � ranTempFormal �

newtup i � if �FormalOf �temp�List i���Into � NoInto
then tup i
else

TupleValue�Evaluate �ExprOf ��FormalOf �temp�List i���Into����

Z X 	Y is the Cartesian product of X and Y �a set of pairs�� Z

EvalIntos yields from a pair �temp� tup� a new APTuple that is equal to tup except for the �elds in
which temp has into expressions� Those �elds are replaced by the corresponding evaluated expression
values� Tuple �elds for which the corresponding template �elds are actuals or formals without into
expressions remain unchanged�

��
�� Tuple Spaces

��� Matching

ProSet employs conditional value matching as informally speci�ed in Sect� ������ A tuple and a
template match i� all the following conditions hold�

� The tuple is passive�

� The arities are equal�

� Values of actuals in templates are equal to the corresponding tuple �elds�

� The Boolean expression after � in the template evaluates to true� If no such expression is
speci�ed
 then true is the default�

As a �rst step we de�ne matching of individual tuple and template components�

CompMatches � TupleComp�TempComp

let ValueOfTup �� TupleValue���
ValueOfTemp �� TempValue�� �

� tupc � TupleComp� tempc � TempComp �
tupc CompMatches tempc �

tupc � ranTupleValue �
�tempc � ranTempValue
 ValueOfTup tupc � ValueOfTemp tempc�

Therefore
 only passive tuple components can match
 and
 if the template component is an actual

the Values in the domain of the corresponding components have to be equal� Only passive tuples are
relevant when considering tuple matching� active tuples are invisible to processes� Tuples and tem	
plates then match if their arities are equal
 their corresponding components match
 and the template
condition holds� The template condition must yield a Boolean value�

Matches � APTuple� Template

� tup � APTuple� temp � Template �
Type �Evaluate temp�Condition� � boolean �
tup Matches temp �

TRUE � Evaluate temp�Condition �
TupArity�tup� � TempArity�temp�List� �
�� i � � � �TupArity�tup� � tup�i� CompMatches temp�List�i��

CompMatches checks if individual tuple and template components match� Matches checks if tuples
and templates match� The exception type mismatch will be raised if the template condition does not
yield a Boolean value� This is left in the formal speci�cation�

��� Tuple Spaces

Tuple spaces consist of an identity
 its speci�ed limit
 the tuples it contains
 and pending processes in
our formal speci�cation� To model pending processes with associated attributes we need an auxiliary
type de�nition for optional statements�

OptStmt ��� NoStmt j IsStmt�Statement�

We shall also use a predicate for modeling the execution of optional statements based on Execute�

�� Tuple Spaces ��

OptExecute � �OptStmt

let StatementOf �� IsStmt�� �
� os � OptStmt j os � ran IsStmt �

OptExecute os � Execute �StatementOf os�

Pending processes are associated with the type of their operation�

OpType ��� FetchOp jMeetOp jMeetIntoOp

and with the templates and optional statements as attributes which will later be used for modeling
blocking fetch and meet operations�

Pending
proc � Process
type � OpType
temp � Template
os � OptStmt

A tuple space then consists of an identity
 its speci�ed limit
 a bag of tuples
 a bag of pending processes
for fetch and meet operations
 and a �nite set of processes which are blocked on this full tuple space�

TupleSpace
Id � Value
Limit � Value
Tuples � bagAPTuple
PendTemp � bagPending
PendFull � Process	 APTuple

�Type Id � atom� � �Id �� domValuesOfType�

�Type Limit � integer� � �Type Limit � om�

disjoint h f pt � domPendTemp � pt �proc g� domPendFull i

Z Bags are de�ned as follows� bagX is the set of bags of elements of X �

bagX �� X �N�

where X � N� is the set of partial functions from X to N�� In a bag each element is
mapped to the number of times is appears in the bag� X 	 Y is the set of �nite partial
functions from X to Y � An indexed family of sets is disjoint if and only if each pair of
sets S �i� and S �j � for i �� j have empty intersection�

disjoint S � � i � j � domS j i �� j � S �i� � S �j � � fg

Z

Tuple	space identities are atoms �not including the prede�ned type	atoms�� The limit for the number
of simultaneously deposited tuples in tuple space has to be an integer or the unde�ned value� A
negative limit is equivalent to � �no tuples may be deposited into such a tuple space�� The unde�ned
value indicates that no limit has been speci�ed on creation of the tuple space� This limit is a parameter
to the function CreateTS �Sect� ������� The main part of a TupleSpace it the bag of APTuples�
The processes pending for fetch and meet operations are collected in the bag PendTemp of the
corresponding TupleSpace� The processes pending for deposit operations on full TupleSpaces are
collected in the �nite set PendFull of the corresponding TupleSpace� A process is pending in at most
one of these sets �speci�ed by the last property in TupleSpace��

��
�� Programs and Processes

Note that we use the terms pending and blocked as synonyms� A process is pending if it has executed a
fetch or meet operation with no matching tuple in tuple space and if no else statements are speci�ed
�blocking matching�� A process is also pending for a deposit operation on a full tuple space provided
that blockiffull has been speci�ed and the tuple space is full �see below�� Such processes may be
reactivated by appropriate events
 i�e�
 by depositing or fetching of tuples�

It would not be su�cient to use sets instead of bags for PendFetch� although processes are unique

a tuple	space operation such as the following would yield two identical pending templates for tuple
space TS�

fetch � � 	

xor � � 	

at TS

end fetch�

If we would use sets for PendFetch
 only one such pair would be added to the corresponding set
in TupleSpace� the second added template would replace the �rst one� This would not produce real
problems
 because it does not matter which one of such identical templates might be selected
 provided
one could be selected at all� However
 we have chosen to use bags since this is the precise speci�cation
which also does not restrict the design of an implementation unduly �see also Sect� �����

We shall need in the following sections an operation for schema anti�restriction for bags of pending
processes�

�
Process 	 bagPending� bagPending

� procs �
Process� pends � bagPending �
procs pends �

f pe � Pending j pe � pends � pe�proc �� procs � pe �� pends � pe g

Z
 S is the set of �nite subsets of S � The relationship x � B holds exactly if x appears
in bag B a non	zero number of times� The number of times x appears in bag B is B � x �
Z

The schema anti	restriction PR PE yields all the members of the bag PE
 the proc component of
which is not a member of the �nite set PR of processes� We call schema anti	restriction
 because of
its similarity to the domain anti	restriction � of Z �see below��

Additionally
 we shall need the auxiliary function IDsOF
 which yields the �nite set of tuple	space
identities from a �nite set of tuple spaces�

IDsOF �
TupleSpace�
Value

� tss �
TupleSpace �
IDsOF tss � f id � Value j �� ts � tss � ts�Id � id� g

��� Programs and Processes

In this section we will de�ne our program state and the creation and termination of programs and
processes� Up to this point in our speci�cation
 we only used plain Z for our speci�cation� Now we
start with the object	oriented speci�cation of program states� We view the state of a program as the
state of a �nite set of tuple spaces and a �nite set of active processes�

�� Programs and Processes ��

ProgramState

TSs �
TupleSpace
ActiveProcs �
Process

� ts�� ts� � TSs �
ts� �� ts�
 ts��Id �� ts��Id

� ts�� ts� � TSs �
� tup�� tup� � dom�ts��Tuples � ts��Tuples�� i�� i� � N j

tup��i�� � ranTupleProcess � tup��i�� � ranTupleProcess �
�i� � dom tup� � i� � dom tup� � tup��i�� � tup��i���

tup� � tup� � i� � i� �
� � �ts��Tuples � ts��Tuples� � tup�

Z � denotes the union of bags where the number of times any object
appears in the result is the sum of the number of times it appears in the
operands� Z

The �rst property asserts the uniqueness of tuple	space identities and the second
property asserts the uniqueness of processes inside active tuples� We now start with
the speci�cation of operations on the program state�

INIT
TSs � fg
(ActiveProcs � �

A main process is started for the main
program on program initialization�

ProgramTermination
)�TSs�ActiveProcs�

TSs� � fg
ActiveProcs� � fg

Whenever the process for the main pro	
gram terminates
 the entire program ter	
minates �see Sect� �����

For a speci�cation of the entire ProSet language
 additional components would be necessary to
specify the program state�

Initialization
 unlike other operations
 can only occur as the �rst operation and merely determines
an initial state �there are no pre	conditions�� Semantically
 INIT is interpreted as an operation for
obtaining a uniform treatment of histories as sequences of events �Duke et al�
 ������

In principle
 we could have de�ned classes earlier in our speci�cation
 for example a class for tuple
spaces� We would use object	instances of such a tuple	space class in our program state� But then
we could not use the fuzz type	checker
 which only accepts plain Z speci�cations �Spivey
 ����a��
Appendix C is a summary of the parts of our speci�cation which were type	checked� This excludes
the object	oriented extensions
 in particular the class hierarchy
 but includes all de�ned schemas with
their formulas� If a type	checker for Object	Z were available
 we would have used the object	oriented
features of Object	Z more resolutely�

Only processes within ActiveProcs are active and executing� Processes
 which are suspended for tem	
plates or full tuple spaces
 are temporally moved to the sets of pending processes of the corresponding
tuple spaces� They are reactivated by returning them to ActiveProcs� If a process is removed from
ActiveProcs and moved to a set of pending processes
 it is suspended� If
 however
 a process is removed
from ActiveProcs and not moved to a set of pending processes
 then it is terminated �see below�� We
represent this formally via the class ActualProcesses
 which contains the external visible variables
ActuallyActiveProcesses
 ActuallyPendingProcesses
 and ActuallyExistingProcesses�

��
�� Programs and Processes

ActualProcesses

�ActuallyActiveProcesses�ActuallyPendingProcesses�ActuallyExistingProcesses�

ProgramState

ActuallyActiveProcesses �
Process
ActuallyPendingProcesses �
Process
ActuallyExistingProcesses �
Process

ActuallyActiveProcesses � ActiveProcs

� p � ActuallyPendingProcesses �
�� ts � TSs �

�� pt � dom ts�PendTemp � p � pt �proc� �
�� pf � ts�PendFull � p � rst pf ��

hActuallyActiveProcesses�ActuallyPendingProcessesi
partition ActuallyExistingProcesses

Z If p is an ordered pair then p � �rst p� second p� holds� Z

We will specify the connection between the computation and the coordination part of ProSet by
means of input and output variables of the individual operations� These input and output variables
are decorated with ! and #
 respectively�

Process creation and termination is speci�ed within the class ProcessCreationTermination�

ProcessCreationTermination

ProgramState

ProcessCreation
)�ActiveProcs�
NewProcess! � Process

ActiveProcs� �
ActiveProcs fNewProcess!g

Whenever the process creator �� is ap	
plied in a ProSet program
 this process
shall be added to the set of active pro	
cesses�

If a process which has to be removed is part of an active tuple
 it has to be replaced
by the corresponding return value�

ProcessTermination
)�TSs�ActiveProcs�
ToKill! � Process

TSs� � f ts � TSs� ts� � TupleSpace j ts�Id � ts ��Id �
ts��Limit � ts�Limit �
ts��PendTemp � fToKill!g ts�PendTemp �
ts��PendFull � fToKill!g� ts�PendFull �
�� tup � dom ts�Tuples� newtup � APTuple j (tup � (newtup �

�� tupc � ran tup � tupc � ranTupleProcess� �
�� i � dom tup �

newtup�i� � if tup�i� � TupleProcess ToKill!
then TupleValue �ProcRetVal ToKill!�
else tup�i�� �

ts��Tuples � �ts�Tuples � �tup�� � �newtup��
� ts� g

ActiveProcs� � ActiveProcs n fToKill!g

�� Exceptions ��

Z The domain anti	restriction S � R of a relation R to a set S relates x to y only if
R relates x to y and x is not a member of S � We write �a�� � � � � an � for the bag fa� ��
k�� � � � � an �� kng where the elements ai appear ki times� E�g�
 ��� �� � f� �� �g � f��� ��g�
The empty bag is � �� B � C is the bag di�erence of B and C � the number of times any
object appears in it is the number of times it appears in B minus the number of times it
appears in C
 or zero if that would be negative� Z

A terminated process is not only removed from ActiveProcs� It is also necessary to remove it from
the bags of pending processes in the tuple spaces
 and to resolve the future within an active tuple

provided that this process has been spawned as a component of this active tuple� Future resolution is
modeled within the above conditional expression of ProcessTermination� See Sect� ��� for an informal
speci�cation for resolving of futures in ProSet� Resolving of futures is only speci�ed for processes
within active tuples in tuple space
 and not for processes spawned outside of tuple space� This
limitation is due to the fact that this speci�cation is not a speci�cation of the entire language�

A newly created process is implicitly added to ActuallyActiveProcesses and to ActuallyExistingPro�
cesses within the class ActualProcesses� Analogously
 when a process terminates
 it has to be removed
from the set of active processes and from the sets of pending processes within ActualProcesses
 pro	
vided it is not the process for the main program� The class ActualProcesses is introduced for having
a formal speci�cation for actually active
 pending
 and existing processes� Whenever a process is
removed from the set of active processes and is not moved to a set of pending processes
 this process
will be terminated� it is no longer in ActuallyExistingProcesses�

��� Exceptions

We only indicate exception handling in the present speci�cation through the following generic de�ni	
tion�

'escape type mismatch�	�� � Statement
'escape ts invalid id�	�� � Statement
'signal ts is full�	�� � Statement

Z Generic de�nitions do not have parameters
 they uniquely determine the value of the
introduced global constant� When no formal generic parameters are supplied
 they are
also called unique axiomatic de�nitions� We use unique axiomatic de�nitions to introduce
exceptions
 because there is nothing more to be said about them in our speci�cation� Z

The statement 'escape type mismatch�	�� in ProSet raises the exception type mismatch
 which
should not be resumed� The exception ts invalid id will be raised when invalid tuple	space identities
are given� The exception ts is full will be raised when the tuple space requested by a deposit

operation is full and blockiffull has not been speci�ed� See Sect� ��� for a short informal description
of exception handling in ProSet�

��� Handling Multiple Tuple Spaces

In this section we de�ne the library functions to handle multiple tuple spaces
 as informally speci�ed
in Sect� ���� The class hierarchy is displayed in Fig� ����

��
�	 Handling Multiple Tuple Spaces

ProgramState

TupleSpaceExistenceTupleSpaceCreation

TupleSpaceClearance

TupleSpaceRemoval

TupleSpaceLibrary

Figure ���� The class hierarchy for the library functions to handle multiple tuple spaces�

�		� CreateTS

The library function CreateTS creates a new tuple space and returns the corresponding tuple	space
identity
 provided that the given limit is an integer or the unde�ned value�

TupleSpaceCreation

�CreateTS �

ProgramState

CreateTSok
)�TSs�
InLimit! � Value
Return# � Value

Type InLimit! � integer �
Type InLimit! � om

�
�
a � Value� ts � TupleSpace j

Type a � atom �
a �� IDsOF TSs �
a �� domValuesOfType �
ts�Id � a �
ts�Limit � InLimit! �
ts�Tuples � � � �
ts�PendTemp � � � �
ts�PendFull � fg �

TSs � � TSs ftsg �
Return# � a

Z The predicate �
�
S � P is

true if there is exactly one way
of giving values to the bound
variables introduced by S so
that both the property S and
the predicate P are true� Z

A new
 empty tuple space is created this
way� The tuple	space identity �an atom�
will be created via a call to the standard
library function newat
 which returns a
new
 unique atom �Sect� ����� For our
speci�cation it is su�cient to specify that
this tuple	space identity is unique with
respect to our program state� The new
tuple	space identity will be returned�

�	�� ExistsTS ��

The limit for the number of simultaneously deposited tuples in tuple space has to be
an integer or the unde�ned value�

CreateTSTypeMismatch
InLimit! � Value
Exception# � Statement

� �Type InLimit! � integer � Type InLimit! � om�

Exception# � 'escape type mismatch�	��

CreateTS b� CreateTSok � CreateTSTypeMismatch

This last de�nition introduces a new schema called CreateTS
 obtained by combining
the two schemas on the right	hand side via disjunction�

Exception handling is speci�ed for operations which may change the state in separate schemas without
)	lists to emphasize that the state does not change when such an error occurs� As noted in Sect� B��

not indicating a)	list is equivalent to specifying an empty)	list� Therefore
 operations with an
empty)	lists do not change the state�

Z The operation CreateTS could be speci�ed directly by writing a single schema which
combines the predicate parts of the two schemas CreateTSok and CreateTSTypeMismatch�
The e�ect of the schema � operator is to make a schema in which the predicate part is
the result of joining the predicate parts of its arguments with the logical connective ��
Similarly
 the e�ect of the schema � operator is to take the conjunction of the two predicate
parts� Any common variables of the two schemas are merged� We sketch an alternative
speci�cation of CreateTS �

CreateTS
)�TSs�
InLimit! � Value
Return# � Value
Exception# � Statement

��Type InLimit! � integer � Type InLimit! � om� �
�
�
a � Value� ts � TupleSpace j
� � ��

�
�� �Type InLimit! � integer � Type InLimit! � om� �

Exception# � 'escape type mismatch�	�� �
TSs� � TSs�

In order to write CreateTS as a single schema
 it has been necessary to write out explicitly
that the state of TSs does not change when an exception is raised� Z

We do not specify the return values when exceptions are raised�

�		
 ExistsTS

The library function ExistsTS checks whether a given atom is a valid tuple	space identity�

���
�	 Handling Multiple Tuple Spaces

TupleSpaceExistence

�ExistsTS �

ProgramState

ExistsTS
InTS! � Value
Return# � Value
Exception# � Statement

�Type InTS! � atom � Return# � if InTS! � IDsOF TSs
then TRUE
else FALSE �

�
�Type InTS! �� atom � Exception# � 'escape type mismatch�	���

ExistsTS does not modify the program state� It returns a Boolean Value indicating the existence of
the given tuple	space identity
 which has to be an atom�

�		� ClearTS

The library function ClearTS removes all active and passive tuples from a speci�ed tuple space�

TupleSpaceClearance

�ClearTS �

ProgramState

ClearTSok
)�TSs�ActiveProcs�
InTS! � Value
Return# � Value

InTS! � IDsOF TSs

let ClearProcs �� f ts � TSs� p � ActiveProcs j ts�Id � InTS! �
�� tup � dom ts�Tuples � � tupc � ran tup � tupc � TupleProcess p� � p g �

TSs� � f ts � TSs� ts� � TupleSpace j ts�Id � ts ��Id �
ts��Limit � ts�Limit �
ts��Tuples � if ts��Id � InTS!

then � �
else ts�Tuples �

ts��PendTemp � ClearProcs ts�PendTemp �
ts��PendFull � ClearProcs � ts�PendFull � ts� g �

ActiveProcs� � ActiveProcs nClearProcs
Return# � om

ClearTSinvalid
InTS! � Value
Exception# � Statement

InTS! �� IDsOF TSs

Exception# � if Type InTS! � atom
then 'escape ts invalid id�	��
else 'escape type mismatch�	��

�	�� RemoveTS ���

ClearTS b� ClearTSok � ClearTSinvalid

The processes within removed active tuples �the set ClearProcs� are also removed from ActiveProcs
and the bags of pending processes
 and thus have their execution terminated� Note that the processes
which are not in ClearProcs are not removed from the bags of pending processes of InTS!� Only the
bag Tuples is cleared in InTS!� The return value is the unde�ned value in any case�

The exception type mismatch and not ts invalid id will be raised if the actual parameter for
ClearTS is not an atom�

�		� RemoveTS

The library function RemoveTS calls ClearTS and removes the given tuple space from the set of tuple
spaces�

TupleSpaceRemoval

�RemoveTS �

TupleSpaceClearance �remove ClearTSok �ClearTSinvalid �

RemoveTSfromState
)�TSs�
InTS! � Value

TSs� � TSs n f ts � TSs j ts�Id � InTS! g

The auxiliary operation RemoveTSfromState removes the entire tuple space from the
program state� This may terminate pending processes
 which are blocked on InTS!�
RemoveTS is the sequential composition of ClearTS and RemoveTSfromState�

RemoveTS b� ClearTS � RemoveTSfromState

Z If Op� and Op� are schemas describing two operations
 then Op� � Op� is a schema
which describes their sequential composition� The components of Op� � Op� are the
undecorated components of Op� and the primed components of Op�
 together with their
merged inputs and outputs� Conversely
 the components of the piping Op� �� Op� are
the inputs of Op� and the outputs of Op�
 together with their merged decorated and
undecorated components �the outputs of Op� have to match the inputs of Op� in this
case�� Z

Auxiliary features are removed with the keyword remove while inheriting a class as we indicate above
with ClearTSok and ClearTSinvalid � Unfortunately
 it is not possible in Object	Z to indicate which
features of a class are available to its children �users through inheritance�� See also Sect� B�� for a
discussion on this subject�

�		� The Tuple�Space Library

The tuple	space library for handling multiple tuple spaces is now de�ned as follows�

TupleSpaceLibrary

�CreateTS �ExistsTS �ClearTS �RemoveTS �

TupleSpaceCreation �remove CreateTSok �CreateTSTypeMismatch�
TupleSpaceExistence
TupleSpaceRemoval �remove RemoveTSfromState�

���
� Tuple�Space Operations

ProgramState

FetchMeet

Meeting FetchingDepositing

TupleSpaceOperations

Figure ���� The class hierarchy for the tuple	space operations�

Whenever objects of this class are instantiated
 only the four library functions are available to such
instances of the TupleSpaceLibrary � Note that children of this class still have access to the state
variables of ProgramState
 but not to the removed auxiliary operations�

��� Tuple	Space Operations

A concise overview of the abstract grammar for the tuple	space operations is presented in Appendix A
using BNF �Backus Naur Form�� Conversely
 the informal semantics in Chap� � is presented together
with syntax diagrams
 which are spread over the text� For a concise overview
 we consider BNF as
more appropriate�

Section ����� will provide some preliminary de�nitions for the tuple	space operations� The Deposit
operation will be de�ned in Sect� ������ Sections ����� and ����� will de�ne the Fetch and Meet
operations
 respectively� The class hierarchy for the tuple	space operations is displayed in Fig� ����

�	�	� Some Preliminary De�nitions

Because of Z�s principle of denition before use
 we have to introduce the de�nitions of this subsection
before we use them in the following subsections
 which de�ne the tuple	space operations� See also
Sect� B�� for a discussion on this subject�

We will use the predicate HasIntos for the pending processes of tuple spaces
 which checks if there
are into expressions associated within a template�

HasIntos � �Template

let FormalOf �� TempFormal�� �
� pl � Pending �

HasIntos pl �temp �
�� tempc � ran pl �temp�List j tempc � ranTempFormal �

�FormalOf tempc��Into �� NoInto�

We need an auxiliary function that yields the number of elements in a bag to control the limits of
tuple spaces�

��� Some Preliminary De�nitions ���

�X �
BagSum � bagX �N

� b � bagX � x � X �
BagSum � � � � �
BagSum ��x � � b� � � % BagSum b

A function that yields the Z	integer value from a Value with type integer �

IntValueOf � Value�Z

� i � Value j Type i � integer �
� z �Z� IntValueOf i � z

The BlockMode indicates whether blockiffull has been speci�ed�

BlockMode ��� BlockIfFull j DoNotBlock

The structure of the input for the Fetch andMeet operations corresponds to their syntactical structure�

TempList �� seq��Template 	OptStmt� 	Value

Z seq�X � seqX n fhig Z

The function MakePends creates from such a TempList
 a process
 and the operation�s type a corre	
sponding bag of pending processes�

MakePends � TempList 	 Process 	OpType� bagPending

� tl � TempList � tos � Template 	 OptStmt � tosl � seq�Template 	OptStmt��
id � Value� pr � Process� ot � OpType �

MakePends��hi� id�� pr � ot� � � � �
MakePends��htosi � tosl � id�� pr � ot� � MakePends��tosl � id�� pr � ot� �

f pe � Pending j pe�proc � pr � pe�temp � rst tos � pe�os � second tos �
pe�type � if HasIntos�rst tos�

thenMeetIntoOp
else ot � pe �� � g

Z � denotes the concatenation of sequences� Z

We will need some auxiliary projection functions for Z	tuples with three components�

�A�B �C �
GetTemp � A	 B 	 C �A
GetTup � A	 B 	 C � B
GetOS � A	 B 	C � C

� a � A� b � B � c � C �
GetTemp�a� b� c� � a �
GetTup�a� b� c� � b �
GetOS �a� b� c� � c

As a �rst step for depositing tuples we de�ne the recursive function AddTuple for adding a single tuple
to a speci�ed tuple space of a program state�

���
� Tuple�Space Operations

AddTuple � �
TupleSpace 	
Process�	 �APTuple 	Value�
��
TupleSpace 	
Process�

� tss� tss� �
TupleSpace� AP �AP � �
Process� tup � APTuple� id � Value �
�tss��AP �� � �tss�AP� AddTuple �tup� id��

��
�
myts � tss j myts�Id � id �

�letMatchMeets �� f pt � dommyts�PendTemp j tup Matches pt �temp �
pt �type � MeetOp g�

MatchFetchs �� f pt � dommyts�PendTemp j tup Matches pt �temp �
pt �type � FetchOp g�

NewProcs �� f p � Process j �� tupc � ran tup � tupc � TupleProcess p� g �
�letMatchIntos �� f pt � dommyts�PendTemp j tup Matches pt �temp �

pt �type � MeetIntoOp �
� �� pm � MatchMeets � pm�proc � pt �proc� g �

�� pm � �MatchMeets j �� p�� p� � pm � p��proc � p��proc� � �
�
pend � pm �

pend �temp FormalAssign tup �
OptExecute pend �os� �

��MatchIntos MatchFetchs � fg�

�tss� � f ts � tss� ts� � TupleSpace j ts��Id � ts�Id �

ts��Limit � ts�Limit �
ts��Tuples � if ts��Id � id

then ts�Tuples � �tup�
else ts�Tuples �

ts��PendTemp �
fmm � MatchMeets � mm�proc g ts�PendTemp �

ts��PendFull � ts�PendFull � ts� g �
AP � � AP NewProcs fmm � MatchMeets � mm�proc g�� �

��MatchIntos MatchFetchs �� fg�

��mif � �MatchIntos MatchFetchs� �

mif �temp FormalAssign tup �
OptExecute mif �os �
�mif �MatchFetchs

�tss� � f ts � tss� ts� � TupleSpace j ts ��Id � ts�Id �
ts ��Limit � ts�Limit �
ts ��Tuples � ts�Tuples �
ts ��PendTemp � �fmm � MatchMeets � mm�proc g

fmif �procg� ts�PendTemp �
ts ��PendFull � ts�PendFull � ts� g �

AP � � AP fmm � MatchMeets � mm�proc g fmif �procg�� �
�mif �MatchIntos

��
�
newTSs �
TupleSpace� newAP �
Process �
newTSs � f ts � tss� newts � TupleSpace j newts�Id � ts�Id �

newts�Limit � ts�Limit �
newts�Tuples � ts�Tuples �
newts�PendTemp � �fmm � MatchMeets � mm�proc g

fmif �procg� ts�PendTemp �
newts�PendFull � ts�PendFull � newts g �

newAP � AP fmm � MatchMeets � mm�proc g fmif �procg �
�tss��AP �� �

�newTSs� newAP� AddTuple �mif �temp EvalIntos tup� id��������

Since this is quite a longish formula we give an informal outline of the predicate on the right	hand
side of � in the previous schema� The local set MatchMeets within the let declaration contains all
the pending processes which are pending for meet operations without into expressions
 where the
associated templates match the tuple to be added� MatchIntos contains all the pending processes

��� Some Preliminary De�nitions ���

which are pending for meet operations with into expressions
 where the associated templates match
the tuple to be added� Note that no process is contained in both
 MatchMeets and MatchIntos�
MatchFetchs contains all the pending processes which are pending for fetch operations
 where the
associated templates match the tuple to be added� NewProcs contains the processes which are active
within the tuple to be added� NewProcs is empty if the tuple to be added matches any template in
tss
 because only passive tuples can match� An informal outline of the let predicate follows�

�for all meets without intos that match �but for each process only once��
�assign the tuple �elds to the l	values in the corresponding formals �optional�� �
�execute the associated statements �optional��

�
�if not exists a meet with intos or a fetch
 which matches�

add the tuple�� ���
�

�if exists a meet with intos or a fetch
 which matches�
�assign the tuple �elds to the l	values in the corresponding formals �optional�� �
�execute the associated statements �optional�� �
�if a fetch was selected�

satisfy the selected fetch� � ���
�if a meet with intos was selected�

satisfy the selected meet�� ���

We expand the three numbered operation parts of this schema� Adding a tuple for which no pending
meet with intos and no pending fetch exists ����

�add the tuple to the the bag	component Tuples� �
�remove the processes which were pending for meets without intos from the list
of pending processes �PendTemp�� �
�add the contained active processes to ActiveProcs� �
�reactivate the processes which were pending for meets without intos�

Satisfaction of a fetch which matches implies the following actions ����

�remove the processes which were pending for meets without intos from the list
of pending processes �PendTemp�� �
�remove the associated process from the list of pending processes �PendTemp�� �
�reactivate the processes which were pending for meets without intos� �
�reactivate the associated process�

If we satisfy a matching
 pending fetch
 we do not add the tuple� Satisfaction of a meet with intos

which matches implies the following actions ����

�remove the processes which were pending for meets without intos from the meet	lists
of pending processes� �
�remove the associated process from the list of pending processes �PendTemp�� �
�reactivate the processes which were pending for meets without intos� �
�reactivate the associated process� �
�add the changed tuple recursively with AddTuple�

For a matching meet template with intos the changed tuple and not the original tuple has to be
added� This may satisfy other pending templates
 and therefore AddTuple may call itself recursively
an arbitrary but �nite number of times�

���
� Tuple�Space Operations

�	�	
 Depositing Tuples

This section de�nes the Deposit operation� The informal speci�cation is given in Sect� ������

Depositing

 �Deposit�

ProgramState

DepositOK
)�TSs�ActiveProcs�
ToDeposit! � APTuple 	Value

second ToDeposit! � IDsOF TSs

�TSs��ActiveProcs�� � �TSs�ActiveProcs� AddTuple ToDeposit!

