Prototyping Parallel Algorithms with
PROSET-Linda’

Wilhelm Hasselbring

University of Essen
Fachbereich Mathematik und Informatik — Software Engineering
Schitzenbahn 70, 45117 Essen, Germany
willi@informatik.uni-essen.de

Abstract. PROSET is a procedural prototyping language based on the
theory of finite sets. The coordination language Linda provides a dis-
tributed shared memory model, called tuple space, together with some
atomic operations on this shared data space. Process communication and
synchronization in Linda is called generative communication, because tu-
ples are added to, removed from, and read from tuple space concurrently.
Synchronization is done implicitly.

This paper presents PROSET-Linda which adapts the concept for process
creation via Multilisp’s futures to set-oriented programming and inte-
grates Linda’s concept for synchronization and communication via tuple
space. This new approach to integrating futures and generative commu-
nication into a prototyping language extends the basic Linda model with
multiple tuple spaces, the notion of limited tuple spaces, selection and
customization for matching, specified fairness of choice, and the facility
for changing tuples in tuple space.

The subject of this paper is the construction of prototypes and not the
transformation of prototypes into production-quality programs. There-
fore, we consider only the early phases in the process of software con-
struction.

1 Introduction

Parallel programming is conceptually harder to undertake and to understand
than sequential programming, because a programmer often has to focus on more
than one process at a time. Furthermore, on most of today’s parallel machines,
programmers are forced to program at a low level to obtain performance — ease
of use is sacrificed for efficiency. Consequently, developing parallel algorithms is
in general considered as an awkward undertaking. The goal of PROSET-Linda is
to overcome this nuisance by providing a tool for prototyping parallel algorithms.

As has been observed [5], no matter how effective the system software and
hardware of a parallel machine are at delivering performance, it is only from

" Tn: J. Volkert: Parallel Computation (Proc. Second International ACPC Conference),
Lecture Notes in Computer Science, Vol. 734, Springer-Verlag, pages 135-150, Oc-
tober 1993, Gmunden, Austria.

new algorithms that orders of magnitude improvements in the complexity of a
problem can be achieved:

“An idea that changes an algorithm from n? to n log n operations, where
n is proportionate to the number of input elements, is considerably more
spectacular than an improvement in machine organization, where only a
constant factor of run-time is achieved.” [5, page 250]

Thus, enabling rapid prototyping of parallel algorithms may serve as the basis
for developing parallel, high-performance applications.

Current programming environments for distributed memory architectures
provide inadequate support for mapping applications to the machine. In par-
ticular, the lack of a global name space forces algorithms to be specified at a
relatively low level. This greatly increases the complexity of programs, and also
stipulates algorithm design choices, inhibiting experimentation with alternate
algorithm choices or problem decompositions.

Process communication and synchronization in Linda is reduced to concur-
rent access to a large data pool, thus relieving the programmer from the burden
of having to consider all process inter-relations explicitly. The parallel processes
are decoupled in time and space in a very simple way: processes do not have to
execute at the same time and in the same address space. This scheme offers all
advantages of a shared memory architecture, such as anonymous communication
and easy load balancing. It adds a very flexible associative addressing mecha-
nism and a natural synchronization paradigm and at the same time avoids the
well-known access bottleneck for shared memory systems as far as possible. The
shared data pool in the Linda concept is called tuple space. Its access unit is the
tuple, similar to tuples in PROSET (Sect. 3). Tuples live in tuple space which is
simply a collection of tuples. It may contain any number of copies of the same
tuple: 1t 1s a multiset, not a set. The tuple space is the fundamental medium of
communication in Linda.

Linda and PROSET both provide tuples thus it is quite natural to combine
set-oriented programming with generative communication on the basis of this
common feature to form a tool for prototyping parallel algorithms.

Programming in Linda provides a spatially and temporally unordered bag
of processes. Each task in the computation can be programmed (more-or-less)
independently of any other task. This enables the programmer to focus on one
process at a time thus making parallel programming conceptually the same order
of problem-solving complexity as conventional, sequential programming. The
uncoupled and anonymous inter-process communication in Linda is in general
not directly supported by the target machines. However, a high-level language
must be able to reflect a particular top-down approach to building software,
and not a particular machine architecture. This 1s also important to support
portability across different machine architectures. Implementations of Linda have
been performed on a wide variety of parallel architectures: on shared-memory
multi-processors as well as on distributed memory architectures [3, 26]. Linda
can be compared to explicit low-level parallel code such as message passing, in

much the same way as high-level programming languages can be compared to
assembly code.

C was the first computation language in which Linda has been integrated [11].
Meanwhile there exist also integrations into higher-level languages supporting
the object-oriented, functional, and logic programming paradigm, respectively
[26]. The present paper presents the combination with a set-oriented language,
where process creation via Multilisp’s futures is adapted to set-oriented program-
ming and combined with the concept for synchronization and communication via
tuple spaces. We regard tuple spaces primary as a device for synchronization and
communication between processes, and only secondary for process creation.

Sections 2 and 3 provide brief introductions to the prototyping process and
to the language PROSET, respectively. In Sect. 4 the combination of PROSET
with Linda will be presented. We refer to [4] for a full account to programming
with C-Linda. Essential enhancements to the basic Linda model for this com-
bination are multiple tuple spaces, the notion of limited tuple spaces, selection
and customization for matching, specified fairness of choice, and the facility for
changing tuples in tuple space. Section 5 sketches implementation issues and
Sect. 6 draws some conclusions.

Henri Bal, Mike Factor, Jerry Leichter and Greg Wilson provided useful
comments and suggestions on various aspects of this work. The comments on
drafts of this paper by Ernst-Erich Doberkat are gratefully acknowledged.

2 The Prototyping Process and Parallel Programming

One of the more recent approaches for complementing the classical model of soft-
ware production using the life cycle approach is rapid prototyping. Prototyping
refers to the well defined phase in the production process of software in which a
model is constructed which has all the essential properties of the final product,
and which is taken into account when properties have to be checked, and when
the further steps in the development have to be determined [10]. We want to
note that a prototype is a model, and that this model taken as a program has to
be executable so that at least part of the functionality of the desired end product
may be demonstrated on a computer. Prototyping has been developed as an an-
swer to deficiencies in the waterfall model, but it should not be considered as an
alternative to this model. It 1s rather optimally useful when it complements the
waterfall model. It is plausible that prototyping may be used during the early
phases of the design.

The 1dea of prototyping is being adopted in software engineering for different
purposes: prototypes are used exploratively to arrive at a feasible specification,
experimentally to check different approaches, and evolutionary to build a sys-
tem incrementally. Our approach to prototyping is an evolutionary development
in versions. The prototype evolves in accordance with the changing environ-
ment. The linear ordering of development steps in the classical waterfall model
is mapped here into successive development cycles. This implies that the users

are involved in the system development process which supports the communica-
tion between users and developers.

PROSET also contains a Pascal-like subset that facilitates prototyping by al-
lowing a program to be refined into successively finer detail while staying within
the language. Prototypes should be built in very high level languages to make
them rapidly available in the early phases of the production process. To be
useful, prototypes must be built rapidly and designed in such a way that they
can be modified rapidly. Consequently, a prototype is usually not a very effi-
cient program since the runtime system has a heavy burden for executing the
highly expressive constructs. To obtain a more efficient production-level ver-
sion program transformations are desirable to refine the prototype design into
a production-quality product [22]. The subject of this paper is the construction
of prototypes and not the transformation of prototypes into production-quality
programs. Therefore, we consider only the early phases in the process of software
construction.

Prototyping means constructing a model. Since applications which are in-
herently parallel should be programmed in a parallel way, it is most natural
to incorporate parallelism into the process of model building. Opportunities for
automatic detection of parallelism in existing programs are limited and further-
more, in many cases the formulation of a parallel program is more natural and
appropriate than a sequential one. Most systems in real life are of a parallel
nature, thus the intent for integrating parallelism into a prototyping language
1s not only increased performance. If one wants to model an inherently parallel
system, it is reasonable to have features for specifying (coarse-grained) processes
that communicate and synchronize via a simple communication medium, and not
to force such inherent parallelism into sequences. Our work intends to provide a
tool for prototyping parallel algorithms and modeling parallel systems.

3 The Prototyping Language PROSET

The procedural, set-oriented language PROSET [8] is a successor to SETL [24].
This section will present a brief introduction to data and control structures
of the language and a short example. The high-level structures that PROSET
provides qualify the language for prototyping. For a full account to prototyping
with set-oriented languages we refer to [7].

PROSET provides data types for atom, integer, real, string, Boolean, tuple,
set, function, and module values. It is a higher-order language, because functions
and modules have first-class rights. PROSET is weakly typed, i.e., the type of an
object is in general not known at compile time. Atoms are unique with respect
to one machine and across machines. They can only be created and compared.
The unary type operator returns a predefined type atom corresponding to the
type of its operand. Tuples and sets are compound data structures, which may
be heterogeneously composed. Sets are unordered collections while tuples are
ordered. There is also the undefined value om which indicates, e.g., selection of an
element from an empty set. As an example consider the expression [123, "abc",

true, {1.4, 1.5}] which creates a tuple consisting of an integer, a string, a
Boolean, and a set of two reals. This is an example of what 1s called a tuple
former. As another example consider the set forming expression {2*x: x in
[1..10] | x>b} which yields the set {12, 14, 16, 18, 20}. Sets consisting
only of tuples of length two are called maps. There is no genuine data type for
maps, because set theory suggests handling them this way.