DepositInvalid
ToDeposit! � APTuple 	Value
Exception# � Statement

second ToDeposit! �� IDsOF TSs

Exception# � 'escape ts invalid id�	��

Blocking on full tuple spaces �provided that blockiffull has been speci�ed��

FullTSBlock
)�TSs�ActiveProcs�
ToDeposit! � APTuple 	Value
InProc! � Process
Blocking! � BlockMode

second ToDeposit! � IDsOF TSs

Blocking! � BlockIfFull

TSs� � f ts � TSs� ts� � TupleSpace j ts��Id � ts�Id �
ts��Limit � ts�Limit �
ts��Tuples � ts�Tuples �
ts��PendTemp � ts�PendTemp �
ts��PendFull � if ts��Id � second ToDeposit!

then ts�PendFull f InProc! �� rst ToDeposit! g
else ts�PendFull � ts� g

ActiveProcs� � ActiveProcs n fInProc!g

FullTSException
ToDeposit! � APTuple 	 Value
Blocking! � BlockMode
Exception# � Statement

second ToDeposit! � IDsOF TSs

Blocking! � DoNotBlock

Exception# � 'signal ts is full�	��

The exception ts is full will be raised
when the requested tuple space is full and
blockiffull has not been speci�ed�

Note that ts invalid id will be raised
if both exceptional conditions � invalid
tuple	space identity and full tuple space
� hold�

��� Fetching Tuples ���

TSisFull
ToDeposit! � APTuple 	 Value

� ts � TSs j ts�Id � second ToDeposit! �
Type ts�Limit � integer �
IntValueOf ts�Limit � BagSum ts�Tuples

Deposit b� �DepositOK � � TSisFull�
�

��FullTSException � FullTSBlock� � TSisFull�
�

DepositInvalid

We only indicate exception handling for full tuple spaces as informally described in Sect� ������ It is
not speci�ed that the exception type mismatch will be raised if the tuple	operands are not tuples�
Since Deposit deposits passive and active tuples
 the input	tuples cannot be �rst	class ProSet	values�
we need objects of type APTuple�

�	�	� Fetching Tuples

This section de�nes the Fetch operation� The informal speci�cation is given in Sect� ������ When
else statements are to be executed or invalid template lists are given
 the operations for fetching and
meeting behave in the same way�

FetchMeet

ProgramState

If no matching tuple has been found and else statements are speci�ed
 our program
state does not change
 and the else statements are executed�

DoElseStmt
InTempList! � TempList
InProc! � Process
Else! � OptStmt

second InTempList! � IDsOF TSs

� �� ts � TSs j �ts�Id � second InTempList!� �
� tos � ran�rst InTempList!�� tup � dom ts�Tuples � tup Matches �rst tos��

Else! �� NoStmt

OptExecute Else!

The exception ts invalid id will be raised when an invalid tuple	space identity is
given within the template list�

InvalidTempList
InTempList! � TempList
InProc! � Process
Exception# � Statement

second InTempList! �� IDsOF TSs

Exception# � 'escape ts invalid id�	��

Fetching of a tuple is then speci�ed in the class Fetching based on FetchMeet �

���
� Tuple�Space Operations

Fetching

 �Fetch�

FetchMeet

FetchMatch
)�TSs�ActiveProcs�
InTempList! � TempList
InProc! � Process

second InTempList! � IDsOF TSs

� ts � TSs j �ts�Id � second InTempList!� �
� tos � ran�rst InTempList!�� tup � dom ts�Tuples � tup Matches �rst tos�

�myts � TSs j �myts�Id � second InTempList!� �
letMatchings �� fTEMP � Template� TUP � APTuple� OS � OptStmt j

�� tos � ran�rst InTempList!�� tup � dommyts�Tuples �
tup Matches �rst tos� �
TEMP � rst tos � TUP � tup � OS � second tos� �

�TEMP �TUP �OS � g �
��
�
SelMatch � Matchings �
�GetTemp SelMatch� FormalAssign �GetTup SelMatch� �
OptExecute �GetOS SelMatch� �
��myts�PendFull � fg�

�TSs� � f ts � TSs� ts� � TupleSpace j ts�Id � ts ��Id �
ts ��Limit � ts�Limit �
ts ��Tuples � if myts�Id � ts�Id

then ts�Tuples � �GetTup SelMatch�
else ts�Tuples �

ts ��PendTemp � ts�PendTemp �
ts ��PendFull � ts�PendFull � ts� g �

ActiveProcs� � ActiveProcs�� �
��myts�PendFull �� fg�

��
�
SelBlocked � myts�PendFull �
�TSs� � f ts � TSs� ts� � TupleSpace j ts�Id � ts ��Id �

ts ��Limit � ts�Limit �
ts ��Tuples � if myts�Id � ts�Id

then �ts�Tuples � �GetTup SelMatch��
��second SelBlocked�

else ts�Tuples �
ts ��PendTemp � ts�PendTemp �
ts ��PendFull � if myts�Id � ts�Id

then ts�PendFull n fSelBlockedg
else ts�PendFull � ts � g �

ActiveProcs� � ActiveProcs frst SelBlockedg����

No into expressions are allowed for fetch operations�

DisallowIntos
InTempList! � TempList

� tos � ran�rst InTempList!� �
� HasIntos�rst tos�

We specify this condition in a separate schema to allow the reuse of DoElseStmt and
InvalidTempList for the Meet operation �see below��

��� Meeting Tuples ���

If no matching tuple has been found
 the templates together with the requesting pro	
cess will be added to the bag of pending templates
 provided that no else statements
are speci�ed�

FetchNoMatch
)�TSs�ActiveProcs�
InTempList! � TempList
InProc! � Process
Else! � OptStmt

second InTempList! � IDsOF TSs

� �� ts � TSs j �ts�Id � second InTempList!� �
� tos � ran�rst InTempList!�� tup � dom ts�Tuples � tup Matches �rst tos��

Else! � NoStmt

TSs� � f ts � TSs� ts� � TupleSpace j ts ��Id � ts�Id �
ts��Limit � ts�Limit �
ts��Tuples � ts�Tuples �
ts��PendFull � ts�PendFull �
ts��PendTemp � if ts��Id � second InTempList!

then ts�PendTemp �
MakePends�InTempList!� InProc!�FetchOp�

else ts�PendTemp
� ts� g

ActiveProcs� � ActiveProcs n fInProc!g

Fetch b� �FetchMatch � FetchNoMatch � DoElseStmt � InvalidTempList� �
DisallowIntos

The set Matchings within FetchMatch contains all the matching tuples� They are collected within
this set together with the corresponding template and the optional statement� One such collection �a
Z	tuple� is then selected
 for which the following actions are necessary�

�assign the tuple �elds to the l	values in the corresponding formals �optional�� �
�execute the associated statements �optional�� �
�remove the matching tuple from the tuple space� �
�if the tuple space was full and there are processes pending on this full tuple space�

�remove one of these pending processes from PendFull� �
�add the corresponding tuple to the bag Tuples� �
�reactivate the pending process��

As we can see
 fetching a tuple may reactivate a process that is blocked with a deposit operation on
a full tuple space�

�	�	� Meeting Tuples

This section de�nes the Meet operation� The informal speci�cation is given in Sect� ������ Meeting
tuples is similar to fetching tuples except that the matching tuple is not removed from the tuple space
and that it may be changed via into expressions while meeting it�

���
� Tuple�Space Operations

Meeting

�Meet�

FetchMeet

MeetMatch
)�TSs�ActiveProcs�
InTempList! � TempList
InProc! � Process

second InTempList! � IDsOF TSs

� ts � TSs j �ts�Id � second InTempList!� �
� tos � ran�rst InTempList!�� tup � dom ts�Tuples � tup Matches �rst tos�

�myts � TSs j �myts�Id � second InTempList!� �
letMatchings �� fTEMP � Template� TUP � APTuple� OS � OptStmt j

�� tos � ran�rst InTempList!�� tup � dommyts�Tuples �
tup Matches �rst tos� �
TEMP � rst tos � TUP � tup � OS � second tos� �

�TEMP �TUP �OS � g �
��
�
SelMatch � Matchings �
�GetTemp SelMatch� FormalAssign �GetTup SelMatch� �
OptExecute �GetOS SelMatch� �
�� HasIntos�GetTemp SelMatch�

�TSs� � f ts � TSs� ts� � TupleSpace j ts�Id � ts ��Id �
ts��Limit � ts�Limit �
ts��Tuples � ts�Tuples �
ts��PendTemp � ts�PendTemp �
ts��PendFull � ts�PendFull � ts� g �

ActiveProcs� � ActiveProcs�� �
�HasIntos�GetTemp SelMatch�

��
�
newTSs �
TupleSpace �
newTSs � f ts � TSs� newts � TupleSpace j newts�Id � ts�Id �

newts�Limit � ts�Limit �
newts�Tuples � if newts�Id � myts�Id

then ts�Tuples � �GetTup SelMatch�
else ts�Tuples �

newts�PendTemp � ts�PendTemp �
newts�PendFull � ts�PendFull � newts g �

�let ChangedTuple �� �GetTemp SelMatch� EvalIntos �GetTup SelMatch� �
�TSs��ActiveProcs�� �

�newTSs�ActiveProcs� AddTuple �ChangedTuple�myts�Id�����

If there exists a template in the given InTempList!
 which Matches a tuple in the
associated tuple space
 then the following actions are necessary�

�assign the tuple �elds to the l	values in the corresponding formals �optional�� �
�execute the associated statements �optional�� �
�if there are intos�

�remove the matching tuple from the tuple space� �
�add the changed tuple via AddTuple��

If no intos are speci�ed
 our program state does not change� If intos are speci�ed

the matching tuple has to be removed and the changed one has to be added� The
addition of the changed tuple might satisfy other pending processes with templates
matching the changed tuple�

��� Fairness of the Tuple�Space Operations ���

If no matching tuple has been found
 the templates together with the requesting pro	
cess will be added to the bag of pending templates
 provided that no else statements
are speci�ed�

MeetNoMatch
)�TSs�ActiveProcs�
InTempList! � TempList
InProc! � Process
Else! � OptStmt

second InTempList! � IDsOF TSs

� �� ts � TSs j �ts�Id � second InTempList!� �
� tos � ran�rst InTempList!�� tup � dom ts�Tuples � tup Matches �rst tos��

Else! � NoStmt

TSs� � f ts � TSs� ts� � TupleSpace j ts ��Id � ts�Id �
ts��Limit � ts�Limit �
ts��Tuples � ts�Tuples �
ts��PendFull � ts�PendFull �
ts��PendTemp � if ts��Id � second InTempList!

then ts�PendTemp �
MakePends�InTempList!� InProc!�MeetOp�

else ts�PendTemp
� ts� g

ActiveProcs� � ActiveProcs n fInProc!g

MeetNoMatch is similar to FetchNoMatch
 except that MeetOp and FetchOp are
exchanged�

Meet b� MeetMatch �MeetNoMatch � DoElseStmt � InvalidTempList

�	�	� Fairness of the Tuple�Space Operations

The tuple	space operations with the fairness constraints are now de�ned as follows�

TupleSpaceOperations

 �Deposit �Fetch�Meet�

Depositing �remove DepositOK �TSisFull �FullTSException�FullTSBlock �
DepositInvalid �

Fetching �remove FetchMatch�FetchNoMatch�DoElseStmt � InvalidTempList �
DisallowIntos�

Meeting �remove MeetMatch�MeetNoMatch�DoElseStmt � InvalidTempList �

Weakly fair selection of processes that are pending for templates�

� ts � TSs� pp � Pending j pp � ts�PendTemp �
���� ots � TSs j ots�Id � ts�Id � �� tup � domots�Tuples � tup Matches pp�temp��

��� ots � TSs j ots�Id � ts�Id � � �pp � ots�PendTemp��

Weakly fair selection of processes that are pending for full tuple spaces�

� ts � TSs� b � Process 	APTuple j b � ts�PendFull �
���� ots � TSs j ots�Id � ts�Id � IntValueOf ots�Limit � BagSum ots�Tuples�

��� ots � TSs j ots�Id � ts�Id � b �� ots�PendFull�

We use the name ots as an acronym for other tuple spaces�

���
�
 Program Execution

When objects of this class are instantiated
 only the three tuple	space operations are available to
such instances of TupleSpaceOperations� Note that children of this class still have access to the state
variables of ProgramState
 but not to the removed auxiliary operations�

The reader is referred to Sect� ����� for an informal discussion of weakly fair selection in ProSet�
An informal outline of the history invariant for selection of processes that are pending for templates
follows�

�for all tuple spaces which contain a pending meet or fetch�
�there exists always eventually a matching tuple�

 �this pending meet or fetch will be selected eventually��

Weakly fair selection of processes that are pending for full tuple spaces is very similar� Note that
weakly fair selection of processes that are pending for templates does not apply to non	blocking
fetch or meet operations
 because the corresponding requesting processes do not occur within the
PendFetch and PendMeet components of tuple spaces� In Chap� � we will design an implementation
for our speci�cation of weakly fair selection�

��� Program Execution

An execution of a program is an in�nite sequence of program states
 each one related to its immediate
successor by one of the operation schemas de�ned above�

ProgramExecution

�INIT �ProgramTermination�ProcessCreation�ProcessTermination�
CreateTS �ExistsTS �ClearTS �RemoveTS �Deposit �Fetch�Meet �NoOp�

ProcessCreationTermination
TupleSpaceLibrary
TupleSpaceOperations

Internal computations of processes do not change the program state of our speci�ca	
tion� We can model them via the operation NoOp�

NoOp

��op � ProgramTermination
 ��op � NoOp��

The entire class hierarchy from ProgramState to ProgramExecution is displayed in Fig� ����

For any given program
 there is a set of valid execution histories� The �rst state change in the sequence
represents the initialization �INIT�� It is not required that programs terminate� However
 they may
terminate� after ProgramTermination only NoOps are allowed� We model terminating programs via
in�nite sequences to keep the speci�cation simple�

We present an operational semantics which de�nes the possible state changes of our program state
through the operations on this state� We describe concurrency as usual when operational semantics
are used�

�As usual when parallelism is speci�ed by an operational semantics
 concurrency is de	
scribed by an arbitrary interleaving of a set of atomic transactions performed by the acting
processes �Milner
 ������

The interleaving approximation does not provide true concurrency
 but it is su�cient as
tuples are indivisible units which are manipulated by atomic actions� �� � � � The possibility
of blocking operations are modeled by the match relation� �� � � �� �Ciancarini et al�
 ����

page ��

�� Summary ���

TupleSpaceExistence

TupleSpaceCreation TupleSpaceClearance

TupleSpaceRemoval

TupleSpaceLibrary

ProgramState

FetchMeet

Meeting Fetching

Depositing

TupleSpaceOperations

ActualProcesses

ProcessCreationTermination

ProgramExecution

Figure ���� The entire class hierarchy for our formal speci�cation�

Note that the notions of distribution and asynchrony are not captured by such an operational seman	
tics� The goal of the present work is not to specify as much parallelism as possible
 but rather to
provide a precise speci�cation of the semantics of generative communication in ProSet�

��� Summary

We presented the formal speci�cation of generative communication in ProSet by means of the for	
mal speci�cation language Object	Z� Concurrency is described by arbitrary interleavings of the atomic
actions of the participating processes� However
 nothing in the semantics given here prevents causal
independent actions to occur in parallel� The concurrency of programs is modeled by the nondeter	
ministic interleaving of atomic actions
 i�e�
 by an asynchronous model� Atomic transitions happen
one after another in a non	�xed arbitrary order�

We speci�ed formally the conditions under which exceptions have to be raised� The actions to be
taken for handling such situations were only sketched� This is due to the fact that we only present a
speci�cation of generative communication in ProSet
 and not a speci�cation of the entire language�
A rigorous formal speci�cation of exception handling is in general not a light	weight exercise�

The concept for process creation in ProSet is adapted from Multilisp�s futures� The resolving and
touching of futures is only speci�ed for processes within active tuples in tuple space
 and not for

���
�� Summary

processes spawned outside of it� This limitation is also due to our not specifying the entire language�

The speci�cation of the formal semantics of generative communication in ProSet led us to the recog	
nition of several omissions and imperfections in our previous informal speci�cation
 which has been
presented in its �rst version in �Hasselbring
 ����a� and in a revised version in �Hasselbring
 ����b��
Nevertheless
 the main advantage of using a formal speci�cation lies in subsequent development steps
for the implementation� Formal speci�cations may be needed as an intermediate step between re	
quirement analysis and design� The formal speci�cation de�nes the duties for the implementor in a
precise and unambiguous way� The implementation design of Chap� � is the �rst step for implementing
ProSet	Linda�

Part III

Implementation

���

Chapter

Re�ning the Formal Speci�cation

Once the formal semantics of ProSet	Linda has been given
 the next step is to consider the properties
of an implementation design� Obtaining a design for an implementation from a speci�cation can
be done via top	down
 step	wise data and operation re�nement� Data re�nement is the process of
transforming one data type into another one� an abstractly given data type is transformed into a more
concrete one� This is the way we approach the implementation� Re�nement means adding more and
more implementation details �for example
 choosing a particular algorithm or data representation�
until an executable implementation is achieved�

In this chapter we will re�ne our formal speci�cation to obtain the implementation design for our
formal speci�cation of Chap� �� We start in Sect� ��� with a general discussion of the relationship
between the speci�cation of the abstract semantics and the speci�cation of the more concrete design�
Data and operation re�nement for our formal speci�cation is then presented in Sects� ��� and ���

respectively� The correctness of the re�nement is discussed in Sect� ����

��� Semantics versus Implementation Design

We present the formal semantics of ProSet	Linda in Chap� � on a very high level without considering
a possible implementation� It is good practice to write another speci�cation which uses less abstract
data types and more algorithmic constructs to approach the implementation �Diller
 ������ This
second speci�cation can then be thought of as being intermediate between the original speci�cation
and an executable implementation� In the remainder of this chapter we will refer to the abstract
speci�cation as the semantics and to the more concrete speci�cation as the design�

What we require is that any program which is a correct implementation of the design is also a correct
implementation of the semantics� When this requirement is satis�ed
 then the operations in the design
model those in the semantics �Diller
 ������ For data re�nement an abstraction relation between the
abstract state space of the semantics and the concrete state space of the design has to be given
�see Sect� ����� Operation re�nement leads to algorithm development� We refer to �Diller
 ����

Chapter ���
 �Woodcock
 �����
 and �Spivey
 ����b
 Sections ��� and ���� for introductory examples
for re�nement in Z�

It is quite usual for one abstract state in the semantics to be represented by many concrete states in
the design� As an example
 �nite sets can be represented by sequences in which the order of elements
does not matter� in such a representation
 a set of size n can be represented by any of n# di�erent
sequences with the elements in di�erent orders �see �Spivey
 ����b
 Sect� ���� for an example��

Especially
 nondeterminism may be restricted in the design� However
 the design must satisfy two
requirements to be considered correct�

���

��� ��� Data Re�nement

liveness If a set of processes is able to act in the context of the semantics
 then at least
one of them must also be able to act in the context of the design� This implies that
whenever a process in the context of the semantics is guaranteed to terminate
 the
process also terminates in the context of the design�

deadlock If no process can act in the context of the semantics
 then no process may be
able to act in the context of the design� The semantics and the design must have the
same deadlock properties�

��� Data Re�nement

The weak fairness property for pending processes in the semantics as formally speci�ed in Sect� �����
can be implemented by using FIFO queues for pending processes instead of bags and sets as in the
de�nition of TupleSpace on page ��� In a FIFO ��rst	in �rst	out� queue always the possible candidate
who waits longest is selected �rst� The design for tuple spaces uses sequences
 which are used as FIFO
queues
 for pending processes�

TupleSpaceD
IdD � Value
LimitD � Value
TuplesD � bagAPTuple
PendTempD � seqPending
PendFullD � iseq�Process 	APTuple�

�Type IdD � atom� � �IdD �� domValuesOfType�

�Type LimitD � integer� � �Type LimitD � om�

disjoint h f pt � ranPendTempD � pt �proc g� dom�ranPendFullD� i

Z iseqX is the set of injective �nite sequences over X � these are precisely the �nite
sequences over X which contain no repetitions� Z

We implement the bag PendTemp through the sequence PendTempD �repetitions are allowed in
sequences� and the set PendFull through the injective sequence PendFullD �repetitions are not allowed
in injective sequences�� We will use these sequences as FIFO queues in the concrete operations of
Sect� ���� Items will be appended to the tails and removed from the heads of these queues�

The de�nitions for the design are distinguished from those of the semantics through an appended D �
We document the correspondence between semantics and design with a schema TSAbstraction that
de�nes the abstraction relation between the abstract state space TupleSpace and the concrete state
space TupleSpaceD �

TSAbstraction
TupleSpace
TupleSpaceD

Id � IdD

Limit � LimitD

Tuples � TuplesD

PendTemp � items PendTempD

PendFull � ranPendFullD

Z If s is a sequence
 items s is the bag in which each element x appears exactly as often
as x appears in s� Z

��� Operation Re�nement ���

The abstraction relation is also called retrieve relation schema because it allows us to retrieve the
abstraction from the implementation details �Litteck and Wallis
 ������ The relation between abstract
tuple spaces and concrete ones can now be formulated as follows �Spivey
 ����b��

�TupleSpaceD � �
�
TupleSpace � TSAbstraction

Therefore
 there exists exactly one abstract state for each concrete state
 and there may exist several
concrete states for each abstract state� the retrieve relation is a total function from concrete to abstract
states�

The concrete program state is de�ned as follows�

ProgramStateD

TSsD �
TupleSpaceD
ActiveProcsD �
Process

� ts�� ts� � TSsD �
ts� �� ts�
 ts��IdD �� ts��IdD

� ts�� ts� � TSsD �
� tup�� tup� � dom�ts��TuplesD � ts��TuplesD�� i�� i� � N j

tup��i�� � ranTupleProcess � tup��i�� � ranTupleProcess �
�i� � dom tup� � i� � dom tup� � tup��i�� � tup��i���

tup� � tup� � i� � i� �
� � �ts��TuplesD � ts��TuplesD� � tup�

Only names were changed compared to the de�nition of ProgramState on page ��� Again
 we document
the correspondence between semantics and design with a schema ProgramAbstraction that de�nes the
abstraction relation between the abstract program state ProgramState and the concrete state space
ProgramStateD �

ProgramAbstraction
ProgramState
ProgramStateD

� tsd � TSsD � �
�
ts � TSs �

ts�Id � tsd �IdD �
ts�Limit � tsd �LimitD �
ts�Tuples � tsd �TuplesD �
ts�PendTemp � items tsd �PendTempD �
ts�PendFull � ran tsd �PendFullD

ActiveProcs � ActiveProcsD

The relation between abstract program state and concrete program state can now be formulated as
follows�

�ProgramStateD � �
�
ProgramState � ProgramAbstraction

This is the retrieve relation for program states� It is a total function from concrete to abstract program
states�

��� Operation Re�nement

Having explained what the concrete state space is
 and how concrete and abstract state spaces are
related
 we can begin to give designs for the operations of the semantics�

��� ��� Operation Re�nement

As noted earlier
 we use FIFO queues in our design for pending processes and model them in Z
through sequences� The tuple	space manager has to handle these queues in such a way that the
fairness properties of Sect� ����� are satis�ed�

There are four kinds of operations which are involved in handling these queues�

�� deposit operations which can add a tuple �the requested tuple space is not full and no exception
prevents the addition��

Pending processes with matching templates shall be removed from the PendFullD
queue �provided that there are such processes pending��

� All processes with meet operations and no intos are selected�

� The �rst process with a fetch operation or a meet operation with intos is se	
lected�

See the de�nition of AddTupleD for DepositOKD below�

�� deposit operations which cannot add a tuple because the requested tuple space is full and
blockiffull has been speci�ed�

� The requesting process is appended to the end of the corresponding PendFullD queue�

See the de�nition of FullTSBlockD below�

�� fetch operations for which matching tuples are available in a full tuple space�

� The �rst process which is blocked on this full tuple space with a deposit operation is
selected and removed from the queue �provided that there is such a process pending��

See the de�nition of FetchMatchD below�

�� Blocking fetch or meet operations for which no matching tuple is available �no else statements
speci�ed��

� The requesting process is appended to the end of the corresponding PendTempD queue�

See the de�nitions of FetchNoMatchD and MeetNoMatchD below�

Fig� ��� illustrates the management of the queues for processes which are blocked with blocking
fetch or meet operations
 and Fig� ��� illustrates the management of the queues for processes which
are blocked on full tuple spaces� We will present in the subsequent subsections only the operations
DepositOKD
 FullTSBlockD
 FetchMatchD
 and FetchNoMatchD to save space� No signi�cant changes
are necessary in the remaining operations which belong to the tuple	space operations
 in the operations
for program process initialization and termination
 in the operations for the library functions to handle
multiple tuple spaces
 and for program execution� only names are changed�

��� Operation Re�nement ���

�DepositOKD
� � �

PendTempD

� FetchNoMatchD

MeetNoMatchD

Figure ���� The queue for blocking fetch and meet operations�
Processes which will be blocked because no matching tuple is available� are appended by

FetchNoMatchD or MeetNoMatchD to the tail of the PendTempD queue� DepositOKD takes

from PendTempD the �rst template for a fetch operation or a meet operation with intos which

matches the tuple to be deposited� This is done via AddTupleD� Processes which are blocked for

meet operations without intos are selected without consideration of their position in the queue�

We select all processes for such meet operations�

� FetchMatchD
� � �

PendFullD

� FullTSBlockD

Figure ���� The queue for processes which are blocked on full tuple spaces�
Processes which will be blocked because a tuple space is full� are appended by FullTSBlockD to

the tail of the PendFullD queue� After fetching a tuple FetchMatchD takes from the head of

PendFullD the �rst blocked process which wants to deposit a tuple�

��� ��� Operation Re�nement

�	�	� Some Preliminary De�nitions

We will need the auxiliary function IDsOFD for checking tuple	space identities
 which is the concrete
counterpart of IDsOF �page ����

IDsOFD �
TupleSpaceD�
Value

� tss �
TupleSpaceD �
IDsOFD tss � f id � Value j �� ts � tss � ts�IdD � id� g

Again
 we will need an auxiliary function for schema anti	restriction for sequences of pending processes�

�
Process 	 seqPending� seqPending

� procs �
Process� pends � seqPending �
procs pends �

squashf pe � Pending � i � N j pe � pends�i� � pe�proc �� procs � i �� pe g

Z The sequence compaction squash takes a �nite function de�ned on the strictly positive
integers and compacts it into a sequence by removing gaps in the domain of the given
�nite function� squashf � �� ���� � �� ��� g � f � �� ���� � �� ��� g Z

The corresponding function for bags is de�ned on page ���

The auxiliary function MakePendsD creates from a TempList
 a process
 and the operation type a
corresponding sequence of pending processes�

MakePendsD � TempList 	 Process 	 OpType� seqPending

� tl � TempList � tos � Template 	 OptStmt � tosl � seq�Template 	 OptStmt��
id � Value� pr � Process� ot � OpType �

MakePendsD��hi� id�� pr � ot� � hi �
MakePendsD��tosl � htosi� id�� pr � ot� � MakePendsD��tosl � id�� pr � ot� �

f pe � Pending j pe�proc � pr � pe�temp � rst tos � pe�os � second tos �
pe�type � if HasIntos�rst tos�

thenMeetIntoOp
else ot � � �� pe g

The function MakePends on page ��� creates the corresponding bag� Note that the order in which
multiple templates of one operation are appended is not important� We retain the order in the given
TempList �

We de�ne the function AddTupleD for adding a single tuple to a speci�ed tuple space of the concrete
state �see also AddTuple for the abstract state on page �����

����� Some Preliminary De�nitions ���

AddTupleD � �
TupleSpaceD 	
Process�	 �APTuple 	 Value�
��
TupleSpaceD 	
Process�

� tss� tss � �
TupleSpaceD � AP �AP � �
Process� tup � APTuple� id � Value �
�tss ��AP �� � �tss�AP� AddTupleD �tup� id��

��
�
myts � tss j myts�IdD � id �

�letMatchMeets �� f pt � ranmyts�PendTempD j tup Matches pt �temp �
pt �type � MeetOp g�

NewProcs �� f p � Process j �� tupc � ran tup � tupc � TupleProcess p� g �
�� pm � �MatchMeets j �� p�� p� � pm � p��proc � p��proc� � �

�
pend � pm �

pend �temp FormalAssign tup �
OptExecute pend �os� �

�letMeetProcs �� fmm � MatchMeets � mm�proc g �
�letMatchIntosFetchs �� MeetProcs myts�PendTempD �
��MatchIntosFetchs � fg�

�tss� � f ts � tss� ts� � TupleSpaceD j ts��IdD � ts�IdD �
ts��LimitD � ts�LimitD �
ts��TuplesD � if ts ��IdD � id

then ts�TuplesD � �tup�
else ts�TuplesD �

ts��PendTempD � MeetProcs ts�PendTempD �
ts��PendFullD � ts�PendFullD � ts� g �

AP � � AP NewProcs MeetProcs�� �
��MatchIntosFetchs �� fg�

�letmif �� head MatchIntosFetchs �

mif �temp FormalAssign tup �
OptExecute mif �os �
�mif �type � FetchOp

�tss� � f ts � tss� ts � � TupleSpaceD j ts��IdD � ts�IdD �
ts ��LimitD � ts�LimitD �
ts ��TuplesD � ts�TuplesD �
ts ��PendTempD �

�MeetProcs fmif �procg� ts�PendTempD �
ts ��PendFullD � ts�PendFullD � ts � g �

AP � � AP MeetProcs fmif �procg�� �
�mif �type � MeetIntoOp

��
�
newTSs �
TupleSpaceD � newAP �
Process �
newTSs � f ts � tss� newts � TupleSpaceD j newts�IdD � ts�IdD �

newts�LimitD � ts�LimitD �
newts�TuplesD � ts�TuplesD �
newts�PendTempD �

�MeetProcs fmif �procg� ts�PendTempD �
newts�PendFullD � ts�PendFullD � newts g �

newAP � AP MeetProcs fmif �procg �
�tss��AP �� �

�newTSs� newAP� AddTupleD �mif �temp EvalIntos tup� id���������

Z For a non	empty sequence s
 head s is the �rst element of s� Z

The informal description of AddTuple can essentially be reused for AddTupleD� MatchIntos and
MatchFetchs are replaced by MatchIntosFetchs� The main di�erence lies in the way mif is selected
from the matching meet templates with intos and the matching fetch templates� mif is selected from
the head ofMatchIntosFetchs� This way PendTempD is used as a FIFO queue as illustrated in Fig� ���

because the order of items in PendTempD is sustained in MatchIntosFetchs� MatchIntosFetchs is a
subsequence of PendTempD �

��� ��� Operation Re�nement

Note that processes which are blocked for meet operations without intos are selected without con	
sideration of their position in the queue� We select all processes for such meet operations
 but each
process only once�

�	�	
 Depositing Tuples

We only present the components DepositOKD and FullTSBlockD of DepositingD �see page ��� for
Depositing��

DepositingD

ProgramStateD

DepositOKD
)�TSsD �ActiveProcsD�
ToDeposit! � APTuple 	Value

second ToDeposit! � IDsOFD TSsD

�TSsD ��ActiveProcsD �� � �TSsD �ActiveProcsD�AddTupleD ToDeposit!

Processes to be blocked on a full tuple space are appended to the tail of the corre	
sponding queue�

FullTSBlockD
)�TSsD �ActiveProcsD�
ToDeposit! � APTuple 	Value
InProc! � Process
Blocking! � BlockMode

second ToDeposit! � IDsOFD TSsD

Blocking! � BlockIfFull

TSsD � � f ts � TSsD � ts� � TupleSpaceD j ts ��IdD � ts�IdD �
ts��LimitD � ts�LimitD �
ts��TuplesD � ts�TuplesD �
ts��PendTempD � ts�PendTempD �
ts��PendFullD � if ts��IdD � second ToDeposit!

then ts�PendFullD � h InProc! �� rst ToDeposit! i
else ts�PendFullD � ts� g

ActiveProcsD � � ActiveProcsD n fInProc!g

The de�nitions for DepositInvalidD
 TSisFullD
 FullTSExceptionD
 and DepositD are
not shown to save space�

The di�erence between FullTSBlockD and FullTSBlock is that the process
 which will be blocked on
a full tuple space
 is appended to the tail of the PendFullD queue� This way PendFullD is used as a
FIFO queue as illustrated in Fig� ����

�	�	� Fetching Tuples

We only present the components FetchMatchD and FetchNoMatchD of FetchingD �see page ��� for
Fetching��

����� Fetching Tuples ���

FetchingD

ProgramStateD

FetchMatchD
)�TSsD �ActiveProcsD�
InTempList! � TempList
InProc! � Process

second InTempList! � IDsOFD TSsD

� ts � TSsD j �ts�IdD � second InTempList!� �
� tos � ran�rst InTempList!�� tup � dom ts�TuplesD � tup Matches �rst tos�

�myts � TSsD j �myts�IdD � second InTempList!� �
letMatchings �� fTEMP � Template� TUP � APTuple� OS � OptStmt j

�� tos � ran�rst InTempList!�� tup � dommyts�TuplesD �
tup Matches �rst tos� �
TEMP � rst tos � TUP � tup � OS � second tos� �

�TEMP �TUP �OS � g �
��
�
SelMatch � Matchings �
�GetTemp SelMatch� FormalAssign �GetTup SelMatch� �
OptExecute �GetOS SelMatch� �
��myts�PendFullD � hi�

�TSsD � � f ts � TSsD � ts � � TupleSpaceD j ts�IdD � ts��IdD �
ts ��LimitD � ts�LimitD �
ts ��TuplesD � if ts ��IdD � myts�IdD

then ts�TuplesD � �GetTup SelMatch�
else ts�TuplesD �

ts ��PendTempD � ts�PendTempD �
ts ��PendFullD � ts�PendFullD � ts � g �

ActiveProcsD � � ActiveProcsD�� �
��myts�PendFullD �� hi�

�let SelBlocked �� head myts�PendFullD �

�TSsD � � f ts � TSsD � ts � � TupleSpaceD j ts�IdD � ts��IdD �
ts ��LimitD � ts�LimitD �
ts ��TuplesD � if ts ��IdD � myts�IdD

then �ts�TuplesD � �GetTup SelMatch��
��second SelBlocked�

else ts�TuplesD �
ts ��PendTempD � ts�PendTempD �
ts ��PendFullD � if ts ��IdD � myts�IdD

then tail ts�PendFullD
else ts�PendFullD � ts � g �

ActiveProcsD � � ActiveProcsD frst SelBlockedg����

Z For a non	empty sequence s
 the sequence tail s contains all the ele	
ments of s except for the �rst one �in the same order�� Z

Note that it is not necessary to select the templates of one operation in a fair way

when a matching tuple is available� Also
 the selection of matching tuples is unfair

but processes which are blocked on this full tuple space are taken from the head of
the PendFullD queue �see the way in which SelBlocked is selected��

��� ��� Correctness of the Re�nement

If no matching tuple has been found
 the templates together with the requesting
process will be appended to the tail of the queue of pending templates
 provided that
no else statements are speci�ed�

FetchNoMatchD
)�TSsD �ActiveProcsD�
InTempList! � TempList
InProc! � Process
Else! � OptStmt

second InTempList! � IDsOFD TSsD

� �� ts � TSsD j �ts�IdD � second InTempList!� �
� tos � ran�rst InTempList!�� tup � dom ts�TuplesD � tup Matches �rst tos��

Else! � NoStmt

TSsD � � f ts � TSsD � ts� � TupleSpaceD j ts ��IdD � ts�IdD �
ts��LimitD � ts�LimitD �
ts��TuplesD � ts�TuplesD �
ts��PendFullD � ts�PendFullD �
ts��PendTempD � if ts��IdD � second InTempList!

then ts�PendTempD �
MakePendsD�InTempList!� InProc!�FetchOp�

else ts�PendTempD
� ts� g

ActiveProcsD � � ActiveProcsD n fInProc!g

The de�nitions for DoElseStmtD
 InvalidTempListD
 and FetchD are not shown to
save space�

The di�erence between FetchMatchD and FetchMatch is that the process
 which may be selected from
the PendFullD queue
 is selected from the head of PendFullD � This way PendFullD is used as a FIFO
queue as illustrated in Fig� ����

The di�erence between FetchNoMatchD and FetchNoMatch is that the process
 which will be blocked
because no matching tuple is available
 is appended to the tail of the respective PendTempD queue�
This way PendTempD is used as a FIFO queue as illustrated in Fig� ����

�	�	� Meeting Tuples

MeetNoMatchD is similar to FetchNoMatchD
 except that MeetOp and FetchOp are exchanged
 and
that in MeetMatchD only Ds are appended to the names� Therefore
 we do not present MeetingD to
save space�

��� Correctness of the Re�nement

We have to prove that the concrete operations are correct implementations of the abstract operations�
What we require is that any program which is a correct implementation of the design is also a correct
implementation of the semantics� When this requirement is satis�ed we say that the concrete state of
the design is a reication �Diller
 ����� of the abstract state of the semantics and that the operations
in the design model those in the semantics�

Essentially
 we implement bags �PendTemp� through sequences �PendTempD� and sets �PendFull�
through injective sequences �PendFullD�� One standard way of proving things about sequences is

����� Modeling Bags by Sequences ���

by using sequence induction
 which proceeds according to the cardinality of the sequences under
consideration� In �Diller
 ����
 Chap� ��� it is shown how sets can be implemented through injective
sequences
 and how the correctness can be proven by using sequence induction� We do not repeat
this proof here� Instead we prove the correctness of implementing bags through sequences �PendTemp
through PendTempD� in Sect� ������ The satisfaction of the fairness properties is shown in Sect� ������

�	�	� Modeling Bags by Sequences

We have to show that FetchNoMatchD is a correct implementation of FetchNoMatch
 that MeetNo	
MatchD is a correct implementation of MeetNoMatch
 and that DepositOKD is a correct implemen	
tation of DepositOK �

The way we relate the abstract and concrete data types is by means of a retrieve function� The
retrieve function ret maps the concrete type into the abstract one�

ret � seqPending� bagPending

In the case of bags being modeled as sequences the function items
 which is used in the retrieve
relation schema TSAbstraction in Sect� ���
 acts as the retrieve function� The retrieve function has to
map the concrete type to the abstract one because many sequences correspond to the same bag�

Processes are appended by FetchNoMatchD and MeetNoMatchD to the tail of the PendTempD queue
when they will be blocked because no matching tuple is available� We have to prove the following in
order to show that this is a correct modeling of FetchNoMatch and MeetNoMatch�

�ProgramStateD � pends � seq�Pending � � ts � TSsD �
items�ts�PendTempD � pends� � items ts�PendTempD � items pends

The concrete operations use sequence concatenation ��� and the abstract operations use bag union
��� to add new pending processes to the queues for blocking fetch and meet operations�

Proof� The following identity is always valid for two sequences s and t �Spivey
 ����b
 page �����

items�s � t� � items s � items t

This identity shows that FetchNoMatchD is a correct implementation of FetchNoMatch and
that MeetNoMatchD is a correct implementation of MeetNoMatch� �

Processes are removed by DepositOKD from the PendTempD queue when the associated templates
match the deposited tuple� DepositOKD takes via AddTupleD the �rst template for a fetch operation
or a meet operation with intos which matches the tuple to be deposited� Processes which are blocked
for meet operations without intos are selected without consideration of their position in the queue�
We select all processes for such meet operations� We have to prove the following in order to show that
this is a correct modeling of DepositOK �

�ProgramStateD � procs �
Process � � ts � TSsD �
items�procs ts�PendTempD� � procs items ts�PendTempD

DepositOKD uses the schema anti	restriction �de�ned on page ���� and DepositOK uses the schema
anti	restriction �de�ned on page ��� to remove pending processes
 whose templates match the tuple
to be deposited
 from the queues for blocking fetch and meet operations� We prove this by sequence
induction�

Base case� We need to prove that the property is true for the empty set fg�
�ProgramStateD � � ts � TSsD �

items�fg ts�PendTempD� � fg items ts�PendTempD

The base case is obviously satis�ed because fg s � s holds for each sequence s �see page ����
and fg b � b holds for each bag b �see page ����

��� ��� Correctness of the Re�nement

Inductive step� To prove the inductive step we have to prove that

�ProgramStateD � procs �
Process� p � Process � � ts � TSsD �
items��fpg procs� ts�PendTempD� � �fpg procs� items ts�PendTempD ���

holds on the assumption that the inductive hypothesis is true�

�ProgramStateD � procs �
Process � � ts � TSsD �
items�procs ts�PendTempD� � procs items ts�PendTempD

We prove this by showing that both sides of ��� are equal� The left	hand side of ��� is�

items��fpg procs� ts�PendTempD�

� items�fpg �procs ts�PendTempD�� �by de�nition of �page �����

� fpg items�procs ts�PendTempD� �by inductive hypothesis�

� fpg �procs items ts�PendTempD� �by inductive hypothesis�

� �fpg procs� items ts�PendTempD �by de�nition of �page ����

This equals the right	hand side of ���� �

�	�	
 Satisfaction of the Fairness Properties

We have to show that the fairness properties �Sect� ������ are satis�ed� First
 we prove that processes
which are pending for templates are selected in a weakly fair way� The fairness property for our
concrete state space is de�ned as follows�

� ts � TSsD � pp � Pending j pp � ran ts�PendTempD �
���� ots � TSsD j ots�IdD � ts�IdD � �� tup � domots�TuplesD � tup Matches pp�temp��

��� ots � TSsD j ots�IdD � ts�IdD � pp �� ran ots�PendTempD�

See page ��� for the de�nition of this fairness property for the abstract state space� We sketch the
proof for the satisfaction of this property by the operations of our design�

Proposition� The processes which are pending for templates are selected in a weakly fair way by the
operations DepositOKD
 FetchNoMatchD
 and MeetNoMatchD of our design�

Sketch of proof� We distinguish between meet templates without intos and other templates �meet
templates with intos and fetch templates��

� meet templates without intos are selected without consideration of their position in the
PendTempD queue
 thus they will be selected at the �rst time a matching tuple is deposited�
pp is not in ran ots�PendTempD in the next state after which a matching tuple has been
deposited�

� The PendTempD queue is managed in FIFO order by the operations DepositOKD
 Fetch	
NoMatchD
 and MeetNoMatchD �see Fig� �����

Only templates which match are considered when a new tuple is deposited �see MatchIntos	
Fetchs in AddTupleD�� The �rst template in the queue MatchIntosFetchs is selected and
all templates from the associated process are removed from the PendTempD queue�

Let n � (PendTempD in any state in the history where pp � ran ts�PendTempD � Then
pp has to wait at most n times a matching tuple is deposited after this state� Since there is
always eventually �in�nitely often� a matching tuple for pp available �according to the fair	
ness property�
 pp will be selected eventually� Therefore
 pp is not in ran ots�PendTempD
in the next state after which it has been selected� �

��� Summary ���

Weakly fair selection of processes that are pending for full tuple spaces in the concrete state space is
de�ned as follows�

� ts � TSsD � b � Process 	 APTuple j b � ran ts�PendFullD �
���� ots � TSsD j ots�IdD � ts�IdD � IntValueOf ots�LimitD � BagSum ots�TuplesD�

��� ots � TSsD j ots�IdD � ts�IdD � b �� ran ots�PendFullD�

See page ��� for the de�nition of this fairness property for the abstract state space� We sketch the
proof for the satisfaction of this property by the operations of our design�

Proposition� The processes which are pending for full tuple spaces are selected in a weakly fair way
by the operations FullTSBlockD and FetchMatchD of our design�

Sketch of proof� The PendFullD queue is managed in FIFO order by the operations FullTSBlockD
and FetchMatchD �see Fig� �����

Let n � (PendFullD in any state in the history where b � ran ts�PendFullD � Then b has to wait
at most n times a tuple is fetched after this state� Since there is always eventually �in�nitely
often� a tuple fetched �i�e�
 the limit is bigger than the actual sum of tuples�
 b will be selected
eventually� Therefore
 b is not in ranots�PendFullD in the next state after which it has been
selected� �

��� Summary

We developed a design for our semantics� We speci�ed the relation between abstract and concrete
state space formally in Sect� ���
 we proved that the concrete operations are correct implementations
of the abstract operations
 and we proved that the concrete operations satisfy the fairness properties�
In this way we demonstrated how to improve the con�dence in the correctness of our design� When
formal methods are systematically applied to all stages of design and implementation
 we increase
the con�dence that the software is robust and correct� However
 we remark that re�nement is not
su�ciently supported by Z� we had to explicitly rewrite the entire abstract operations to obtain the
concrete operations despite the fact that we re�ned only parts of the schemas� We did not present all
re�ned operations to save space�

Note
 however
 that an implementation design
 which is considered to be correct
 cannot be claimed
to be fully reliable� A design that has been veri�ed is not immune from bugs
 although the probability
that it contains bugs is very much smaller than if it had not been veri�ed� Writing a proof is somewhat
like writing a program
 and is subject to error in the same ways that programs are subject to error�
Nevertheless
 a proof does give us a very high degree of con�dence in the correctness of a program
 even
though it cannot guarantee total reliability� Some chance of failure always remains
 no matter how
remote� �DeMillo et al�
 ����� argue that believing a proof is a social process� A proof for a re�nement
step is a message to the community
 which says why we believe that it is correct� Therefore
 our goal
is not to design a fully reliable implementation � we even do not believe that this would be possible
in practice� Our goal is to gain high con�dence in the design for the implementation�

In our design
 the tuple	space manager selects matching templates according to their position in the
sequences �the queues�� Also multiple queues for pending processes
 separated with respect to possible
matching tuple sets
 may be useful� The semantics does not restrict us to a particular design �as long
as it is a valid interpretation of the semantics�� An implementation according to the design given in
this chapter restricts the nondeterminism possible in the semantics
 but still prevents starvation�

The formal speci�cation of Chap� � precisely de�nes the duties for the implementor� The implemen	
tation design of this chapter is the �rst step for implementing ProSet	Linda� It is the basis for the
prototype implementation of Chap� ���

��� ��� Summary

Chapter ��

A Prototype Implementation

As discussed in Sect� �����
 after specifying the formal semantics of a proposed system a prototype
should be build rapidly to validate the formal speci�cation� Such a prototype enables us to test the
speci�cation concerning its adequacy� The execution and presentation of the prototype is then called
animation of the speci�cation �Diller
 ������ We present in this chapter a prototype implementation
of the runtime system for ProSet	Linda in ProSet itself� This implementation is directly derived
from the formal speci�cation�

We will brie�y discuss the implementation of the compiler in Sect� ����
 and present the prototype
implementation for the tuple	space management in Sect� �����

��� The Compiler

ProSet is compiled and not interpreted� The compiler construction system Eli �Gray et al�
 �����
is the central tool for implementing ProSet� Eli integrates o�	the	shelf tools and libraries with
specialized language processors to provide a system for generating complete compilers quickly and
reliably� The �rst prototype of the compiler translates a subset of ProSet into SETL� �Snyder

������ The translation with Eli is documented in �Hasselbring
 ����c�� It is quite easy to translate
ProSet into SETL�
 since both languages are successors to SETL �Schwartz et al�
 ������ The
production compiler compiles ProSet into C� This compiler is discussed in �Doberkat et al�
 ����c��
The front	end is essentially identical for both compilers
 but the code production di�ers considerably�
In the remainder of this chapter we will use the term compiler as a synonym for prototype of the
compiler �

The subset which is translated by the compiler includes the tuple	space operations and the library
functions for handling multiple tuple spaces� We do not intend to present the compiler implementation
here� This has been done in �Hasselbring
 ����c�� Instead we present the prototype implementation
for the runtime system of the tuple	space operations and the library functions for handling multiple
tuple spaces in Sect� ���� viz�
 the tuple	space management�

SETL� does not support any form of parallelism� Therefore
 we cannot compile the �� operator for
process creation� This is a limitation in our prototype implementation
 which is caused by the limited
capabilities of the available tools� However
 despite this restriction the prototype enables us to test
essential features of ProSet	Linda� the tuple	space operations and the library functions for handling
multiple tuple spaces� Prototypes usually model only essential features of proposed systems �Chap� ���
The absence of parallelism simpli�es our prototype implementation of tuple spaces considerably
 since
it makes no sense to block processes� no other process can enable a blocked process�

���

��� ���� The Tuple�Space Management

module TupleSpaceManager

export CreateTS� ExistsTS� ClearTS� RemoveTS� Deposit� Fetch� Meet� Formal

visible TSs� ActiveProcs�

IsFormal

begin �� the initialization of module instances�

TSs �� ��

ActiveProcs �� ��

IsFormal �� newat�� �� indicates formals to Fetch and Meet

���

end TupleSpaceManager

Figure ����� The main part of the ProSet implementation for the tuple	space manage	
ment� The procedures in the subsequent �gures of this chapter belong to this module�

��� The Tuple	Space Management

The prototype implementation for the tuple	space management is implemented in ProSet and has
been translated into SETL� by the compiler� Therefore
 tuple	space operations in ProSet programs
are translated by the compiler into calls to those procedures which are part of the tuple	space man	
agement�

Fig� ���� displays the main part of the tuple	space management module� The program state is repre	
sented by a set of tuple spaces and a set of active processes corresponding to the formal speci�cation
of ProgramStateD on page ���� The atom IsFormal indicates formals to Fetch and Meet �see below��
Variables
 which are declared as visible on the top level of modules
 are static variables for instances
of these modules� These variables are visible to each procedure within the corresponding module
 and
they are only visible to the encapsulated procedures� See Sect� ��� for an introduction to modules in
ProSet�

A ProSet	Linda program has to instantiate the tuple	space management before using tuple	space
operations�

instantiate TupleSpaceManager end instantiate�

The procedures in the export list of TupleSpaceManager are available after instantiation� Procedures
which are not listed in the export list are local to the module� ProSet�s module concept is mapped
to SETL��s packages by the compiler� the instantiation of a module does not return a module instance
as it is the case in ProSet �see Sect� ����� The exported procedures may be called after instantiation
as if they were de�ned in the instantiating program� It is not necessary to pre�x the names of exported
procedures with the name of a module instance �which is the case in ProSet�� See �Snyder
 ����� for
a description of packages in SETL��

��	
	� Handling Multiple Tuple Spaces

The four functions for handling multiple tuple spaces are displayed in Fig� ����� They belong to the
tuple	space management module�

CreateTS� First
 the given limit is checked� If the limit is not an integer or the unde�ned value
 the
exception type mismatch is raised via escape �see Sect� ����� Since SETL� does not support
exception handling
 the compiler translates escape statements into statement sequences which
print out appropriate messages and stop program execution�

������ Handling Multiple Tuple Spaces ���

procedure CreateTS �limit�

begin

if limit �� om and type limit �� integer then

escape type�mismatch��

end if

newTS �� �newat��� limit� ��

TSs with�� newTS

return newTS��� �� the tuple�space identity

end CreateTS

procedure ExistsTS �tsid�

begin

if type tsid �� atom then

escape type�mismatch��

end if

if exists ts in TSs � �ts��� � tsid� then

return true

else

return false

end if

end ExistsTS

procedure ClearTS �tsid�

begin

CheckTSID �tsid�

myts �� arb �ts� ts in TSs � ts��� � tsid�

TSs less�� myts �� remove the tuple space

myts��� �� �� �� delete the tuples

TSs with�� myts �� insert the empty tuple space

end ClearTS

procedure RemoveTS �tsid�

begin

CheckTSID �tsid�

TSs ��� �ts� ts in TSs � ts��� � tsid�

end RemoveTS

procedure CheckTSID �tsid� �� auxiliary function to check tuple�space identities

begin

if type tsid �� atom then

escape type�mismatch��

end if

if not �exists ts in TSs � �ts��� � tsid�� then

escape ts�invalid�id��

end if

end CheckTSID

Figure ����� The library functions for handling multiple tuple spaces�

��� ���� The Tuple�Space Management

Tuple spaces are implemented through tuples with three components� The position of these com	
ponents corresponds to the position of the components in the schema TupleSpaceD on page ����
The �rst component is the tuple	space identity� The prede�ned function newat returns a fresh
atom� The second component is the speci�ed limit� The third component of a tuple space
implements the multiset of tuples in our prototype implementation� As we see in Fig� ����

this multiset is initially empty� Because ProSet does not directly provide multisets
 we model
multisets of tuples through maps from tuples to counts� Z supports multisets in the same way
�see Chap� � and Appendix B��

It is not necessary to implement the components PendTempD and PendFullD of TupleSpaceD

because our prototype implementation does not support parallelism and blocked processes �as
indicated in Sect� ������

ExistsTS� This function simply checks whether a given atom is a valid tuple	space identity� The
parameter has to be an atom�

ClearTS� This function removes all tuples from a speci�ed tuple space� The auxiliary function
CheckTSID �rst checks whether the parameter is a valid tuple	space identity� ProSet�s unary
operator arb returns an arbitrary element from a set� The set fts� ts in TSs � ts��	 �

tsidg in ClearTS will always have exactly one element because CheckTSID would have raised
an exception otherwise �see Fig� ������ First
 the entire tuple space is removed from TSs� The
third component �the multiset of tuples� is then cleared
 and the resulting empty tuple space is
inserted into TSs�

RemoveTS� This function removes the entire tuple space from TSs�

��	
	
 Tuple�Space Operations

The tuple	space operations are mapped to the respective procedures Deposit
 Fetch
 Meet
 and
Formal which belong to the tuple	space management�

Depositing Tuples

A deposit operation is directly translated into a call to the procedure

procedure Deposit �tup tsid	�

of the tuple	space management
 where tup is the tuple to be deposited and tsid speci�es the tuple
space� Fig� ���� displays the procedure Deposit� First
 the given tuple and the tuple	space identity
are checked� The speci�ed tuple space is selected in the same way as in ClearTS �Sect� �������� Then
it is checked whether the selected tuple space is full� The compiler translates the signal statement
�Sect� ���� in the same way as it translates the escape statement into a statement sequence which
prints out an appropriate message and stops the program execution �resuming is not supported�� If no
exceptional situations are discovered
 the tuple is added to the tuple space� See Fig� ���� for details�

Fetching Tuples

A fetch operation is translated into calls to the procedure

procedure Fetch �actuals rw formals Condition tsid	�

of the tuple	space management
 where actuals is a tuple representing the actuals of a template and
formals is a tuple representing the formals of a template� actuals contains the template�s actuals
in the corresponding positions and the atom IsFormal �Fig� ����� otherwise� formals contains the

������ Tuple�Space Operations ���

procedure Deposit �tup� tsid�

begin

if type tup �� tuple then

escape type�mismatch��

end if

CheckTSID �tsid�

myts �� arb �ts� ts in TSs � ts��� � tsid�

if myts��� �� om and BagSum�myts���� �� myts��� then

signal ts�is�full�� �� resuming is not supported

end if

TSs less�� myts �� remove the tuple space

myts����tup� �� if myts����tup� � om then �

else myts����tup���

end if

TSs with�� myts �� insert the tuple space with the deposited tuple

procedure BagSum �ts� �� computes the sum of elements in a multiset

begin

sum �� �

for pair in ts do

sum ��� pair��� �� add the count

end for

return sum

end BagSum

end Deposit

Figure ����� Depositing tuples�
See Fig�
��� for CheckTSID� The procedure BagSum is the counterpart of BagSum in the formal

speci�cation �page
����

��� ���� The Tuple�Space Management

l	values of the template�s formals in the corresponding positions and a prede�ned dummy l	value
otherwise �see below�� Condition is a �	expression which computes the template condition and tsid

speci�es the tuple space� Fig� ���� displays the procedure Fetch�

Let us �rst discuss the translation of a speci�c example before explaining the procedure Fetch proper�
The example for the fetch operation from page ���

fetch � �name�� � x ��type ���� � integer� � �� put��Integer fetched��

xor � �name�� � x ��type ���� � set� � �� put��Set fetched��

at TS

else put��Nothing fetched��

end fetch

is translated by the compiler into a SETL�	CASE statement�

CASE

WHEN Fetch �� �name�� Formal��
� �L�NF� x
�

LAMBDA �L�TUP� RETURN � TYPE �L�TUP���� � �INTEGER� � END LAMBDA� TS � ��

PRINT � �Integer fetched� �

WHEN Fetch �� �name�� Formal��
� �L�NF� x
�

LAMBDA �L�TUP� RETURN � TYPE �L�TUP���� � �SET� � END LAMBDA� TS � ��

PRINT � �Set fetched� �

OTHERWISE ��

PRINT � �Nothing fetched� �

END CASE

The produced SETL�	code and the procedure Fetch work together as follows� the Fetch procedure
is called once for each template� Fetch returns true when it �nds a matching tuple
 otherwise Fetch
returns false� This CASE statement is similar to a guarded command� Each of the expressions after
the keyword WHEN is evaluated in an unspeci�ed order� When one is found which evaluates to true
 the
associated statement list is executed� If none of the expressions evaluate to true then the OTHERWISE
clause is executed� Note that a fetch operation does not block when no matching tuple is available�
if no else statements are speci�ed
 the compiler inserts an OTHERWISE clause to print the message
�No matching tuple found��

The procedure Formal returns the atom IsFormal to indicate a formal within the parameter actuals
in the corresponding position �see Fig� ������ The parameter formals is a rw	parameter �read	write��
read	write parameters are transmitted call by value�result �see Sect� ����� On entry to the procedure
the formal parameter is initialized with the actual parameter� When the procedure terminates
 the
current value of the formal parameter is assigned to the l	value of the rw	parameter� The parameter
formals is a multiple l�value �a tuple of l	values�� a tuple value has to be assigned to formals �see
Sect� ����� The tuple components are then assigned to the individual l	values according to their
position in the assigned tuple value�

The parameter formals is the inverse to actuals� for each actual it contains the dummy l	value
L NF in the corresponding position� The template condition is enclosed in a �	expression� Such �	
expressions yield �rst	class functions which can be executed �Snyder
 ������ The procedure Matches

which is called by Fetch
 will call these �rst	class functions with possibly matching tuples as actual
parameters �see below�� The
	expression is translated into the formal parameter L TUP �see the
previous example�� L TUP and L NF are keywords for the compiler to avoid con�icts with user	de�ned
names� the use of L TUP and L NF by the programmer is rejected by the compiler�

SETL��s TYPE operator returns a string and not an atom as it is the case in ProSet� The com	
piler translates the prede�ned type atoms accordingly and emits appropriate warning messages when
ProSet�s type operator and the prede�ned type atoms are used�

Fig� ���� displays the procedure Fetch� At �rst the given tuple	space identity is checked� The speci�ed
tuple space is selected in the same way as it is done in ClearTS �Sect� �������� If no exceptional

������ Tuple�Space Operations ���

procedure Fetch �actuals� rw formals� Condition� tsid�

begin

CheckTSID �tsid�

myts �� arb �ts� ts in TSs � ts��� � tsid�

tup �� Matches �myts���� actuals� Condition�

if tup � om then

formals �� formals �� restore the formals

return false �� no matching tuple found

else

formals �� tup �� assign the formals

TSs less�� myts �� remove the tuple space

if myts����tup� � � then

myts��� lessf�� tup �� remove the �tuple� count� pair

else

myts����tup� ��� � �� decrease the count

end if

TSs with�� myts �� insert the tuple space without the fetched tuple

return true

end if

end Fetch

procedure Matches �tuples� actuals� Condition�

begin

for pair in tuples do

if �pair��� � �actuals and Condition�pair���� then

DoesMatch �� true �� might be a matching tuple

for i in �����pair���
 do

if actuals�i� �� IsFormal then �� formals match unconditionally

if pair����i� �� actuals�i� then

DoesMatch �� false �� an actual does not match

end if

end if

end for

if DoesMatch then

return pair��� �� return the matching tuple

end if

end if

end for

return om �� no matching tuple found

end Matches

procedure Formal �� �� returns the atom IsFormal to indicate a formal

begin

return IsFormal

end Formal

Figure ����� Fetching tuples�
See Fig�
��
 for IsFormal and Fig�
��� for CheckTSID� The operation f lessf�� x deletes from

the map f all pairs in which the �rst component is equal to x�

��� ���� The Tuple�Space Management

situations are discovered
 the procedure Matches is called to �nd a matching tuple in the multiset of
tuples� If no matching tuple is found
 the formals are restored and false is returned� If a matching
tuple is found
 the formals are assigned the corresponding tuple �elds and the tuple is removed from
the tuple space� See Fig� ���� for details�

The procedure Matches checks for each tuple in a multiset of tuples whether it matches the given
template� Matches does not need the parameter formals of Fetch
 since formals match uncondition	
ally� It calls the �	expression Condition to compute the template condition� The procedure Matches

is the counterpart of Matches in the formal speci�cation �page ����

Meeting Tuples

A meet operation is translated into calls of the procedure

procedure Meet �actuals rw formals intos Condition tsid	�

of the tuple	space management
 where the formal parameters actuals
 formals
 Condition
 and
tsid are used in the same way as they are used in the procedure Fetch� The additional parameter
intos is a tuple containing the unde�ned value where no into is speci�ed in the given template and
a �	expression where an into is speci�ed in the corresponding position� This tuple is empty when no
intos are speci�ed
 because trailing oms are removed from tuples in ProSet �see Sect� ����� Fig� ����
displays the procedure Meet�

Let us �rst discuss the translation of a speci�c example before explaining the procedure Meet proper�
The following meet operation

meet � �name�� � x into ������ ��type ���� � integer� � �� put��Integer changed��

at TSid

else put��Nothing met��

end meet

is translated by the compiler into a SETL�	CASE statement very similar to the translation of fetch
operations�

CASE

WHEN Meet �� �name�� Formal��
� �L�NF� x
�

� OM� LAMBDA �L�TUP� RETURN �L�TUP��� � �� END LAMBDA
�

LAMBDA �L�TUP� RETURN � TYPE �L�TUP���� � �INTEGER� � END LAMBDA� TSid � ��

PRINT � �Integer changed� �

OTHERWISE ��

PRINT � �Nothing met� �

END CASE

The into expressions are enclosed in �	expressions similar to the template condition� Fig� ���� displays
the procedure Meet� At �rst the given tuple	space identity is checked� The speci�ed tuple space is
selected in the same way as it is done in ClearTS �Sect� �������� If no exceptional situations are
discovered
 the procedure Matches is called to �nd a matching tuple in the multiset of tuples� If no
matching tuple is found
 the formals are restored and false is returned� If a matching tuple is found

the formals are assigned the corresponding tuple �elds and it is checked if intos are speci�ed� If no
intos are speci�ed
 Meet returns true and does not remove the tuple� If intos are speci�ed
 the
found tuple is removed from the tuple space� The tuple components
 for which intos are speci�ed

are replaced by the return values of the corresponding �	expressions in the parameter intos
 and then
the changed tuple is added via Deposit� See Fig� ���� for details�

������ Tuple�Space Operations ���

procedure Meet �actuals� rw formals� intos� Condition� tsid�

begin

CheckTSID �tsid�

myts �� arb �ts� ts in TSs � ts��� � tsid�

tup �� Matches �myts���� actuals� Condition�

if tup � om then

formals �� formals �� restore the formals

return false �� no matching tuple found

else

formals �� tup �� assign the formals

if intos � �
 then

return true �� do not change the tuple space

else

TSs less�� myts �� remove the tuple space

if myts����tup� � � then

myts��� lessf�� tup �� remove the �tuple� count� pair

else

myts����tup� ��� � �� decrease the count

end if

TSs with�� myts �� insert the tuple space without the removed tuple

for i in �����intos
 � intos�i� �� om do

tup�i� �� intos�i��tup� �� change the tuple component

end for

Deposit �tup� tsid� �� deposit the changed tuple

return true

end if

end if

end Meet

Figure ����� Meeting tuples�
See Fig�
��� for CheckTSID� Fig�
��� for Deposit� and Fig�
��	 for Matches�

��� ���� Summary

��� Summary

We presented a prototype implementation for ProSet�s tuple	space management� This prototype
enables us to test the speci�cation concerning its adequacy� We tested
 among other test programs
 the
examples of Chap� �� Because we cannot compile the �� operator
 we had to make some modi�cations�
This is due to the limited capabilities of the available tools� For instance
 in the solution for the queens�
problem �Sect� ���� we call only one worker
 and in the solutions for parallel matrix multiplication
�Sect� ���� and the traveling salesman problem �Sect� ���� we call the workers sequentially instead of
spawning them via ��� However
 the programs produce the same results because the workers work
independently of each other� Therefore
 we have the opportunity to test essential features of ProSet	
Linda early in the process of software construction� As discussed in Chap� � prototypes usually do
not model all features of a proposed system�

The main part of the implementation work for the prototype was not the implementation of the tuple	
space management� It was quite easy to write the ProSet procedures with the formal speci�cation
on the desk� The main work was the implementation of the compiler� Experience with using Eli for
implementing the compiler is documented in �Hasselbring
 ����c� Doberkat et al�
 ����c��

After the work for this thesis was completed
 we translated the tuple	space management with the
production compiler into C� Accordingly
 the production compiler translates the tuple	space opera	
tions into calls of the corresponding produced C functions� We extended these C functions to support
synchronization for parallel access to the tuple spaces and dynamic process creation with the �� oper	
ator� this second prototype supports parallelism� We actually use the SunOS Lightweight Processes
Library �Sun
 ����� to implement process creation and synchronization�

In many current operating systems the lightweight process or thread has emerged as a useful represen	
tation of computational activity� Lightweight processes represent multiple threads of control which
share the address space of a single heavyweight process� Lightweight processes usually cooperate
closely and frequently with each other and are typically used to implement parts of a program which
are best executed concurrently� In operating systems like Unix lightweight processes are provided to
heavyweight processes by a library which allows the user to execute functions as lightweight processes�
We refer to �Tanenbaum
 ����
 Sect� ����� for an introduction to lightweight processes�

As we can see
 the production	level implementation will be based on the prototype implementa	
tion� our prototype is not thrown away� Chapter �� will discuss some general issues concerning the
production	level implementation of ProSet	Linda� Proposed changes in the language design can
�rst be evaluated with the prototype implementation in ProSet before they are incorporated into
the production	level implementation in C� This approach allows an evolutionary development�

We do not present proofs for the correspondence between the formal speci�cation and the prototype
implementation� Even textbooks on Z do not provide proofs when executable prototypes are developed
from Z speci�cations� For instance
 in �Diller
 ����� prototypes for Z speci�cations were constructed
in Miranda and PROLOG� There
 the Z speci�cation is �straightforwardly translated into Miranda�
�page ���� and the �PROLOG animation of it should be fairly clear� �page ����� No formal proofs
are given for the translation of Z speci�cations into Miranda and PROLOG� Jim Woodcock writes in
an introductory tutorial on re�nement in Z concerning his development into code� �The development
into code is straightforward� �Woodcock
 ����
 page ����� The reasons for not providing proofs
for the development into code are that such proofs are usually very complex and do not essentially
increase the con�dence in the correctness of the development� Since the implementation in a very
high	level language � such as ProSet � is straightforward
 we already have high con�dence in
the correspondence between the formal speci�cation and the prototype� Additionally
 programming
languages like ProSet and SETL� are not de�ned with formal semantics for programs in the sense
that formal speci�cation languages are de�ned with formal semantics for speci�cations� This di�erence
makes it hard �and even impossible in practice� to formally specify the relations between programs
and speci�cations�

Chapter ��

Some General Issues for

Implementations of PROSET�Linda

In this chapter we will discuss some general issues concerning implementing ProSet	Linda� Sec	
tion ���� presents a short summary of some existing implementations of Linda variants and Sect� ����
sketches implementation techniques� Optimizations and the somewhat unpredictable performance of
Linda are discussed in Sects� ���� and ����
 respectively�

���� Some Existing Implementations of Linda Variants

This section summarizes some existing implementations of Linda� We do not claim to provide a
comprehensive overview� Our intention is to show that Linda has been implemented on a wide
variety of parallel architectures and is
 therefore
 portable across di�erent machine architectures� The
implementation techniques applied are discussed in Sect� ����� For a survey and a taxonomy of parallel
computer architectures we refer the reader to �Flynn
 ����� Duncan
 ������

Implementations of Linda have been performed on shared	memory multi	processors as well as on
distributed memory architectures�

Sequent Balance � Encore Multimax �Carriero
 ����� Char
 �����
These are shared	memory multi	processors with National Semiconductor processors�

Symmetric multi�processing VAX�VMS �Kane
 �����
Symmetric multi	processing �SMP� is a bus	based shared	memory model of parallel
computation� Each processor in a SMP VAX can independently and equally access all
operating system code and system resources� The processors reside physically close
to each other
 so that they can communicate through shared memory�

S�Net �Carriero and Gelernter
 ����� Carriero
 �����
This is a bus	based distributed memory machine consisting of Motorola ����� pro	
cessors� The bus supports reliable broadcast�

Parwell �Borrman et al�
 �����
This is a distributed memory machine consisting of Motorola ����� ����� processor
pairs which are connected via a hierarchical bus system�

AP� �Cohen and Molinari
 �����
In this distributed memory machine
 SPARC processors are arranged in a two	
dimensional array� This system is also referred to as a Cellular Array Processor�

���

��� ���� Implementation Techniques

Transputer �Dourish
 ����� Ushijima
 ����� Zenith
 ����� Leler
 ����� Clayton et al�

����� Callsen et al�
 ����� Faasen
 ����� Shekhar and Srikant
 ����� Smith
 �����
Trescher et al�
 �����
The Transputer is a RISC	like processor which has four high	speed communication
links� A Transputer network is a distributed memory architecture
 where the nodes
are usually arranged in a grid
 giving each node exactly four neighbors�

Hypercubes
Transputers and Cellular Array Processors are arranged in two	dimensional grids�
In hypercubes
 the processors are connected logically in more than two dimensions�
Linda has been implemented on such systems with Motorola ����� processors �Lucco

�����
 Intel ����� ����� processor pairs �Bjornson
 �����
 and Intel ����� processors
�Bogoch et al�
 ������

Local area networks
Conventional workstations connected by a local area network�

DOS connected through NetBIOS �Bettermann
 �����

Unix connected through Ethernet �Arango and Berndt
 ����� Flecken	
stein and Hemmendinger
 ����� Gelernter and Philbin
 ����� Murakami
et al�
 ����� Pinakis
 ����� Chiba et al�
 ����� Schoinas
 ����� Thomas

����� Patterson et al�
 �����

VAX�VMS connected through Ethernet �Leichter
 �����

Some commercial implementations are reported in �Marko�
 ������ The public domain implementation
POSYBL is discussed in �Stapleton
 ����� Schoinas
 ������

���� Implementation Techniques

In implementations of Linda on shared	memory multi	processors like the Sequent Balance
 the Encore
Multimax or the SMP VAX it is straightforward to store the tuple space in shared memory� We
will only discuss implementations on distributed memory architectures here
 since such systems are
widely available
 scalable and provide high performance for modest costs compared to shared	memory
multi	processor systems� Scalability means the capability of delivering an increase in performance
proportional to an increase size� Shared	memory systems are expensive and scale up only to a few
dozen processors
 because the contention for access to shared	memory quickly becomes a bottleneck�
Conversely
 distributed memory architectures scale up to thousands of processors�

Even today�s local area networks may be used to execute parallel applications� However
 local area
networks are problematic hosts for parallel applications
 because the communication links are slow
compared to real parallel machines such as Transputer networks� At most sites
 workstations connected
by local area networks are often idle and may
 therefore
 become a parallel computer system�

On distributed memory architectures
 a general problem for implementations of Linda is to provide a
map from the virtual shared memory model to physical distributed memory architectures� A central
store needs a complex kernel �tuple	space manager�
 which may become a bottleneck� A replicated
store may cause consistency problems� Therefore
 e�cient and reliable implementations of Linda
on physical distributed memory architectures are in general a great challenge for the implementor�
Implementation techniques for physical distributed memory architectures range from ones where the
tuple space is replicated on each node to those where each tuple resides on exactly one node� The
implementation techniques may be classi�ed as follows�

�� Central store with server process

�� Replication of the entire tuple space at each node

�� Distribution of the tuple space over the net with unique copies of each tuple

���� Implementation Techniques ���

�� Mixture of these techniques

We discuss these items in turn now�

�� In this implementation technique
 the central store may very soon become both a computational
and a communicational bottleneck� This simple implementation technique is not discussed
further here�

�� In this implementation technique
 broadcasting of tuples is usually applied when tuples are
deposited �Carriero
 ������ For such a replication of the entire tuple space at each node the
system should provide broadcasting features� Reading of tuples is cheap with this technique

since no exchange of messages is necessary� as soon as a matching tuple is found on the local
node
 it is readily available for the reading process� Fetching of tuples triggers a local search
for a matching tuple� If one is found
 the originating node sends a broadcast �delete the found
tuple� to the other hosts� If each host responds �ok
 the found tuple has been deleted�
 the
tuple will be fetched� If at least one host responds �the found tuple has already been fetched
by another one�
 the tuple cannot be fetched
 and a delete protocol has to be applied to retain
consistency� The delete protocol has to satisfy two requirement�

� All involved nodes must receive the delete message�

� If many processes attempt to delete the same tuple simultaneously
 only one will succeed�

We refer to �Carriero and Gelernter
 ����� for a discussion of some delete protocols for the S Net�
In �Chiba et al�
 �����
 some consistency protocols for a replication on local area networks are
discussed�

If the local search triggered by an in operation turns up no matching tuple
 all newly	arriving
tuples are checked until a match occurs
 at which point the matched tuple is deleted and returned
as before�

A major problem with replication of tuples is to guarantee the consistency of replicated data in
a distributed environment� A possible solution is the use of an atomic broadcast protocol �also
used in Orca
 see Sect� ������� This protocol ensures that all operations are performed at all
replicas in the same order
 and in addition that operations of processes are performed in the very
same order issued� However
 atomic broadcast protocols are not supported on all distributed
memory machines�

Another problem with replication is that the tuple space takes up a lot of memory on each of
the nodes in the network� The space used will be n times as much as necessary
 where n is the
number of nodes in the network�

�� This implementation technique is in some sense the inverse of technique �� templates are usually
broadcast and tuples remain on their nodes of origin until they are explicitly asked for� This
technique is applied in �Leichter
 ������

The implementation on hypercubes discussed in �Bjornson
 ����� distributes the tuple space

but does not use broadcast of tuples or templates to all or parts of the network
 since their
hypercube system does not support reliable broadcast� The basic idea in �Bjornson
 ����� is
to have as short communications distances between communicating processors as possible� The
strategy taken for the implementation of the tuple space is called distributed hashing � Here both

tuples and templates
 are sent to a so	called rendezvous node
 chosen by a hash function
 which
is applied on the tuple and template contents� Tuples and templates that are likely candidates
for matching are guaranteed to be sent to the same node
 where matching takes place� When a
matching tuple template pair is found
 the template is discarded and the matched tuple is sent
back to the requesting node� In order to determine the address of the rendezvous node
 a hash
function is used� It uses information from compile	time analysis to calculate physical network
addresses from tuple and template contents� Therefore
 tuple storage is based on a distributed
table implemented in terms of the tuple classi�cation worked out at compile	time� A similar

��� ���� Optimizations

technique is applied in �Cohen and Molinari
 ����� for an implementation on the Cellular Array
Processor AP�����

In �Pinakis
 �����
 tuple space is partitioned so that a set of tuple types is managed by each
host in a local area network� Processes determine the location of tuples of a particular type by
contacting type�server processes
 which are executing on each host in the network� The tuple
space is partitioned at runtime� Each type	server in the system executes a locking and agreement
protocol which ensures that if many processes wish to simultaneously create a tuple type
 only
one succeeds and all contending hosts receive the same information of the tuple type�s location�

�� This implementation technique is
 e�g�
 applied in �Patterson et al�
 �����
 where tuples are
replicated among so	called subspaces of tuple space and not in the entire system� In �Xu and
Liskov
 �����
 fault	tolerance is achieved by uniform replication of tuple space on a small subset
of available processors in a network� Fault	tolerance is guaranteed with respect to node crashes
and network failures� See also Sect� ���� for a discussion on this subject� In �Ahuja et al�
 �����

tuples are replicated on

p
n nodes on an n node network� This is discussed in Sect� ������� A

similar technique is applied in �Faasen
 ����� for an implementation on a Transputer system�

We conclude that a distribution of tuple space over the nodes in a parallel system in one form or another
is the most promising implementation technique on distributed memory architectures for Linda�s tuple
space� This is due to several reasons� First
 memory is saved and second
 the consistency problems
imposed by a replication of tuple space are absent� Furthermore
 any Linda implementation that can
scale to large machines must distribute tuple space
 so as to avoid node contention� This distributes
the cost of handling tuple operations across all nodes in the system� The remaining problem is how
to distribute the tuple space� Multiple tuple spaces
 as they are supported in ProSet
 provide an
immediate way to distribute the tuple spaces�

���� Optimizations

The following subsections discuss the optimization of the performance of Linda implementations�

��	�	� Partitioning the Tuple Space

Especially in the Yale Linda Implementation extensive compile	time optimizations for C	Linda pro	
grams are applied� It is proposed in �Carriero and Gelernter
 ����b� to implement each tuple	space
operation as a family of operations in the runtime library� The compiler maps each user	level tuple	
space operation onto the cheapest available member of the appropriate family� A default runtime
library which implements the general operations with the full functionality is taken
 and then re	
placed by making use of speci�c information about each call and global knowledge about tuple	space
access in a program� The compile	time analysis detects cases in which the full functionality of tuple
storage and matching is not needed
 and replaces the runtime library to handle common special cases
e�ciently�

The runtime library is replaced on a per	tuple	space	operation basis� It is intended to accomplish as
much as possible of the work involved in executing a tuple	space access before runtime� The compiler
checks whether or not runtime matching is needed� If consistently	used constant �elds can be pre�
matched at compile	time
 the general operations are replaced by direct message	passing operations

which do not apply any runtime matching� If runtime matching is needed
 a key �tuple �eld� for
hashing is searched� Some multiple	key search methods for Linda are discussed in �Peskin and Segall

������

This approach involves constructing partitions of the global tuple space� The construction is based
on an examination of the structure and type of tuples found within a C	Linda program� Partitions
are constructed by semantic analysis and from type declarations� Tuple	space operations whose tuple

������ In�place Updates ���

arguments correspond in type and length get placed within the same partition� the representation
of individual partitions is therefore customized to the structure of the tuples that occupy it� Each
partition can then be managed by a separate tuple	space manager� This increases the degree of
concurrency in the system
 because operations working on di�erent partitions can safely proceed
simultaneously� It also decreases the amount of runtime searching the system has to do
 since only
tuples which possibly match a speci�c operation need to be examined� In �Clayton et al�
 �����
 the
tuple space is partitioned into hierarchical tuple groups�

We remark that an important disadvantage of the approach taken in the Yale Linda Implementation
is that separate compilation is not supported because the compiler has to know all the tuple	space
operations which occur in a program at compile	time�

In the present proposal concerning ProSet
 multiple tuple spaces already provide a partitioning of
tuple space on the language level� the tuple space is partitioned as the programmer says and sees it�
No compile	time analysis with respect to partitioning the tuple space is needed�

��	�	
 In�place Updates

A common sequence of operations
 such as

in � �counter� � i 	�

out � �counter� i�� 	�

can be handled by directly locking and incrementing the value stored in the tuple space instead of
removing and re	inserting it� However
 as this special case is in general not easy to �nd for a compiler

it is rarely possible to replace such in out sequences by in	place	update operations� In ProSet
 the
meet operation already provides this functionality �Sect� �������

��	�	� Hardware Support

Hardware support for implementations of Linda has been considered� It is proposed in �Ahuja et al�

����� that a co	processor takes care of implementing the tuple	space operations� This system uses
replication of tuples by introducing tuple template beams� If the net of nodes is rectangular
 tuples
coming from a node are broadcast to all nodes in the same row as itself
 and templates are broadcast
to all nodes in the same column as itself� Therefore
 broadcasting is done to subsets of the nodes in
the system and not to each node in the system� Tuples are replicated on

p
n nodes on an n node

network� When searching for a match
 the tuple	 and template	beams will cross in exactly one node�
The special co	processor takes care of matching and distribution of tuples in the net�

We do not consider speci�c hardware support for implementing ProSet	Linda because portability is
more important for prototyping than high performance on speci�c hardware�

��	�	� Data Structure Selection

The semantic analysis for Scheme	Linda in �Jagannathan
 ����� is based on an inference engine that
statically computes the set of tuples �and their structural attributes� which may occupy any given
tuple space� The result of this inference procedure can be used to customize the representation of
individual tuple spaces�

Such an analysis may also be useful in ProSet to select appropriate data structures for individual
tuple spaces according to their use and content� However
 this is subject for further research and
beyond the scope of this thesis�

��� ���� Summary

���� The Unpredictable Performance of Linda

A crucial problem of Linda is its unpredictable performance which in part is due to the fact that many
di�erent strategies are used to distribute the tuple space �Bal
 ������ However
 this is always the case
for implementations of virtual shared memory models on physical distributed memory architectures
 if
no speci�c assertions are made for the mapping� Thus the unpredictable performance is not a problem
unique to Linda�

Linda does not provide any idea on how it is implemented� Conversely
 e�g�
 in Orca �see Sect� ������

only one implementation technique has been applied� replication of shared objects
 either full replica	
tion on all processors
 or partial replication on a subset of the available processors based on runtime
statistics with primary copies of shared objects �Bal et al�
 ������ Orca intends to make read oper	
ations cheap and write operations more expensive
 so the user has at least some idea of the relative
costs� In Linda one does not know anything about replication and distribution before one knows which
compiler is in use� Note
 however
 that a new implementation of Orca does not replicate all objects
�Bal and Kaashoek
 ������ The decision to replicate objects is based on an integration of compile	time
and run	time analysis�

An approach to tackle the problem of the unpredictable performance might be the use of multiple
tuple spaces� In ProSet
 one could introduce the option to specify on creation that a tuple space
has to be replicated�

TS �� CreateReplicatedTS �limit	�

This would make read operations cheap and write operations more expensive for this freshly created
tuple space� Also
 the compiler could decide to replicate appropriate tuple spaces� The default would
be to distribute tuple spaces�

However
 note that for a prototyping language such as ProSet runtime e�ciency is not of paramount
importance� E�ciency in rapid development and change of prototypes is the primary concern� There	
fore
 the unpredictable performance of Linda is a minor problem for ProSet� It is surpassed by the
�exibility of Linda�s tuple	space communication
 which is the motivation for combining set	oriented
prototyping with generative communication�

���� Summary

The implementation design of Chap� � is the �rst step for implementingProSet	Linda� The prototype
implementation of Chap� �� is used to check the correspondence between informal requirements and
formal speci�cations through testing and experimentation� This last chapter of Part III discusses
some general issues concerning implementing ProSet	Linda� The production	level implementation
of ProSet	Linda is based on the prototype implementation� A detailed discussion of the production	
level implementation is beyond the scope of this thesis and the subject for future research �see also
Chap� ����

Part IV

R�esum�e and Outlook

���

Chapter ��

R�esum�e

The goal of our research is to design a tool for prototyping parallel algorithms� We construct this tool
in a somewhat unconventional way� the informal speci�cation is followed by a formal speci�cation

which serves as the basis for a prototype implementation before the production	level implementation
is undertaken�

We evaluated several high	level parallel programmingmodels concerning their suitability for prototyp	
ing parallel algorithms in a set	oriented language� This evaluation led us to our approach to parallel
programming where the concept for process creation via Multilisp�s futures is adapted to set	oriented
programming and combined with the concept for synchronization and communication via tuple space�
The basic Linda model is enhanced with multiple tuple spaces
 the notion of limited tuple spaces
 selec	
tion and customization for matching
 speci�ed fairness of choice
 and the facility for changing tuples in
tuple space� It is fairly natural to combine set	oriented programming with generative communication
on the basis of tuples
 as both models
 ProSet and Linda
 provide tuples�

Our goal is to make parallel program design easier through prototyping parallel algorithms� The
high level of ProSet�s constructs for parallel programming enables us to rapidly develop prototypes
of parallel programs and to experiment with parallel algorithms� The subject of this thesis is the
construction of prototypes and not the transformation of prototypes into production	quality programs�
Therefore
 we consider only the early phases in the process of software construction�

A formal speci�cation of ProSet	Linda has been presented by means of the formal speci�cation
language Object	Z� The speci�cation of the formal semantics of generative communication in ProSet
led us to the recognition of several omissions and imperfections in our previous informal speci�cation�
The main advantage of using a formal speci�cation lies in subsequent development steps for the
implementation� Formal development involves some sort of transformation re�nement� Re�nement is
usually regarded as a step	wise approach
 possibly with proof obligations for each step� This method
of development results for the developer in a higher level of con�dence in the end product�

We re�ned our formal speci�cation into an implementation design and speci�ed formally the rela	
tion between the abstract state space of the speci�cation and the more concrete state space of the
implementation design� We proved that the concrete operations are correct implementations of the
abstract operations and that the concrete operations satisfy the fairness properties� Consequently
 we
gained high con�dence in the correctness of our implementation design� We implemented a proto	
type from the formal speci�cation and discussed some general issues concerning the implementation
of ProSet	Linda� The prototype allows immediate validation of the speci�cation by execution� It
is not possible to check the correspondence between informal requirements and formal speci�cations
formally by veri�cation� This situation suggests the following cyclic process for requirements analysis�

informal requirements � formal speci�cation

�
prototype implementation�prototype animation

and evaluation

�

���

��� �� R�esum�e

When the requirements reach a stable state
 the next phases in the process of software production
may begin� The prototype enables us to avoid the large time lag between speci�cation of a system and
its validation in more traditional models of software production� The next phases should be based
on the formal speci�cation and on the prototype implementation� When a system�s requirements
change after delivery
 it is more appropriate to base changes in the maintenance phase on the �exible
prototype instead on the optimized implementation� We refer to �Ghezzi et al�
 ����
 Chapter �� for
an introduction to software production process models�

ProSet and Z appear to be a good combination for software engineering in general� Because of the
similarities between ProSet and Z it may be a good idea to build an executable prototype � derived
from a speci�cation written in Z � in ProSet� There exist some other approaches to animation of
Z and VDM speci�cations with PROLOG �Ekambareshwar and Downs
 ����� Diller
 ����� West and
Eaglestone
 ����� and with functional languages such as Miranda �Diller
 ����� or ML �O�Neill
 ������
It has also been proposed to make subsets of Z executable �Valentine
 ����� Gimnich and Ebert
 ������
For a debate on whether speci�cations themselves should be executable see �Hayes and Jones
 �����
Fuchs
 ������

Set	oriented programming techniques may be a more adequate choice for constructing prototypes
from Z speci�cations than techniques from functional or logic programming� ProSet is a procedural
language which also contains a Pascal	like subset that facilitates prototyping by allowing a program
to be re�ned into successively �ner detail while staying within the language� it is a wide	spectrum
language �CIP
 ������ These features allow us to systematically transform prototypes into production	
quality products� For functional or logic languages there is a somewhat wider gap to bridge to arrive
at a production	level program� Production	level programs are usually written in procedural languages
like C� However
 there exist some signi�cant di�erences between ProSet and Z�

� ProSet is weakly typed
 whereas Z is strongly typed�

� ProSet programs are executable prototypes
 whereas Z speci�cations are not executable�

� ProSet only supports �nite sets
 whereas Z also supports in�nite sets�

An executable language is by de�nition more restricted in expressive power than a non	executable one

because its functions must be computable and are de�ned over domains with �nite representations
�Wing
 ������

Chapter ��

Outlook

After presenting our r"esum"e we take an outlook to directions for future research� Future work will
concern the application of ProSet	Linda to more sophisticated problems than it was possible within
the scope of this thesis
 the evaluation of extensions and modi�cations to the proposed language
features
 and the implementation of the programming system�

���� Extending Matching to Uni�cation

Proposals for combining generative communication with PROLOG often replace Linda�s matching by
PROLOG�s uni�cation �Sutcli�e and Pinakis
 ����� Anderson et al�
 ����� Bosschere and Wulteputte

����� Sutcli�e
 ����� Bosschere et al�
 ������ To some extent
 PROLOG�s database of rules can be
compared with Linda�s tuple space and a speci�ed goal can be compared with a template� A PROLOG
interpreter tries to unify a goal with the database of rules
 usually via backtracking� A tuple	space
manager tries to match templates with tuples in tuple space�

However
 the main di�erence between Linda�s matching and PROLOG�s uni�cation is that uni�cation
reports failure when no answer substitution is possible
 whereas matching blocks when no matching
tuple is available� PROLOG�s closed world assumption �one of PROLOG�s fundamentals� implies that
an execution simply cannot wait for missing information� Another di�erence is that with PROLOG�s
uni�cation several substitutions may be returned� With Linda�s matching at most one substitution
�a tuple� may be returned�

In addition
 backtracking might become a problem in tuple space� Adding backtrackable tuple	space
operations to PROLOG implies backtrackable communications primitives� Backtracking of communi	
cations among distributed processes is very complex to implement and would require something like
a temporal logic framework to de�ne the semantics �Ciancarini
 ������

Therefore
 the extension of ProSet�s conditional value matching to PROLOG	like uni�cation in tuple
space would cause serious problems for the de�nition of the semantics and for the implementation�
However
 in Linda Q �Hiroyuki and Masaaki
 ����� nested tuples and templates are proposed to
extend matching to uni�cation� Linda Q is proposed as an extension to C
 and not as an extension
to PROLOG� ProSet already supports nested tuples� Therefore
 it seems to be promising to have
nested templates
 too� It would be straightforward to extend the matching rules for nested tuples
and templates� The advantage would be increased �exibility for the programmer
 but also increased
complexity� The elaboration of such an extension to matching is beyond the scope of this thesis and

furthermore
 we would like to gain more practical experience with the available features for matching
to justify the need for more �exibility �and also more complexity�
 before extending the system�

���

��� ���� An Implementation of a Graphical Debugger

���� An Implementation of a Graphical Debugger

The standard approach to debugging a sequential program is to run it and to stop the execution
at some point in the program �usually called breakpoint�� At such a breakpoint the program state
is checked for any errors� If an error is discovered
 the appropriate correction can be made in the
original source program� If no errors are discovered
 the program�s execution is continued to some
other breakpoint
 or the program is re	started and stopped at an earlier breakpoint� Again the program
state is checked� This method of error detection and correction is called traditional cyclic debugging
�McDowell and Helmbold
 ������ Another method of error detection is to monitor the execution of
the program by placing put statements at useful points in the program which indicate the path of
execution
 and the position at which the program execution failed� This attempts to narrow down the
area in which the error is likely to occur�

The above mentioned techniques are characteristic of many sequential debuggers monitors
 and are
su�cient for sequential programs� However
 debugging monitoring parallel programs is more di�cult
�McDowell and Helmbold
 ������

� Nondeterminism arising from race conditions is normally beyond the user�s control�

� Attempts to gain more information about the system by
 for example
 placing put statements in
the program may alter a crucial race condition
 and cause the erroneous behavior to disappear�
This phenomenon is called the probe e�ect �

� The absence of a synchronized global clock makes it di�cult the determine the precise order of
events on distinct
 parallel executing processors�

Therefore
 the design of a debugger for a parallel language requires particular attention� So	called
event�based approaches intend to solve the problems �McDowell and Helmbold
 ������ The debugger
for ProSet	Linda should support a single	step mode where a breakpoint is automatically inserted
at each tuple	space operation �these are the events for our debugger�� This event	based approach to
monitoring and debugging provides a graphical presentation of a parallel program as a series of states�
The debugger should also support to record an event history in a �le containing all of the events
generated by a program� The system can then replay the parallel program based on the contents in a
history �le� The replay of a program reduces the probe e�ect �LeBlanc and Mellor	Crummey
 ������

It is straightforward for a graphical debugger for ProSet	Linda to present each tuple space in a
separate window� This is somewhat similar to the way TupleScope �Bercovitz and Carriero
 �����
presents each partition of C	Linda�s tuple space� The di�erence is that in ProSet the separation is
de�ned by the programmer
 whereas in C	Linda the separation is based on compile	time analysis �see
Sect� ��������

The graphical capabilities of today�s workstations make it possible to construct levels of abstraction
in the representation of tuples� At the top level
 tuples could be given a uniform representation in the
form of an icon appearing in a tuple	space window� The user would usually not need more speci�c
information� useful information is already given by the existence of a tuple in a speci�c tuple space�
When additional information about a tuple is needed
 the user would click on the tuple icon and
descend to the next more speci�c level of representation� a window containing the detailed textual
representation of the tuple would then pop up� This approach is also applied in TupleScope� The
representation in form of icons helps in managing the potentially large quantity of tuple data�

Levels of abstraction are also useful for the representation of processes� A process could be represented
a the top level by an icon� This icon could change as the process changes its state
 for example
 from
being blocked to continuing execution� More detailed information regarding the state of a process

such as the actual line of source code
 could be obtained by clicking on the process icon�

The ongoing work for implementing a graphical debugger for ProSet	Linda is the subject of Heiner
Pohland�s Master�s thesis �Pohland
 ������

���� An Implementation on a Local Area Network ���

���� An Implementation on a Local Area Network

To exploit the computational resources of workstations which are connected through a local area
network
 the implementation of the runtime system for ProSet	Linda on a local area network is
underway� This is the subject of Ralf Naujokat�s Master�s thesis �Naujokat
 ������ Multiple tuple
spaces provide a direct approach for distributing the tuple space in a network� It is not necessary for
the system to �nd application	speci�c mapping functions from tuples to processors
 as proposed in
�Wilson
 ����a�� Multiple tuple spaces simplify compile	time analysis with respect to partioning the
tuple space and allow the programmer to partition the communication device as he sees �t�

At most sites
 workstations are often idle� It would make sense if these idle workstations could help
with ongoing parallel computations� A Linda	based model � called Piranha � has been proposed
which incorporates these ideas �Carriero et al�
 ������ The Piranha model is based on the master	
worker model �see Sect� ����� In the Piranha model
 a program is structured as a cloud of tasks which
computational Piranhas attack� The more Piranhas attack
 the faster the cloud is consumed and
the faster the program completes� The role of Piranha is played by the workstations in the network
when they become idle� Idleness is de�ned by the user� It depends on the keyboard idle time and
the load average� A workstation leaves a computation when the user reclaims it by striking a key

moving the mouse
 or doing something else with the workstation� The Piranha model demands a
programming language which can accommodate dynamic process ensembles� The Piranha model is a
form of adaptive parallelism �Carriero et al�
 ������ Adaptive parallelism refers to parallel computations
on a dynamically changing set of processors� processors may join or withdraw from the computation
as it proceeds� The implementation on a local area network will be used to experiment with adaptive
parallelism in ProSet	Linda�

���� Optimizing Analysis of Tuple	Space Access

�Jagannathan
 ����� analyses multiple tuple spaces in Scheme	Linda based on an inference engine
that statically computes the set of tuples �and their structural attributes� which can occupy any given
tuple space� The result of this inference procedure can be used to select appropriate data structures
for the representation of individual tuple spaces� Such an analysis may also be useful in ProSet to
select appropriate data structures for individual tuple spaces according to their use and content� Also

program transformations �Partsch
 ����� for tuple	space communication and optimal process creation
may be useful�

��� ���� Optimizing Analysis of Tuple�Space Access

Part V

Appendices

���

Appendix A

The Abstract Grammar for the

Tuple�Space Operations

We present in this appendix a concise overview of the abstract grammar for the tuple	space operations
in ProSet �see Sect� ���� using BNF �Backus Naur Form�� Conversely
 the informal semantics in
Chap� � is presented together with syntax diagrams
 which are spread over the text� For a concise
overview
 we regard BNF as more appropriate� The abstract grammar�

Statement ��� deposit Expr at Expr � blockiffull � end deposit �

j fetch FetchTemp at Expr � else StmtList � end fetch �

j meet MeetTemp at Expr � else StmtList � end meet �

FetchTemp ��� FetchTemp � xor FetchTemp �
j � � FetchComp � 	 � �� StmtList �

FetchComp ��� FetchComp � FetchComp �
j Expr
j � � LValue � � � Expr �

MeetTemp ��� MeetTemp � xor MeetTemp �
j � � MeetComp � 	 � �� StmtList �

MeetComp ��� MeetComp � MeetComp �
j Expr
j � � LValue � � � Expr � � into Expr �

ExprList ��� Expr � ExprList �

StmtList ��� Statement � StmtList �

Optional parts are enclosed in � and �� Terminal symbols are displayed in typewriter font� Note that
the terminal symbol � is di�erent from j
 which denotes alternatives in the grammar� FetchList is
similar to MeetList
 except that intos are not allowed� Statement and Expr are not speci�ed for the
entire language� We refer to �Doberkat et al�
 ����a� for a de�nition of statements and expressions in
ProSet�

���

��� A The Abstract Grammar for the Tuple�Space Operations

Appendix B

The Speci�cation Language

Object�Z

This appendix provides a brief informal introduction to the formal speci�cation language Object	Z�
For a full account to plain Z we refer to �Diller
 ������ �Spivey
 ����b� is the de	facto standard for
plain Z and �Duke et al�
 ����� is the reference for Object	Z� The present appendix and the notes

which are enclosed in the symbols Z and Z
 are derived from these texts� We use the name Z when
both languages
 plain Z and Object	Z
 are concerned�

An Object	Z speci�cation document consists of interleaved passages of formal
 mathematical text and
informal prose explanation� The formal text consists of a sequence of paragraphs which gradually
introduces the classes
 schemas
 global variables and basic types of the speci�cation� Each paragraph
builds on the ones which come before it �de�nition before use��

Types in Z are sets� every mathematical expression which appears in a Z speci�cation is given a type
determining a set known to contain the value of the expression� Each variable is given a type by its
declaration� The basic types or given sets of a speci�cation have no internal structure of interest� A
given set may serve to the purpose of abstraction or generality� An object of the real world that does
not need to be given a model at a particular abstraction level can be represented by a given set� The
prede�ned basic types are N and Z� N is the set of natural numbers f�� �� �� ���g
 and Zis the set
of integers� Basic type de�nitions introduce new basic type names
 which become part of the global
vocabulary of basic types� They are introduced as follows�

�PERSON � IDENTITY �

Such a basic type de�nition introduces one or more basic types� These names must not have a previous
global declaration
 and their scope extends from the de�nition to the end of the speci�cation� From
these atomic objects
 composite objects can be put together in various ways� These composite objects
are the members of composite types put together with the type constructors of Z� There are three
kinds of composite types� set types
 Cartesian product types �tuples�
 and schema types�

An abbreviation denition introduces a new global constant
 which may later be used as an abbre	
viation for the speci�ed expression� The following example introduces the name BIJECTION as an
abbreviation for the set of bijections from PERSON to IDENTITY �

BIJECTION �� PERSON � IDENTITY

All kinds of functions
 such as bijections
 are relations with appropriate implicit constraints� Relations
are sets of pairs� Pairs are tuples with two components�

The formal part of an Object	Z speci�cation makes use of two	dimensional graphical constructs for
classes
 schemas
 axiomatic descriptions
 and generic descriptions� Sections B�� to B�� introduce the
concepts of plain Z and Sect� B�� introduces the object	oriented extensions of Object	Z� We conclude
this appendix with remarks concerning the usability of Z and Object	Z in Sect� B���

���

��� B�� Schemas

B�� Schemas

Schemas provide a means for structuring speci�cations in plain Z� They can be used to describe both
the static aspect of a system �the state space and invariant relations on the state�
 and the dynamic
aspects �the operations which change the state�� The general form of schemas in Z is as follows�

S
D

P

where S is the name of the schema
 D is a declaration and P a predicate� D is also called the signature
of S � For instance the declaration x � y �Zin a schema introduces the variables x and y with type
Z
 which are then called the components of this schema� Such variables are local to the respective
schema
 unless the schema is included elsewhere� A schema is included through using its name as a
declaration� The component names are then visible within the scope of the respective declaration� P
is also called the property of the schema� When multiple schemas are combined
 then their signatures
are joined
 and their properties are combined accordingly� The schema name S is global�

There are some standard decorations for names used in describing operations� � for labeling the �nal
state of an operation
 ! for labeling its inputs
 and # for labeling its outputs� If we decorate a schema
name
 this means a copy of this schema in which all the component names have been decorated
accordingly�

It is possible to have generic schemas�

S �X�� � � � �Xn �
D

P

where the Xi are the formal generic parameters which can occur in the types assigned to the identi�ers
in the declaration D � Later when the generic object is used
 actual generic parameters �set	valued�
are supplied� These determine the sets which the formal parameters take as their values� The above
generic schema might be instantiated as follows�

I b� S �A�� � � � �An �

where the Ai are the actual generic parameters �set	valued� and I is the instantiated schema� New
schemas may also be de�ned this way �via b�� by combining old ones with the operations of the schema
calculus �Spivey
 ����b�� For example
 the e�ect of the schema � operator is to make a schema in
which the predicate part is the result of joining the predicate parts of its arguments with the logical
connective ��
The schema)State is implicitly de�ned as the combination of the before	state State and the after	state
State� whenever a schema State is introduced�

)State
State
State�

This implicit de�nition may be overridden by explicit de�nitions� The schema *State is implicitly
de�ned as the state space of a data type whenever a schema State is introduced�

*State
State
State�

�State � � �State

B�� Axiomatic Descriptions ���

Such implicit de�nitions may be overridden by explicit de�nitions� �State is the binding formation
of values to the components of the schema State � Let the components of State be x�� ���� xn� The
following law holds�

�State� � �State � x �� � x� � ��� � x �n � xn

Note that we do not use the *	construction in our speci�cation and that we use)	lists �Sect� B���
instead of the above described)	construction�

A state schema groups together variables and de�nes the relationship that holds between their values�
At any instant
 these variables de�ne the state of the system which they model� An operation schema
de�nes the relationship between the before and after states corresponding to one or more state schemas�

B�� Axiomatic Descriptions

The general form of an axiomatic description is as follows�

D

P

where D is a declaration which introduces one or more global variables and P is an optional predicate
that constrains the values that can be taken by the variables introduced in D � The variables declared in
D cannot have been previously declared globally and their scope extends to the end of the speci�cation�
D becomes part of the global signature of the speci�cation and P contributes to a global property�

A predicate may appear on its own as a paragraph� it speci�es a constraint on the values of previously
declared global variables� The e�ect is as if the constraint had been stated as part of the axiomatic
descriptions in which the variables were introduced� Therefore
 the predicate P in the above axiomatic
description box could also be placed behind this box without changing the semantics�

B�� Generic Descriptions

The general form of a generic description is as follows�

�X�� � � � �Xn �
D

P

where the Xi are the formal generic parameters which can occur in the types assigned to the identi�ers
in the declaration D � The variables declared in D cannot have been previously declared globally
and their scope extends to the end of the speci�cation� The predicate P constrains the identi�ers
introduced in D �

Generic descriptions may be used to de�ne concepts such as relations
 functions
 sequences
 bags and
the operations on them�

B�� Free Type De�nitions

A new basic type may also be introduced by a free type denition
 where recursive structures are
allowed� A free type de�nition such as