The control structures show that the language has ALGOL as one of its
ancestors. There are if, case, loop, while, and until statements as usual,
and the for and whilefound loops which are custom tailored for iteration over
the compound data structures. The quantifiers (3, V) of predicate calculus are
provided.

In Fig. 1 a solution for the so-called Queens’ Problem in PROSET is given.
Informally, the problem may be stated as follows: “Is it possible to place n
queens (n € N) on an n X n chessboard in such a way that they do not attack
each other?”. Anyone familiar with the basic rules of chess also knows what
attack means in this context: in order to attack each other, two queens are
placed in the same row, the same column, or the same diagonal. Our program
does not solve the above problem directly. It prints out the set of all positions
in which the n queens do not attack each other. If it is not possible to place n
queens in non-attacking positions, this set will be empty. We denote fields on the
chessboard by pairs of natural numbers for convenience (this is unusual in chess,
where characters are used to denote the columns). [1,1] denotes the lower left
corner.

Note that there are no explicit loops and that there is no recursion in the
program. All iterations are done implicitly. One may regard this program also
as a (executable) specification of the Queens’ Problem.

4 Parallel Programming in PROSET

The following subsections will present and discuss process creation and tuple-
space communication in PROSET.

4.1 Process Creation

In C-Linda [4] there is an inherent distinction between at least two classes of
processes. Processes live inside and outside of tuple space: the main program is
not part of an active tuple (thus it lives outside of tuple space) and all additional
processes are created via C-Linda’s eval operation as part of active tuples hence
they live inside the tuple space.

But often it is not desired to put the return values of spawned processes
(if after all available) into tuples in tuple space. This is for instance the case
if a worker process executes in an infinite loop and deposits result tuples into
a tuple space instead of returning only one result. It seems to be artificial to
put such a worker process into an active tuple. In this section we will present

an adaptation of the approach for process creation known from Multilisp to set-
oriented programming, where new processes may be spawned inside and outside
of tuple space.

program Queens;
constant N := 4;
begin
fields := {[x,y]: x in [1..N], y in [1..N]1};
put ({NextPos: NextPos in npow(N, fields) | NonConflict(NextPos)l});

procedure NonConflict (Position);
begin
return forall F1 in Position, F2 in Position |
((F1 /= F2) !'implies
(F1(1) /= F2(1) and F1(2) /= F2(2) and
(abs (F2(1)-F1(1)) /= abs(F2(2)-F1(2)))));

procedure implies (a, b); begin
return not a or b;
end implies;
end NonConflict;
end Queens;

Fig. 1. Solution for the Queens’ Problem.

The predefined function npow(k, s) yields the set of all subsets of the set
s which contain exactly k elements. The predefined function abs returns the
absolute value of its argument. NonConflict checks whether the queens in a
given position do not attack each other. It is possible to use procedures with
appropriate parameters as user-defined operators by prefixing their names with
the “1” symbol. This is done here with the procedure implies. T(i) selects
the i*® element from tuple T.

{{[1,31, [2,11, [4,2], [3,41},
{03,11, [1,21, [2,4]1, [4,31}}

This program produces this set as a result:

which corresponds to these positions:

Multilisp augments Scheme with the notion of futures where the programmer
needs no knowledge about the underlying process model, inter-process commu-
nication, or synchronization to express parallelism. We refer to [14] for a full
account to Multilisp. The semantics of futures is based on lazy evaluation, which
means that an expression is not evaluated until its result is needed.

Futures in Multilisp provide a method for process creation but not much help
for synchronization and communication between processes. The only synchro-
nization and communication mechanism is waiting for each other’s termination.

In our approach the concept for process creation via futures is adapted to set-
oriented programming and combined with the concept for synchronization and
communication using tuple spaces.

Multilisp is based on Scheme, which is a dialect of Lisp with lexical scop-
ing. Lisp and Scheme manipulate pointers. This implies touching in a value-
requiring context and transmission in a value-ignoring context. This is in con-
trast to PROSET that uses value semantics, i.e., a value is never transmitted by
reference. However, there are a few cases where we can ignore the value of an
expression: if the value of an expression is assigned to a variable, we do not need
this value immediately, but possibly in the future.

Process creation in PROSET is provided through the unary operator | |, which
may be applied to an expression (preferably a function call). A new process will
be spawned to compute the value of this expression concurrently with the spawn-
ing process analogously to futures in Multilisp. If this process creator | | is applied
to an expression that is assigned to a variable, the spawning process continues
execution without waiting for the termination of the newly spawned process.
At any time the value of this variable is needed, the requesting process will be
suspended until the future resolves (the corresponding process terminates) thus
allowing concurrency between the computation and the use of a value. Consider
the following statement sequence to see an example:

x := || pO; -- Statement 1
-- Some computations without access to x
y = X3 -- Statement 2

After statement 1 is executed the process p() runs in parallel with the spawning
process. Statement 2 will be suspended until p() terminates, because a copy is
needed (value semantics). This is in contrast to Lisp where an assignment would
copy the address and ignore the value. If p() resolves before statement 2 has
started execution, then the resulting value will be assigned immediately. Also, if
a compound data structure is constructed via a set or tuple forming enumeration,
and this data structure is assigned to a variable, we do not need the values of
the enumerated components immediately, thus allowing concurrency as above.
Additionally, statements such as “|| p();”, which spawn new processes, are
allowed.

4.2 Tuple-Space Operations

PROSET provides three tuple-space operations. The deposit operation deposits
a new tuple into a tuple space, the fetch operation fetches and removes a tuple
from a tuple space, and the meet operation meets and leaves a tuple in a tuple
space. It 1s possible to change the tuple’s value while meeting it.

Depositing Tuples. The deposit operation deposits a tuple into a specified
tuple space. We distinguish between passive and active tuples in tuple space. If
there are no executing processes in a tuple, then this tuple is added as a passive
one (cp. out of C-Linda [4]):

deposit [123, "mystring", 3.14] at TS end deposit;

TS is the tuple space at which the specified tuple has to be deposited. See Sect. 4.4
for a discussion of multiple tuple spaces in PROSET. If there are executing pro-
cesses in a tuple, then this tuple is added as an active one to the tuple space:

deposit ["myprocess", || p()] at TS end deposit;

Depositing a tuple into a tuple space does not touch the value. When all processes
in an active tuple have terminated their execution, then this tuple converts into
a passive one with the return values of these processes in the corresponding tuple
fields. Active tuples are invisible to the other tuple-space operations until they
convert into passive tuples. The other two tuple-space operations apply only to
passive tuples (see the following subsections).

Limited Tuple Spaces. Because every existing computing system has only finite
memory, the memory for tuple spaces will also be limited. Pure tuple-space
communication does not deal with full tuple spaces: there is always enough
room available. Thus most runtime systems for Linda hide the fact of limited
memory from the programmer.

In PROSET, the predefined exception ts_is_full will be raised by default
when no memory is available for a deposit operation. This exception is raised
with the signal statement of PROSET. Signal exceptions permit the operation
raising the exception to be either terminated or resumed at the handler’s dis-
cretion. We refer to [13] for a discussion of exception handling in general and to
[8] for a discussion of exception handling in PROSET. It is possible to specify a
handler for an exception by annotating a statement with a new binding between
exception name and handler name. If the associated handler then executes a
return statement, the statement following the deposit will be executed and
the tuple of the respective deposit will not be deposited. If the handler exe-
cutes a resume statement, then the deposit operation tries again to deposit the
tuple.

Optionally, the programmer may specify that a deposit operation will be
suspended on a full tuple space until space 1s available again. The suitable han-
dling of full tuple spaces depends on the application to program. Thus a general
setting does not seem to be appropriate. Blocking is useful, e.g., in a producer-
consumer application. In a master-worker application you might prefer to collect
some results by your own handler before producing more tasks, when your tuple
space 1s full.

Fetching Tuples. A fetch operation tries to fetch and remove exactly one tu-
ple from a tuple space. It is possible to specify several templates for the specified
tuple space in a statement, but only one template may be selected nondetermin-
istically (see also Sect. 4.3). We start with a first example for a fetch operation
with a single template:

fetch ("name", 7 x |(type $(2) = integer)) at TS end fetch;

This template only matches tuples with integer values in the second field and the
string "name" in the first field. The symbol $ may be used like an expression as a
placeholder for the values of corresponding tuples in tuple space. The expression
$(i) then selects the i** element from such tuples. As usual in PROSET | means
such that. The Boolean expression behind | may be used to customize matching
by restricting the set of possibly matching tuples. PROSET employs conditional
value matching and not the type matching known from C-Linda and similar
embeddings of Linda into statically typed languages. A tuple and a template
match iff all the following conditions hold:

— The tuple is passive.

— The arities are equal.

Values of actuals in templates are equal to the corresponding tuple fields.

— The Boolean expression after | in the template evaluates to true. If no such
expression is specified, then true i1s the default.

The lvalues specified in the formals (the variable x in our example) are assigned
the values of the corresponding tuple fields, provided matching succeeds. The
selected tuple is removed from tuple space. If there are no else statements
specified as in the above example then the statement suspends until a match
occurs. If statements are specified for the selected template, these statements
are executed. An example with multiple templates, associated statements, and
an else statement:

fetch ("name", 7 x |(type $(2) = integer)) => put("Integer fetched");

xor ("name'", 7 x |(type $(2) = set)) => put("Set fetched");
at TS

else put("Nothing fetched");

end fetch;

Here both templates consist of an actual (the expression "name"), a so-called
formal preceded by a question mark, and a template condition. The template
lists are enclosed in parentheses and not in brackets in order to set the templates
apart from tuples. The else statement will be executed, if none of the templates
matches. We will use the notion non-blocking matching if else statements are
specified as opposed to blocking matching if no else statements are specified.

Meeting Tuples. The meet operation meets and leaves one tuple in tuple
space. It is possible to change the tuple while meeting it. Except for the fact
that a meet operation, which does not change the met tuple, leaves the tuple 1t
found in tuple space, it works like the fetch operation.

Changing Tuples. The absence of support for user-defined high-level operations
on shared data in Linda is criticized [1]. We agree that this is a shortcoming.
For overcoming it we allow to change tuples while meeting them in tuple space.
This 1s done by specifying expressions into which specific tuple fields will be
changed. Tuples, which are met in tuple space, may be regarded as shared data
since they remain in tuple space; irrespective of changing them or not. Consider

meet ("name", 7 into $(2)+1) at TS end meet;
which is equivalent to the series of statements with x as a fresh name:

fetch ("name", ? x) at TS end fetch;
deposit ["name", x+1] at TS end deposit;

If there are intos specified after the formals as in this example then the tuple
is at first fetched from the tuple space as it would be done with the fetch
operation. Afterwards a tuple will be deposited into the same tuple space, where
all the tuple fields without intos are unchanged and all the tuple fields with
intos are updated with the values of the respective expressions.

Indivisibility is guaranteed, because fetching the passive tuple at starting and
depositing the new passive or active one at the end of the user-defined operation
on shared data are atomic operations. Note that the tuple is not really removed
from the tuple space. The above equivalence 1s only introduced to specify the
semantics, not the implementation. Therefore, with the meet operation expensive
copying of compound data may be avoided.

4.3 Nondeterminism and Fairness while Matching

There are two sources for nondeterminism while matching:

1. Several matching tuples exist for a given template: one tuple will be selected
nondeterministically.

2. A tuple matches several templates: one template will be selected nondeter-
ministically.

If in any case there is only one candidate available, this one will be selected.
There are several ways for handling fairness while selecting tuples or templates
that match if there are multiple candidates available. We will now discuss faur-
ness of choice which is important for handling the nondeterminism derived from
matching. There exist some fairness notions [18]. Weak fairness means that, if
a process is enabled continuously from some point onwards then it eventually
will be selected. Weak fairness is also called justice. Strong fairness means that,
if a process is enabled infinitely often then it will be selected infinitely often.
In PROSET the following fairness guarantees are given for the two sources for
nondeterminism as mentioned above:

1. Tuples will be selected without any consideration of fairness.
2. Templates will be selected in a weakly fair way.

Since deposited tuples are no longer connected with processes, it is reasonable
to select them without any consideration of fairness. Linda’s semantics do not
guarantee tuple ordering — this aspect remains the responsibility of the pro-
grammer. If a specific order in selection 1s necessary, it has to be enforced via
appropriate tuple contents. Fairness is also important for processes which are
blocked on full tuple spaces:

10

3. Processes which are blocked on full tuple spaces are selected in a weakly fair
way when tuples are fetched from the respective tuple spaces.

In cases (2.) and (3.) processes are involved and enabled after selection, whereas
in case (1.) this is not the case for deposited tuples. Therefore, it is reasonable
to employ weakly fair selection in cases (2.) and (3.), and unfair selection in case
(1.). These fairness properties are specified formally by means of temporal logic
in [16].

Wealkly fair selection of templates applies only to blocking matching: if a tem-
plate that 1s used for non-blocking matching does match immediately then this
one is excluded of further matching and the corresponding process is informed
of this fact. If we would guarantee strongly fair selection of templates then the
system would have to retain non-blocking matching operations of processes, for
which no matching tuples were available. We see no justification to guarantee
strong fairness.

4.4 Multiple Tuple Spaces

Atoms are used to identify tuple spaces. As mentioned in Sect. 3 atoms are
unique for one machine and across machines. They have first-class rights.

PROSET provides several library functions for handling multiple tuple spaces
dynamically. The function CreateTS(1limit) creates a new tuple space and re-
turns its identity (an atom). Since one has exclusive access to a fresh created
tuple-space 1dentity, CreateTS supports information hiding. The integer parame-
ter limit specifies a limit on the expected or desired size of the new tuple space.
This size limit denotes the total number of passive and active tuples, which
are allowed in a tuple space at the same time. CreateTS(om) would instead
indicate that the expected or wanted size 1s unlimited regarding user-defined
limits, not regarding physical limits. The function ExistsTS(TS) yields true,
if TS 1s an atom that identifies an existing tuple space; else false. The func-
tion ClearTS(TS) removes all active and passive tuples from the specified tuple
space. This function appears to be useful, e.g., in a master-worker application:
when the work has been done, the master can remove garbage and abandon the
workers. The function RemoveTS(TS) calls ClearTS(TS) and removes TS from
the list of existing tuple spaces.

Every PROSET program has its own tuple-space manager. Tuple spaces are
not persistent. They exist only until all processes of an application have termi-
nated their execution. Tuple space communication in PROSET as presented in
this paper is designed for multiprocessing (single application running on multiple
processors) as opposed to multiprogramming (separate applications). Multipro-
gramming in PROSET is done via a separate mechanism for handling persistent
data objects [6].

4.5 The Queens’ Problem Revisited

In Sect. 3 the Queens’ Problem was introduced together with a sequential solu-
tion. In Fig. 2 a parallel solution based on the master-worker model is given. It

11

is recommended to examine the sequential solution in Fig. 1 again. In a master-
worker application, the task to be solved is partitioned into independent sub-
tasks. These subtasks are placed into the tuple space, and each process in a
pool of identical workers then repeatedly retrieves a subtask description from
the tuple space, solves 1t, and deposits the solutions into the tuple space. In
our example, these subtasks are the possible positions. The master process then
can collect the results. Among the advantages of this programming approach are
load balancing and transparent scalability.

4.6 Discussion

This section discusses some design issues for the presented language constructs.
A more detailed discussion of these and other issues may be found in [16].

Process Creation. The deposit operation comprises the out and eval opera-
tions of C-Linda [4]. You might compare depositing of active tuples with eval,
but it is not exactly the same, however, because all fields of an eval tuple are ex-
ecuted concurrently and not only fields which were selected by the programmer.
This is a noteworthy difference: according to the semantics of eval each field of a
tuple is evaluated concurrently. But probably no system will create a new process
to compute, e.g., a plain integer constant. In the Yale Linda Implementation,
only expressions consisting of a single function call are evaluated within new pro-
cesses [4]. The system has to decide, which fields to compute concurrently and
which sequentially. Similar problems arise in automatic parallelization of func-
tional languages: here you have to reduce the existing parallelism to a reasonable
granularity. In our approach the programmer has to communicate his knowledge
about the granularity of his application to the system. Furthermore, the seman-
tics of eval is not always well understood: some current implementations in fact
evaluate all fields of an eval tuple sequentially within a single new process. This
may cause deadlocks if processes within an eval tuple communicate with each
other.

Ezxtending the Type System. As Linda relies heavily on type matching, the type
system of the computation language has a notable effect on tuple-space imple-
mentation and semantics. E.g.,; in C the equivalence of types is not that obvious.
Under which conditions are structures resp. unions equivalent? Are pointers
equivalent to array-names? In [19] it has been proposed to extend the type sys-
tem of C to overcome some of the problems thus caused: each expression has two
distinct types associated with it, its C type and its Linda type. The Linda type
follows stricter rules and is significant only in tuple matching, thus these type
extensions only influence the matching process and not the type system of C.
In PROSET there is no necessity for extending the type system for obtaining a
smooth integration of Linda: firstly, since PROSET provides a well-formed type
system with clear semantics for type equivalence, there exists no necessity to
extend the basic type system for tuple matching. Secondly, since there exist no
difference between PROSET-tuples and Linda-tuples, a combination on the basis
of this common feature becomes straightforward.

12

program ParallelQueens;

constant N := 8, NumWorker := argv(2), -- program argument
WORK := CreateTS (om), -- no limit specified
RESULT := CreateTS (om);
begin
for i in [1 .. NumWorker] do -- spawn the worker processes

deposit [|| Worker(WORK,RESULT)] at WORK end deposit;
end for;
deposit [{}] at RESULT end deposit; -- initialize the result set
deposit [0] at RESULT end deposit; -- initialize the counter

All1Positions := npow(N, {[x,y]: x in [1..N], y in [1..M]});
for NextPosition in AllPositions do

deposit [NextPosition] at WORK end deposit;
end for;

fetch (#AllPositions) at RESULT end fetch; -- wait for the workers
fetch (7 ResultPos |(type $(1) = set)) at RESULT end fetch;

put (ResultPos);

ClearTS(WORK); -- terminate the worker processes

procedure Worker (MyWORK, MyRESULT); begin
loop
fetch (7 MyPosition) at MyWORK end fetch;
if NonConflict (MyPosition) then
-- add the position:
meet (7 into ($(1) with MyPosition) | (type $(1) = set))
at MyRESULT
end meet;
end if;
-- increase the counter of evaluated positions:
meet (7 into ($(1) + 1) [(type $(1) = integer))
at MyRESULT
end meet;
end loop;
end Worker;
end ParallelQueens;

Fig. 2. Parallel Solution for the Queens’ Problem.

See Fig. 1 for the procedure NonConflict. The resulting set of non-conflicting
positions is built up in tuple space RESULT via changing meet operations. The
master program spawns NumWorker worker processes. This number is an ar-
gument to the main program. The counter in tuple space RESULT is necessary
to let the master wait until all positions are evaluated. The unary operator
returns the number of elements in a compound data structure. The binary
operator with adds an element to a compound data structure. Tuple space
WORK is cleared after work has been done thus also terminating the workers.

13

Multiple Tuple Spaces. Multiple tuple spaces allow the programmer to partition
the communication medium as he sees fit. The representation of individual tu-
ple spaces can be customized based on their contents and usage. Compile-time
analysis 1s simplified with respect to partioning of tuple space, and modularity
and information hiding is supported. The idea of splitting the tuple space into
multiple spaces is frequently applied. New data types and classes are often pro-
posed to organize them [26]. In most proposals for introducing multiple tuple
spaces, values of objects of these types are used as identifiers/references to tuple
spaces and not as the value of a tuple space itself. Conversely, in [12] operations
on tuple spaces as first-class objects are supported (e.g. suspension). However,
because of concurrent access it is rarely possible to make any sensible statement
with respect to the actual value of a tuple space (tuple-space constants make
not much sense, except for the creation of tuple spaces). A tuple space may be
viewed as the dynamic envelope of a growing and shrinking multiset of passive
and active tuples that controls the communication and synchronization of par-
allel processes. This dynamic communication device has no first-class rights in
PROSET. Atoms as tuple-space identities already have first-class rights.

5 Implementation Issues

The definition of C-Linda has been presented informally [11] and, as a result, has
included several ambiguities. E.g., [20] summarizes four basic types of process
creation used in implementations of C-Linda’s eval operation. These are differ-
ent interpretations of the informal specification of the eval operation. Additional
discussions of problems with the semantics of the eval operation may also be
found in [19] and in [16]. Such a situation demands a more precise definition.

In [15], a formal semantics of tuple spaces in PROSET by means of the formal
specification language Z [25] has been presented to avoid such problems. We re-
fined this formal specification into an implementation design and implemented
a prototype from the formal specification. The prototype allows immediate val-
idation of the specification by execution, and provides us with a touch-and-feel
experience necessary to test the specification. The prototype enables us to avoid
the large time lag between specification of a system and its validation in the
traditional model of software production using the life cycle approach.

We can only sketch some implementation issues here. An implementation of a
graphical debugger [23], and an implementation on a network of workstations [21]
are in progress. Multiple tuple spaces provide a direct approach for distributing
the tuple space on a distributed memory architecture. The representation of
individual tuple spaces can be customized according to their contents and usage.

6 Conclusions

In this paper, we presented PROSET-Linda which adapts the concept for pro-
cess creation via Multilisp’s futures to set-oriented programming and integrates

14

Linda’s concept for synchronization and communication via tuple space. The
basic Linda model is enhanced with multiple tuple spaces, the notion of lim-
ited tuple spaces, selection and customization for matching, specified fairness of
choice, and the facility for changing tuples in tuple space. It is fairly natural to
combine set-oriented programming with generative communication on the basis
of tuples, as both models, PROSET and Linda, provide tuples.

The small example presented here did not fully demonstrate the advantages
of multiple tuple spaces. However, in more sophisticated problem domains such
as process trellises [9] the advantage of information hiding is obvious, since pro-
cesses may communicate within isolated tuple spaces independent of commu-
nication in other tuple spaces. The enhanced facilities for nondeterminism will
support distributed implementation of backtracking such as branch-and-bound
applications, where selective waiting for multiple events is often desired [17].

We implement PROSET-Linda in a somewhat unconventional way: the infor-
mal specification is followed by a formal specification, which serves as the basis
for a prototype implementation before the production-level implementation is
undertaken. Applying formal methods early in the design stage of computer
systems and software can increase the designer’s productivity by clarifying is-
sues and eliminating errors in the design. A side effect is that very few design
errors will prevail at the implementation stage; design errors detected at the im-
plementation stage are often more expensive to correct. When formal methods
are systematically applied to all stages of design and implementation, we can
increase our confidence that the software is robust and correct. A formal de-
velopment process is more expensive in terms of time and education, but much
cheaper in terms of maintenance. There may be bugs, but they are less likely to
be at the conceptual level.

Our goal is to make parallel program design easier through prototyping of
parallel algorithms. The high level of PROSET’s constructs for parallel program-
ming enables us to rapidly develop prototypes of parallel programs and to ex-
periment with parallel algorithms.

References

1. H.E. Bal. A comparative study of five parallel programming languages. Future
Generations Computer Systems, 8:121-135, 1992.

2. R. Budde, K. Kuhlenkamp, I.. Mathiassen, and H. Ziullighoven, editors. Approaches
to Prototyping. Springer-Verlag, 1984.

3. N. Carriero. Implementation of tuple space machines. PhD thesis, Yale University,
New Haven, CT, December 1987.

4. N. Carriero and D. Gelernter. How to write parallel programs. MIT Press, 1990.

5. J. Cocke. The search for performance in scientific processors. Communications of
the ACM, 31(3):249-253, 1988.

6. E.-E. Doberkat. Integrating persistence into a set-oriented prototyping language.
Structured Programming, 13(3):137-153, 1992.

7. E.-E. Doberkat and D. Fox. Software Prototyping mit SETL. Leitfaden und Mono-
graphien der Informatik. Teubner-Verlag, 1989.

15

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. E-E. Doberkat, W. Franke, U. Gutenbeil, W. Hasselbring, U. Lammers, and

C. Pahl. PROSET — A Language for Prototyping with Sets. In N. Kanopoulos,
editor, Proc. Third International Workshop on Rapid System Prototyping, pages
235-248, Research Triangle Park, NC, June 1992. IEEE Computer Society Press.
M. Factor. The process trellis software architecture for real-time monitors. In
Proc. Second ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 147-155, Seattle, WA, March 1990.

C. Floyd. A systematic look at prototyping. In Budde et al. [2], pages 1-18.

D. Gelernter. Generative communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems, 7(1):80-112, 1985.

D. Gelernter. Multiple tuple spaces in Linda. In Proc. Parallel Architectures and
Languages Europe (PARLE’89), volume 366 of Lecture Notes in Computer Science,
pages 20—27. Springer- Verlag, June 1989.

J.B. Goodenough. Exception handling: Issues and a proposed notation. Commu-
nications of the ACM, 18(12):683-696, 1975.

R.H. Halstead. Multilisp: A language for concurrent symbolic computation. ACM
Transactions on Programming Languages and Systems, 7(4):501-538, 1985.

W. Hasselbring. A Formal Z Specification of PROSET-Linda. Informatik-Bericht
04-92, University of Essen, September 1992.

W. Hasselbring. Prototyping Parallel Algorithms in a Set-Oriented Language. PhD
thesis, University of Essen, 1993. (in preparation).

M.F. Kaashoek, H.E. Bal, and A.S. Tanenbaum. Experience with the distributed
data structure paradigm in Linda. In USENIX/SERC Workshop on Ezperiences
with Building Distributed and Multiprocessor Systems, pages 175-191, Ft. Laud-
erdale, FL,, October 1989.

M.Z. Kwiatkowska. Survey of fairness notions. Information and Software Tech-
nology, 31(7):371-386, 1989.

J.S. Leichter. Shared tuple memories, buses and LAN’s — Linda implementations
across the spectrum of connectivity. PhD thesis, Yale University, New Haven, CT,
July 1989.

J.E. Narem. An informal operational semantics of C-Linda V2.3.5. Technical
Report 839, Yale University, New Haven, CT, December 1989.

R. Naujokat. Entwurf und Implementierung einer Laufzeitbibliothek fir PROSET-
Linda auf einem lokalen Netzwerk. Master’s thesis, University of Essen, 1994. (in
preparation).

H.A. Partsch. Specification and Transformation of Programs. Springer-Verlag,
1990.

H. Pohland. Entwurf und Implementierung eines graphischen Debuggers fir
PROSET-Linda. Master’s thesis, University of Essen, 1994. (in preparation).

J.T. Schwartz, R.B.K. Dewar, E. Dubinsky, and E. Schonberg. Programming with
Sets — An Introduction to SETL. Springer-Verlag, 1986.

J.M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd edition,
1992.

G. Wilson, editor. Proc. Workshop on Linda-Like Systems and Their Implemen-
tation. Edinburgh Parallel Computing Centre TR91-13, June 1991.

This article was processed using the INTpX macro package with LLNCS style

16