T ��� Constant j PtoT�PERSON� j next�T�

��� B�	 Classes

is equivalent to the basic type de�nition

�T �

extended by the axiomatic description

Constant � T
PtoT � PERSON � T
next � T� T

hfConstantg� ranPtoT � rannexti partition T

X �Y is the set of total injections from X to Y � Finite sequences are enclosed in h and i� Sets are
enclosed in f and g� ran yields the range of a relation� The left	hand operand of partition has to be an
indexed family of sets� partition holds when all these sets are disjoint and when their union is equal
to the right	hand operand� ran and partition are keywords in Z� A particular common example of an
indexed family of sets is a sequence of sets
 which is at base only a function de�ned on a subset of N�

Note that the device of de�ning free type de�nitions adds nothing to the power of Z� It is a convenient
shorthand�

B�� Expressions

The expressions within the boxes and in global constraints are based on �rst	order logic and set
theory� Sets
 tuples �with at least two components�
 and bindings of values to components of schemas
are fundamental to Z� Relations
 functions
 bags �multisets�
 and �nite sequences belong to the basic
mathematical tool	kit of Z� Sequences may be empty� Here
 we only present an example for a set	
forming expression in Z�

f x � N j x � �� � x � x g

which corresponds to

f x � x� x in N � x �� �� g

in ProSet� However
 this is not a legal expression in ProSet
 since N is an in�nite set� Note
that compound objects in Z have to be homogeneous
 whereas compound objects in ProSet may be
heterogeneously composed� The type of the above Z expression is �set of natural numbers� and the
type of the above ProSet expression is simply �set�� The bound variables are local to the respective
constructs in both languages�

B�� Classes

Inferring the operation schemas that may a�ect a particular state schema in plain Z requires exam	
ining the signatures of all operation schemas� In large speci�cations this is impracticable� Object	Z
overcomes this problem by introducing classes� State variables and related operations are encapsulated
into classes� Inheritance facilitates the construction of complex speci�cations by allowing components
to include the states and operations from simpler components� A simple example class speci�cation�

B�	 Classes ���

MyClass

�x � Increment �Decrement� �visibility list�

ParentClass �remove SomeFeature� �inherited classes�

x � y �Z �variables�

x � y �class invariant�

INIT
x � y � � �initial state�

Increment
)�x � y�

y � � x � � x % �

Decrement
)�x � y�

y � � x � � x � �

��op � Increment
��op � Decrement�� �history invariant�

We could instantiate objects of this class via declarations like �MyObject � MyClass�� A class is a
template for objects of that class� for each such object
 its states are instances of the class� state
schema and its individual state transitions conform to individual operations of the class� An Object
is said to be an instance of a class and to evolve according to the de�nitions of its class�

The �visibility list� gives those features externally visible to the clients of an object �users via instanti	
ation�� If none is given
 the default is that all operations are visible� The symbol is used to indicate
visibility� In our example
 the state variable x
 and the operations Increment and Decrement are
externally visible to clients
 whereas the state variable y is hidden�

The attributes �constants and state variables� and the operations are collectively called the features of
a class� The �inherited classes� are the names of super	classes to be inherited� a subclass incorporates
all the features of its super	classes
 including their operations and invariants� Visibility is not inherited
so that a derived class may nominate any inherited feature as visible� It is not possible in Object	
Z to indicate which features of an object are available to its children �users through inheritance��
Therefore
 children always have access to all the features of their parents� However
 children may
optionally restrict their access via the keyword remove while inheriting a class
 as it has been done
in the example with SomeFeature� Under multiple inheritance
 features having the same name are
merged �semantic identi�cation��

The values of the �variables� are constrained by the �class invariant�� The initial state schema is dis	
tinguished by having as its name the keyword INIT � The predicate a � b � c is an abbreviation for
a � b � b � c�

The operations are de�ned using schemas
 in a way very similar to plain Z
 de�ning a relation between
before and after state� An operation�s)	list contains a subset of the variables which are declared

either implicitly or explicitly
 in both unprimed and primed form in the operations signature� The
understanding is that when the operation is applied to an object of the class
 those variables not in
the list are unchanged� By convention
 not indicating a)	list is equivalent to specifying an empty
)	list�

The set of all possible histories is restricted by history invariants� Such history invariants are liveness
and fairness properties
 which explicitly restrict the set of allowable histories by means of temporal
logic� The set of possible histories of a class is initially determined by the class state �including the
initial state� and the allowable operations
 and can then be further restricted by incorporating history
invariants� Typically
 a history invariant will be concerned with specifying liveness �progress� issues

for example
 when specifying fairness of operations
 or the order in which operations may or may not
occur�

In history invariants
 the keyword op denotes the name of an operation in the history� The temporal
logic notation can be used within history invariants�

��� B� Remarks Concerning the Usability of Z and Object�Z

�p Predicate p holds at every future state in the history�

�p Eventually there is a future state at which predicate p holds�

For example
 p
�q says that if p holds in the current state
 q will eventually hold in a future state�
The history invariant in our example means that always after an Increment operation
 eventually a
Decrement operation must occur� We refer to �Emerson
 ����� for a full account to temporal logic�

B�� Remarks Concerning the Usability of Z and Object	Z

While constructing the presented formal speci�cation �Chaps� � and �� we recognized an important
drawback of using Object	Z or Z with the fuzz package �Spivey
 ����a�� the principle of denition
before use
 which leads to a bottom	up development of the speci�cation� It would be more natural to
write and explain the speci�cation in a top	down manner� The important point with Z is just that any
speci�cation must be written in a way such that its de�nitions can be ordered to satisfy the principle
of de�nition before use �Spivey
 ����b
 page ���� This avoids recursive de�nitions in which a schema
includes itself� Therefore
 it should be possible to develop a tool for Z that allows the introduction
of paragraphs in any order and ensures that the principle of de�nition before use can be satis�ed�
We propose a fuzz directive
 which announces a forthcoming de�nition� The existing fuzz directives
allow preliminary
 invisible de�nitions
 but the later �nal de�nitions cannot be type	checked because
they are rede�nitions of global names� One could copy the formulae of the �nal de�nition into the
preliminary
 invisible de�nition
 but then it would become impractical to change the speci�cation�

Additionally
 it is not possible in Object	Z to indicate which features of a class are available to its
children �users through inheritance�� Therefore
 children always have access to all the features of
their parents� However
 children may restrict their access while inheriting a class� Our proposal for
enhancing Object	Z is to split the de�nition of a class in private and public parts
 as one can do in
C%% �Stroustrup
 ������ This way one could hide auxiliary de�nitions from children and also from
clients� We think that children should not be responsible for restricting their access while inheriting
a class
 but clients should be able to restrict their access to an instantiated object� This philosophy
seems to be somewhat the opposite to the principles applied in Object	Z�

Re�nement is not su�ciently supported by Z� we had to explicitly rewrite the entire abstract operations
in Chap� � to obtain the concrete operations despite the fact that we re�ned only parts of the schemas�

Appendix C

Types of All Names De�ned

Globally

This appendix has been produced by the fuzz
type	checker for Z with the �t �ag �Spivey
 ����a��
A comprehensive overview of all names de�ned
globally in the speci�cation with their associated
types is given as fuzz sees it� the class structure
is not visible in this list� Some line breaks were
inserted to �t into two columns� An index to these
global names may be found in the index of formal
de�nitions at the end of this document�

Given Expression

Given LValue

Given Statement

Given Process

Var Execute �	 P Statement

Given Value

Var atom	 Value

Var boolean	 Value

Var integer	 Value

Var real	 Value

Var string	 Value

Var tuple	 Value

Var set	 Value

Var function	 Value

Var modtype	 Value

Var instance	 Value

Var TRUE	 Value

Var FALSE	 Value

Var om	 Value

Var ValuesOfType	 Value
�� P Value

Var Type	 Value
�� Value

Var Evaluate	 Expression
�� Value

Var ProcRetVal	 Process
�� Value

Var � IsAssigned �	 LValue �
� Value

Given TupleComp

Var TupleValue	 Value
�� TupleComp

Var TupleProcess	 Process
�� TupleComp

Abbrev APTuple	 P �seq TupleComp�

Genconst Arity���	

�Value
�� ���
�� �seq ��
�� NN�

Var TupArity	 APTuple
�� NN

Given OptLValue

Var NoLValue	 OptLValue

Var IsLValue	 LValue
�� OptLValue

Given OptInto

Var NoInto	 OptInto

Var IsInto	 Expression
�� OptInto

Schema Formal

Destination	 OptLValue

Into	 OptInto

End

Given TempComp

Var TempValue	 Value
�� TempComp

Var TempFormal	 Formal
�� TempComp

���

��� C Types of All Names De�ned Globally

Schema Template

List	 seq TempComp

Condition	 Expression

End

Var TempArity	 seq TempComp
�� NN

Var � FormalAssign �	 Template �
� APTuple

Var � EvalIntos �	 Template x APTuple
�� APTuple

Var � CompMatches �	 TupleComp �
� TempComp

Var � Matches �	 APTuple �
� Template

Given OptStmt

Var NoStmt	 OptStmt

Var IsStmt	 Statement
�� OptStmt

Var OptExecute �	 P OptStmt

Given OpType

Var FetchOp	 OpType

Var MeetOp	 OpType

Var MeetIntoOp	 OpType

Schema Pending

temp	 Template

os	 OptStmt

proc	 Process

type	 OpType

End

Schema TupleSpace

Id	 Value

Limit	 Value

Tuples	 bag APTuple

PendTemp	 bag Pending

PendFull	 Process
��� APTuple

End

Var � SAR �	

F Process x bag Pending
�� bag Pending

Var IDsOF	 F TupleSpace
�� F Value

Schema ProgramState

TSs	 F TupleSpace

ActiveProcs	 F Process

End

Schema Delta ProgramState

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

End

Schema Init

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

End

Schema ProgramTermination

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

End

Var ActuallyActiveProcesses	 F Process

Var ActuallyPendingProcesses	 F Process

Var ActuallyExistingProcesses	 F Process

Schema ProcessCreation

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

NewProcess�	 Process

End

Schema ProcessTermination

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

ToKill�	 Process

End

Abbrev TypeMismatch	 Statement

Abbrev InvalidId	 Statement

Abbrev ExcTSisFull	 Statement

Schema CreateTSok

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InLimit�	 Value

Return�	 Value

End

Schema Xi ProgramState

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

End

Schema CreateTSTypeMismatch

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InLimit�	 Value

Exception�	 Statement

End

Schema CreateTS

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InLimit�	 Value

C Types of All Names De�ned Globally ���

Return�	 Value

Exception�	 Statement

End

Schema ExistsTS

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InTS�	 Value

Return�	 Value

Exception�	 Statement

End

Schema ClearTSok

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InTS�	 Value

Return�	 Value

End

Schema ClearTSinvalid

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InTS�	 Value

Exception�	 Statement

End

Schema ClearTS

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InTS�	 Value

Return�	 Value

Exception�	 Statement

End

Schema RemoveTSfromState

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InTS�	 Value

End

Schema RemoveTS

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InTS�	 Value

Return�	 Value

Exception�	 Statement

End

Var HasIntos �	 P Template

Genconst BagSum���	 bag ��
�� NN

Var IntValueOf	 Value
�� ZZ

Given BlockMode

Var BlockIfFull	 BlockMode

Var DoNotBlock	 BlockMode

Abbrev TempList	

P �seq �Template x OptStmt� x Value�

Var MakePends	

TempList x Process x OpType
�� bag Pending

Genconst GetTemp���	 �� x �� x ��
�� ��

Genconst GetTup���	 �� x �� x ��
�� ��

Genconst GetOS���	 �� x �� x ��
�� ��

Var � AddTuple �	

�F TupleSpace x F Process� x �APTuple x Value�

�� F TupleSpace x F Process

Schema DepositOK

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

ToDeposit�	 APTuple x Value

End

Schema DepositInvalid

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

ToDeposit�	 APTuple x Value

Exception�	 Statement

End

Schema TSisFull

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

ToDeposit�	 APTuple x Value

End

Schema FullTSBlock

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

ToDeposit�	 APTuple x Value

Blocking�	 BlockMode

InProc�	 Process

End

Schema FullTSException

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

ToDeposit�	 APTuple x Value

Blocking�	 BlockMode

Exception�	 Statement

End

Schema Deposit

TSs	 F TupleSpace

ActiveProcs	 F Process

��� C Types of All Names De�ned Globally

TSs�	 F TupleSpace

ActiveProcs�	 F Process

ToDeposit�	 APTuple x Value

Blocking�	 BlockMode

InProc�	 Process

Exception�	 Statement

End

Schema DoElseStmt

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InProc�	 Process

InTempList�	 TempList

Else�	 OptStmt

End

Schema InvalidTempList

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InProc�	 Process

InTempList�	 TempList

Exception�	 Statement

End

Schema FetchMatch

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InProc�	 Process

InTempList�	 TempList

End

Schema DisallowIntos

InTempList�	 TempList

End

Schema FetchNoMatch

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InProc�	 Process

InTempList�	 TempList

Else�	 OptStmt

End

Schema Fetch

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InProc�	 Process

InTempList�	 TempList

Else�	 OptStmt

Exception�	 Statement

End

Schema MeetMatch

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InProc�	 Process

InTempList�	 TempList

End

Schema MeetNoMatch

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InProc�	 Process

InTempList�	 TempList

Else�	 OptStmt

End

Schema Meet

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

InProc�	 Process

InTempList�	 TempList

Else�	 OptStmt

Exception�	 Statement

End

Schema NoOp

TSs	 F TupleSpace

ActiveProcs	 F Process

TSs�	 F TupleSpace

ActiveProcs�	 F Process

End

Schema TupleSpaceD

IdD	 Value

LimitD	 Value

TuplesD	 bag APTuple

PendTempD	 seq Pending

PendFullD	 seq �Process x APTuple�

End

Schema TSAbstraction

Id	 Value

Limit	 Value

Tuples	 bag APTuple

PendTemp	 bag Pending

PendFull	 Process
��� APTuple

IdD	 Value

LimitD	 Value

TuplesD	 bag APTuple

PendTempD	 seq Pending

PendFullD	 seq �Process x APTuple�

End

Schema ProgramStateD

TSsD	 F TupleSpaceD

ActiveProcsD	 F Process

End

Schema ProgramAbstraction

TSs	 F TupleSpace

ActiveProcs	 F Process

TSsD	 F TupleSpaceD

ActiveProcsD	 F Process

End

Var � SARSEQ �	

F Process x seq Pending
�� seq Pending

Var � AddTupleD �	

C Types of All Names De�ned Globally ���

�F TupleSpaceD x F Process� x �APTuple x Value�

�� F TupleSpaceD x F Process

Var IDsOFD	 F TupleSpaceD
�� F Value

Var MakePendsD	

TempList x Process x OpType
�� seq Pending

Schema Delta ProgramStateD

TSsD	 F TupleSpaceD

ActiveProcsD	 F Process

TSsD�	 F TupleSpaceD

ActiveProcsD�	 F Process

End

Schema DepositOKD

TSsD	 F TupleSpaceD

ActiveProcsD	 F Process

TSsD�	 F TupleSpaceD

ActiveProcsD�	 F Process

ToDeposit�	 APTuple x Value

End

Schema FullTSBlockD

TSsD	 F TupleSpaceD

ActiveProcsD	 F Process

TSsD�	 F TupleSpaceD

ActiveProcsD�	 F Process

ToDeposit�	 APTuple x Value

Blocking�	 BlockMode

InProc�	 Process

End

Schema FetchMatchD

TSsD	 F TupleSpaceD

ActiveProcsD	 F Process

TSsD�	 F TupleSpaceD

ActiveProcsD�	 F Process

InProc�	 Process

InTempList�	 TempList

End

Schema FetchNoMatchD

TSsD	 F TupleSpaceD

ActiveProcsD	 F Process

TSsD�	 F TupleSpaceD

ActiveProcsD�	 F Process

InProc�	 Process

InTempList�	 TempList

Else�	 OptStmt

End

��� C Types of All Names De�ned Globally

Indices

���

Index of Formal De�nitions

��
���

A ActuallyActiveProcesses ��
ActuallyExistingProcesses ��
ActuallyPendingProcesses ��
ActualProcesses ��
AddTuple ���
AddTupleD ���
APTuple ��
Arity ��
atom ��

B BagSum ���
BlockIfFull ���
BlockMode ���
boolean ��

C ClearTS ���
ClearTSinvalid ���
ClearTSok ���
CompMatches ��
CreateTS ��
CreateTSok ��
CreateTSTypeMismatch ��

D Deposit ���
Depositing ���
DepositingD ���
DepositInvalid ���
DepositOK ���
DepositOKD ���
DisallowIntos ���
DoElseStmt ���
DoNotBlock ���

E �escape ts invalid id�	�� ��
�escape type mismatch�	�� ��
EvalIntos ��
Evaluate ��
Execute ��
ExistsTS ���
Expression ��

F FALSE ��
Fetch ���
Fetching ���
FetchingD ���
FetchMatch ���
FetchMatchD ���
FetchMeet ���

FetchNoMatch ���
FetchNoMatchD ���
FetchOp ��
Formal ��
FormalAssign ��
FullTSBlock ���
FullTSBlockD ���
FullTSException ���
function ��

G GetOS ���
GetTemp ���
GetTup ���

H HasIntos ���

I IDsOF ��
IDsOFD ���
INIT ��
instance ��
integer ��
IntValueOf ���
InvalidTempList ���
IsAssigned ��
IsInto ��
IsLValue ��
IsStmt ��

L LValue ��

M MakePends ���
MakePendsD ���
Matches ��
Meet ���
Meeting ���
MeetIntoOp ��
MeetMatch ���
MeetNoMatch ���
MeetOp ��
modtype ��

N NoInto ��
NoLValue ��
NoOp ���
NoStmt ��

O om ��
OptExecute ��
OptInto ��
OptLValue ��
OptStmt ��
OpType ��

���

��� Index of Formal De�nitions

P Pending ��
Process ��
ProcessCreation ��
ProcessCreationTermination ��
ProcessTermination ��
ProcRetVal ��
ProgramAbstraction ���
ProgramExecution ���
ProgramState ��
ProgramStateD ���
ProgramTermination ��

R real ��
RemoveTS ���
RemoveTSfromState ���

S set ��
�signal ts is full�	�� ��
Statement ��
string ��

T TempArity ��
TempComp ��
TempFormal ��
Template ��
TempList ���
TempValue ��
TRUE ��
TSAbstraction ���
TSisFull ���
TupArity ��
tuple ��
TupleComp ��
TupleProcess ��
TupleSpace ��
TupleSpaceClearance ���
TupleSpaceCreation ��
TupleSpaceD ���
TupleSpaceExistence ���
TupleSpaceLibrary ���
TupleSpaceOperations ���
TupleSpaceRemoval ���
TupleValue ��
Type ��

V Value ��
ValuesOfType ��

Index of Explained Object	Z Symbols and Keywords

��

� ���
�� ��
� ��
� ��
� ��
�� ��

� ���
* ���
� ���
� ���
� ��
 ���
� � ��
� ��
n ��
� ��
 ���
�� ���
� ���
� ��
 ���
� ���
	 ��
� ��
b� ��
 ���
) ��
 ���
 ���
� ��
� ��
� ��
j ���
 ���
��
 ���
� ��
� ���
��� ���
� ���
�� ���
! ��
 ���

fg ���
� � ���
 ���
� � ��
hi ���
�� ���
� ��
� ��
	 ��
� ���
� ��
� ���

bag ��

disjoint ��

dom ��

�
�
��

 ��
false ��
rst ��

head ���

INIT ��
 ���
iseq ���
items ���

let ��

max ��

N ���
N� ��

op ���

� ��
partition ���

ran ���
remove ���

second ��
seq ��
seq� ���
squash ���

tail ���
true ��

Z���

���

��� Index of Explained Object�Z Symbols and Keywords

General Index

�� ��
� ��
 ��

 ��
 ���
� ��
 ��
 ��
� ��
� ��
�� ��
� ��

A abstraction relation ���
actor model ��
 ��
ActorSpace ��
actual ��
 ��
Ada ��
animation ���
arb ���
at ��
 ��
atom ��
atoms ��
 ��
Aurora ��
axiomatic description ���

B backtracking ���
Backus Naur Form ���
blockiffull ��
boolean ��
branch	and	bound ��
broadcasting ���

C C%% ���
call by

result ��
value ��
value result ��
 ���

case ��
 ��
CELIP ��
Cellular Array Processor ���
chemical abstract machine ��
Church	Rosser Property ��
ClearTS ��
 ���
 ���
C	Linda �
 ��
closure ��
 ��
committed choice logic ��
compiler construction ���
compile	time analysis ��
 ��
 ���
 ���
compound data structures ��
 ���
computation language ��
Concurrent Smalltalk ��
 ��
conditional value matching ��
 ��
COOL ��
cooperative shared memory ��

coordination �
language ��
 ��

coroutine ��
correctness ���
 ���
CreateTS ��
 ��
 ���
critical sections ��
 ��
 ��
CSP �
 ��

D data �ow
computers ��
diagrams ��
languages ��

data structure selection ���
 ���
deadlock ���
debugging ���
Delta	Prolog ��
denotational semantics �
Deposit ��
deposit ��
 ��
dining philosophers problem ��
distributed data structure ��
 ��
distributed hashing ���
distributed memory system �
 ���
distributed shared memory ��
distributed shared virtual memory ��
domain ��
drinking philosophers problem ��

E Ease ��
Eli ���
else ��
 ��
Else ��
Emerald ��
end ��
 ��
escape ��
 ��
eval ��
evolving philosophers problem ��
exception handling ��
 ��
exists ��
ExistsTS ��
 ��
 ���
export ��
 ���

F fairness ��
 ��
 ��
 ���
 ���
probabilistic ��
property ���
strong ��
unconditional ��
 ��
weak ��

false ��
fault	tolerance ��
 ��
fetch ��

���

��� General Index

Fetch ��
FIFO ���
�rst	class ��
Flat Concurrent Prolog ��
for ��
Formal ��
formal ��
 ��
 ��

as type ��
formal speci�cation �

animation ���
of ProSet	Linda ��
re�nement ���
testing �
 ���

free type de�nition ���
function ��
futures ��
 ��
 ��
 ��

resolving ��
 ��
touching ��

fuzz ��
 ��
 ���

G Gamma ��
generative communication ��
generic descriptions ���
guarded command ��
 ��
 ��
 ���
Guarded Horn Clauses ��

H Hall�s Style �
history invariants ���
hypercube ���

I if ��
in

in C	Linda ��
in ProSet ��

indivisibility ��
inductive hypothesis ���
information hiding ��
 ��
inheritance ��
 ���
 ���
 ���
inp ��
instance ��
instantiation ��
 ���
 ���
integer ��
into ��
I	Structures ��
iteration ��

J Joyce ��
justice ��

K Kali ��

L lazy evaluation ��
less ��
lessf ��
 ���
life	cycle plans �
Linda ��

implementation ���
optimizations ���

Linda Q ���
Linda Program Builder ��
 ��
Lisp ��
liveness ��
 ��
 ���

property ���
load balancing ��
 ��
 ��
local area network ���
 ���
loop ��
lost update ��
 ��
 ��
l	value ��
 ��
 ��
 ��
 ���

multiple ��
 ���

M maintenance ��
maps ��
master	worker model ��
 ��
 ��
 ���
matching ��
 ��
 ��
 ��
 ��
 ���

accumulative ��
aggregate ��
blocking ��
customizing ��
 ��
 ��
fairness ��
non	blocking ��
 ��
selective ��

meet ��
Melinda ��
message passing �
 ��
 ��
MIMD ��
Miranda ���
ML ���
modtype ��
 ��
modules ��

instantiation ��
 ���
MooZ �
Multilisp ��
 ��
multiprocessing ��
 ��

symmetric ���
multiprogramming ��
 ��
multiset ��
 ��
 ��
 ��
mutual exclusion problem ��

N newat ��
 ��
 ��
 ���
nondeterminism ��
 ��
notify ��
npow ��

General Index ���

O Object	Z �
 ���
type	checker ��

occam ��
om ��
 ��
OOZE �
operational semantics �
Orca ��
orthogonality ��
out ��

P PAISLey ��
Paragon ��
ParAl� ��
Parallel ISETL ��
parallelism

adaptive ���
data ��
 ��
functional ��
implicit ��
 ��
in logic ��
logical ��
object	oriented ��
physical ��

parallel matrix multiplication ��
Parallel Program Design ��
parallel programming ��
Parallel SETL ��
PARIS ��
Parlog ��
persistence ��
 ��
Petri	nets ��
Piranha model ��
 ���
portability ��
 ���
 ���
probe e�ect ���
processes ��

as type ��
blocked ��
creation ��
 ��
 ��
 ��
fairness ��
heavyweight ���
lightweight ���
pending ��
termination ��
 ��
 ��
 ���

producer	consumer model ��
PROLOG ��
 ���
 ���
ProSet ��

compiler ���
Proteus ��
prototyping ��

classi�cation ��
goals ��
parallel algorithms �

Q Qlisp ��
queens� problem ��
 ��

R range ��
rd

in C	Linda ��
in ProSet ��

rdp ��
real ��
referential transparency ��
re�nement ���
 ���

correctness ���
 ���
of data ���
of operations ���

rei�cation ���
RemoveTS ��
 ���
 ���
rendezvous ��
 ��
requirements analysis �
 ��
resolving ��
resume ��
 ��
retrieve function ���
retrieve relation schema ���
return ��
 ��
 ��
 ��
risk reduction ��
r	value ��
rw ��
 ���

S scalability ���
schema ���

anti	restriction ��
 ���
declaration ���
generic ���
property ���

Scheme ��
Schuman Pitt Approach �
SEGRAS ��
semaphores ��
sequence induction ���
set ��
SETL ��
SETL� ���
sets ��
shared memory system �
 ���
shared variables �
 ��

logical ��
shared virtual memory ��
side e�ects ��
 ��
 ��
 ��
signal ��
 ��
SIMD ��
Sloop ��
software construction �
SR ��
starvation ��
 ���
Statement ��
 ��

��� General Index

stop ��
Strand ��
string ��
Swarm ��

T template ��
 ��
 ��
as type ��
nested ���

Template ��
TempList ��
temporal logic �
 ���
thread ���
touching ��
traveling salesman problem ��
true ��
ts invalid id ��
 ��
 ��
 ���
 ���
 ���
ts is full ��
 ��
 ��
 ���
tuple ��
tuple ��
 ��
 ��
 ��

active ��
 ��
 ��
changing ��
depositing ��
 ���
 ���
 ���
fetching ��
 ���
 ���
 ���
former ��
 ��
meeting ��
 ���
 ���
 ���
nested ���
passive ��
 ��
 ��
selection ��

TupleScope ��
 ���
tuple space ��
 ��

as type ��
constants ��
creation ��
 ���
customized ��
default ��
identity ��
 ��
 ��
limited ��
 ��
 ��
 ��
 ��
management ��
 ���
 ���
multiple ��
 ��
 ��
 ���
operations ��
 ���
 ���
 ���
partitioning ���
persistent ��
replication ��
 ���
 ���
state ��

type ��
 ��
 ���
type mismatch ��
 ��
 ��
 ��
 ���
 ���
 ���

U uni�cation ���
Unity ��
until ��
use ��
 ��
user acceptance ��

V validation ��
 ���
 ���
value semantics ��
 ��
 ��
VDM �
 ���
veri�cation ���
 ���
virtual shared memory ��
visible ��
 ��
 ��
 ���
volatile data ��

W weakly typed ��
when ��
 ��
while ��
whilefound ��
with ��
 ��
wr ��

X xor ��

Z Z �
 ���
type	checker ��
 ��
 ���

Z�� �
ZERO �
ZEST �

Bibliography

�Abarbanel� ����� R� Abarbanel� Distributed object mangement with Linda� Technical report� Boeing
Computer Services� Seattle� WA� August ����� �cited on p� �	�
��
�� �� �� ��

�Abelson et al�� ��
� H� Abelson� G�J� Sussman� and J� Sussman� Structure and interpretation of
computer programs� MIT Press� ��
� �cited on p� ���

�Ackermann� ���� W�B� Ackermann� Data �ow languages� IEEE Computer� ������������ ���� �cited
on p� ���

�Agha and Callsen� ����� G� Agha and C�J� Callsen� ActorSpace� an open distributed programming
paradigm� In Proc� Fourth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming �PPoPP�� pages ������ San Diego� CA� May ����� �cited on p� �	�

�Agha� ���� C� Agha� Actors� A model of concurrent computation in distributed systems� The MIT
Press� ���� �cited on p� ���

�Ahmed and Gelernter� ����� S� Ahmed and D� Gelernter� A CASE Environment for Parallel Pro�
gramming� In Proc� Fifth International Workshop on Computer�Aided Software Engineering� IEEE
Computer Society Press� July ����� �cited on p� �	�
��

�Aho et al�� ���� A�V� Aho� R� Sethi� and J�D� Ullman� Compilers � Principles� Techniques� and
Tools� Addison Wesley� ���� �cited on p� 		�

�Ahuja et al�� ���� S� Ahuja� N� Carriero� and D� Gelernter� Linda and friends� IEEE Computer�
���������	� ���� �cited on p� ��� ���

�Ahuja et al�� ��� S� Ahuja� N� Carriero� D� Gelernter� and V� Krishnaswamy� Matching language
and hardware for parallel computation in the Linda machine� IEEE Transactions on Computers�
�
����������� August ��� �cited on p� �		� �	��

�Anderson and Shasha� ����� B�G� Anderson and D� Shasha� Persistent Linda� Linda � Transactions
� Query Processing� In Ban�atre and M�etayer ������� pages ������� �cited on p�
��
��
�� ��	�

�Anderson et al�� ����� H� Anderson� P�D� Fabricius� and M�G� Jensen� Linda � Logic� Master�s
thesis� University of Aalborg� Denmark� June ����� �cited on p� �� ��� �	� ����

�Anderson� ����� B�G� Anderson� Persistent Linda 	 Adding Transactions to a Parallel Programming
Model� PhD thesis� Courant Institute� New York University� NY� April ����� �cited on p� ��

�Andrews and Schneider� ���� G�R� Andrews and F�B� Schneider� Concepts and notations for con�
current programming� ACM Computing Surveys� ��������	�� ���� �cited on p� �� ���

�Andrews� ����� G�R� Andrews� Concurrent Programming� Benjamin�Cummings� ����� �cited on
p� �� �
� ���
��
��

�Arango and Berndt� ���� M� Arango and D� Berndt� TSnet� A Linda implementation for networks
of Unix�based computers� Research Report
��� Yale University� New Haven� CT� August ����
�cited on p� �	��

��

�� Bibliography

�Arvind et al�� ���� Arvind� R�S� Nikhil� and K�K� Pingali� I�Structures� data structures for parallel
computing� ACM Transactions on Programming Languages and Systems� ���	��������� ����
�cited on p� ���

�Bakken and Schlichting� ����� D�E� Bakken and R�D� Schlichting� Supporting fault�tolerant parallel
programming in Linda� Technical Report TR����� The University of Arizona� Tucson� AZ� June
����� �cited on p� ��

�Bal and Kaashoek� ����� H�E� Bal and M�F� Kaashoek� Object distribution in Orca using compile�
time and run�time techniques� In Proc� Conference on Object�Oriented Programming Systems�
Languages and Applications �OOPSLA
���� Washington� DC� September ����� �cited on p� ���
�	��

�Bal et al�� ���� H�E� Bal� J�G� Steiner� and A�S� Tanenbaum� Programming languages for distributed
computing systems� ACM Computing Surveys� �������������� ���� �cited on p� �
� ��

�Bal et al�� ����� H�E� Bal� M�F� Kaashoek� and A�S� Tanenbaum� Orca� A language for parallel
programming of distributed systems� IEEE Transactions on Software Engineering� �������������
March ����� �cited on p� ������ �	��

�Bal� ����� H�E� Bal� Programming Distributed Systems� Silcon Press� ����� �cited on p� ��� ���

�Bal� ����� H�E� Bal� A comparative study of �ve parallel programming languages� Future Generations
Computer Systems� ��������� ����� �cited on p� ���
	�
�� �	��

�Ban�atre and M�etayer� ����� J�P� Ban�atre and D� Le M�etayer� The gamma model and its discipline
of programming� Science of Computer Programming� ���������

� ����� �cited on p� �
�

�Ban�atre and M�etayer� ����� J�P� Ban�atre and D� Le M�etayer� editors� Research Directions in High�
Level Parallel Programming Languages� volume �
	 of Lecture Notes in Computer Science� Springer�
Verlag� ����� �cited on p� ��� ���� ����

�Ban�atre and M�etayer� ����� J�P� Ban�atre and D� Le M�etayer� Programming by multiset transforma�
tion� Communications of the ACM� ������������ ����� �cited on p� ��� �
� ��

�Banerjee et al�� ����� U� Banerjee� R� Eigenmann� A� Nicolau� and D�A� Padua� Automatic program
parallelization� Proceedings of the IEEE� ����������	�� February ����� �cited on p� ���

�Barendregt� ���� H�P� Barendregt� The Lambda Calculus� Its Syntax and Semantics� North�Holland�
���� �cited on p� ���

�Barnes� ��	� J�G�P� Barnes� Programming in Ada� Addison�Wesley� �nd edition� ��	� �cited on
p�
��

�Ben�Ari� ����� M� Ben�Ari� Principles of concurrent and distributed programming� Prentice�Hall�
����� �cited on p� ��� ���
��
��

�Bercovitz and Carriero� ����� P� Bercovitz and N� Carriero� TupleScope� A graphical monitor and
debugger for Linda�based parallel programs� Research Report
�� Yale University� New Haven�
CT� April ����� �cited on p� �	� ����

�Berry and Boudol� ����� G� Berry and G� Boudol� The chemical abstract machine� In Proc� Sev�
enteenth Annual ACM Symposium on Principles of Programming Languages� pages ���	� San
Francisco� CA� January ����� �cited on p� ��

�Bettermann� ����� S� Bettermann� The Implementation of Linda in C and Associated Problems�
Research Report ����� Edith Cowan University� Mount Lawley WA� Australia� ����� �cited on
p� �	��

�Bjornson et al�� ��� R� Bjornson� N� Carriero� D� Gelernter� and J� Leichter� Linda� the portable
parallel� Research Report ���� Yale University� New Haven� CT� ��� �cited on p� ���

Bibliography ��

�Bjornson et al�� ����� R� Bjornson� N� Carriero� D� Gelernter� T� Mattson� D� Kaminsky� and A� Sher�
man� Experience with Linda� Research Report ��� Yale University� New Haven� CT� August �����
�cited on p� ��� �	�

�Bjornson� ����� R�D� Bjornson� Linda on Distributed Memory Multiprocessors� PhD thesis� Yale
University� New Haven� CT� November ����� �cited on p�
� �	�� �	��

�Blum� ���� B�I� Blum� The life cycle � a debate over alternate models� ACM SIGSOFT Software
Engineering Notes�
�	������� ���� �cited on p� �� ���

�Boehm� ��
�� B�W� Boehm� Software engineering� IEEE Transactions on Computers� ������������
��	�� ��
�� �cited on p� ��

�Boehm� ���� B�W� Boehm� Software Engineering Economics� Prentice�Hall� ���� �cited on p� ��

�Bogoch et al�� ����� S� Bogoch� I� Bason� J� Williams� and M� Russel� Supercomputers get personal�
BYTE� ������������
� ����� �cited on p� �	��

�Borrman et al�� ���� L� Borrman� M� Herdieckerho�� and A� Klein� Tuple space integrated into
Modula��� Implementation of the Linda concept on a hierarchical multiprocessor� In Jesshope and
Reinartz� editors� Proc� CONPAR
� New York� ���� Cambridge Univ� Press� �cited on p� �	�
�	��

�Bosschere and Wulteputte� ����� K� De Bosschere and L� Wulteputte� Multi�Prolog� Implementation
on an ��� Shared Memory Multiprocessor� Technical Report DG ������ University of Gent� LEM�
Gent� Belgium� December ����� �cited on p� �� �	� ����

�Bosschere et al�� ����� K� De Bosschere� J��M� Jacquet� and P� Tarau� editors� Proc� ICLP
�� Post�
Conference Workshop on Blackboard�Based Logic Languages� Budapest� Hungary� June ����� �cited
on p� �	� ����

�Br�eant and Pavoit�Adet� ����� F� Br�eant and E� Pavoit�Adet� Occam prototyping from hierarchical
Petri nets� Technical Report MASI ����� University of Paris �� Institut Blaise Pascal� Paris� France�
February ����� �cited on p� ��

�Broadbery and Playford� ����� P� Broadbery and K� Playford� Using object�oriented mechanisms to
describe Linda� In Wilson �����b�� pages �	���� �cited on p� �	�
��
��

�Budde et al�� ��	� R� Budde� K� Kuhlenkamp� L� Mathiassen� and H� Z�ullighoven� editors� Ap�
proaches to Prototyping� Springer�Verlag� ��	� �cited on p� ���

�Budde et al�� ����� R� Budde� K� Kautz� K� Kuhlenkamp� and H� Z�ullighoven� Prototyping � An
Approach to Evolutionary System Development� Springer�Verlag� ����� �cited on p� �� ��� ��� �	�

�Butcher and Zedan� ����� P� Butcher and H� Zedan� Lucinda � an overview� SIGPLAN Notices�
������������ ����� �cited on p� �	�

�Butcher� ����� P� Butcher� A behavioural semantics for Linda��� Software Engineering Journal�
��	��������	� July ����� �cited on p� ��

�Callsen et al�� ����� C�J� Callsen� I� Cheng� and P�L� Hagen� Optimizing Linda� Master�s thesis�
University of Aalborg� Denmark� June ����� �cited on p� 	� �	� �	��

�Cannon� ����� S�R� Cannon� Experience with a tuple�space approach for parallel compilation of LR
languages� In Proc� ��st International Conference on Parallel Processing� pages II����II����� St�
Charles� IL� August ����� �cited on p� �	�

�Carriero and Gelernter� ���� N� Carriero and D� Gelernter� The S�Net�s Linda kernel� ACM Trans�
actions on Computer Systems� 	������������ ���� �cited on p� �	�� �	��

�	 Bibliography

�Carriero and Gelernter� ��� N� Carriero and D� Gelernter� Applications experience with Linda� In
Proc� ACM Symposium on Parallel Programming� pages �
���
� New Haven� CT� July ��� �cited
on p� �	�

�Carriero and Gelernter� ���� N� Carriero and D� Gelernter� Linda in context� Communications of
the ACM� ���	��			�	�� ���� �cited on p� ���

�Carriero and Gelernter� ����a� N� Carriero and D� Gelernter� How to write parallel programs� MIT
Press� ����� �cited on p� ��� ���
��
��
	�
��

�Carriero and Gelernter� ����b� N� Carriero and D� Gelernter� Tuple analysis and partial evaluation
strategies in the Linda precompiler� In Gelernter et al� ������� �cited on p� �		�

�Carriero and Gelernter� ����� N� Carriero and D� Gelernter� Coordination languages and their sig�
ni�cance� Communications of the ACM� �����������
� February ����� �cited on p� �� ��� ���

�Carriero et al�� ���� N� Carriero� D� Gelernter� and J� Leichter� Distributed data structures in Linda�
In Proc� ACM Symposium on Principles of Programming Languages� St� Petersburg� January ����
�cited on p� ���

�Carriero et al�� ����� N� Carriero� D� Gelernter� D� Kaminsky� and J� Westbrook� Adaptive paral�
lelism with Piranha� Research Report ��	� Yale University� New Haven� CT� February ����� �cited
on p� �	� ����

�Carriero� ��
� N� Carriero� Implementation of tuple space machines� PhD thesis� Yale University�
New Haven� CT� December ��
� �cited on p� �	�� �	��

�Chandra et al�� ����� R� Chandra� A� Gupta� and J�L� Hennessy� Cool� a language for parallel
programming� In Gelernter et al� ������� �cited on p� ���

�Chandy and Misra� ��	� K�M� Chandy and J� Misra� The drinking philosophers problem� ACM
Transactions on Programming Languages and Systems� ��	�������	�� ��	� �cited on p�
��

�Chandy and Misra� ��� K�M� Chandy and J� Misra� Parallel Program Design� Addison Wesley�
��� �cited on p� �� ��� ���

�Chandy and Taylor� ����� K�M� Chandy and S� Taylor� An Introduction to Parallel Programming�
Jones and Bartlett Publishers� ����� �cited on p� �� ���

�Char� ����� B�W� Char� Progress report on a system for general�purpose parallel symbolic algebraic
computation� In Proc� ISSAC
��� pages ������� Tokyo� Japan� August ����� �cited on p� �	� �	��

�Chiba et al�� ����� S� Chiba� K� Kato� and T� Masuda� Optimization of distributed communication in
multiprotocol tuple space� In Proc� Third IEEE Symposium on Parallel and Distributed Processing�
Dallas� Texas� December ����� �cited on p� �	�� �	��

�Christiansen et al�� ��
� M�G� Christiansen� M�M� Tanik� and S�L� Stepoway� Objective Linda� An
object�centered perspective of Linda concepts� and issues of implementation� Technical Report

�CSE���� Southern Methodist University� Dallas� TX� June ��
� �cited on p� �	�

�Ciancarini et al�� ����� P� Ciancarini� K�K� Jensen� and D� Yanklevich� The semantics of a parallel
language based on a shared dataspace� Technical Report ������ University of Pisa� Pisa� Italy� July
����� �cited on p� 	� �� ����

�Ciancarini� ����� P� Ciancarini� PoliS� a programmingmodel for multiple tuple spaces� In Proc� Sixth
International Workshop on Software Speci�cation and Design� pages 		���� Como� Italy� October
����� �cited on p� �	�
�� �� ��

�Ciancarini� ����� P� Ciancarini� Parallel programming with logic languages� a survey� Computer
Languages� �
�	�������	�� ����� �cited on p� ��� �
� ����

Bibliography ��

�CIP� ���� Language Group CIP� The Munich Project CIP� Volume �� The Wide Spectrum Language
CIP�L� volume �� of Lecture Notes in Computer Science� Springer�Verlag� ���� �cited on p� ����

�CIP� ��
� System Group CIP� The Munich Project CIP� Volume �� The Programm Transformation
System CIP�S� volume ��� of Lecture Notes in Computer Science� Springer�Verlag� ��
� �cited on
p� �	�

�Clayton et al�� ����� P�G� Clayton� E�P� Wentworth� G�C� Wells� and F�K� de Heer�Menlah� An
implementation of Linda Tuple Space under the Helios operating system� Technical Document
PPG ���� Rhodes University� Grahamstown� South Africa� October ����� �cited on p� �	�� �	��

�Clocksin and Mellish� ��
� W�F� Clocksin and C�S� Mellish� Programming in Prolog� Springer�
Verlag� �rd edition� ��
� �cited on p� ���

�Cocke� ��� J� Cocke� The search for performance in scienti�c processors� Communications of the
ACM� �������	������ ��� �cited on p� ��

�Cohen and Molinari� ����� R� Cohen and B� Molinari� Implementation of C�Linda for the AP�����
In Proc� Second Fujitsu�ANU CAP Workshop� Camberra� Australia� November ����� �cited on
p� �	�� �		�

�Craigen et al�� ����� D� Craigen� S� Gerhart� and T� Ralston� Formal methods reality check� In�
dustrial usage� In J�C�P� Woodcock and P�G� Larsen� editors� Proc� FME
��� Industrial�Strength
Formal Methods� volume �
� of Lecture Notes in Computer Science� pages ������
� Odense� Den�
mark� April ����� Springer�Verlag� �cited on p� 	�

�Cunha et al�� ���� J�C� Cunha� M�C� Ferreira� and L� Moniz Pereira� Programming in Delta Prolog�
In G� Levi and M� Martelli� editors� Proc� Sixth International Conference on Logic Programming�
pages 	
����� Lisbon� Portugal� ���� MIT Press� �cited on p� �	� �
�

�Dahlen and MacDonald� ����� U� Dahlen and N� MacDonald� Scheme�Linda� In Gupta ������� �cited
on p� �	�

�Dearnley and Mayhew� ���� P�A� Dearnley and P�J� Mayhew� In favour of system prototypes and
their integration into the system development cycle� The Computer Journal� ���������	�� ����
�cited on p� ��� ���

�DeMarco� ��
� T� DeMarco� Structured Analysis and System Speci�cation� Yourdon Press� ��
�
�cited on p� ��

�DeMillo et al�� ��
�� R�A� DeMillo� R�J� Lipton� and A�J� Perlis� Social processes and proofs of
theorems and programs� Communications of the ACM� �������
����� May ��
�� �cited on p� ����

�Dijkstra� ��
�� E�W� Dijkstra� Hierarchical ordering of sequential processes� Acta Informatica� ������
��� ��
�� �cited on p�
��
��

�Dijkstra� ��
�� W� Dijkstra� Guarded commands� nondetermininacy and formal derivation of pro�
grams� Communications of the ACM� ����	���	�
� ��
�� �cited on p� ���

�Dijkstra� ��� E�W� Dijkstra� Position paper on �fairness � ACM SIGSOFT Software Engineering
Notes� ����������� April ��� �cited on p�
�

�Diller� ����� A� Diller� Z� An introduction to formal methods� Wiley� ����� �cited on p� ��
� ����
��
� ���� �	�� ���� ����

�Doberkat and Fox� ���� E��E� Doberkat and D� Fox� Software Prototyping mit SETL� Leitf�aden
und Monographien der Informatik� Teubner�Verlag� ���� �cited on p� �� ��� ��� �	� 	��

�Doberkat et al�� ����a� E��E� Doberkat� U� Gutenbeil� and W� Hasselbring� SETL�E Sprachbeschrei�
bung Version ���� Informatik�Bericht ������ University of Essen� March ����� �cited on p� 	��

�� Bibliography

�Doberkat et al�� ����b� E��E� Doberkat� U� Gutenbeil� and W� Hasselbring� SETL�E � A Proto�
typing System based on Sets� In W� Zorn� editor� Proc� TOOL
��� pages ������� University of
Karlsruhe� November ����� �cited on p� 	��

�Doberkat et al�� ����a� E��E� Doberkat� W� Franke� U� Gutenbeil� W� Hasselbring� U� Lammers� and
C� Pahl� ProSet � Prototyping with Sets� Language De�nition� Informatik�Bericht ������ Uni�
versity of Essen� April ����� �cited on p� 	�� 	
� �� ��
� ��
�

�Doberkat et al�� ����b� E��E� Doberkat� W� Franke� U� Gutenbeil� W� Hasselbring� U� Lammers� and
C� Pahl� ProSet � A Language for Prototyping with Sets� In N� Kanopoulos� editor� Proc� Third
International Workshop on Rapid System Prototyping� pages �����	� Research Triangle Park� NC�
June ����� IEEE Computer Society Press� �cited on p� 	��

�Doberkat et al�� ����c� E��E� Doberkat� W� Franke� U� Gutenbeil� W� Hasselbring� U� Lammers� and
C� Pahl� A First Implementation of ProSet� In U� Kastens and P� Pfahler� editors� International
Workshop on Compiler Construction CC
�� �Poster Session�� pages ����
� University of Paderborn�
Informatik�Bericht Nr� ���� October ����� �cited on p� 	�� ���� �	��

�Doberkat et al�� ����� E��E� Doberkat� W� Franke� and W� Hasselbring� Software Prototyping �
Persistenz und Parallelit�at� In M� Nagl� editor� Proc� ��th European Congress Fair for Techni�
cal Communications �ONLINE
���� Congress VI �Software and Information Engineering�� pages
C�������C������� Hamburg� Germany� February ����� ONLINE GmbH� �cited on p� 	��

�Doberkat� ����� E��E� Doberkat� Integrating persistence into a set�oriented prototyping language�
Structured Programming� ��������
����� ����� �cited on p� 	��

�Dourish� ���� P� Dourish� A Transputer�based Parallel Lisp� Technical Report ECSP�TN���� Edin�
burgh Concurrent Supercomputer Project� June ���� �cited on p� �	� �	��

�Duke et al�� ����� R� Duke� P� King� G� Rose� and G� Smith� The Object�Z Speci�cation Language�
Version �� Technical Report ����� University of Queensland� Software Veri�cation Research Center�
Queensland� Australia� January ����� �cited on p� ��
� ��� ����

�Duncan� ����� R� Duncan� A survey of parallel computer architectures� IEEE Computer� pages �����
February ����� �cited on p� ��� �	��

�Ekambareshwar and Downs� ���� S� Ekambareshwar and T� Downs� Rapid prototyping of software
systems using Prolog� In Proc� Conference on Computing Systems and Information Technology�
pages ����� Sydney� Australia� August ���� �cited on p� ����

�Emerson� ����� E�A� Emerson� Temporal and modal logic� In J� van Leeuwen� editor� Handbook of
Theoretical Computer Science� volume B� chapter ��� pages ������
�� Elsevier� ����� �cited on
p� ��	�

�Faasen� ����� C� Faasen� Implementing tuple space on transputer meshes� Master�s thesis� University
of the Witwatersrand� Johannesburg� South Africa� February ����� �cited on p� �	�� �		�

�Factor� ����� M� Factor� The process trellis software architecture for real�time monitors� In Proc�
Second ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming �PPoPP��
pages �	
����� Seattle� WA� March ����� �cited on p� ��

�Fleckenstein and Hemmendinger� ���� C�J� Fleckenstein and D� Hemmendinger� Using a global
name space for parallel execution of UNIX tools� Communications of the ACM� ���������������
���� �cited on p� �	� �	��

�Floyd� ��	� C� Floyd� A systematic look at prototyping� In Budde et al� ���	�� pages ���� �cited
on p� �� ��� ���

�Flynn� ����� M�J� Flynn� Very high�speed computing systems� Proceedings of the IEEE� �	����������
����� December ����� �cited on p� ��� �	��

Bibliography �

�Foster and Taylor� ���� I� Foster and S� Taylor� Strand� New Concepts in Parallel Programming�
Prentice�Hall� ���� �cited on p� ���

�Franke et al�� ����� W� Franke� U� Gutenbeil� W� Hasselbring� C� Pahl� H��G� Sobottka� and B� Su�
crow� Prototyping mit Mengen � der ProSet�Ansatz� In H� Z�ullighoven� W� Altmann� and E��E�
Doberkat� editors� Requirements Engineering
��� Prototyping� volume 	� of Berichte des German
Chapter of the ACM� pages �����
	� Teubner�Verlag� April ����� �cited on p� 	��

�Fuchs� ����� N�E� Fuchs� Speci�cations are �preferably� executable� Software Engineering Journal�

����������	� September ����� �cited on p� ����

�Gabriel and McCarthy� ��� R�P� Gabriel and J� McCarthy� Qlisp� In J�S� Kowalik� editor� Parallel
Computation and Computers for Arti�cial Intelligence� pages ����� Kluwer Academic Publishers�
��� �cited on p� ���

�Gelernter and Philbin� ����� D� Gelernter and J� Philbin� Spending your free time� BYTE� ����������
���� ����� �cited on p� �	��

�Gelernter et al�� ���� D� Gelernter� N� Carriero� S� Chandran� and S� Chang� Parallel programming
in Linda� In Proc� International Conference on Parallel Processing� pages �������� St� Charles�
August ���� IEEE� �cited on p� ���

�Gelernter et al�� ����� D� Gelernter� A� Nicolau� and D� Padua� editors� Languages and Compilers
for Parallel Computing� Pitman� ����� �cited on p� �	�

�Gelernter� ��	� D� Gelernter� A note on systems programming in Concurrent Prolog� In Proc�
International Symposium on Logic Programming� Atlantic City� NJ� February ��	� �cited on p� �
�

�Gelernter� ���� D� Gelernter� Generative communication in Linda� ACM Transactions on Program�
ming Languages and Systems�
���������� ���� �cited on p� 	� ��� ���
��

�Gelernter� ���� D� Gelernter� Multiple tuple spaces in Linda� In Proc� Parallel Architectures and
Languages Europe �PARLE
��� volume ��� of Lecture Notes in Computer Science� pages ����
�
Springer�Verlag� June ���� �cited on p� ��

�Ghezzi and Jazayeri� ���� C� Ghezzi and M� Jazayeri� Programming Language Concepts� Wiley�
���� �cited on p� ���

�Ghezzi et al�� ����� C� Ghezzi� M� Jazayeri� and D� Mandrioli� Fundamentals of Software Engineering�
Prentice�Hall� ����� �cited on p� ����

�Gimnich and Ebert� ����� R� Gimnich and J� Ebert� Zur De�nition und Interpretation ausf�uhrbarer
Spezi�kationen� In H� Boley� U� Furbach� and W��M� Lippe� editors� Sprachen f�ur KI�Anwendungen
� Konzepte� Methoden� Implementierungen� pages �������� M�unster �Schriftenreihe�� ����� �cited
on p� ����

�Goodenough� ��
�� J�B� Goodenough� Exception handling� Issues and a proposed notation� Com�
munications of the ACM� ������������� ��
�� �cited on p� 	
�

�Grama and Kumar� ����� A�Y� Grama and V� Kumar� Parallel processing of discrete optimization
problems� a survey� Technical report� University of Minnesota� Minneapolis� MN� November �����
�cited on p� ���

�Gray et al�� ����� R�W� Gray� V�P� Heuring� S�P� Levi� A�M� Sloane� and W�M� Waite� Eli� A com�
plete� �exible compiler construction system� Communications of the ACM� �������������� February
����� �cited on p� ����

�Gupta� ����� A� Gupta� editor� Proc� Europal�BCS�PPSG Workshop on High Performance and Par�
allel Computing in Lisp� Twickenham� London� UK� November ����� �cited on p� ��� ���

� Bibliography

�Halstead� ���� R�H� Halstead� Multilisp� A language for concurrent symbolic computation� ACM
Transactions on Programming Languages and Systems�
�	��������� ���� �cited on p� ��� ��� ��

�Hasselbring� ����� W� Hasselbring� CELIP� A cellular language for image processing� Parallel Com�
puting� �	����������� May ����� �cited on p� ��� ���

�Hasselbring� ����a� W� Hasselbring� Combining SETL�E with Linda� In Wilson �����b�� pages 	����
�cited on p� ��	�

�Hasselbring� ����b� W� Hasselbring� On Integrating Generative Communication into the Prototyping
Language ProSet� Informatik�Bericht ������ University of Essen� December ����� �cited on p� ��	�

�Hasselbring� ����c� W� Hasselbring� Translating a subset of SETL�E into SETL�� Informatik�Bericht
������ University of Essen� January ����� �cited on p� ���� �	��

�Hasselbring� ����a� W� Hasselbring� A Formal Z Speci�cation of ProSet�Linda� Informatik�Bericht
�	���� University of Essen� September ����� �cited on p� ��

�Hasselbring� ����b� W� Hasselbring� Programming cellular automata for image processing� Informa�
tik�Bericht ������ University of Essen� February ����� �presented at the BCS�PPSG Meeting on
Cellular Automata� Imperial College� London� UK� February ��� ������ �cited on p� ���

�Hayes and Jones� ���� I�J� Hayes and C�B� Jones� Speci�cations are not �necessarily� executable�
Software Engineering Journal� 	����������� November ���� �cited on p� ����

�Hazelhurst� ����� S� Hazelhurst� A proposal for the formal speci�cation of the semantics of Linda�
Technical Report ������	� University of the Witwatersrand� Johannesburg� South Africa� October
����� �cited on p� 	�

�Hazelhurst� ����� S� Hazelhurst� A Linda solution to the evolving philosophers problem� South
African Computer Journal� pages 		���� September ����� �cited on p�
��

�Hekmatpour and Ince� ��� S� Hekmatpour and D� Ince� Software Prototyping� Formal Methods and
VDM� Addison�Wesley� ��� �cited on p� ���

�Hill et al�� ����� M�D� Hill� J�R� Larus� S�K� Reinhardt� and D�A�Wood� Cooperative shared memory�
Software and hardware for scalable multiprocessors� In Proc� Fifth International Conference on
Architectural Support for Programming Languages and Operating Systems �ASPLOS V�� pages ����
�
�� October ����� �cited on p� ��

�Hillis and Steele� ���� W�D� Hillis and G�L� Steele� Data parallel algorithms� Communications of
the ACM� ���������
������ ���� �cited on p� ���

�Hiroyuki and Masaaki� ����� S� Hiroyuki and S� Masaaki� Communication in Linda�Q � datatypes
and uni�cation� In Proc� ��th International Conference on Parallel Processing� volume II� pages
�������� Boca Raton� FL� August ����� CRC Press� �cited on p� ����

�Hoare� ���� C�A�R� Hoare� Communicating Sequential Processes� Prentice�Hall� ���� �cited on
p� �� �	�

�Horwat et al�� ���� W� Horwat� A� Chien� and W� Dally� Experience with CST� Programming and
Implementation� In Proc� ACM SIGPLAN Conference on Programming Language Design and
Implementation� pages �������� June ���� �cited on p� ��� ���

�Hudak� ���� P� Hudak� Para�functional programming� IEEE Computer� ��������
�� ���� �cited
on p� ���

�Hummel et al�� ����� R� Hummel� R� Kelly� and S� Flynn Hummel� A set�based language for proto�
typing parallel algorithms� In Proc� Computer Architecture for Machine Perception
�� Conference�
pages �����	�� Paris� France� December ����� �cited on p� ��� ���

Bibliography ��

�Hupfer� ����� S� Hupfer� Melinda� Linda with multiple tuple spaces� Research Report
��� Yale
University� New Haven� CT� February ����� �cited on p� ��

�Hutchinson� ����� D� Hutchinson� Linda meets Lisp� In Gupta ������� �cited on p� �	�
��

�Ito and Halstead� ����� T� Ito and R�H� Halstead� editors� Parallel Lisp� Languages and Systems�
volume 		� of Lecture Notes in Computer Science� Springer�Verlag� ����� �cited on p� ���

�Jagannathan� ����� S� Jagannathan� Semantics and analysis of �rst�class tuple spaces� Research
Report
�� Yale University� New Haven� CT� April ����� �cited on p� ��

�Jagannathan� ����� S� Jagannathan� Customization of �rst�class tuple�spaces in a higher�order lan�
guage� In Proc� Parallel Architectures and Languages Europe �PARLE
���� volume ��� of Lecture
Notes in Computer Science� pages ��	��
�� Springer�Verlag� June ����� �cited on p� �	�
�� ��
�	�� ����

�Jellinghaus� ����� R� Jellinghaus� Ei�el Linda� An object�oriented Linda dialect� ACM SIGPLAN
Notices� �������
��	� December ����� �cited on p� �	�

�Jensen� ����� K�K� Jensen� The semantics of tuple space and correctness of an implementation�
Research Report
� Yale University� New Haven� CT� April ����� �cited on p� 	�

�Jensen� ���	� K�K� Jensen� Towards a Multiple Tuple Space Model� PhD thesis� University of Aalborg�
Denmark� ���	� �in preparation�� �cited on p� 	�

�Jones et al�� ����� D�G� Jones� S�J� Dowdeswell� and T� Hintz� A rapid prototyping method for
parallel programs� In T� Bossomaier� T� Hintz� and J� Hulskamp� editors� The Transputer in
Australasia �ATOUG���� pages ������� IOS Press� ����� �cited on p� ��

�Jones� ����� C�B� Jones� Systematic Software Development using VDM� Prentice�Hall� �nd edition�
����� �cited on p� 	�

�Jozwiak� ����� J�M� Jozwiak� Exploiting parallelism in SETL programs� Master�s thesis� University
of Illinois at Urbana�Champaign� Urbana� IL� ����� �cited on p� ���

�Jul et al�� ��� E� Jul� H� Levy� N� Hutchinson� and A� Black� Fine�grained mobility in the Emerald
system� ACM Transactions on Computer Systems� ������������� February ��� �cited on p� ���

�Kaashoek et al�� ���� M�F� Kaashoek� H�E� Bal� and A�S� Tanenbaum� Experience with the dis�
tributed data structure paradigm in Linda� In USENIX�SERC Workshop on Experiences with
Building Distributed and Multiprocessor Systems� pages �
������ Ft� Lauderdale� FL� October ����
�cited on p�
	�
��

�Kambhatla and Walpole� ����� S� Kambhatla and J� Walpole� Recovery with limited reply� Fault�
Tolerant processes in Linda� In Proc� Second IEEE Symposium on Parallel and Distributed Pro�
cessing� pages
���
�� Dallas� December ����� �cited on p� ��

�Kane� ����� A�J� Kane� A simple Linda�C parallel processing environment for symmetric multi�
processing VAX�VMS computer systems� Master�s thesis� East Tennessee State University� Decem�
ber ����� �cited on p� �	��

�Kemmerer� ���� R� Kemmerer� Testing formal speci�cations to detect design errors� IEEE Trans�
actions on Software Engineering� ���������	�� ���� �cited on p� ��

�Kernighan and Ritchie� ��� B�W� Kernighan and D�M� Ritchie� The C Programming Language�
Prentice�Hall� �nd edition� ��� �cited on p�
��

�Korneev et al�� ����� V�D� Korneev� N�N� Mirenkov� and A�S� Nepomniaschaya� Very�high�level lan�
guage PARIS� In N�N� Mirenkov� editor� Proc� International Conference on Parallel Computing
Technologies� pages �����	� Novosibirsk� USSR� November ����� �cited on p� ��

��� Bibliography

�Kr�amer� ����� B� Kr�amer� Prototyping and formal analysis of concurrent and distributed systems�
In Proc� Sixth International Workshop on Software Speci�cation and Design� pages ������ IEEE
Computer Society Press� ����� �cited on p� ��

�Kruchten et al�� ��	� P� Kruchten� E� Schonberg� and J� Schwartz� Software prototyping using the
SETL programming language� IEEE Software� pages ���
�� October ��	� �cited on p� 	��

�Kwiatkowska� ���� M�Z� Kwiatkowska� Survey of fairness notions� Information and Software Tech�
nology� ���
���
����� ���� �cited on p� ��� ���

�

�Landry and Arthur� ����� K�D� Landry and J�D� Arthur� Instructional footprinting� A model for
exploiting concurrency through instructional decomposition and code motion� Technical Report
TR������� Virginia Polytechnic Institute and State University� June ����� �cited on p� ��

�Lano and Haughton� ����� K� Lano and H� Haughton� The Z�� Manual� Lloyds Register of Shipping�
Croydon� UK� ����� �cited on p� ��

�Lawler and Wood� ����� E�L� Lawler and D�E� Wood� Branch�and�bound methods� a survey� Oper�
ations Research� �	�	������
��� July ����� �cited on p� ���

�LeBlanc and Mellor�Crummey� ��
� T�J� LeBlanc and J�M� Mellor�Crummey� Debugging parallel
programs with instant replay� IEEE Transactions on Computers� ���	��	
��	�� ��
� �cited on
p� ����

�Leichter� ���� J�S� Leichter� Shared tuple memories� buses and LAN
s � Linda implementations
across the spectrum of connectivity� PhD thesis� Yale University� New Haven� CT� July ���� �cited
on p� 	�
��

�
� �� �� �	�� �	��

�Leler� ���� W� Leler� PIX� the latest NEWS� In Proceedings COMPCOM Spring
�� San Francisco�
February ���� �cited on p� �	�

�Leler� ����� W� Leler� Linda meets Unix� IEEE Computer� ������	���	� ����� �cited on p� �	� ��
�	��

�Levy and Pavlides� ����� A�M� Levy and G� Pavlides� Simulation vs� prototype execution� a case
study� In Proc� International Conference on Computer Systems and Software Engineering �COM�
PEURO
���� pages 	��	��� Tel Aviv� Israel� May ����� IEEE Computer Society Press� �cited on
p� ��

�Li and Hudak� ���� K� Li and P� Hudak� Memory coherence in shared virtual memory systems�
ACM Transactions on Computer Systems�
�	���������� November ���� �cited on p� ��

�Litteck and Wallis� ����� H�J� Litteck and P�J�L� Wallis� Re�nement methods and re�nement calculi�
Software Engineering Journal�
��������� May ����� �cited on p� ����

�Lucco� ���� S�E� Lucco� A heuristic Linda kernel for hypercube multiprocessors� In Proc� SIAM
Conference on Hypercube Multiprocessors� pages ����� September ���� �cited on p� �	��

�Lucco� ��
� S�E� Lucco� Parallel programming in a virtual object space� ACM SIGPLAN Notices
�Proc� OOPSLA
��� �����������	� December ��
� �cited on p� ���

�Lusk et al�� ��� E� Lusk� R� Butler� T� Disz� R� Olson� R� Overbeek� R� Stevens� D�H�D� Warren�
A� Calderwood� P� Szeredi� S� Haradi� P� Brand� M� Carlsson� A� Ciepielewski� and B� Hausman� The
Aurora Or�Parallel Prolog system� In Institute for New Generation Computer Technology �ICOT��
editor� Proc� International Conference on Fifth Generation Computer Systems� volume �� pages
������ Tokyo� Japan� ��� Springer�Verlag� �cited on p� ���

�Ma and Hintz� ����� X� Ma and T� Hintz� A perspective on tools for distributed computation �
background to the RE�Vision project� In Proc� Fifth Conference of the NATUG group �NATUG����
IOS Press� ����� �cited on p� ��

Bibliography ���

�MacDonald� ����� N� MacDonald� Linda work in Edinburgh� In Wilson �����b�� pages ������	�
�cited on p� �	�

�Marko�� ����� J� Marko�� David Gelernter�s Romance With Linda� The New York Times �Business�
section ��� page � and �� January ��� ����� �cited on p� �	��

�Matrone et al�� ����� A� Matrone� P� Schiano� and V� Puoti� Linda and PVM� A comparison between
two environments for parallel programming� Parallel Computing� ������	����
� August ����� �cited
on p� ���

�Matsuoka and Kawai� ��� S� Matsuoka and S� Kawai� Using tuple space communication in dis�
tributed object�oriented languages� In Proc� OOPSLA
� pages �
	��	� San Diego� September
��� �cited on p� �	� ��

�McDowell and Helmbold� ���� C�E� McDowell and D�P� Helmbold� Debugging concurrent programs�
ACM Computing Surveys� ���	���������� ���� �cited on p� ����

�Mehrotra and Rosendale� ����� P� Mehrotra and J� Van Rosendale� Programming distributed mem�
ory architectures using Kali� In Nicolau et al� ������� pages ��	��	� �cited on p� ��� ���

�Mills et al�� ����� P�H� Mills� L�S� Nyland� J�F� Prins� J�H� Reif� and R�A� Wagner� Prototyping
parallel and distributed programs in Proteus� In Proc� Third IEEE Symposium on Parallel and
Distributed Processing� pages ����	� Dallas� TX� December ����� �cited on p� ��

�Milner� ���� R� Milner� Communication and Concurrency� Prentice�Hall� ���� �cited on p� ����

�Murakami et al�� ����� K� Murakami� O� Akashi� Y� Amagi� and H�G� Okuno� TOPS� A Tuple
Operation Protocol Suite for NUE�Linda Computation Model� Technical report� NTT� Tokyo�
Japan� ����� �cited on p� �	��

�Mussat� ����� L� Mussat� Parallel programming with bags� In Ban�atre and M�etayer ������� pages
������� �cited on p� �
�

�Narem� ���� J�E� Narem� An informal operational semantics of C�Linda V������ Technical Report
��� Yale University� New Haven� CT� December ���� �cited on p� 	�
��
�
��

�Naujokat� ���	� R� Naujokat� Entwurf und Implementierung einer Laufzeitbibliothek f�ur ProSet�
Linda auf einem lokalen Netzwerk� Master�s thesis� University of Dortmund� ���	� �in preparation��
�cited on p� ����

�Nicolau et al�� ����� A� Nicolau� D� Gelernter� T� Gross� and D� Padua� editors� Advances in Lan�
guages and Compilers for Parallel Processing� Pitman� ����� �cited on p� ����

�Nitzberg and Lo� ����� B� Nitzberg and V� Lo� Distributed shared memory� A survey of issues and
algorithms� IEEE Computer� �	��������� August ����� �cited on p� ��

�O�Neill� ����� G� O�Neill� Automatic translation of VDM speci�cations into Standard ML programs�
The Computer Journal� ������������	� ����� �cited on p� ����

�Padua et al�� ����� D�A� Padua� R� Eigenmann� J� Hoe�inger� P� Petersen� P� Tu� S� Weatherford�
and K� Faigin� Polaris� A new�generation parallelizing compiler for MPPs� CSRD Report No� �����
University of Illinois at Urbana�Champaign� Urbana� IL� June ����� �cited on p� 	��

�Parker� ����� C�E� Parker� Z tools catalogue� Technical Report ZIP�BAe�������� British Aerospace�
Warton� UK� May ����� �cited on p� ��

�Partsch� ����� H�A� Partsch� Speci�cation and Transformation of Programs� Springer�Verlag� �����
�cited on p� �	� ����

��� Bibliography

�Patterson et al�� ����� L�I� Patterson� R�S� Turner� R�M� Hyatt� and K�D� Reilly� Construction of
a fault�tolerant distributed tuple�space� Technical report� University of Alabama at Birmingham�
Birmingham� AL� ����� �cited on p� �� �� �	�� �		�

�Peskin and Segall� ����� R�L� Peskin and E�J� Segall� Linda strategies for scienti�c computing en�
vironments� Technical Report CAIP�TR���
� Rutgers University� Piscataway� NJ� October �����
�cited on p� �	� �		�

�Pinakis and McDonald� ����� J� Pinakis and C� McDonald� The Inclusion of the Linda Tuple Space
Operations in a Pascal�based Concurrent Language� In Proc� ��th Australian Computer Science
Conference� Sydney� Australia� February ����� �cited on p� �	�

�Pinakis� ����� J� Pinakis� The Design and Implementation of a Distributed Linda Tuple Space� In
Proc� �nd UWA Department of Computer Science Research Conference� Nedlands� Australia� July
����� �cited on p� �	�� �		�

�Pinakis� ����� J� Pinakis� Providing Directed Communication in Linda� In Proc� ��th Australian
Computer Science Conference� Hobart� Australia� January ����� �cited on p� ��

�Pohland� ���	� H� Pohland� Entwurf und Implementierung eines graphischen Debuggers f�ur ProSet�
Linda� Master�s thesis� University of Essen� ���	� �in preparation�� �cited on p� ����

�Pouget and Burkhart� ����� J��D� Pouget and H� Burkhart� Von Linda zu Linda�� Technischer
Bericht ����� University of Basel� IFI� Switzerland� March ����� �cited on p� �	�

�Quinn and Hatcher� ����� M�J� Quinn and P�J� Hatcher� Data�parallel programming on multicom�
puters� IEEE Software�
�������
�� ����� �cited on p� ���

�Raina� ����� S� Raina� Virtual shared memory� A survey of techniques and systems� Technical
Report CSTR������� University of Bristol� Bristol� UK� December ����� �cited on p� ��

�Reeves� ����� A�P� Reeves� Parallel programming for computer vision� IEEE Software� �
��������
����� �cited on p� ���

�Reisig� ���� W� Reisig� Petri Nets� Springer�Verlag� ���� �cited on p� ��

�Roman and Cunningham� ����� G��C� Roman and H�C� Cunningham� Mixed programming meta�
phors in a shared dataspace model of concurrency� IEEE Transactions on Software Engineering�
��������������
�� ����� �cited on p� �	�

�Schoinas� ����� G� Schoinas� Linda and the Blackboard Model� In Wilson �����b�� pages ��������
�cited on p�
�� �	��

�Schreiner� ����� W� Schreiner� Parallel functional programming� an annotated bibliography� Tech�
nical Report ����	� RISC�Linz� Johannes Kepler University� Linz� Austria� May ����� �cited on
p� ���

�Schwartz et al�� ���� J�T� Schwartz� R�B�K� Dewar� E� Dubinsky� and E� Schonberg� Programming
with Sets 	 An Introduction to SETL� Springer�Verlag� ���� �cited on p� �
� 	�� ����

�Sci� ����� Scienti�c Computing Associates� New Haven� CT� C�Linda User
s Guide � Reference
Manual� ����� �cited on p� �	�
��

�Sewry� ����� D�A� Sewry� A visual debugger�monitor for Linda tuple space� Technical Document
PPG ����	� Rhodes University� Grahamstown� South Africa� June ����� �cited on p� �	�

�Shapiro� ���� E� Shapiro� The family of concurrent logic programming languages� ACM Computing
Surveys� ������	������� ���� �cited on p� ������ �
�

�Shekhar and Srikant� ����� K�H� Shekhar and Y�N� Srikant� Linda Sub System on Transputers� In
Proc� Transputing
��� pages �	������ Sunnyvale� CA� April ����� �cited on p� �	��

Bibliography ���

�Siegel and Cooper� ����� E�H� Siegel and E�C� Cooper� Implementing Distributed Linda in Standard
ML� Technical Report CMU�CS�������� School of Computer Science� Carnegie Mellon University�
Pittsburgh� PA� October ����� �cited on p� �	�

�Smith� ����� N� Parker Smith� Network Linda achieves near�linear speed�ups on multi�system net�
works� Supercomputing Review� 	��������	� May ����� �cited on p� �	�

�Smith� ����� G�L� Smith� A distributed implementation of the Linda virtual memory space on a
cluster of processors� Technical Document PPG ������ Rhodes University� Grahamstown� South
Africa� ����� �cited on p� �	��

�Snyder� ����� W�K� Snyder� The SETL� programming language� Technical Report 	��� Courant
Institute� New York University� N�Y�� September ����� �cited on p� ���� ���� ����

�Spivey� ����a� J�M� Spivey� The fuzz Manual� Computing Science Consultancy� Oxford� UK� �nd
edition� July ����� �cited on p�
� ��� ��	� ����

�Spivey� ����b� J�M� Spivey� The Z Notation� A Reference Manual� Prentice�Hall� �nd edition� �����
�cited on p� 	� �� ��
� ���� ��
� ���� ���� ��	�

�Srini� ���� V� Srini� An architectural comparision of data�ow systems� IEEE Computer� ��������
� ���� �cited on p� ���

�Stapleton� ����� L� Stapleton� Grad student releases public�domain Linda� Supercomputing Review�
	������� October ����� �cited on p� �	��

�Stepney et al�� ����� S� Stepney� R� Barden� and D� Cooper� editors� Object Orientation in Z�
Springer�Verlag� ����� �cited on p� ��

�Stroustrup� ���� B� Stroustrup� The C�� Programming Language� Addison�Wesley� ���� �cited
on p� ��	�

�Stumm and Zhou� ����� M� Stumm and S� Zhou� Algorithms implementing distributed shared mem�
ory� IEEE Computer� �������	��	� May ����� �cited on p� ��

�Sun� ����� Sun Microsystems� Inc� Programming Utilities � Libraries� ����� �cited on p� �	��

�Sutcli�e and Pinakis� ����� G� Sutcli�e and J� Pinakis� PROLOG�Linda� An embedding of Linda in
muPROLOG� In Proc� �th Australian Conference on Arti�cial Intelligence �AI
���� pages �����	��
Perth� Australia� ����� World Scienti�c� Singapore� �cited on p� �	� ����

�Sutcli�e� ����� G� Sutcli�e� Prolog�D�Linda v�� A New Embedding of Linda in SICStus Prolog�
Technical Report ����� James Cook University of North Queensland� Townsville� Australia� January
����� �cited on p� �	�
� ����

�Szymanski� ����� B�K� Szymanski� editor� Parallel functional languages and compilers� Addison�
Wesley� ����� �cited on p� ���

�Tanenbaum et al�� ����� A�S� Tanenbaum� R� van Renesse� H� van Staveren� G�J� Sharp� S�J� Mul�
lender� J� Jansen� and G� van Rossum� Experiences with the Amoeba distributed operating system�
Communications of the ACM� �������	����� December ����� �cited on p� ��

�Tanenbaum� ����� A�S� Tanenbaum�Modern Operating Systems� Prentice�Hall� ����� �cited on p� ��
�	��

�Thomas� ����� O� Thomas� A Linda Kernel for UNIX Networks� In Wilson �����b�� pages ��	����
�cited on p� �	��

�Tolksdorf� ����� R� Tolksdorf� Laura� A coordination language for open distributed systems� Report
�������� Technical University of Berlin� Berlin� Germany� ����� �cited on p� ��

��	 Bibliography

�Trescher et al�� ����� J� Trescher� F� Bieler� and C� Hinrichs� Modula�L� Implementation of the Linda
Model for Arbitrary Transputer Networks� In W� Joosen and E� Milgrom� editors� Parallel Comput�
ing� From Theory to Sound Practice �Proc� EWPC
���� pages �������� Barcelona� Spain� March
����� IOS Press� �cited on p� �	� �	��

�Ushijima� ���� D� Ushijima� Sharing supercomputer power� MacWorld� pages ���� June ����
�cited on p� �	��

�Valentine� ����� S�H� Valentine� Z��� an executable subset of Z� In J�E� Nicholls� editor� Z User
Workshop� York ����� Workshops in Computing� pages ��
��
� Springer�Verlag� ����� �cited on
p� ����

�Wack� ����� A�P� Wack� Scheme�Linda to C Compiler�Interpreter User Guide� CIS Tech�Report
������ University of Delaware� June ����� �cited on p� �	�

�West and Eaglestone� ����� M�M�West and B�M� Eaglestone� Software development� two approaches
to animation of Z speci�cations using Prolog� Software Engineering Journal�
�	����	��
�� July
����� �cited on p� ����

�Wilson� ����a� G� Wilson� Improving the performance of generative communication systems by
using application�speci�c mapping functions� In Proc� Workshop on Linda�Like Systems and Their
Implementation �����b�� pages �����	�� �cited on p� ����

�Wilson� ����b� G�Wilson� editor� Proc� Workshop on Linda�Like Systems and Their Implementation�
Edinburgh Parallel Computing Centre TR������ June ����� �cited on p� ��

�Wilson� ����� G� Wilson� Structuring and Supporting Programs on Parallel Computers� PhD thesis�
University of Edinburgh� ����� �cited on p�
	�
����

�Wing� ����� J�M� Wing� A speci�er�s introduction to formal methods� IEEE Computer� pages ��	�
September ����� �cited on p� 	� ����

�Woodcock� ����� J�C�P� Woodcock� A tutorial on the re�nement calculus� In S� Prehn and W�J�
Toetenel� editors� VDM
��� Formal Software Development Methods� volume ��� of Lecture Notes
in Computer Science� pages
���	�� Springer�Verlag� ����� �cited on p� ��
� �	��

�Wordsworth� ����� J�B� Wordsworth� The CICS application programming interface de�nition� In
J�E� Nicholls� editor� Z User Workshop� Workshops in Computing� pages �����	� Oxford� UK�
����� Springer�Verlag� �cited on p� ��

�Wyatt et al�� ����� B�B� Wyatt� K� Kavi� and S� Hufnagel� Parallelism in object�oriented languages�
A survey� IEEE Software� pages ������ November ����� �cited on p� ���

�Xu and Liskov� ���� A�S� Xu and B� Liskov� A design for a fault�tolerant� distributed implementa�
tion of Linda� In Proc� ��th International Symposium on Fault�Tolerant Computing� pages ��������
June ���� �cited on p� �� �		�

�Yonezawa and Tokoro� ��
� A� Yonezawa and M� Tokoro� editors� Object�Oriented Concurrent Pro�
gramming� The MIT Press� ��
� �cited on p� ���

�Yuen et al�� ����� C�K� Yuen� M� D� Feng� W�F� Wong� and J�J� Yee� Parallel Lisp Systems� Parallel
and Distributed Processing Series� Chapman � Hall� ����� �cited on p� �	� ��

�Zave and Schell� ���� P� Zave and W� Schell� Salient features of an executable speci�cation language
and its environment� IEEE Transactions on Software Engineering� �������������� February ����
�cited on p� ��

�Zave� ��	� P� Zave� The operational versus the conventional approach to software development�
Communications of the ACM� �
������	���� ��	� �cited on p� ��

Bibliography ���

�Zenith� ����� S�E� Zenith� Linda coordination language! subsystem kernel architecture �on transput�
ers�� Research Report
�	� Yale University� New Haven� CT� May ����� �cited on p� �	��

�Zenith� ����� S�E� Zenith� A rationale for programming with Ease� In Ban�atre and M�etayer �������
pages �	
����� �cited on p� �	�

�Zettler� ����� P� Zettler� RISC Linda � A Dialect of Linda� Master�s thesis� RISC�Linz� Johannes
Kepler University� Linz� Austria� June ����� �cited on p� ��

